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Abstract—Fully decentralized model training for on-road ve-
hicles can leverage crowdsourced data while not depending on
central servers, infrastructure or Internet coverage. However,
under unreliable wireless communication and short contact
duration, model sharing among peer vehicles may suffer severe
losses thus fail frequently. To address these challenges, we
propose “RoADTrain’, a route-assisted decentralized peer model
training approach that carefully chooses vehicles with high
chances of successful model sharing. It bounds the per round
communication time yet retains model performance under vehicle
mobility and unreliable communication. Based on shared route
information, a connected cluster of vehicles can estimate and
embed the link reliability and contact duration information into
the communication topology. We decompose the topology into
subgraphs supporting parallel communication, and identify a
subset of them with the highest algebraic connectivity that can
maximize the speed of the information flow in the cluster with
high model sharing successes, thus accelerating model training in
the cluster. We conduct extensive evaluation on driving decision
making models using the popular CARLA simulator. RoADTrain
achieves comparable driving success rates and 1.2 — 4.5x faster
convergence than representative decentralized learning methods
that always succeed in model sharing (e.g., SGP), and significantly
outperforms other benchmarks that consider losses by 17 — 27%
in the hardest driving conditions. These demonstrate that route
sharing enables shrewd selection of vehicles for model sharing,
thus better model performance and faster convergence against
wireless losses and mobility.

Index Terms—Vehicular learning; vehicular communication;
decentralized learning

I. INTRODUCTION

Autonomous/connected vehicles require models for various
purposes, from object/lane detection to driving decisions [1].
Training such models requires huge amounts of data. Many
companies collect data over multiple years with dedicated
fleets, incurring enormous financial, operational, and human
resources [2] [3]. Recently federated learning has enabled the
possibility of crowdsourcing data from large numbers of com-
mon on-road vehicles [4]. Assuming suitable communication
and incentives, this avoids the huge costs of dedicated fleets,
and obtains data of far greater variety in possibly much shorter
time. Vehicles collect, process data and train local models,
then use cellular networks to share model updates with central
servers to produce aggregated models.

Although recent work has shown the effectiveness of such
approaches [5], cellular network coverage is often sporadic,
and the data rates to the backend can be very limited and
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unstable [6]. Some work utilizes additional infrastructure (e.g.,
Road-Side Units) [7], which are not widely available either.
Fully decentralized learning (e.g. gossip learning and peer-
to-peer federated learning [8] [9]) where each vehicle trains
local iteration(s), communicates the model with other nearby
vehicles to produce aggregated models, is free from such
constraints, and thus has become increasingly popular for
vehicular learning.

However, existing work does not consider unreliable wire-
less communication or short contact durations. Wireless trans-
mission losses among peer vehicles can be significant. Due to
mobility, the contact duration in which two nearby vehicles
are within the radio range of each other, may last only tens of
seconds or even shorter. Thus contrary to assumed in existing
work, model sharing can fail frequently.

Due to limited bandwidth of peer vehicular communication
technologies, the time in sharing models between vehicles
dominates local training time. For instance, using typical
vehicular communication technologies (e.g., 802.11bd at up
to 31Mbps [10]), a cluster of two dozen vehicles may take
about 30 seconds to finish sharing compressed models among
one hop neighbors. However, powerful TFLOPS-level onboard
GPUs can cut down per round local training time to < 0.1
second [11]. Therefore, indiscriminately exchanging models
with all neighbors may take time far exceeding the contact
duration, and fails easily.

In this work, we explore a fully-decentralized, peer vehicu-
lar training approach under unreliable wireless communication
and short contact duration. The key is to introduce route
sharing among peer vehicles. Route indicates the waypoints
of a vehicle to go in a short future (e.g., next 30 seconds),
which can be obtained from navigation instructions in real
time. Based on such waypoints from others, a vehicle can
estimate the distances, thus rough data loss chances and
contact durations with them. It can prioritize and schedule
model sharing with neighbors of higher chances of completion,
thus avoiding resource waste in time and bandwidth. Given
the small size of route information (e.g., 184 bytes in our
experiment settings), route sharing consumes little resource
yet it enables shrewd selection of neighbors to greatly boost
model sharing successes.

Specially, vehicles keep training local iteration(s), sharing
routes and models, and updating models repeatedly. We call
each cycle of training local iteration(s), the subsequent peer
communication, and local model updates among vehicles



within a connected cluster as one round. Considering the
asymmetry in model sharing [12], we represent the cluster
topology in each round as a directed graph called the base
graph. Wireless loss and contact duration characteristics are
estimated from route and then embedded into the base graph.
Motivated by theoretical results [13] [14], we identify a
subset of edges forming a communication graph with the
maximum algebraic connectivity by solving a constrained
integer programming problem. The intuition is that such a
communication graph enables vehicles to receive information
from other non-directly connected vehicles with fewer inter-
mediary relays. Thus vehicles acquire information from the
entire cluster faster, accelerating training on the joint dataset.
We consider a synchronous scenario in this work, where
vehicles in a connected cluster start each round at the same
time, finish all the computation and communication, then start
the next round. We note that there is work studying asyn-
chronous decentralized learning [15]. However, asynchronicity
may impede model convergence to the optima, and even higher
throughput (number of tasks executed per time unit) does
not necessarily guarantee faster convergence [16] [17]. So we
focus on exploiting route sharing in the synchronous mode,
and leave the more complex asynchronous mode in the future.
Our contribution is threefold:

o« We propose a novel route-assisted, decentralized peer
vehicular model training scheme to address practical chal-
lenges of unreliable wireless communication and short
contact duration, which cause frequent model sharing
failures among peer vehicles.

o We embed wireless loss and contact duration estimated
from shared routes into the base topology of a con-
nected vehicle cluster. Then we formulate an integer
programming-based communication graph construction
problem to maximize algebraic connectivity. We de-
sign base graph decomposition and topology-driven sub-
graph selection algorithms to choose neighbors with high
chances of successful model sharing and enhance the
information flow in the cluster, thus accelerating training.

+ We evaluate RoADTrain on Bird-Eye-View (BEV)-based
driving decision making task. We find that RoADTrain
can converge to a loss approaching the lower bounds set
by FedAvg [18] and SGP [12] which are not subject to
model sharing failures, and 1.2—4.5x faster convergence
than SGP due to much shorter per round communica-
tion time (2.7 — 11x). In online evaluation, RoADTrain
achieves driving success rates competitive to FedAvg and
SGP. It outperforms other decentralized benchmarks that
are subject to model sharing failures by 17-27% higher
driving success rates in the hardest driving condition.

To the best of our knowledge, RoADTrain is the first
work addressing frequent model sharing failures caused by
wireless loss and mobility in decentralized peer vehicular
model training. The insight is that shared routes enable shrewd
selection of neighbors with higher chances of model sharing
success, thus better performance and faster convergence.

II. PRELIMINARIES
A. Communication model

We consider a network of vehicles V = {1,2,....n} and
each vehicle drives independently. In each round, a vehicle
updates its local model and exchanges it along with other
assistant information (e.g. routes) with one hop neighbor(s).
We assume that vehicles have access to assistant informa-
tion such as routes, and do not consider cases where such
information may not be available, such as driving without
a specific destination or in areas where navigation services
are not provided. We also assume that vehicles have similar
hardware and communication capabilities. Similar to [19],
communication between vehicles is carried out using via
an orthogonal frequency division multiple-access (OFDMA)
wireless channel [10] [20] consisting of R subcarriers, and
each subcarrier can only be occupied by one sender in each
round. We model data loss in vehicular wireless communica-
tion following [10].

Vehicle move in and out of each other’s radio range
constantly, thus the communication topology is time-varying.
To address the synchronous scenario, we discretize the time-
varying communication topology into a graph sequence in
terms of rounds. We represent the communication topology
in round k as a directed graph called base graph G* with
vertex set V and edge set £F = {(i,)|i # j,i,j € V}. Vertex
i denotes the vehicle i. Edge (i, ) in G* denotes that vehicle
i can send information to vehicle j. Note that in the base
graph, two directed edges exist between vertex ¢ and j if they
are within the radio range, showing they can send to each
other. However, in one round, RoadTrain may decide vehicle
1 sending model to vehicle j but not necessarily vice versa.

The base graph in round % can be abstracted as an adjacency
matrix A € R™*" with binary values. AY; = 1 if edge (i, ) €
¥, otherwise Af; = 0. For edge (4, j) in base graph G*, we
use a real value p’(i ;) € [0,1] to indicate the probability that
vehicle ¢ can send model to vehicle j successfully. We denote
the probabilities at round k as a matrix P* € R"*™. Since
the model size (even after compression) is much larger than
the packet size S, one model requires N packets. We model
p, model sharing success probability, using packet reception
rate p, where p can be roughly estimated.

B. Model training

In decentralized peer model training, each vehicle trains a
model locally with identical model structure. Vehicles share
models on the communication topology and aggregate received
parameters to updates local models. Each vehicle i has its local
dataset D;. Our objective is to train models on the n vehicles
with their local dataset, which can be formally defined by:

: RS
MilyeR,i=1,...n > Ee,np, Fi(xii &)
i=1

subject to T, =x5, Vi, j=1,..,n D

where x; denotes the model parameters of vehicle i, F;(x;)
denotes the loss function at vehicle i, £; denotes a single data



sample or a mini-batch from local dataset D;. Let f;(x;) =
E¢,~p, Fi(x;;&;) denote the loss at vehicle i. The average loss
is f(@) = L0 fil@).

Decentralized SGD (D-PSGD) [21] is a typical scheme to
update models, where SGD can be replaced by other optimizer
(e.g. Adam). In D-PSGD, the model aggregations among n
nodes is represented by a mixing matrix ® € R™*", where
@i; € [0,1] denoting the aggregation coefficient of the model
from node j at node i. ¢;; = 0 means node i can not transmit
information to node j. Each node runs computation iterations
and communicates round by round in parallel. In the kth round,
node i computes gradient VF;(x¥;¢¥) on randomly sampled
mini batch ¥ C D;, where ¥ denotes the model parameter
on node i at ktl} iteration. Then the node does SGD to update
model by a:iﬁ_f — xF — yVE;(zF;€F). 7 is the step size.
After the local update, node i exchanges models with one hop
neighbors and averages models by :vf“ — Z;L @jiwf+§.

The mixing matrix in D-PSGD is assumed fixed, symmetric
and doubly stochastic, which are hard to satisfy in peer
vehicular environment due to asymmetric communication. A
more generalized variant is Stochastic Gradient Push (SGP)
[12]. Given a time-varying, asymmetric, and column stochastic
mixing matrix, one scalar parameter w; is maintained and
updated similarly in each round, as wf“ — Z? @fiwf, and
shown to guarantee convergence under the relaxed constraints
towards mixing matrix. SGP is demonstrated to converge [12]
under multiple assumptions which are commonly made in
decentralized learning. We omit them due to space limitation.

We design our vehicular model training scheme based on
SGP with focus on optimizing the communication topology,
thus the mixing matrix for each round.

C. Problem formulation

In round k, we aim to identify a communication graph
G* v, £ *) from the base graph and compute the corresponding
mixing matrix ®F where Ek C &F for communication in each
round under resource constraints. Specifically, given vertices
¢ and j, let b’(“i}j) indicate whether edge (i, j) is selected for
communication in round k, i.e., bﬁ.ﬂ.) = 1 if vehicle 7 sends
its model to vehicle j and b’(“iyj) = 0, otherwise.

Because the communication topology keeps changing, We
aim to bound the per round time so that vehicles can complete
a full round (or even several) before the next change. The per
round time includes local training time and communication
time. Because of specialized on-board systems for ML-related
tasks [22], the computation time for one or several local
iterations becomes negligible (e.g. less than 0.01s). Thus we
concentrate on optimizing the communication part and omit
local training time. Like [19], we assume that vehicles can
use subcarriers to communicate with different neighbors in
parallel. We define sending/receiving a single model with one
subcarrier as one unit time (e.g., about 2.6 seconds under our
experiment settings), and define per round communication time
budget B as the maximum units of time for sharing models
among all one hop neighbors in one round.

We formulate the resource constraints in round k as:

k

2 gyeer Uiy S B, Yk

Tk < B, vk )

k

biij € {0,1}, vk
where T* denotes the time consumption for all vehicles to
finish the computation and communication in round k. The
first set of inequalities guarantees the channel subcarriers
constraints. Specifically, each edge will occupy one subcarrier.
The second set of inequalities guarantees the per round time
budget constraints.

III. METHOD
In this section, we present RoADTrain in detail (Fig. 1).

A. Base graph augmentation with route

In RoADTrain, vehicles share current locations, speeds and
routes in a short future with neighbors in each round. Then
vehicles can calculate the distances to others, thus estimating
contact durations, and the probabilities of successful model
sending among vehicles.

In round k, vehicle ¢ prioritizes model sending to vehicle j
if the respective contact duration is short. This allows vehicle
1 to share models with more neighbors, because vehicles of
longer contact durations can afford to wait. However, if the
contact duration is too short to finish model sending, such
neighbors should be excluded to avoid resource waste. Let

zF ; €[0,1] denote the priority that vehicle 7 sends its model
to vehicle j in round k, which is formulated as follows:
v _ ) o =t 3
2 N ko f )
0, ;i <t,

where tf ; indicates the contact duration of vehicles ¢ and j in
future from round k and ¢ indicates the time required to send
a model. We denote the priorities of sending models among
vehicles as a matrix Z¥ € R"*".

To estimate #, we first look up packet reception ratio p
by referencing the distance between two vehicles [10] and
calculate the expected number of transmissions per packet with
up to three retransmissions [23] as:

E(# of TX)=p+2(1-p)p+3(1-p)’p+4(1-5)° @

Given data transmission rate r, we estimate # as the expected
transmission time for all packets in the model:

t =FE(# of TX)NS/r (5)

Recall that we use P* to denote the matrix of probabilities
of successful model sending among vehicles at round k. With
up to three retransmissions per packet, the probability p of
successful sending of all IV packets is calculated as:

p=Q0-Q1-pHY (6)

We augment the base graph by assigning edge weights. The
adjacency matrix A* of the augmented base graph G* is:

AR = A ZF o P* (7)
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Fig. 1. Tllustration of RoOADTrain. There are three main steps in RoADTrain. In each round, RoADTrain first augments the base graph with route information
sharing among vehicles, which embeds wireless loss and contact duration estimated from route to the designed edge weights. The amount of time of
sending/receiving a single model over an directed edge is treated as one unit time. Then the base graph is then decomposed into a series of subgraphs with
the guide of edge weights under the subcarrier constraint to support parallel communication. Given a per round communication time budget, RoADTrain
takes a union with the highest algebraic connectivity of some subgraphs as a communication graph by solving a constrained optimization problem. Vehicles

communicate over the communication graph in this round.

where © indicates Hadamard product and the element is
denoted by @*. With such augmentation, we embed route
information into the base graph, which serves subsequent base
graph decomposition and communication graph construction.

B. Base graph decomposition

We omit negligible times in training local iterations and
sharing assistant information, the per round communication
time of one vehicle increases monotonically with the number
of neighbors. Given R channel subcarriers, communicating
models on a subgraph including no more than R edges takes
one unit time, since communications on those edges can
happen in parallel. Moreover, in the synchronous scenario,
communicating over a union of n such subgraphs without
common edges takes no more than n unit time, by simply
communicating on one subgraph at a time. This inspires us:
we can bound per round communication time within budget
B by letting vehicles communicating models on a union of B
such subgraphs each with no more than R edges.

Thus we decompose the augmented base graph G into
disjoint subgraphs {G¥ (V,EF)m = 1,..,M}, where
GE(V,EF) = UL, Gk(V, k) and EFNEF = 0 if i # j.
We propose a heuristic graph decomposition algorithm that
samples edges to create a series of subgraphs (Algorithm 1).
To cover more vertices and avoid an isolated vertex (i.e., a
vehicle with no neighbors in a subgraph), the edge sampling
starts from the vertex with the least number of neighbors.
Given a vertex with multiple edges, the edge with largest
edge weight @ is chosen to add to the current subgraph under
construction, because the neighboring vertex has high priority
and probability of successful model sharing. The above repeats
until we construct a subgraph with R edges. Then we construct
the next subgraph, and so on, until there are no more edges
left in the base graph.

Algorithm 1 consists of two parts. One is to sort all vertices
in V according to their in-degrees, which is designed to
cover vertices weakly connected to others and thus easily
overlooked. The time complexity is O(nlogn) with common

Algorithm 1 Route assisted graph decomposition

Input: Augmented base graph G(V,€); Number of channel
subcarriers R;
Output: Disjoint subgraphs
S={G,V,En)m=1,....M};
1. S§S= {}
2: V, « Sorted vertices in the graph G(V,€) in ascending
order according to number of neighbors
3: £ + £ (Make a copy of edge set &)
4; while £, # 0 do
5. Initialize a empty temporary edge set E;ynp = {}
6: V. <V (Make a copy of vertex set)
7 for u in V, do
8 if V. =0 or |Emp| = R then
9

: Break
10: end if
11 if v ¢ V. then
12: Continue
13: end if
14: for edges in {(u,v)|v € V.} do
15: if (u,v’) € &, and Gy, is largest in G, . then
16: Ee &, — (u,0")
17: Eimp < Emp U{(w, ")}
18: Break
19: end if
20: end for
21: Vo< V.—u
22: Ve V. — 0

23:  end for
240 S SU{WV, Emp)}
25: end while

sorting algorithms (e.g. quick sort). The other is to visit
each edge once during the graph decomposition, at time
complexity of O(|€]). In the worst case, it degrades to O(n?)
when the graph is fully-connected. Therefore, the overall
time complexity of Algorithm 1 in the worst case is O(n?).



In a typical connected cluster of two dozen vehicles, graph
decomposition takes merely tens of milliseconds, or even less
with powerful onboard hardware [11], negligible compared to
sending models.

C. Communication graph construction

The decomposition may create M > B subgraphs each
taking one unit time but having varying chances of model
sharing successes with neighbors. We aim to select a subset of
B subgraphs that can maximize the speed of information flow
among vehicles with high sharing success chances to acceler-
ate model convergence and improve performance. Following
the insight that higher algebraic connectivity leads to faster
information flow, we design an algorithm to select at most B
subgraphs to form a communication graph of the maximum
algebraic connectivity.

Formally, given a directed graph G with adjacency matrix
A, the algebraic connectivity of the graph [24] is defined as :

zT Lz
Ty

= )\mm(%QT(L +L7)Q) (8)

a(G) = mingerv 420011

where L is the Laplacian matrix of G defined as L =D — A
with the diagonal matrix of vertex out-degrees D, () is an
n by n — 1 matrix whose columns form an orthonormal
basis of the orthogonal complement of 1, and A,,;, is the
smallest eigenvalue of L. Algebraic connectivity quantifies
how fast the information can flow in a network: the higher
the algebraic connectivity, the denser the graph, and the easier
the information flows from one vertex to another. E.g., in a
cyclic graph with n vertices, information from any vertex can
reach others after at most n hops. The algebraic connectivity
of a cyclic graph monotonically decreases as n increases, since
more hops are needed to flow through all nodes.

Theoretical results show that the number of training round
in decentralized optimization is minimized upon the highest
algebraic connectivity of the communication topology [13],
[14]. Since model sharing between two vertices can fail due to
unreliable wireless communication and short contact duration,
we emphasize that the algebraic connectivity in RoADTrain is
not only about the number of hops, but also greatly affected
by the weight of each edge (Eqn. (7)).

When choosing B subgraphs to form the current communi-
cation graph, we also consider the communication graphs in
the last H rounds. We prioritize vehicles not well synchronized
in the past, so as to accelerate overall model training. We
select subgraphs from {G,,(V,Ey)|m = 1, ..., M} to form the
actual communication graph G by maximizing the algebraic
connectivity of the union of at most B subgraphs in the
current round plus past H historical communication graphs.
H is carefully selected to be large enough to meet the mixing
connectivity assumption in SGP [12] mentioned in Section II.

We formulate the optimization problem as follows:

max .k k
CYyeenClhiyp

Min QT (S b (B, + (L5)7)

subject to Z cfn < B,
m=1
ke {0,1},Yym e {1,..., M},
9

where E,’?n is the Laplacian matrix of subgraph Gﬁw L7 is the
Laplacian matrix of communication graph G, (k—H<j<
k), and ¢¥, is a binary indicator of G¥ representing whether
g}’; is selected. We aim to maximize the algebraic connectivity
by choosing proper values for c¥ s.

Since the communication graph construction decision c¥, is
binary from {0, 1}, this is a typically integer programming
problem. In general, finding the optimal solution is NP-
hard [19]. Thus, we relax cﬁl to real instead of binary, so
that the optimization problem is convex and can be solved
efficiently. After solving the convex optimization problem, we
select subgraphs with B-largest indicators. By communicating
models with neighbors on selected subgraphs in sequence,
vehicles can finish model exchanging within the per round
communication time budget. We define the communication
graph G* for round k as the union of these selected subgraphs:

B
Gt =, = J &M (10)
j=1

where the adjacency matrix of G* is represented by AF.

D. Decentralized peer vehicular learning

After exchanging models with one hop neighbors, vehi-
cles calculate the mixing matrix for model aggregation. In
RoADTrain, the mixing matrix ®* is column-stochastic and
asymmetric instead of doubly-stochastic and symmetric, since
vehicle ¢ may send model to vehicle j, but not necessarily
vice versa. The mixing matrix ®* is designed as the column-
normalized A*, whose element is computed as:

n
k _ ~k ~k
Pig = am-/Z a5
i=1

When the mixing matrices ®* are asymmetric, following SGP
[12], one additional scalar parameter wf is maintained at each
vehicle to help models on vehicles converge to the same place.
The parameter is initialized to be the same at all vehicles, and
updated with local models.

Now we describe how to implement the procedure of
RoADTrain in a decentralized way in practice. In each round,
vehicles first try to construct consistent cluster topology by
exchanging local topologies among themselves multiple times.
The main idea is to gradually expand the discovered local

t=1,..,n,7=1,...,n

Y



topology over repeated exchange. At the beginning, vehicle @
only knows a local graph centered at itself within 1 hop on
the base graph G¥, which corresponds to the ith row and the
ith column of adjacency matrix A*. After exchanging local
graphs with its 1-hop neighbors once, it knows its local graph
within two hops. Assume the diameter of the base graph is d.
After at most d times of exchange, vehicle ¢ gets the complete
base graph G*, thus adjacency matrix A*.

Communicating an adjacency matrix (1KB without com-
pression) with one subcarrier takes negligible time (e.g.,
7.7 milliseconds, assuming 1Mbps per subcarrier, following
31Mbps radios [10] and 30 subcarriers [19]) under typical
settings (say a couple dozen vehicles). When the cluster is
large, using basic flooding for the above discovery may suffer
high overheads of broadcast storms. We note that there is
existing work (e.g. clustering based schemes [25] proven
to propagate messages effectively with low overhead. For
instance, topology discovery protocols [25], [26] among a
large cluster of 100 vehicles take 2000 packets, which can
finish within three seconds under our experiment setting (e.g.,
802.11bd, 31 Mbps with packet size of 1500 bytes). Message
losses during such cluster topology discovery is already com-
pensated by repeated exchange, and can be further alleviated
by existing techniques (e.g. packet re-transmissions [23] and
hybrid automatic repeat request (HARQ) [27]). Thus obtained
adjacency matrices differ at most slightly among vehicles.
We show that RoADTrain is robust under such losses and
differences in Section IV-F.

Once the cluster topology is obtained, vehicles share route,
location and speed information with one hop neighbors. Since
the information size is very small (e.g., 184 bytes in our
experiments), even with potential re-transmissions, we can
ignore the time in sharing route information.

After forming the complete base graph G* and route infor-
mation sharing, vehicles augment the base graph as in Eqn.
(7) and decompose the base graph into subgraphs by using
Algorithm 1. Then vehicles solve the optimization problem in
Eqn. (9), construct the actual communication graph G* with
Egn. (10) and compute the mixing graph as in Eqn. (11).
All computations are conducted by vehicles in parallel. We
summarize our proposed algorithm in Algorithm 2.

IV. EXPERIMENTS
A. Experimental setup

We consider a driving decision making task. We aim to
train imitation learning models with the same structure as the
privileged agent in [3] using ResNet-18 as the backbone. The
model takes a Bird-Eye-View (BEV) map (a tensor depicting
the front view of a vehicle in a top-down view) and assistant
information (e.g. speed and high-level command) as model
inputs, and outputs the next few waypoints to go.

We collect training data in the popular CARLA simulator
[28]. Following the same setting as [12], we run 32 built-
in expert autopilot vehicles in a simulated world including
both urban and rural environments. The simulated world is
about lkmx1lkm, the largest built-in map size supporting

Algorithm 2 Decentralized peer vehicular learning

=0 m0

and w{ = 1 for all vertices
n} learning rate 7y, and number of

Input: Initialize ;
(vehicles) 7 € {1
training round K;

Output: Models on vehicles {x;|i € {1,...,n}}

1: for £ =1,..., K, at vertex ¢ do

2 Sample a new mini-batch £ ~ D; from local dataset

3. Compute mini-batch gradient at =¥ : VF;(xF; &F)

4 :Bf+2 — 2k — VE;(zF; €F)

5 Propagate local topology to neighbors for multiple times
and form the complete base graph G*

6:  Share route, location and speed information with one
hop neighbors

7:  Generate the augmented base graph Gk
Decompose the augmented base graph G* into sub-
graphs {GF (V,EE)|m = 1,. - M} using Algorithm 1

9:  Select B subgraphs {gfn(v 5ffL)\m = .., B} by
solving the optimization problem in Eqn. (9)

10:  Form the communication graph G* with the adjacency
matrix A* by using Eqn. (10)

11:  Compute mixing matrix ®* by using Eqn. (11)

12:  for m = 1,...,B:;10

13: Send (wf’i:%?i,goﬁiwf) to vertex j if (i,7) € EF,
VeV,
receive (gofj Af ,90” j) from vertex j if (j,7) €
Ek YjeV

14:  end for .

15: A’““Z oF @ Afﬁ

16 w3 o wk

17: f“ — mk“/wkle

18: end for

multiple expert autopilots in CARLA. Expert autopilots can
perform safe and professional driving using the built-in model
and privileged information in CARLA. Their start points and
destinations are randomly assigned, and the routes provided
by CARLA based on road topology. After reaching the des-
tination, an autopilot selects the next destination on the map
randomly. We add 50 cars and 250 pedestrians in the same
simulated world, initialized at random locations but just keep
roaming (following the current road and randomly selecting a
direction at intersections without specific destination) as the
background traffic. In the following, unless otherwise stated,
we use “vehicle” to refer to expert autopilot for simplicity.
Vehicles collect data at 2 frames per second of their sur-
roundings in the simulated world Each frame contains a BEV
map produced by CARLA, the location of the vehicle and
assistant information needed for training local iterations. We
firstly run vehicles for 1 hour in the simulated world, so each
vehicle collects data of 7200 frames used for training local
iterations. To simulate decentralized peer model training with
on-road vehicles, we needs locations of vehicles to construct
time-varying communication topology (i.e., base graphs). We
run vehicles in the same simulated world for another 120 hours



to collect sufficient locations at 2 fps.

We train one model for each vehicle simultaneously, sim-
ulate communication among vehicles and perform model ag-
gregation. We use the same loss function as [3] in training
models'. The hyperparameters of all models are the same.
The learning rate and batch size are set to 1le~* and 32. No
weight decay is used in training. We set the window size in
Eqgn. (9) H = 15. We simulate vehicular communication using
parameters similar to IEEE 802.11bd [29] [23]: data rate with
packet size of 1500 bytes is about 31Mbps, communication
range is 500m, with up to three retransmissions per packet. We
set the number of available subcarriers R = 30 and subdivide
data rates among subcarriers as [19]. We also build a look-
up table of packet reception rate versus distance based on the
results in [10]. We generate the base graphs of vehicles based
on the collected vehicle locations.

Regarding route sharing, a vehicle shares its speed, current
location, and route in the next 30 seconds (60 waypoints) in
each round. The total size of route information in one round
is about 184 bytes. The size of a 32 x 32 base graph adjacency
matrix is 1KB. The size of our driving decision making model
is about 52MB. We utilize a compression approach [30] that
reduces the model size to 0.2MB, amounting to about 133
packets. Thus sending/receiving one model on one subcarrier
with retransmissions takes about 2.6 seconds on average,
which is treated as one unit time in our experiments. We
set the per round communication time budget B = 2, which
corresponds to 5.2 seconds.

We conduct experiments using an NVIDIA RTX2060 GPU,
which takes 10 milliseconds to finish Algorithm 1 and 0.8
seconds to solve Eqn. (3) on average. With TFLOPS-level
onboard GPUs [31] these will become negligible. We focus
on communication time and ignore such local computation
time. In the experiments, we consider two cases of 32 and 16
vehicles, respectively, representing different vehicle densities
in training scenarios. In the case of 16 vehicles, they are
randomly chosen from all 32 ones before training.

B. Benchmarks

We compare RoADTrain with the following benchmarks.

o FedAvg [18] is the classic federated learning scheme.
Workers train local iterations and update models to a
central server for aggregation. For FedAvg, we do not
consider data loss, number of subcarriers or per round
communication time constraints. We regard FedAvg as
an upper bound for model training performance.

o SGP [12] is a typical scheme for decentralized learning
on time-varying directed graphs. Similarly, we do not
consider the same three constraints thus it serves as
another upper bound for fully decentralized training. We
assume vehicles share models with all one hop neighbors
at each round without failures.

INote that in actual training, due to wireless loss, models on vehicles may
not be exactly the same as described in (1). We consider training converged
when the differences among models are small enough.

e C-SGP is a constrained version of SGP that uses the
same local model updating scheme but is constrained by
the number of subcarriers and per round communication
time. At each round, C-SGP randomly selects R+ B edges
on the base graph for model sharing to ensure that the
communication will be finished within the communica-
tion time budget. We assume losses from wireless and
mobility can lead to unexpected sharing failures.

o C-MATCHA is a constrained version of MATCHA [32].
MATCHA is representative in topology construction
based decentralized learning work, which decomposes
the base graph into node pairs and selects some node
pairs to construct a sparse subgraph at each epoch for
model sharing under the communication time budget. C-
MATCHA considers the number of subcarriers and per
round communication time constraint. We implement C-
MATCHA similar to [19]. We also assume that losses
from wireless and mobility lead to sharing failures.

C. Topology analysis

Before evaluating model performance, we analyze the char-
acteristics of the base graphs generated from the collected
locations of vehicles. With 32 and 16 vehicles, we observe
that there are on average 633, 155 edges on the base graph,
respectively. The connected vehicle cluster takes about 33 sec-
onds and 8 seconds, respectively, to finish sharing compressed
models among all one hop neighbors. These may significantly
exceed the contact duration lengths.

Under RoADTrain, only selected neighbors are chosen to
share model. Thus the per round communication time can
be bounded into a predefined budget B. When B = 2 (5.2
seconds per round), vehicles can finish one round with a rela-
tively stable topology. We also observe that in the case of 16
vehicles, the cluster may split into disconnected components in
the middle of the whole training process, where vehicles within
each component continue the sharing and training. Due to the
closed map, vehicles will keep moving and become connected
again. Thus we observe that training still converges. We will
discuss open maps in Section V.

D. Results of model training

We first study the model training speed in terms of rounds.
Fig. 2(a) and Fig. 2(b) summarize the results for 32 and
16 vehicles, correspondingly. For 32 vehicles, RoADTrain
converges to the same training loss as FedAvg and SGP, after
2.6x and 2.4x more rounds, respectively. For 16 vehicles, it
converges to similar training losses, using 2.4x and 2.3x ad-
ditional rounds, respectively. While C-SGP and C-MATCHA
still have much larger loss even after 2.5e4 rounds, possibly
due to insufficient training.

We validate the consideration by studying the per round
model sharing failure rate of decentralized benchmarks and
RoADTrain, which is defined by the ratio between the edges
with sharing failure and all selected edges for sharing in each
round. The results are summarized in Table I. We observe that
both C-SGP and C-MATCHA have much (at most 40%) higher



025
FedAvg —— FedAvg
SGP 0.20 SGP
2 === RoADTrain 2 === RoADTrain
2 C-SGP ° 0.15 C-SGP
20 C-MATCHA o0 C-MATCHA
g £0.10
= = LN AT
o SN o a0 b K
005 \ ‘J‘"”" \\ " qu v \\l’t\,, )ﬁ:,ﬂ
- - 0.00
05 10 15 20 25 00 05 10 15 20 25

# of rounds et et

(a) n=32

# of rounds

(b) n=16

Fig. 2. Results of training loss vs. # of rounds

per round sharing failure rates on average than RoADTrain in
the two cases of 32 and 16 vehicles. This is because without
the help of route information, C-SGP and C-MATCHA can
easily select edges with high wireless loss or too short contact
durations, causing frequent sharing failures. While the average
per round sharing failure rate in RoADTrain is only about
12% and 14% in two cases, respectively, since RoADTrain
takes advantage of route information to be aware of and
deprioritize edges with high probabilities of sharing failure.
The differences in such edges can partly explain that why
RoADTrain can converge to a much smaller training loss than
the two benchmarks.

TABLE I
PER ROUND MODEL SHARING FAILURE RATE ON AVERAGE (%)

Number of vehicles (n) C-SGP C-MATCHA RoADTrain
32 51 49 12
16 54 52 14

We note that vehicles may split into disconnected compo-
nents in the middle of training in the case of 16 vehicles
due to the lower density of vehicles. The results in Fig. 2(b)
demonstrate that RoADTrain can still converge at marginally
0.016 higher loss and 15% more rounds. This is because
these vehicles move in a closed map, thus they will meet and
become connected again. RoADTrain maximizes the algebraic
connectivity of not just the current round, but a few consecu-
tive rounds (see Eqn. (9)). It tends to select edges connecting
different components for sharing models, thus compensating
insufficient information exchange in cluster splitting rounds.
So such temporary cluster splitting does not harm RoADTrain
much. Of course, such reconnection may not happen in an
open map, which we will discuss in Section V.

We also observe that given limited data on each vehicle,
more vehicles joining the training bring more data, thus
achieving lower training loss with less fluctuation. E.g., loss in
the case of 32 vehicles is 44% lower than that of 16 vehicles.

Next we study the training loss in terms of communication
time (in unit). Recall that one unit time corresponds to the
time of sending/receiving one compressed model over one
subcarrier on one edge. Fig. 3(a) and Fig. 3(b) summarize
the results for 32 and 16 vehicles, respectively. In the case of
32 vehicles, RoADTrain converges to the same training loss
as SGP and with 4.5x total communication time reduction.

RoADTrain cuts down per round communication time by
11x. This is due to much less but highest quality neighbors
selected for model sharing, whereas in SGP all neighbors are
selected. Even with 2.4x more rounds to train, RoADTrain
still converges 4.5x faster.

For 16 vehicles, RoADTrain converges to the same training
loss as SGP at 1.2x faster convergence. It cuts down per round
communication time by 2.7 X, because in SGP there are simply
much less neighbors with 16 vehicles. Thus 2.3 more rounds
leads to 1.2x faster convergence.

We also observe that C-SGP and C-MATCHA do not
converge to the same training loss as SGP or RoADTrain,
similar to the results in Fig. 2. This is because they both choose
neighbors indiscriminately, thus losses from wireless and mo-
bility cause frequent sharing failures. The two approaches still
suffer from the insufficient training.
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Fig. 3. Results of training loss vs. Communication time (in unit)

The results demonstrate that RoADTrain can con-
verge to similar training losses as federated learning and
communication-unconstrained decentralized training, under
comparable or even less (4.5%) time by optimized neighbor
selection in model sharing, assuming negligible computing
time with modern hardware.

E. Online evaluation

Next we conduct an online testing using driving success rate
in the CARLA benchmark as the metric [28]. After training,
the model is deployed on a testing autopilot provided with
next few waypoints to go in an urban driving setting. The
original CARLA benchmark consists of four different driving
conditions including driving straight (Straight), driving with
one turn (One Turn), full navigation with multiple turns (Navi.
(Empty)), and the same full navigation routes but with traffic
(Navi. (Normal)), each of which has 25 predefined navigation
routes. Besides these four conditions, we test models with a
more challenging condition called Navi. (Dense), where the to-
tal number of roaming cars and pedestrians is 1.2x that Navi.
(Normal). A trial on a given route is considered successful if
the testing autopilot arrives at the destination within a given
time without hitting other vehicles or pedestrians.

Table II and Table IIT show the driving success rate with 32
and 16 vehicles. Compared to FedAvg or SGP, we observe that
RoADTrain can achieve competitive driving success rate in all
driving conditions, with at most 5 — 6% less success in both
cases of 32 vehicles and 16 vehicles. This echos training loss



comparison results that RoADTrain can achieve performance
competitive to unconstrained upper bound approaches, even
in presence of unreliable wireless communication and highly
dynamic, ever-changing topology of vehicles.

In addition, RoADTrain outperforms C-SGP and C-
MATCHA significantly in both two cases. In the case with 32
vehicles, RoADTrain achieves 23% and 17% driving success
rate improvements in Navi. (Dense) compared to C-SGP
and C-MATCHA, respectively. In the case with 16 vehicles,
RoADTrain achieves 27% and 18% driving success rate im-
provements in Navi. (Dense), respectively. This further demon-
strate that, with the help of route information, RoOADTrain can
successfully enable peer-wise vehicular model training while
driving in a fully decentralized way with unreliable wireless
communication and high mobility of vehicles.

TABLE II
DRIVING SUCCESS RATE (%) (N=32)

Task FedAvg SGP C-SGP C-MATCHA  RoADTrain
Straight 100 100 96 98 100
One Turn 100 100 93 96 100
Navi. (Empty) 98 98 76 82 95
Navi. (Normal) 94 93 64 72 89
Navi. (Dense) 83 82 54 60 77

TABLE III
DRIVING SUCCESS RATE (%) (N=16)

Task FedAvg SGP C-SGP C-MATCHA  RoADTrain
Straight 100 100 93 96 100
One Turn 100 100 87 90 99
Navi. (Empty) 91 91 70 76 90
Navi. (Normal) 85 83 55 64 80
Navi. (Dense) 75 74 42 51 69

F. Non-identical base graphs

As mentioned in Section III-D, base graphs constructed on
different vehicles at each round may have small differences
due to wireless losses in discovery. We simulate the situation
by adding disturbances to adjacency matrices of base graphs.
Specifically, ’1’ in a adjacency matrix (indicating one vehicle
can communicate with another) have a probability to become
’(0’, if the transmitted short discovery message is lost. Table. [V
shows the driving success rates of models trained with non-
identical base graphs in the case of 32 and 16 vehicles,
respectively. We observe that when the probability equals
0.01, compared to the RoOADTrain model trained with identical
base graphs, the driving success rate reductions are almost
negligible (at most 2% in Navi. (Normal) with 16 vehicles).
When the probability equals 0.1, the driving success rate
reductions are at most 5%. In reality, assuming a lower
transmission success of 0.6 on average, the probability of "1’
changing to 0’ is about 0.026 given three retransmissions in
802.11bd [23], lower than 0.1 we set. The probability can
be even lower when adding HARQ technique. The results
demonstrate that RoADTrain is robust under different base
graphs during discovery.

TABLE IV
DRIVING SUCCESS RATE WITH NON-IDENTICAL BASE GRAPHS (%)

Task P=0.01(n=32) P=0.1(n=32) P=0.01(n=16) P.=0.1(n=16)
Straight 100 100 100 100
One Turn 100 98 99 97
Navi. (Empty) 95 92 89 86
Navi. (Normal) 88 86 78 75
Navi. (Dense) 76 73 68 64

G. Window size and ablation study

We further evaluate the effects of window size H in Eqn.
(9). Recall that we set H = 15 by default. We consider two ad-
ditional different values (5 and 30) for H. The corresponding
driving success rates are shown in Table. V. We observe that
too small or too large window size can hurt model performance
with at most 7% (in Navi. (Dense) with 16 vehicles) and 5%
(in Navi. (Normal / Dense) with 16 vehicles) driving success
rate reduction. This is because too small window size may not
contain enough historical information, while too large window
size contains obsolete historical information, both detrimental
to subgraph selection. We plan to study an adaptive window
size selection strategy in the future.

TABLE V
DRIVING SUCCESS RATE WITH DIFFERENT WINDOW SIZE H (%)

Task H=5(n=32) H=30(n=32) H=5(n=16)  H=30(n=16)
Straight 100 100 100 100
One Turn 100 100 98 99
Navi. (Empty) 92 92 87 88
Navi. (Normal) 86 85 74 75
Navi. (Dense) 73 74 62 64

We also evaluate the effects of algebraic connectivity op-
timization with an ablation study. Instead of generating com-
munication graph by solving Eqn. (9), we randomly select B
number of subgraphs and test the trained model performance
using the same settings as online evaluation. Table VI shows
that the driving success rates by conducting random subgraph
selection. We observe that driving success rate reduces at
most 7% (in Navi. (Dense)) with 32 vehicles and 9% (in
Navi. (Dense)) with 16 vehicles. The results demonstrates that
optimizing the algebraic connectivity of the communication
graph indeed effectively benefit model training.

TABLE VI
DRIVING SUCCESS RATE (%) WITH RANDOM SUBGRAPH SELECTION

Task n=32 n=16
Straight 100 100
One Turn 100 98

Navi. (Empty) 90 84
Navi. (Normal) 83 72
Navi. (Dense) 70 60

V. DISCUSSION

Model training under open maps or large clusters. Since
our interests mainly lie in addressing the data loss and short



contact duration challenges, we focus on a closed map with a
fixed set of vehicles in simulation where vehicles do not move
in/out of the map (like in [19]). The vehicle cluster may split
into unconnected components, which can reconnect as vehicles
keep moving. In a more realistic open map where vehicles can
freely move out and in, further adaptations may be needed
to achieve effective training, e.g., flexible device participation
[33]. Another issue is possibly very large clusters when many
vehicles are together (e.g. in a traffic jam), which may cause
higher computation load. We can divide such a large vehicle
cluster into smaller clusters to avoid large computation latency
[25]. We are also interested in characterizing different traffic
flow dynamics (e.g., regular vs. rush hour) to gain further
insights into vehicular model training.

Improvements on embedding and subcarrier reuse. For
simplicity, we use a quite straightforward method (Eqn. (3),
(7)) to embed the route information into edge weights, and
it shows good performance. More sophisticated methods (e.g.
[34]) can be explored. In communication, two senders may
use the same subcarrier if they do not cause the hidden
terminal problem. This may further increase the degree of
parallelism and accelerate model sharing. We leave these
possible improvements in the future.

Accuracy of simulation results. Conducting real-world
experiments using real vehicles, particularly on a medium or
large scale requires substantial hardware, manual, and financial
resources. As an alternative, we use CARLA, a widely-
used simulator in autonomous driving research. CARLA can
simulate various types of maps and driving environments
with a high degree of realism, making it a reliable means
for experimental studies. Previous research, such as [35], has
shown that when appropriately configured, results generated
through the CARLA simulator are nearly identical to those
obtained from real-world experiments. Therefore, we believe
our results are reasonably close to real-world experiments.

Heterogeneity in vehicles. Recall that we assume all vehi-
cles are equipped with similar hardware and employ identical
communication technology, with communication interference
being evaluated in a subcarrier-specific manner. In the real
world, vehicles may possess diverse hardware and communi-
cation technologies, which could potentially result in greater
losses, which can still be accommodated within existing work
using a larger loss probability. We will study the impact of
such heterogeneity on performance and adapt it to a more
generalized scenario in the future.

Other radios suitable for vehicles. We use radio parame-
ters similar to those of 802.11bd. New Radio V2X (NR-V2X)
[36] is a promising vehicular communication technology,
which has no backward compatibility constraints and shows
improvements over predecessors. Recent data-centric radios
have also shown high-rate, low-loss multicast capability [37],
ideal for a vehicle to share a model with multiple neighbors,
greatly reducing the latency.

Incentives. As vehicular crowd sensing and collaborative
learning emerge as a promising diagram, some work discusses
the incentives or markets to stimulate cooperation among vehi-
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cles/drivers [38], [39]. They aim to stimulate more participants
while striking a balance between the conflicting interests of the
crowd sourcing platform and drivers. These are orthogonal to
our work and we simply assume sufficient incentives exist.

VI. RELATED WORK

We contextualize our work within prior results on (i) vehic-
ular collaboration and (ii) decentralized deep model learning.

Recent works show the effectiveness of federated learn-
ing in collaborative vehicle learning from different aspects
[40]. While with constrained communication bandwidth, it
is possible central server becomes the communication bot-
tleneck of the infrastructure [5]. Some other works inspect
collaborative, peer vehicle perceptions with Vehicle-to-Vehicle
communication under limited bandwidth. The central intu-
ition is to fuse observations from multiple vehicles to get
a complete, non-occlusive view. [41] propose a sensor data
fusion scheme to enhance perceptive ability with LiDAR 3D
point clouds collected from different positions and angles
of connected vehicles. [42] proposes a data-sharing policy
that minimizes the amount of information disclosed for the
cooperative perception of autonomous vehicles. [43] proposes
a scheme for one-hop multicasting of high-volume sensor
data to improve the communication completion ratio. Unlike
RoADTrain, which optimizes the training process under un-
reliable wireless communication and short contact duration,
these works focus mainly on collaborative environment per-
ception or task scheduling.

Recent research has introduced various schemes for decen-
tralized deep model learning in the vehicular scenario. For in-
stance, [44] proposes a reinforcement learning based approach
for multi-agent cooperation in a lane change scenario. Some
works explore the trade-off between communication efficiency
and convergence accuracy in distributed deep model training.
[45] presents a divide-and-shuffle synchronization to realize
communication efficiency without sacrificing convergence ac-
curacy. These works are mainly circumstanced in data centers
where model and data are partitioned among multiple GPUs
to accelerate deep model training, where the communication
topology between workers is fixed, and the communication
among workers is reliable. RoADTrain focuses on peer model
training in a different vehicular scenario with these works.

VII. CONCLUSION

We explore an fully-decentralized model training paradigm
for on-road vehicles without assistance from central servers
and infrastructures. To address the model sharing failure
among vehicles due to unreliable wireless communication and
short contact duration, we propose a route assisted topology
driven peer model training approach named “RoADTrain”.
The main ideas include selecting a subset of high-quality edges
from the communication topology for model sharing to facili-
tate the information flow among vehicles. Empirical results on
the driving decision making task demonstrate that RoADTrain
achieves comparable driving success rates and faster conver-
gence than representative unconstrained decentralized learning



methods, and significantly outperforms other benchmarks that
consider losses in the hardest driving conditions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applica-
tions in the development of autonomous vehicles: a survey,” IEEE/CAA
Journal of Automatica Sinica, vol. 7, no. 2, pp. 315-329, 2020.

F. Codevilla, E. Santana, A. M. Lépez, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” in /CCV 2019,
2019, pp. 9329-9338.

D. Chen, B. Zhou, V. Koltun, and P. Krihenbiihl, “Learning by cheating,”
in ICRA 2020, 2020.

Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato,
and K.-Y. Lam, “Local differential privacy-based federated learning for
internet of things,” IEEE Internet of Things Journal, vol. 8, no. 11, pp.
8836-8853, 2020.

Z.Zhang, S. Wang, Y. Hong, L. Zhou, and Q. Hao, “Distributed dynamic
map fusion via federated learning for intelligent networked vehicles,” in
ICRA 2021. 1IEEE, 2021, pp. 953-959.

J. Xu and H. Wang, “Client selection and bandwidth allocation in
wireless federated learning networks: A long-term perspective,” IEEE
Transactions on Wireless Communications, vol. 20, no. 2, pp. 1188—
1200, 2020.

X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M.
Mao, “Emp: Edge-assisted multi-vehicle perception,” in MobiCom 2021,
2021, pp. 545-558.

M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Gossip learning of personalized models for vehicle trajectory predic-
tion,” in WCNCW 2021. IEEE, 2021, pp. 1-7.

G. Di Giacomo, J. Hirri, and C. F. Chiasserini, “Edge-assisted gossiping
learning: Leveraging v2v communications between connected vehicles,”
in ITSC 2022. 1IEEE, 2022, pp. 3920-3927.

W. Anwar, N. Franchi, and G. Fettweis, “Physical layer evaluation of
v2x communications technologies: 5g nr-v2x, lte-v2x, ieee 802.11 bd,
and ieee 802.11 p,” in VT'C2019-Fall. 1EEE, 2019, pp. 1-7.

“Nvidia drive thor strikes ai performance balance, uniting av and
cockpit on a single computer” [Online]. Available: https:/https:
//blogs.nvidia.com/blog/2022/09/20/drive-thor/

A. Nedi¢ and A. Olshevsky, “Stochastic gradient-push for strongly
convex functions on time-varying directed graphs,” IEEE Transactions
on Automatic Control, vol. 61, no. 12, pp. 3936-3947, 2016.

A. Nedi¢, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 953-976, 2018.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592-606,
2011.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” Advances in neural
information processing systems, vol. 24, 2011.

G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network
topology for distributed machine learning,” in INFOCOM 2019. 1EEE,
2019, pp. 2350-2358.

A. Kadav and E. Kruus, “Asap: asynchronous approximate data-parallel
computation,” arXiv preprint arXiv:1612.08608, 2016.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS 201/7. PMLR, 2017, pp. 1273-1282.

Z. Meng, H. Xu, M. Chen, Y. Xu, Y. Zhao, and C. Qiao, “Learning-
driven decentralized machine learning in resource-constrained wireless
edge computing,” in INFOCOM 2021. 1EEE, 2021, pp. 1-10.

W. Ahn and R. Y. Kim, “Distributed triggered access for bsm dissemi-
nation in 802.11 bd v2v networks,” Applied Sciences, vol. 10, no. 1, p.
311, 2019.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” NeuralPS 2017,
vol. 30, 2017.

A. Du, Y. Shen, and L. Tseng, “Carml: distributed machine learning in
vehicular clouds,” in MobiCom 2020, 2020, pp. 1-3.

11

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(32]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

S. Zeadally, M. A. Javed, and E. B. Hamida, “Vehicular communica-
tions for its: Standardization and challenges,” IEEE Communications
Standards Magazine, vol. 4, no. 1, pp. 11-17, 2020.

C. W. Wu, “Algebraic connectivity of directed graphs,” Linear and
multilinear algebra, vol. 53, no. 3, pp. 203-223, 2005.

L. Zhang and H. El-Sayed, “A novel cluster-based protocol for topology
discovery in vehicular ad hoc network,” Procedia Computer Science,
vol. 10, pp. 525-534, 2012.

L. Zhang, H. Elsayed, and E. Barka, “A novel location service protocol
in multi-hop clustering vehicular ad hoc networks,” in 2011 International
Conference on Innovations in Information Technology. 1EEE, 2011, pp.
386-391.

A. Ahmed, A. Al-Dweik, Y. Iraqi, H. Mukhtar, M. Naeem, and
E. Hossain, “Hybrid automatic repeat request (harq) in wireless com-
munications systems and standards: A contemporary survey,” [EEE
Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2711-2752,
2021.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in CoRL 201/7. PMLR, 2017, pp.
1-16.

“leee p802.11 - next generation v2x study group.” [Online]. Available:
https://www.ieee802.org/11/Reports/tgbd_update.htm

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

“Tesla’s new hw3 self-driving computer — it’s a beast (cleantechnica
deep dive).” [Online]. Available: https://cleantechnica.com/2019/06/15/

teslas-new-hw3-self-driving-computer-its-a-beast-cleantechnica-deep-dive

J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “Matcha: Speeding
up decentralized sgd via matching decomposition sampling,” in 2079
Sixth Indian Control Conference. IEEE, 2019, pp. 299-300.

Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards flexible
device participation in federated learning,” in AISTATS 2021. PMLR,
2021, pp. 3403-3411.

G. Sun, R. Liang, H. Qu, and Y. Wu, “Embedding spatio-temporal infor-
mation into maps by route-zooming,” IEEE transactions on visualization
and computer graphics, vol. 23, no. 5, pp. 15061519, 2016.

S. Shi, J. Cui, Z. Jiang, Z. Yan, G. Xing, J. Niu, and Z. Ouyang,
“Vips: real-time perception fusion for infrastructure-assisted autonomous
driving,” in Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking, 2022, pp. 133-146.

“3gpp: Etsi work programme report.”” [Online]. Available:
/Iwww.3gpp.org/release-16

M. Elbadry, F. Ye, P. Milder, and Y. Yang, “Pub/sub in the air: A novel
data-centric radio supporting robust multicast in edge environments,” in
2020 IEEE/ACM Symposium on Edge Computing (SEC). 1EEE, 2020,
pp. 257-270.

R. Ding, Z. Yang, Y. Wei, H. Jin, and X. Wang, “Multi-agent rein-
forcement learning for urban crowd sensing with for-hire vehicles,” in
INFOCOM 2021. IEEE, 2021, pp. 1-10.

C. Xiang, Y. Li, Y. Zhou, S. He, Y. Qu, Z. Li, L. Gong, and C. Chen,
“A comparative approach to resurrecting the market of mod vehicular
crowdsensing,” in Proc. IEEE Conf. Comput. Commun, 2022, pp. 1-10.
W. Ni, S. Zhu, M. M. Karim, A. Asheralieva, J. Kang, Z. Xiong, and
C. Maple, “Lagrange coded federated learning (I-cofl) model for internet
of vehicles,” in ICDCS 2022. 1EEE, 2022, pp. 864-872.

Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception
for connected autonomous vehicles based on 3d point clouds,” in ICDCS
2019. 1EEE, 2019, pp. 514-524.

C. Qiu, S. Yadav, A. Squicciarini, Q. Yang, S. Fu, J. Zhao, and
C. Xu, “Distributed data-sharing consensus in cooperative perception of
autonomous vehicles,” in /CDCS 2022. 1EEE, 2022, pp. 1212-1222.
J. Shen, H. Zhu, Y. Cai, B. Zhai, X. Wang, S. Chang, H. Cai, and
M. Guo, “mmv2v: Combating one-hop multicasting in millimeter-wave
vehicular networks,” in /CDCS 2022. 1EEE, 2022, pp. 735-742.

Z. Liang, J. Cao, S. Jiang, D. Saxena, and H. Xu, “Hierarchical
reinforcement learning with opponent modeling for distributed multi-
agent cooperation,” in /CDCS 2022. 1EEE, 2022, pp. 884-894.

W. Wang, C. Zhang, L. Yang, K. Chen, and K. Tan, “Addressing network
bottlenecks with divide-and-shuffle synchronization for distributed dnn
training,” in INFOCOM 2022. 1EEE, 2022, pp. 320-329.

http:



