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Abstract—In genomic analysis, the major computation bottle-
neck is the memory- and compute-intensive DNA short reads
alignment due to memory-wall challenge. This work presents
the first Resistive RAM (RRAM) based Compute-in-Memory
(CIM) macro design for accelerating state-of-the-art BWT based
genome sequencing alignment. Our design could support all the
core instructions, i.e., XNOR based match, count, and addition,
required by alignment algorithm. The proposed CIM macro
implemented in integration of HfO2 RRAM and 65nm CMOS
demonstrates the best energy efficiency to date with 2.07 TOPS/W
and 2.12G suffixes/J at 1.0V.

Index Terms—RRAM, Compute-in-Memory, Genome Se-
quencing Alignment

I. INTRODUCTION

Next-generation sequencing (NGS) technologies enable
rapid and accurate determination of nucleotides (nt) sequence
within genomes, empowering disease diagnostics, cancer risk
assessment, tailored patient treatments, prenatal testing, and
wide range of other personalized medicine approaches. NGS
platforms can generate terabytes of DNA sequence (i.e., short
reads) data in a single run. These short reads do not come
with position information relevant to the overall genome and
must be aligned to a reference genome before further genomic
analysis or scientific discovery. However, the human refer-
ence genome is huge, containing approximately 3.2 billion
nucleotide bases (A, C, G, T) [1]. Thus, a major challenge in
sequencing is to map the short reads from NGS to the overall
human reference genome.

State-of-the-art (SOTA) alignment processes still require
hours or days to align large volumes of short read data,
even using very powerful CPUs/GPUs [2]. This is mainly
due to the off-chip bandwidth limitations and inefficiencies
of moving big data between computation and memory units,
i.e., the memory-wall challenge [3]. It is widely known that
the bottleneck for the entire genomic analysis process is the
memory- and compute-intensive DNA short reads alignment
[4], [5]. To address the memory-wall challenge, Computing-in-
Memory (CIM) has gained significant interest owing to its high
energy efficiency and superior throughput [6], and has been
widely investigated for accelerating AI applications [7], [8],
but has not been applied considerably for genome alignment.

In this work, we propose and implement a resistive random
access memory (RRAM) based CIM macro chip prototype for
SOTA Burrows-Wheeler Transformation (BWT) [1], [2], [9],
[10] based genome sequencing alignment. The designed CIM
macro supports all core instructions, i.e., XNOR based match,
count, and addition, required by alignment algorithms. As
designed, this approach could work independently as a parallel
‘alignment core’ that could process local correlated reference
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Fig. 1: Pre-computed tables for BWT based alignment.
genomic data to significantly improve system parallelism and
throughput. Leveraging the multi-bit property of RRAM cells,
our designed in-memory XNOR based match circuits are
flexible to support both 1- and 2-bit per cell encoding of
nucleotides (A, C, T, G). The CIM macro was implemented in
a prototype chip that monolithically integrates HfO2 RRAM
and 65nm CMOS, achieving the best energy efficiency to date
with 2.07 TOPS/W and 2.12G suffixes/J at 1.0V.

II. ALIGNMENT-IN-MEMORY ALGORITHM
In our prior works [4], [5], we have developed a

CIM-friendly DNA short read alignment algorithm, called
alignment-in-memory as shown in Algorithm 1, which recur-
sively uses digital bit-wise logic functions to implement the
fundamental computing core of BWT and FM-Index based
genome alignment algorithm [1], [9]. Similar to the original
algorithm, the one-time pre-computation is needed based on
the reference genome S to construct required reference tables
as shown in Fig. 1. The BWT is a reversible rearrangement
of a character string. Exact alignment finds all occurrences
of the short read R (m bp) in the reference genome S (n
bp). Note that, only the BWT and Marker Table (MT ) are
the primary genome alignment computations needed, and thus
need to be stored in our CIM macro. Other tables, like Occ.
table and Suffix Array (SA), are only related to pre- or post-
processing of core alignment function. The BWT and MT

table mapping are one-time write and only memory-read based
operations are needed during alignment computation, and are
readily implemented with non-volatile RRAM technology.

The process described in Algorithm 1 is mainly imple-
mented through the main Bound(MT , nt, id) procedure per-
formed on BWT, which computes the updated interval bound
(either low or high) value from MT with bucket width d,
input index-id and input nucleotide-nt. Such a procedure is
iteratively used in every step of ‘for’ loop. To make the
algorithm hardware-friendly for CIM platform, computations
mainly leverage several logic functions, i.e., XNOR Match
and ADD. XNOR Match conducts parallel in-memory match

operation to determine if current input-nt matches with BWT
elements stored in current memory, and then updates the
count match (i.e., counter) based on matching result (line-14
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Fig. 2: Dataflow of alignment in one CIM macro.
to -18 in Algorithm 1). ADD performs 32-bit integer (deter-
mined by the 3.2 billion reference genome length) addition
operation to implement ‘marker + count match’, then the
computed sum will be returned as the main Bound function
output (line-20). In summary, to implement all the alignment-
related computations in Algorithm 1, the CIM platform needs
to support parallel XNOR operations between input-nt and
decoded BWT elements (line-15), count the XNOR results
(line-16), read the marker from marker table (line-19), and
add it to the current counter value (line-20).

Algorithm 1 Genome Alignment-in-Memory.
Require: : Pre-Compute and Data Mapping: Partition pre-computed BWT, Marker Table

(MT ) and Suffix Array (SA).
input: Genome Short Read-R
output: Positions of short read-R in reference genome-S
Step-1. Initialization:

1: low  0, high |S|� 1
Step-2. Backward Search:

2: for i := |R|� 1 to 0 do
3: low  Bound(MT [blow/dc], R[i], low)
4: high Bound(MT [bhigh/dc], R[i], high)
5: if low � high then
6: break & return 0 . there is no exact alignment
7: end if
8: end for

Step-3. Get matched positions from stored suffix array based on a search result:
9: for j := low to high� 1 do

10: positions MEM(SA[j]) . Read positions from Suffix Array memory
11: end for

Define procedure Bound:
12: Procedure: Bound(MT , nt, id) . compute matched interval
13: count match 0
14: for j := 0 to j < (id mod d) do . count number of nt within the BWT region
15: if XNOR Match(nt,BWT [id� (id mod d) + j]) == 1 then
16: count match = count match+ 1
17: end if
18: end for
19: marker  MEM(MT [bid/dc], nt]) . Read Marker Table value
20: return ADD(marker, count match)
21: end Procedure

III. COMPUTING-IN-MEMORY RRAM MACRO DESIGN
A. Dataflow and mapping

Our preliminary work has developed correlated data par-

tition and memory mapping methodology that could partition
the BWT and MT tables based on the target CIM macro mem-
ory size to guarantee each macro could work independently as
an alignment-core to process within local memory array with
correlated data partitions. Due to space limitations, we refer
details of data partition algorithm to [4], [5]. Fig. 2 shows
the data mapping and dataflow of alignment. For each CIM
macro, the memory array is divided into three zones for storing
and processing three data types: i) rows [0:3] defined as Ref
where one whole row is programmed as the same genome
nucleotide from [A,C,G,T] as a compute reference; ii) rows
[4:15] storing the BWT partition for current CIM macro; iii)

rows [16:63] storing the MT table partition.
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Fig. 3: The CIM macro architecture and circuits.
As illustrated in Fig. 2, the core alignment process in one

macro requires two main stages: match&count and ADD.
The match&count stage includes the parallel in-memory
XNOR Match and counting the matching result using a digital
counter. For XNOR Match operation, the first operand is the
input-nt (A/ T/ C/ G), where the corresponding row in Ref
region will be activated representing current Bound function
input. The second operand is a sub-list of BWT elements
decoded by index-id and d (line-15 in algorithm). Therefore,
in this stage, two decoded rows (one from Ref and one
from BWT region) will be activated to implement parallel
XNOR based match and count outputs (line-14 to -18). In the
following ADD stage, the corresponding marker value from
the MT (line-19) will be fetched and added to the current
counter (line-20) through a digital adder. Since the RRAM
array only has 64 columns in the macro, the counting result
will not be greater than 64 which can be represented in 6
bits. Performing a 32-bit addition with a 6-bit number in each
local CIM macro is unnecessary, in our design, we leverage
one 6-bit adder here and pre-calculate the bias based on the
index of current CIM macro using similar BWT and MT

partition algorithm [4]. Note that, this pre-calculation is also
one-time and saved within the MT region for each type of
nucleotide. Finally, the ADD result is returned as the main
Bound function output, which will be utilized during the
processing of the next nucleotide in the same short read.
B. CIM Macro Architecture and Circuit Design

Fig. 3 shows the proposed architecture and circuits of one
CIM macro to perform alignment operations. The computa-
tional array consists of one 64⇥64 RRAM array, SL/WL/BL
decoder, sense amplifier (SA), counter, adder, transmis-
sion gate (TG), level shifter, etc. As described earlier, for
XNOR match operation, two rows will be simultaneously acti-
vated, as one example shown in Fig. 3(a). This forms a voltage
divider circuit in each bitline (BL), where the BL voltage is
determined by the two activated RRAM cells in the same
column. Two complementary TGs controlled by SL decoder
and drivers are used to provide the operating voltages. The first
TG corresponding to the first XNOR operand, given input-nt
in Ref region, connects to the VSL. While, the other one cor-
responding to the second XNOR operand, BWT, connects to
the GND, for forming the voltage divider circuit as in Fig. 3(b).
The voltage at the BL (VBL) should be around the middle of
the supplied voltage (VSL) when the resistance of R1 is equal
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or very close to R2, meaning a ‘match’ is found. Otherwise,
it is ‘not matched’. To achieve such matching function, we
design two sense amplifiers (SA) as voltage comparators per
BL, where they share the same BL but with different reference
voltages: Vref1 and Vref2. An AND logic gate is connected
to the output of two SAs, so that it only outputs ‘1’ when
Vref1 < VBL < Vref2, thus implementing a XNOR based
matching function. As described earlier, the example R1 and
R2 here represent the two nucleotides being compared, as
such, each column outputs ‘1’ when the two nucleotides being
compared are the same. With the operation being independent
of other columns, it enables 64 parallel matching operations in
one cycle. The proposed design supports both 1-bit/cell and
2-bit/cell XNOR match, where the sense margin is mainly
dependent on the RRAM’s On/Off ratio, variation, resistance
difference between different encoded levels and VSL. For the
1-bit/cell case, each nucleotide requires two adjacent RRAM
cells for encoding, whereas in the 2-bit/cell case, each RRAM
cell can be programmed into four different resistance levels:
LRS, LRS⇥�, LRS⇥�2, and HRS=LRS⇥�3 to represent the
4 different nucleotides.

In our design, to support independent RRAM programming,
two complementary TGs are also present on BLs. During
the XNOR match operation, the BL is connected to SAs
through the TGs. While, during RRAM cell programming,
the BL is disconnected from SAs. The column decoder as-
signs the selected BL to an analog IO pad that provides
Form/Set/Reset pulses to arbitrary RRAM cells in the array.
Note that, VWL/VSL/VBL are directly connected to different
analog IO pads to provide arbitrary pulses for RRAM device
programming and testing.

The read of marker value stored in MT memory region
(line-19 in algorithm) leverages existing two rows activation
scheme and XNOR match circuit, but one of them must be
in an all-LRS state. As illustrated in Fig. 3(c), it can be seen
that when R1 is in the LRS state, the XNOR match output is
equivalent of reading R2’s status. In both 1-bit and 2-bit per-
cell cases, the first row is always programmed at the all-LRS
state to encode nucleotide ‘A’, as shown in Fig. 3(b). Thus,
the read operation is through activating the first row and the
row needs to be read.

IV. CHIP MEASUREMENT RESULT
Our prototype chip was fabricated using a custom 65nm

CMOS process with integration of HfO2 RRAM between M1
and M2 using a 300mm wafer platform at SUNY Polytechnic
Institute. More detailed device-level RRAM characteristics and
fabrication process were reported in the prior publication [11].
As shown in Fig. 8, we designed the automated process of the
FORM/SET/RESET/READ operations for the RRAM array.
Repeatable pulses are sent from SL/BL to BL/SL for each
device during the programming process until the targeted
resistance level is achieved, or the writing attempts reach
the maximum limit. The WL is used for address indexing
of the 1T1R cell in the RRAM array, and the typical value
for programming amplitude (V ), pulse width (PW ), and gate
control voltage (VWL) are listed below:
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1) FORM: Vform=3.8V , PW=10µs, VWL=1.8V , repeat
limit is 50 times; 2) SET: Vset=1.2V , PW=1µs, VWL=1.5V ,
target resistance value is <3k⌦; 3) RESET: Vreset=3.3V ,
PW=100ns, VWL=3.3V , target resistance value is >50k⌦;
4) READ: Vread=0.2V , VWL=3.3V .

In this work, we test and report the measurement results
of the 1-bit/cell RRAM scheme, while the 2-bit/cell RRAM
scheme remains as future work. Fig. 4(a) shows the measured
RRAM LRS/HRS distribution across 5 test chips and the
corresponding pattern match voltage distribution is shown
in Fig. 4(b), where the center voltage distributions repre-
sent the BL voltage values with ‘MATCH’ results. For the
XNOR match operation, the VSL voltage is up-bounded to
0.45V. As we observed, a higher voltage than 0.45V may
disturb RRAM resistance during inference operation.

The chip’s core power consumption comes from two main
sources: analog input and digital power supply. The analog
input feeds in from the SL through the given path of RRAM
devices, with a fixed power supply at 0.45 V, to maximize
the sensing margin while still preventing RRAM cells from
destructive read operation. Analog power varies with test
vectors from 150 µW to 400µW, as a result of different
numbers of HRS and LRS in the circuit paths. In the energy
efficiency calculation, we take 250 µW as the average analog
power, where at this point the HRS and LRS cells are 50%
each in the test vectors.

The digital power includes digital decoder, clock generator,
digital driver for WL/SL/BL, and SAs. The digital power
strongly correlates with the supply voltage and operating fre-
quency. We performed a voltage sweep for the digital circuits
from 0.9 V to 1.2 V, to explore the optimal voltage for the
highest energy efficiency and the maximum frequency, and the
results are shown in Fig. 5. In Fig. 5(a), we show the maximum
frequency and throughput with voltage scaling. The maximum
frequency (fMAX ) indicates the highest frequency at each
supply voltage where all the circuit functions remain correct.
The definition of throughput in this work is: OPs/t⇥fMAX ,
where OPs is the number of operations in one XNOR match
operation, which is 64 XNOR and counting (sum up 64 1-bit
numbers), in total 128 for this work. t is the required number
of cycles for the circuits to process the outputs from RRAM
array, which is 5 in this work for SAs and the parallel adder.
At 1.2V supply, we achieve the maximum frequency of 84.5
MHz and maximum throughput of 2.16 GOPS. As the supply
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(a) Max. freq. & throughput (b) Energy Efficiency
Fig. 5: Frequency, throughput, and energy with voltage scaling.

(a) Macro area breakdown

Design This Work
Technology Node 65nm

RRAM Type 1T1R HfO2

RRAM Array Size 64 ⇥ 64
Core Design Area (mm2) 0.1436

Operating Voltage (V) 0.9⇠1.2
Operating Frequency (MHz) 23.7⇠84.5
Energy Efficiency (TOPS/W) 2.07 (at 1.0V)

(b) Summary
Fig. 6: Area breakdown and chip summary.

voltage reduces, the frequency and throughput reduce largely
linearly.

Fig. 5(b) shows the digital energy efficiency and overall
(including digital and analog parts) energy efficiency. As the
supply voltage reduces, the digital energy efficiency increases,
while the analog energy efficiency degrades due to lower
maximum frequency. The overall energy efficiency, which
combines both digital and analog parts, reaches its maximum
value of 2.07 TOPS/W at 1.0 V supply and a maximum
frequency of 52.15 MHz.

Table I shows the comparison of our chip prototype design
with four different types of genome alignment platforms:
CPU/GPU as general purpose processors, FPGA [12] imple-
mentation, and ASIC design [10]. While CPUs/GPUs run
at faster frequencies and have more on-chip memory, the
‘memory-wall’ limit their absolute throughput and energy
efficiency. An FPGA-based implementation achieves higher
performance due to its large-scale (8 FPGAs in this imple-
mentation) and dedicated dataflow graph. The only related
prior CMOS ASIC design shows much improved performance,
particularly in terms of throughput-to-area ratio, compared
with CPUs/GPUs and FPGAs. Benefiting from the unique
CIM architecture, our proposed CIM macro achieves the best
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Fig. 7: Chip micrograph and layout with module breakdown.

Fig. 8: Experimental test environment.
TABLE I: Comparison with prior related works.

Metrics
CPU [10]

AMD Opteron
6128

GPU [10]
NVIDIA Tesla

M2075
FPGA [12] ASIC [10]

CMOS
Ours

CMOS+RRAM

Technology 45nm 40nm 28nm 40nm 65nm
Die Size (mm2) 14.3k 1.6k 14.8 7.84 0.1436

Power (W) 80 <200 247 0.135 0.01
Frequency (MHz) 2000 1150 200 200 84.5

On-Chip
Memory (KB) 17,120 1,664 N/A 384 0.5(1-bit)/

1(2-bit)
Throughput
(suffixes/s) 6.9⇥104 8.3⇥105 1.5⇥108 5.1⇥106 2.12⇥108

Energy Efficiency
(suffixes/J) 870 4200 6.2⇥105 3.7⇥108 2.12⇥109

Throughput-to-Area
(suffixes/s/mm2) 200 1600 420 6.4⇥105 1.47⇥109

performance in all aspects, particularly in energy efficiency
and throughput-to-area ratio. Leveraging the high parallelism
and reduced data movement of CIM architecture, our design
achieves ⇠41.6⇥ higher throughput and ⇠5.73⇥ energy effi-
ciency improvement against the SOTA CMOS ASIC design.

V. CONCLUSION
This work presents the first CMOS+RRAM CIM chip for

accelerating genome sequencing alignment, showing orders of
magnitude improvement in energy efficiency and throughput
over CPUs/GPUs and prior non-CIM CMOS ASIC design.

ACKNOWLEDGMENT
This work is supported in part by the National Sci-

ence Foundation under grants 1652866/2003749/2144751, and
JUMP COCOSYS, an SRC program sponsored by DARPA.

REFERENCES

[1] H. Li et al. Fast and accurate short read alignment with burrows–wheeler
transform. Bioinformatics, 25:1754–1760, 2009.

[2] M. Alser et al. Accelerating genome analysis: A primer on an ongoing
journey. IEEE Micro, 40(05):65–75, sep 2020.

[3] F. Wen et al. Openmem: Hardware/software cooperative management
for mobile memory system. In 2021 58th DAC, pp. 109–114.

[4] S. Angizi et al. AlignS: A processing-in-memory accelerator for DNA
short read alignment leveraging SOT-MRAM. In DAC, pp. 1–6, 2019.

[5] F. Zhang et al. Aligner-d: Leveraging in-dram computing to accelerate
dna short read alignment. IEEE JETCAS, 13(1):332–343, 2023.

[6] B. Li et al. Rram-based analog approximate computing. IEEE TCAD,
34(12):1905–1917, 2015.

[7] I. Yeo et al. Resistive memories stack up. Nature Electronics, 2022.
[8] A. Sridharan et al. A 1.23-GHz 16-kb programmable and generic

processing-in-SRAM accelerator in 65nm. In ESSCIRC, 2022.
[9] M. Burrows et al. A block-sorting lossless data compression algorithm.

Digital Equipment Corporation technical reports, 124, 1994.
[10] Y.-C. Wu et al. A 135-mW fully integrated data processor for next-

generation sequencing. IEEE TBioCAS, 11(6):1216–1225, 2017.
[11] J. Hazra et al. Optimization of switching metrics for CMOS integrated

HfO2 based RRAM devices on 300 mm wafer platform. In IMW, 2021.
[12] J. Arram et al. Leveraging FPGAs for accelerating short read alignment.

IEEE/ACM TCBB, 14(3):668–677, 2017.

120


	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

