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Abstract—In-memory computing (IMC) provides energy-
efficient solutions to deep neural networks (DNN). Most IMC de-
signs for DNNs employ fixed-point precisions. However, floating-
point precision is still required for DNN training and complex
inference models to maintain high accuracy. There have not been
float-point precision based IMC works in the literature where
the float-point computation is immersed into the weight memory
storage. In this work, we propose a novel floating-point precision
IMC macro with a configurable architecture that supports both
normal 8-bit floating point (FP8) and 8-bit block floating point
(BF8) with a shared exponent. The proposed FP-IMC macro
implemented in 28nm CMOS demonstrates 12.1 TOPS/W for
FP8 precision and 66.6 TOPS/W for BF8 precision, improving
energy-efficiency beyond the state-of-the-art FP IMC macros.

Index Terms—Digital in-memory computing, floating-point
acceleration.

I. INTRODUCTION

State-of-the-art DNN algorithms achieve high accuracy for
many practical tasks such computer vision, natural language
processing, and autonomous driving, but require a large
amount of computation and memory. DNN training workloads
necessitate floating-point (FP) precision, while high training
accuracy has been demonstrated down to 8-bit FP (FP8)
precision [1]. For DNN inference workloads, fixed-point pre-
cision has been widely used, but [2] pointed out that complex
inference tasks can also need floating-point precision to avoid
accuracy loss. To resolve the computation and memory access
bottleneck in conventional hardware accelerators, in-memory
computing (IMC) has emerged as a promising technique to
perform multiply-and-accumulate (MAC) computations inside
the memory macro [3]-[6]. Many IMC macros presented in the
literature mostly focused on fixed-point precision operations
[3], [4]. FP engines were reported in [5] using near-memory
computing units, without tighter integration of computation
and memory. [6] reported a floating-point IMC macro design,
but additional memory was dedicated to the mantissa product
and exponent sum with 64% overhead. Recently, [7], [8] re-
ported floating-point IMC macro for 16-bit brain FP precision,
but suffers accuracy loss due to hybrid analog circuits [7] and
approximate computing/quantization [8].

In this work, we propose a novel floating-point precision
IMC (FP-IMC) macro where the float-pointing computation
is immersed into the weight memory storage. The proposed
FP-IMC supports two FP8 configurations of (a) normal 8-bit
floating-point (FP8) precision with 1-bit sign, 5-bit exponent,
and 2-bit mantissa (1-5-2) [1], and (b) 8-bit block floating-
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Fig. 1. Illustration of FP8 and BF8 schemes.

point (BF8) precision with a shared exponent [9] among a
64-element weight tensor (Fig. 1). Our proposed FP-IMC
macro was implemented in a prototype chip in 28nm CMOS,
and achieves a normalized throughput (per kb of macro)
of 166.9/606.0 GOPS/kb and energy-efficiency of 12.1/66.6
TFLOPS/W for FP8 and BF8 precision modes, respectively,
largely improving those of the state-of-the-art floating-point
IMC works.

II. FP-IMC ARCHITECTURE AND OPERATION

Fig. 2 shows the overall architecture of the proposed FP-
IMC macro. We implement a 64x64 (4kB) macro, which is
divided into eight column groups of 64x8 sub-macro arrays.
Each sub-macro receives the 512-bit input in parallel to output
the 8-bit FP§ MAC output simultaneously. Each of the 64
rows in the sub-macro is dedicated to 8-bit of input. In one
column group, each row consists of 8 SRAM bitcells (8-bit
FP weight) that will undergo a FP MAC operation against an
8-bit FP input. To perform the FP multiply, the 8-bit SRAM
bitcells along with the supporting exponent/mantissa handling
modules and a normalization module, work in conjunction.
This multiplied output is then handled in an adder tree to
perform the accumulate portion of the MAC operation. The
architecture supports FP8 as well as BF8, the ouptut of the
rows are connected to either the FP8 or BF§ adder tree based
on the active mode.

A. FP Multiply Operation:
FP8 (1-5-2) multiplication of input (IN) and weight (W) is:
IN x W = (=1)INT 5 INI621 5 1 (IN]1: 0])
x (=)W 5 W62 51 (W1 - 0)),
- (,1)(1N[7}€BW[7D x eIN[6:21+W[6:2])

x 1.(IN[1:0]) x 1.(W]1:0]),
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Fig. 3. T1/T2/T3 bitcell designs, compute functionality, and layout.
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which can be simplified into three sets of sub-operations: (a)
XOR for the sign bits (bit [7]), (b) addition of the exponent
bits (bits [6:2]), and (c) multiplication of the mantissa bits (bits
[1:0]).

To efficiently implement these sub-operations of FP8 mul-
tiplication, we designed the FP-IMC SRAM with three types
of bitcells (T1/T2/T3 bitcells), as shown in Fig. 3. T1 bitcell
performs bit-wise XOR between the input sign bit and the
weight sign bit. T2 bitcell integrates a half adder to add
the input exponent bit and weight exponent bit, and outputs
sum and carry bits. Here we implement XOR function with
pass-gate based 2T for the sum generation and perform the
AND function for the carry with 4T NOR gate. For each
mantissa bit of the weight (W), T3 bitcell integrates two
NOR gates, so that it can generate the 3-bit partial product
of M[2: 0] = (1'b1,[1:0]xWay). An 8-bit weight in this
implementation is represented by one T1 bitcell (sign bit), five
T2 bitcells (exponent bits), and two T3 bitcells (mantissa bits).
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Fig. 4. Block diagram of exponent handling module (top), mantissa handling
module (middle), and normalization module (bottom).

Each of the T1/T2/T3 bitcells consumes 1.3x1.5 um? bitcell
area for regularity.

After the sub-operations by T1/T2/T3 bitcells, ensuing
computations are performed to complete the overall 8-bit
floating-point multiply operation. In the exponent handling
module shown in Fig. 4 (top), the sum and carry bits from
the full adder in each of the five T2 bitcells are added through
the area-efficient ripple carry adder in the exponent handling
module, and outputs the 6-bit exponent. Essentially the five
individual 1-bit sums are translated to a concrete 5-bit sum
of the exponents. In the mantissa handling module shown
in Fig. 4 (middle), the three partial products obtained from
the T3 bitcells over 1-bit mantissa weights are shifted and
accumulated further to obtain the 6-bit mantissa product. The
exponent handling module is turned off in the BF8 mode,
since the exponent is shared among the weights in a tensor
group. In the normalization module, the outputs of the
exponent/mantissa handling modules subsequently undergo the
normalization operation (Fig. 4, bottom). The normalization
module in each row detects the leading ‘1’ in the 6-bit
mantissa, based on which adjusts the 2-bit mantissa and 5-
bit exponent, and outputs 8-bit (FP8) value to the adder tree.

Finally we have a multiplexer to clock-gate the submodules
during the BF8 mode. The EN_FP8 signal is used to toggle
between the two modes. The signal is responsible for turning
on/off specific submodules and selecting a mode-specific adder
tree.

6-b mantissa

Leading ‘1’
detector

Bt position
of leading ‘1))

5-b exponent
(w/o MSB)

B. FP Accumulate Operation:
The MAC output of a column group is formulated as:

COlOUT = ([NO X Wo) + ...+ (IN63 X W63) (3)

To complete the accumulation of 64 multiplication results,
we have two mode-specific adder trees dedicated to the FP8
precision mode and the BF8 precision mode. While it is
possible to use a generic adder tree supporting both modes,
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Fig. 6. (Left) Active submodules in FP8 and BF8 mode. (Right) Timing
diagrams for FP8 and BF8 modes.

dedicating an adder tree to each mode allows us to fully exploit
the benefits of BF8 mode by turning off the more complex FP8
adder portion of the architecture to lower the overall power
consumption.

The BF8 adder tree employs a series of fixed-point precision
adders as each multiplied output shares the same exponent
and can be added directly, as long as the common exponent
value is accounted for after the accumulation. The fixed-point
point accumulated mantissa (12-bit) over the 64 rows is then
passed to a normalization module, along with the shared 5-bit
exponent to obtain the normalized 8-bit MAC output.

The FP8 adder tree is a series of FP16 adders used to
accumulate the values over all the rows in a column group. We
employ FP16 adders to ensure that there is no information loss
because of overflow. To accumulate 64 FP8 multiplication re-
sults for FP8, we implement an adder tree with FP16 precision
(1-5-10) in two pipeline stages. The first level consists of eight
FP16 adder trees that return a normalized FP8 accumulated

output. These are then connected to a single FP16 adder tree
in the second level, which outputs the final FP§ MAC result.
Once the accumulation within the adder tree is complete, the
FP16 mantissa (8 bits) can now be adjusted to a FP8 mantissa
(2 bits) by adjusting the exponent bits.

When the EN_FPS8 signal is ‘1’ (‘0’), the FP8 mode is
enabled and the FP8 (BF8) adder tree is turned on, and
the BF8 (FP8) adder tree is completely clock-gated (Fig. 6,
left). During the BF8 mode, all the rows share exponent,
which makes the addition of exponent during FP multiply
operation redundant. The T2 bitcells, the exponent handling
block and the normalization modules can now be turned off.
The expected exponent sum is directly accounted for inside the
BF8 adder tree. This simpler BF8 mode logic allows the macro
input-to-output latency to be a single cycle (Fig. 6, right).
Applying consecutive inputs every cycle, the MAC output is
obtained every cycle.

The FP8 adder tree is much more complex and results
in a higher latency corresponding to the BF8 counterpart.
To improve the throughput of this relatively complex FP8
mode logic, we pipelined the overall FP§ MAC operations
in three stages. We place pipeline registers at the (1) outputs
of SRAM bitcells and (2) inputs of adder tree. As shown in
the timing diagram, we have the 3-cycle latency for FP8 and
1-cycle latency for BF8. With the 3-stage pipelining for FPS,
consecutive inputs (512 bits for 64 rows) can be applied every
cycle without any stall, and the 64x64 array can maintain a
high throughput of 64 x2x8=1024 FP8 operations per cycle.

III. CHIP MEASUREMENTS AND RESULTS

The FP-IMC macro design was implemented in a prototype
chip in 28nm CMOS technology (Fig. 5(a)), where the core
area consumes 0.71 mm2. With dynamic voltage scaling
experiments, the prototype chips were fully functional down
to the 0.56V supply voltage at room temperature for both
FP8 mode (Fig. 5(b)) and BF8 mode (Fig. 5(c)). For power
measurements, the inputs were continuously fed into the macro
with a pseudo-random linear-feedback shift register (LFSR).
For weights, we randomly assigned non-zero weights between
the minimum and maximum range of FPS.
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Fig. 5. (a) Chip micrograph. (b) Energy-efficiency and power of FP-IMC in FP8 mode. (c) Energy-efficiency and power of FP-IMC in BF8 mode.
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Fig. 7. Area and power breakdown of FP-IMC macro.

For FP8 mode, the highest energy-efficiency of 12.1
TFLOPS/W was obtained at 0.6V, and the highest throughput
of 0.67 TFLOPS was obtained at 1.1V at 650 MHz. The
BF8 mode demonstrated the highest energy-efficiency of 66.6
TFLOPS/W at 0.56V, and 2.42 TFLOPS throughput was
achieved at 1.1V at 2.4 GHz.

Fig. 7 shows the area and power breakdown of the FP-IMC
macro, where the total power is based on chip measurements
and the module-level power breakdown is based on post-layout
simulation. The adder tree with FP16 precision dominates both
area and power consumption. For BF8 mode, the frequency is
>3x higher than that of the FP8 mode. It should be noted
that the multiplexer power and area are included with the
normalization modules for the area and power breakdowns.
Since the normalization modules are turned off in the BFS8
mode, the reported normalization power in the BF8 mode is
from the multiplexers.

To evaluate the energy-efficiency benefits of FP-IMC, we
also implemented a conventional (non-IMC) 8-bit floating-
point MAC engine with 64x64 off-the-shelf SRAM array
generated by commercial memory compiler in 28nm CMOS.
Compared to the non-IMC implementation that performs the
same functionality (post-layout simulation), due to enhanced
parallelism and tight integration of computation, the proposed
FP-IMC macro achieves ~2.8x higher energy-efficiency.

Table I compares the proposed FP-IMC work to prior
floating-point IMC works. We achieve among the highest
macro-level throughput normalized per IMC array size, due
to pipelining and high operating frequency, while some works
present higher level of system integration. For the same FP8
precision, our work achieves 7.4x higher energy-efficiency
than [6] at the macro level. BF8 mode energy-efficiency is
observed to be the highest, which is >2.2x higher even than
the energy-efficiency reported in [5].

IV. CONCLUSION

In this work, we explored the implementation of floating-
point in-memory computing macro, resulting in a significant

TABLE I
COMPARISON WITH PRIOR FLOATING-POINT IMC WORKS.

Isscc |Esscirc| Isscc | issce :
2022[5] | 2022[6] | 2023[7) | 202318) | Thiswork
Technology | 28nhm 28nm 22nm 28nm 28nm
Memory 12Kb | 16Kb | 832Kb 64Kb 4Kb
CIM Bitcell | 10T | 8T/10T | 6T 26T BT/14T
Yes Yes
Acf:;:‘:y No No (analog | (approximate No
circuits) | computing)
Voltage | 0.6-1.0v [ 05-09v | 06-08 | 06-09 [ 05512v
FP Precision | BF16 | FP8-FP32| BF16 BF16 FP8/BFS
50-220 | 53-403 | 151-156 | 71-147 650MHz
Frequency | "y, MHz MHz MHz [2.4GHz
Area (mm?) |3.28x2.04| 1.0x1.0 | 3x6 0.7x0.2 1213
Normalized" | - g9 a5 | 154 467 | 166.9/606.0
1.0V, ' 0.8V, (0av, (v,
Throughput | | (0.9V, FP8
(GFLORSIKs)| BF16) BF16) | BF16) FP8/BFS)
Energy 292 61 | 178 316 12.1/66.6
Efficency | (065V. | o\ pg| 06V 08V, (0.55V,
(TFLoPsW) | BF1g) |V BF16) | BF16) FP8/BFS)

“Throughput normalized per Kb of CIM memory size.
PAverage energy-efficiency reported in [7]. For 90% input sparsity, 70.2 TFLOPS/W reported.

improvement in energy-efficiency. Our discussions have fo-
cused on the key challenge with implementing the MAC
operations crucial to a DNN in IMC and we provide a novel
solution to the same. This allows for a large improvement
in throughput and energy-efficiency owing to the IMC while
still maintaining a high accuracy with floating-point precision.
We achieved 66.6 TFLOPS/W and 12.1 TFLOPS/W energy-
efficiency for BF8 and FP8 modes, respectively.
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