
DSPIMM: A Fully Digital SParse In-Memory Matrix
Vector Multiplier for Communication Applications

Amitesh Sridharan⇤, Fan Zhang⇤, Yang Sui†, Bo Yuan†, Deliang Fan⇤
⇤School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

†Department of Electrical and Computer Engineering, Rutgers University
Email: asridh25@asu.edu, fzhang95@asu.edu, yang.sui@rutgers.edu, bo.yuan@soe.rutgers.edu, dfan@asu.edu

Abstract—Channel decoders are key computing modules in
wired/wireless communication systems. Recently neural network
(NN)-based decoders have shown their promising error-correcting
performance because of their end-to-end learning capability.
However, compared with the traditional approaches, the emerging
neural belief propagation (NBP) solution suffers higher storage
and computational complexity, limiting its hardware performance.
To address this challenge and develop a channel decoder that
can achieve high decoding performance and hardware perfor-
mance simultaneously, in this paper we take a first step towards
exploring SRAM-based in-memory computing for efficient NBP
channel decoding. We first analyze the unique sparsity pattern
in the NBP processing, and then propose an efficient and fully
Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM)
computing platform. Extensive experiments demonstrate that our
proposed DSPIMM achieves significantly higher energy efficiency
and throughput than the state-of-the-art counterparts.

Index Terms—Sparsity, In-Memory-Computing, SRAM, MAC,
Neural Decoder.

I. INTRODUCTION

Thanks to their powerful error-correcting capabilities, mod-
ern channel codes, such as low-density parity check (LDPC)
[1], polar [2], and Turbo [3] codes, have been widely used
in numerous real-world wired and wireless communication
systems, including but not limited to 5G, Wi-Fi, StarLink,
Ethernet, etc. In general, given a fixed channel code, its error-
correcting performance is mainly determined by the decoder.
Recently, neural belief propagation (NBP), as a neural network
(NN)-based approach, has shown very promising decoding
performance across different types of channel codes [4]–[7].
By unfolding the original iterative belief propagation procedure
to form a sparse feedforward neural network, NBP makes the
key scaling parameters, which were previously set in a heuristic
way, can now be directly learned from the data, significantly
improving the error-correcting capability of channel codes.

Hardware Challenge of NBP Decoder. Despite its attractive
algorithmic advantage, NBP decoder is facing a severe chal-
lenge in hardware performance. The integration of NN into
decoding process, though improving error-correcting perfor-
mance, brings much higher storage and computation overhead.
Because channel decoders are typically deployed in the real-
time and/or low-power communication systems, the signifi-
cantly increasing complexity, if not properly addressed, may
hinder the widespread adoption of this promising technique.

IMC-NBP: A Double-Win Solution. Fortunately, we dis-
cover that the emerging hardware challenge for NBP decoder

This work is supported in part by the National Science Foundation under
Grant No.2003749 and No. 2144751

can be effectively addressed via in-memory computing (IMC),
a technique that has been well-studied to develop low-power
general NN hardware [8]–[11]. Considering NBP is essentially
a type of specialized sparse feedforward neural network model,
applying IMC to its hardware design, is naturally a very promis-
ing strategy towards achieving high hardware performance
while preserving high decoding performance.

Which Type of IMC for NBP? Motivated by such promis-
ing benefits, in this paper, we propose to develop energy-
efficient high-performance in-memory computing-based neu-
ral BP decoder. Since there exist numerous types of IMC
techniques in the market, e.g., SRAM, RRAM, MRAM, etc.,
the very first design knob we need to consider is the most
suitable IMC approach for NBP decoder. Our in-depth analysis
concludes that digital in-SRAM computing is the best candidate
for building the desired NBP decoder. This is because compared
to AI applications, wired/wireless communication have very
stringent requirement on error rate (at least 10�4 and above)
and data rate, calling for a noiseless compute environment and
high throughput. To that end, digital in-SRAM computing is
an ideal candidate for NBP hardware because of its accurate
computation, low read/write latency, and high flexibility.

Questions to be Answered. Considering NBP decoder is
a sparse neural network with a unique sparsity pattern and
activation function, a customized solution, instead of the ex-
isting general in-SRAM hardware, is desired to fully deliver
its algorithmic promise. More specifically, several technical
questions need to be answered. For instance, how should
we properly leverage the unique structured and unstructured
sparse patterns, which currently cannot be supported by the
existing digital SRAM-based IMC implementations? What is
the efficient way to map new computing flow and operation on
the IMC circuits?

Technical Preview and Contributions. In this paper, we
perform systematic investigations to answer these questions,
and then develop the corresponding hardware solutions. The
main contributions are summarized as follows:

1) We, for the first time, design and develop an end-
to-end, energy-efficient high-speed SRAM-based in-
memory computing system for neural BP channel decod-
ing, namely DSPIMM.

2) We propose an efficient and digital bit-serial in-memory
matrix-vector multiplication (MVM) module using a
novel 8T compute SRAM bit-cell circuit design, fully
supporting the unique sparsity pattern in NBP decoding.

3) We propose a greedy weight compression and localization979-8-3503-2348-1/23/$31.00 ©2023 IEEE

(GWCL) algorithm, which properly leverages the struc-
tured and unstructured sparsity pattern, to realize efficient
data mapping and sparse computing.

4) We conduct extensive experiments showing the great en-
ergy efficiency and power improvement of our DSPIMM
platform. We also systematically benchmark with other
state-of-the-art counterparts.

II. NEURAL BP ALGORITHM

According to coding theory, a (N , K) channel code is
uniquely defined by a (N�K)-by-N binary parity check matrix
(H), which can also be interpreted as a bipartite graph consist-
ing of N variable nodes and (N�K) check nodes. Suppose we
use v to denote the v-th variable node in the node set V and c to
denote the c-th check node in the node set C, respectively. Also,
we use E = {e(c,v) = (c, v) : H(c, v) = 1, v 2 V, c 2 C} to
denote the set of edges connecting the two types of nodes. Here
the e(c,v) connecting the c-th check node and the v-th variable
node corresponds to one 1-valued entry (“H(c, v) = 1”) of H .

The key idea of NBP decoding [12] is to perform message
update in the unfolded bipartite graph. As illustrated in Fig. 1,
the neurons denoted as orange and green circles represent uc!v

and uv!c, which are the messages (i.e., “belief”) transmitted
from the v-th variable node to the c-th check node and from the
v-th variable node to the c-th check node at the t-th iteration
through edges E, respectively. Different from traditional belief
propagation, NBP treats the connections between uc!v and
uv!c as trainable weights instead of the pre-set heuristics.
Next, we summarize the overall dataflow and compute steps
of Neural BP decoding. Initially, an NBP decoder receives the
log-likelihood ratios (LLRs) l 2 Rn of the received codeword
r as:

lv = log
Pr(xv = 1|rv)
Pr(xv = 0|rv)

. (1)

Then the variable nodes and check nodes iteratively update the
LLR messages during the entire Neural BP decoding process.
The specific update principle of the LLR message in each
iteration go through the following five steps:

Step 1: Structured Sparse Matrix-Vector Multiplication
(SSP-MVM). At the t-th iteration, ut

v!c can be calculated as:

u
t
v!c = W1lv +W2u

t�1
c!v, (2)

where we define the first term as k
t
v!c = W1lv and second

term q
t
v!c = W2u

t�1
c!v . For the first term k

t
v!c = W1lv , the

matrix format can be formulated as:
2

64
(ktv!c)1

...
(ktv!c)D

3

75 =

2

64
0, 0, 0, w, . . .
0, 0, w, 0, . . .

...

3

75

2

64
(lv)1

...
(lv)N

3

75 (3)

with input vector lv 2 RN and weight matrix W 1 2 RD⇥N

that has one non-zero entry in each row (corresponding to v),
denoted by golden connections between lv (pink circles) and
uv!c (green circles).

Step 2: Unstructured Sparse Matrix Vector Multipli-
cation (USP-MVM) and Accumulation. It requires another

matrix multiplication followed by an addition with the results
from the previous step. For the second term q

t
v!c = W2u

t�1
c!v ,

the matrix format can be formulated as:
2

64
(qtv!c)1

...
(qtv!c)D

3

75 =

2

64
0, 0, 0, 0, . . .
0, 0, 0, w, . . .

...

3

75

2

64
(ut�1

c!v)1
...

(ut�1
c!v)D

3

75 (4)

with input vector ut�1
c!v 2 RD and weight matrix W 2 2 RD⇥D

that has non-zero entries at the positions corresponding to
N(v)\c, where N(v) = {c 2 C : e(c,v) 2 E} and
M(c) = {v 2 V : e(c,v) 2 E} are the neighbors of variable
node v and check node c, respectively. W 2 is denoted by
the red connections between uc!v (orange circles) and uv!c

(green circles). The u
t
v!c is calculated as the summation of k

and q from Eq. 3 and 4 as:
2

64
(ut

v!c)1
...

(ut
v!c)D

3

75 =

2

64
(ktv!c)1

...
(ktv!c)D

3

75+

2

64
(qtv!c)1

...
(qtv!c)D

3

75 . (5)

Step 3&4: Min-Sum and Dot-Product Computation. The
u
t
c!v is calculated by min-sum operation [7] as follows:

u
t
c!v = w3c!v min

v02M(c)\v
|ut

v0!c|
Y

v02M(c)\v

sign(ut
v0!c), (6)

where w3 2 RD is learnable. This step is denoted by connec-
tions between uv!c (green circles) and uc!v (orange circles)
including blue connections (min-sum operations) and black
connections (weight dot products).

Step 5: SV Calculation. Then, the final soft output after the
t-th iteration can be calculated as:

s
t
v = lv +W 4 ⇥ u

t
c0!v (7)

2

64
(stv)1

...
(stv)N

3

75 =

2

64
(lv)1

...
(lv)N

3

75+

2

64
0, 0, 0, 0, . . .
0, w, 0, 0, . . .

...

3

75

2

64
(ut

v0!c)1
...

(ut
v0!c)D

3

75 , (8)

where W 4 2 RN⇥D with non-zero elements correspond to
N(v), denoted by golden connections between uc!v (orange
circles) and sv (yellow circles).

Remark. As shown in the neural BP computation flow (Fig.
1), the majority of learn-able weights W1,W2,W4 hold high
sparsity with a special pattern under the matrix format. For
instance, because W 1 2 RD⇥N has only one non-zero weight
in each row, the sparsity of W1 is N�1

N %, which can easily
achieve 90% when N � 10 and 99% when N � 100.

III. PROPOSED DSPIMM PLATFORM

A. Architecture and Data Flow

Fig. 2(A) demonstrates the overall architecture of our
DSPIMM for NBP. It supports all the required five algorithm
steps as shown in the corresponding circuit model in Fig. 2(A1),
(A2), (A3), and (A4). Note that, steps 1 and 2 are mainly
MVMs and are implemented using our IMC modules, where
the corresponding circuits are shown in Fig. 2(B) and (C).

Fig. 1. Example of neural BP decoding procedure.

1) W1, Structured Sparse Matrix Memory: denoted by Fig.
2(A1). This corresponds to the NBP step 1. The IMC array with
golden halos denotes the memory of W1 weight matrices (i.e.,
golden connections in Fig. 1). Each IMC array size is 256x256
which translates to 8KB per block. The Control, I/O logic,
and Input Buffers are shared among 4 IMC sub-arrays. The
control and I/O logic help in scattering the stored weights in
the Input Buffer (compiler-generated SRAMs) to the IMC sub-
Arrays. They also store the Inputs, i.e., lv vectors, and scatter
them during compute mode. Then, the compute/partial product
outputs are collected in the output/partial product buffers (Using
SRAM compiler generated Register Files).

2) W2, Unstructured Sparse (USP) Matrix Memory: Fig.
2(A2) shows the USP-Matrix Memory. The memory organiza-
tion is similar to SSP Matrix memory, with 128x256 - 4KB
IMC arrays. They carry W2 (red halo) as well as W4 (green
halo) since both follow a similar computing pattern. This USP
Matrix Memory is responsible for the sparse MVMs in Step 2
and Step 5 of the NBP algorithm.

3) Global Addition: After SSP and USP-MVM, the stored
partial products in the output buffers are streamed into parallel
global adders to perform the addition operations on the two
MVM outputs. This completes the compute of the green dots
in Fig. 1 denoting the end of Step 2 of NBP algorithm.

4) MinSum Compute and dot products (Fig. 2 A3&A4):

These modules perform steps 3 and 4. The Minsum and dot-
product instructions do not have common operands, hence are
not suitable for IMC. Thus, we leverage the digital comparators
in parallel to compute the MinSum. The Minsum outs
along with the sign bits from the output buffers of USP-MM
and W3 weights are sent to the dot-product engine (DPE) to
compute Step 4. The W3 weight matrix is usually large and
uncompressed. So a Register file is used to buffer a portion of
W3 weights to be streamed onto the DPE. when finished, the
remaining data will be fetched from off-chip.

5) Sv Calculation: Step 5 needs to be performed only once
after several iterations of Steps 1 through 4. It is performed by
loading lv onto the output buffers of the SSP-MVM memory
and using the computational sub-array of the USM-MVM
(green halos) to perform MVM between W4 and the uvc of
the previous iteration. Now, the global adders are used to sum

the output buffers of USP Matrix Memory and SSP Matrix
Memory containing the MVM outs and lv respectively.

B. 6+2T (8T) SRAM bitcell design for in-memory computing

To implement in-memory computing (IMC), specifically for
matrix multiplication in this work, we propose a 6+2T SRAM
compute bit-cell (CBC) as shown in Fig. 3(a) to implement 1
bit partial product and then the peripheral shift & accumulator
circuits implement the rest for multi-bit matrix multiplication.
For memory function, a traditional 6T SRAM bitcell is used.
For compute, the bit-cell is augmented with two additional
transistors - T1 and T2. Together, they perform the ‘AND’
function or a 1’b dot-product within the memory cell, between
operand-1 (weight bit - w/wb) and operand-2 (external input
bit - IWL). The weight bit (w and its complementary - wb)
is stored in the cross-coupled inverters of bitcell which are
connected with the gate terminals of T2 and T1, respectively.
The other operand-2 is from the input world line (i.e., IWL),
which goes to the source terminal of T2. Note that, as the name
suggests, IWL is broadcasted to the entire worldline, providing
inputs to all 8T CBCs in that row that store multi-bits of the
weight parameters. The last signal is a VSS/GND connecting to
the source terminal of T1. Finally, the AND or 1’b Dot product
out (DPO) is obtained from the common drain terminals of T1
and T2, where the truth table is given in Fig. 3(b).

C. Bit-Serial Matrix Vector Multiplication (MVM) in-memory

For multi-bit MVM, the multi-bit weight operand is stored in
the memory and the other input operand is streamed through the
IWLs. The matrix operand stored in the memory is transposed
before storage, this will put a single row of the matrix elements
into a single column of the memory array. It is done to (1)
perform dot products between all elements in one column of the
second operand (through IWL) and all elements in a single row
of the first operand. (2) Since IWLs are shared amongst rows,
the same second operand column can be used to multiply with
all the first operand rows, performing a parallel NXM (Op.1)
* MX1 (Op.2) vector dot-product. Then, the accumulation of
dot-products of every column in memory (corresponding to the
row of the first operand) is implemented using adder trees to
complete MVM. Due to bit-serial design, the IWLs can stream
only 1 bit at a time, a shift accumulation is designed to respect
the bit-position of the multi-bit operands streamed through the
IWLs, where data flow is shown in Fig. 2(D).

D. Structured Sparse Matrix Vector Multiplication (SSP-MVM)

MVM-in-memory is dense and intensive, meaning all bit-
cells are active and used for compute. But for NBP, the W1 is
extremely sparse with the special pattern as described in section
II. So to leverage such property, we develop a hardware-friendly
compression/encoding algorithm that localizes the weights and
eliminates all zeros from being stored, thereby ignored for
compute.

1) Greedy weight compression and localization (GWCL)

algorithm for SSP-MVM: Fig.4 shows an example. It parses
through the weight matrix and only stores the non-zero weights
in memory. But, such an operation scatters the weights across

Fig. 2. (A) DSPIMM architecture (B) USP Weight In-Memory Compute (C) Structured Sparse Weight In-Memory Compute (D) Data flow of Bit-Serial MVM.

Fig. 3. (a) 6+2T(8T) Compute Bit-Cell (b) Truth table of 2T AND/Dot-Product

Fig. 4. EGWCL Algorithm example

memory, breaking the structure of matrix multiplication. To
solve this, during the skip of zero weights, our circuit needs to
be aware of (1) which input needs to be multiplied with which
weight, and (2) which DPOs (post multiplication) need to be
added together.

For (1), whenever the algorithm faces a non-zero weight, it
stores not only the weight value but also the column index of
this weight next to the input buffers. Through this, when a new
input is streamed in, the column indices can dictate which row
of input buffer should be streamed onto the IWLs for compute.
Since the memory leverages the sharing of IWLs over several
bit-cells to achieve high parallelism, during compression, all
weights belonging to the same column are stored in a single
row. For (2), the sparsity of W1 matrix is structured and only
one element per row is a non-zero weight. Since all elements in
a row are added up for MVM(after dot product), the resulting

accumulation in this case will be the dot-product of the input
and weight alone. Therefore, due to the nature of this sparsity
pattern, no accumulation is necessary. Hence, no circuitry is
required for accumulation or decoding the accumulation of the
scattered weights. In summary, the GWCL algorithm works in
two stages:
Stage 1: Ignores zero-weights and greedily stores non-zero
weights, it also stores the corresponding column index along-
side the input buffer.
Stage 2: If encountering a weight belonging to a column
previously stored, it stores the weight in the same row as that of
the previously encountered column index to enable the parallel
multiplication for a shared IWL.

2) SSP-MVM In-Memory Compute Circuit and Architecture

(Fig. 2(C)): The one-time sparse weight compression discussed
above is done off-line and mapped to our IMC arrays. During
inference, a new set of inputs is fetched every iteration, so a
decoding circuitry is designed to map the newly fetched inputs
using column indices. It consists of a set of comparators that
compare the indices of the new inputs against the stored column
indices (next to the input buffers) and map the inputs to the
input buffers of the respective rows. Then, these inputs will be
streamed onto the IWLs in a bit-serial fashion for performing
partial product. Since no accumulation is required, the DPOs
are directly sent to the shift accumulators which completes the
8b8b dot-product. In summary, the implemented SSP-MVM
IMC architecture has 32 8-bit columns, each column has 256
rows and each row of the 8-bit column consists of a shift
accumulator and each 8-bit column have a routing network to
route all the accumulated outputs.

E. Unstructured Sparse Matrix Vector Mult. (USP-MVM)

The above SSP-MVM has a fixed sparse pattern with one-
hot element in a row, enabling us to skip accumulation. But,
the unstructured sparse W2 and W4 matrices do not follow this
pattern, with multiple non-zero elements in a row.

1) Enhanced Greedy Algorithm for USP-MVM: To adapt our
hardware for USP-MVM, we enhance our GWCL algorithm to
also support USP weights. The main difference here is that
weights need to be accumulated and are scattered all over the
memory array. To complete MVM, it needs a way to identify
which DPOs (post input stream-in) require accumulation, hence
an additional operation is performed alongside Stage 1, which
is, the row indices of the weights are also stored alongside
the weight memory. The reason is that, in an MVM between
matrix A and B, the column of operand B is multiplied by
the row of operand A, after which the dot-products accumulate
together. Mapping such a process to our IMC memory array
means the accumulation only happens to the dot-products of
weights in the same row. So, by storing the weight indices
during accumulation, we only need to accumulate the dot-
products resulting from weights having the same row-indices.
In summary, the Enhanced GWCL (EGWCL) is:
Stage 1: Store column indices of all non-zero weights next to
the input buffers; store the row-indices next to the non-zero
weights, ignoring the zero weights.
Stage 2: If the newly encountered weight has a column index
that is previously stored next to the input buffers, it stores the
weight in the subsequent column of the same memory row
corresponding to the column index.

2) USP-MVM IMC Circuit and Architecture (Fig. 2(b)): As
per our EGWCL algorithm, both the weights and row indices
are stored in the weight memory. Since only the weights are
used for compute and the row-indices are used for decoding the
compressed weights for accumulation, a traditional 6T SRAM
bitcell is used for storing the row indices and 8T CBC is used
for storing weights. For a given memory size m⇥n, log(m) bits
are required to represent the row indices. We use 128-bit rows
memory with 256-bit columns. The 8-bit CBC and the 8-bit 6T
SRAM together form a 16-Bit Hybrid Bit-Cell Column. So, we
have 16 columns of the 16-Bit Hybrid Bit-Cells in total. As for
the inputs, the column indices are stored alongside the input
buffers in flops. When a new input is fetched, the comparator-
based decoder is designed to parse through the column indices
of the input matrix and store the corresponding inputs onto
the input buffers. Then, they are streamed onto IWLs for dot
product computing. The CBCs in every 16-bit column will
hold 8-bit DPOs that will be accumulated next. The EGWCL
algorithm scatters the weights across the memory, so multiple
rows of the weight matrix can be present in a single column of
the memory array. Circuitry is required to (1) identify which
rows are present and (2) parse through and accumulate all the
weights in the column. For (1), we attach comparators to every
word, which enables reading of the weight indices directly from
6T bitcells. These comparators take in the row index as well
as the 8’DPO and compare the row-index against a generated
index. If it compares it outputs the 8’DPO, else it outputs a

Fig. 5. Area Breakdown of (a) SSP Matrix Mem (b) USP Matrix Mem

0. For (2), we need to identify all the row-indices present in a
single column. So a Mod-Counter is placed in every column.
Every counter is given the first and last index present in the
corresponding column to parse through all the row indices
of that column. The output of these counters is sent to the
comparators, providing indices to compare against and identify
the weights needs to be accumulated.

3) Overflows: The row indices of the accumulated DPOs
are also stored alongside the flops in the shift accumulators
(Propagated from counters in the adder tree). This is to tackle an
inherent drawback called overflow that arises due to the nature
of the EGWCL algorithm. When the weights are compressed,
there is a chance that weights from a single row (W2 matrix)
can span multiple columns (memory). In this case, these values
need to be accumulated. So, to keep track of which row
the partial product is being computed, the row index is also
stored in flops for every column of the memory array. After
the counters parse through all the row-indices, the overflow
detectors present alongside the shift accumulators accumulate
all the weights that belong to the same row. This completes the
USP-MVM.

IV. EVALUATION AND RESULTS

A. Experiment Setup

Cadence Spectre is used for all custom circuitry, designed
using TSMC 28nm to verify functionality and to check for
latency and power consumption. The area evaluation of custom
circuitry is done by making layouts in Cadence Virtuoso. For
an SSP-MVM Memory, we simulate a 128x256 memory array.
For USP-MVM, we simulate a 256x256 array. For all digital
components, we use Synopsis Design Compiler to synthesize
the gate netlist. For all reported code lengths, VCD files are
generated using SDF annotated post-synthesized RTL simula-
tions. These VCD files are used in Synopsys PrimePower for
reporting the power numbers. The Post-synthesized netlist is
used in Synopsys PrimeTime to obtain latency numbers.

B. Experiment Results

Since this is the first work to demonstrate NBP in an SRAM-
based IMC, we compare our work with other popular LDPC
channel decoding hardware implementations in Table III, even
using different algorithms. The reason is that LDPC is the
most commonly used channel code in real-world applications,
and its hardware decoder design receives the most attention as
compared to other channel codes. Ours achieves the best energy
efficiency and lowest power. We also evaluate the efficacy
of our compression algorithm in Table I. It clearly achieves
memory savings that match the sparsity ratio.

TABLE I
GWCL ALGORITHM MEMORY BENEFITS(EXCLUDES INDEX MEMORY)

Code Length/
Weight Memory

121 672 1056
Uncompressed GWCL algorithm Uncompressed GWCL algorithm Uncompressed GWCL algorithm

W1 73.2KB 0.6KB 1.5MB 2.2KB 3.7MB 3.52KB
W2 366KB 2.4KB 5MB 5.5KB 12.3MB 8.7KB
W3 366KB N/A 4.9MB N/A 12.3MB N/A
W4 73.2KB 0.6KB 1.5MB 2.2KB 3.7MB 3.52KB

TABLE II
COMPARISON WITH STATE-OF-THE-ART SRAM BASED IMC ACCELERATORS.

Reference USP-MVM(This Work) SSP-MVM(This Work) ISSCC’21 [13] ESSCIRC’19 [14] ISSCC’22 [10]
Technology 28nm 28nm 22nm 65nm 28nm
Array Size 2KB(Weights)+2KB(Indices) 8KB 8KB 0.8KB 2KB
Bit-Cell overhead 1T per bit-cell(8’b w 2T, 8’b w/o 2T) 2T Per Bit-Cell 4T per bitcell XOR+MUX+FA/ Bitcell 2T Per Bit Cell
Sparsity Level 50% >99%(Fixed) 50% 50% 50%
Macro Size 0.187mmˆ2 0.7673mmˆ2 0.202mmˆ2 0.242mmˆ2 0.049mmˆ2
Performance(GOPs)(8b8b) 786.18 1927.3 917 N/A 2035(4b1b)
Efficiency(TOPs/W)(8b8b) 12.92 29.56 24.7 2.06(16b) 154(4b1b)
Latency(8b8b) 10.42ns(9 Cycles) 8.501ns(8 Cycles) 18ns NA ⇠20ns
Implementation Synthesis Synthesis Post-Silicon Post-Silicon Post-Silicon

⇤USP-MVM throughput - 128(No of weights in a column)*2(Multiply+Accumulate)*2(50% Sparsity)*16(No of cols)/10.42ns=786GOP/s.
⇤⇤SSP-MVM throughput - 256(No of weights in a column)*2(Multiply+Accumulate)*32(No of columns)/8.5ns=1927.3GOP/s

TABLE III
COMPARISON WITH PRIOR LDPC IMPLEMENTATIONS

This Work TCAS’21 [15] VLSI’18 [16]
Code Length 1056 1027 2048
Core Area 1.32mmˆ2 2.24mmˆ2 16.2mmˆ2
Frequency 783Mhz 1000Mhz 862Mhz
Throughput 224Gb/s @4it 833Gb/s@4it 588Gb/s@5it
Area Efficiency 169.7Gb/s/mmˆ2 371.9Gb/s/mmˆ2 36.3Gb/s/mmˆ2
Energy Efficiency 1374.2Gb/s/W 109.605Gb/s/W 44.21Gb/s/W
Latency 57.465ns@4it 38ns@4it 69.6@5it
Power 0.163W 7.6W 13.3W
Node 28nm 16nm 28nm
Algorithm neural-BP Layered Finite Alphabet

TABLE IV
POWER BREAKDOWN

SSP-Matrix Mem(256x256) USP-Matrix Mem(128x256)
Hardware Power (mW) Hardware Power(mW)

Bit-Cell array(8T) 11.6mW Bit-cell array(6T+8T) 4.2mW
Shift Accumulator 46.73mW Comparator 21.3mW

Routing Network R+C
Parasitics Adder Tree 18.7mW

IP Index+IP Buff. 6.3mW Ip Index + Ip Buff. 4.22mW
Decoder 0.88mW Shift Accumulator 6.74mW

Ip Decode 1.3mW Overflow + Counters 4.63mW
Total 66.81mW Total 59.79mW

For IMC performance, we draw comparisons with state-of-
art IMC designs that have MAC operation as their core in
Table II. Compared to existing SRAM-based IMC platforms,
the USP-MVM module and the SSP-MVM module achieve
the best TOP/s metric. The USP-MVM achieves a throughput
almost equal to [13] even though it is only 1/4th in size and
our SSP-MVM IMC module can complete an 8b8b MAC one
cycle faster from skipping accumulations. The complete area
and power breakdown for all sub-modules in USP-MVM and
SSP-MVM are shown in Fig. 5 and Table IV. All above detailed
hardware evaluation and bench-marking show great perfor-
mance improvement and hopefully, our design could serve as
a benchmark for future neural decoder implementations.

V. CONCLUSION

In this work, we propose a novel SRAM-based IMC circuit
and architecture to implement the Neural BP channel decod-
ing algorithm. We utilize the sparse nature of the algorithm
by proposing IMC algorithm-hardware co-design to perform
sparse MVMs whose operands have fixed (algorithm specific)
or generic unstructured sparse patterns. Our proposed IMCs
achieve the best throughput out of state-of-the-art IMC MAC

implementations and significantly higher energy efficiency than
state-of-the-art LDPC decoder hardware.

REFERENCES

[1] R. Gallager. Low-density parity-check codes. IRE Transactions on

information theory, 8(1):21–28, 1962.
[2] E. Arikan. Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels. IEEE

Transactions on information Theory, 55(7):3051–3073, 2009.
[3] C. Berrou et al. Near shannon limit error-correcting coding and decoding:

Turbo-codes. 1. In Proceedings of ICC ’93 - IEEE International

Conference on Communications, volume 2, pp. 1064–1070 vol.2, 1993.
[4] E. Nachmani et al. Learning to decode linear codes using deep learning.

In 2016 54th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pp. 341–346, 2016.
[5] S. Cammerer et al. Scaling deep learning-based decoding of polar

codes via partitioning. In GLOBECOM 2017 - 2017 IEEE Global

Communications Conference, pp. 1–6, 2017.
[6] T. Gruber et al. On deep learning-based channel decoding. In 2017 51st

Annual Conference on Information Sciences and Systems (CISS), pp. 1–6.
[7] L. Lugosch et al. Neural offset min-sum decoding. In 2017 IEEE

International Symposium on Information Theory (ISIT), pp. 1361–1365.
[8] A. Biswas et al. Conv-sram: An energy-efficient sram with in-memory

dot-product computation for low-power convolutional neural networks.
IEEE JSSC, 2018.

[9] J. Yue et al. 14.3 a 65nm computing-in-memory-based cnn processor
with 2.9-to-35.8 tops/w system energy efficiency using dynamic-sparsity
performance-scaling architecture and energy-efficient inter/intra-macro
data reuse. In IEEE ISSCC, 2020.

[10] D. Wang et al. Dimc: 2219tops/w 2569f2/b digital in-memory computing
macro in 28nm based on approximate arithmetic hardware. In 2022

ISSCC, volume 65, pp. 266–268, 2022.
[11] A. Sridharan et al. A 1.23-ghz 16-kb programmable and generic

processing-in-sram accelerator in 65nm. In ESSCIRC 2022- IEEE 48th

European Solid State Circuits Conference (ESSCIRC), pp. 153–156, 2022.
[12] E. Nachmani et al. Deep learning methods for improved decoding of

linear codes. IEEE Journal of Selected Topics in Signal Processing,
12(1):119–131, 2018.

[13] Y.-D. Chih et al. 16.4 an 89tops/w and 16.3tops/mm2 all-digital sram-
based full-precision compute-in memory macro in 22nm for machine-
learning edge applications. In 2021 IEEE International Solid- State

Circuits Conference (ISSCC), volume 64, pp. 252–254, 2021.
[14] H. Kim et al. A 1-16b precision reconfigurable digital in-memory comput-

ing macro featuring column-mac architecture and bit-serial computation.
In ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference.

[15] M. Li et al. High-speed ldpc decoders towards 1 tb/s. IEEE Transactions

on Circuits and Systems I: Regular Papers, 68(5):2224–2233, 2021.
[16] R. Ghanaatian et al. A 588-gb/s ldpc decoder based on finite-alphabet

message passing. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 26(2):329–340, 2018.

