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Abstract—Unmanned aerial vehicles (UAVs) offer intriguing
possibilities for Internet of Things (IoT) data collection. However,
it can also jeopardize the privacy of IoT devices. In particular,
an adversary can deduce the location of IoTs by monitoring
the UAV’s mobility patterns, which necessitates the analysis of
privacy-preserving mechanisms that protect IoT location privacy.
Nonetheless, integrating privacy measures into operations incurs
additional expenses. One of these costs is the added distance
that UAVs may need to travel to accomplish their task, in
turn increasing energy consumption. This paper investigates
the trade-off between privacy and energy in the UAV-assisted
IoT data collection application. First, we consider a preliminary
privacy mechanism and analytically obtain the upper bounds
of the extra flight distance and energy consumption for the
UAV. Then, we consider a location-based differential privacy
mechanism to achieve geo-indistinguishability. As expected, our
study shows that imposing privacy constraints on UAV-assisted
IoT data collection leads to increased UAV energy consumption.
Specifically, as privacy guarantees become more restrictive, the
energy consumption of UAVs increases exponentially. Nevertheless,
given an energy constraint, one can assure a certain level of privacy
guarantee.

Index Terms—Location Privacy, Differential Privacy, UAV, IoT
Data Collection, Energy Consumption.

I. INTRODUCTION
A. Background

Unmanned aerial vehicles (UAVs) are becoming increasingly
popular for their low cost and agility, making them viable
options for various applications. However, UAVs have raised
concerns over privacy violations by accessing areas that are
otherwise inaccessible. To address these concerns, researchers
have proposed privacy-preserving mechanisms (PPMs) that
prevent UAVs from compromising citizens’ privacy, e.g., [1]-
[3].

However, UAV users’ privacy can also be compromised
through observation of UAV flight patterns. As pointed out
in [4], adversaries can infer a UAV’s destination from its
flight path, leading to privacy breaches. To address this issue,
[4] proposed privacy-preserving path design algorithms for
UAVs in the presence of adversaries. The authors considered
two scenarios: adversaries who can and cannot see the UAV’s
destinations, and developed path planning algorithms to hide the
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destinations from the adversary. Their work provides valuable
insights into preserving UAV users’ privacy. A different
approach was developed in [5] where randomized trajectories
were introduced to confuse the adversary about the UAV’s
destination in a package delivery application.

As UAVs are highly appealing for data collection in the
realm of the Internet of Things (IoT), preserving IoT devices’
locations from an adversary observing the UAV can pose
challenges. In particular, leaking an IoT device’s location
makes it easy for an adversary to locate and potentially steal
or destroy the device [6]. In this regard, preserving UAV’s
privacy is extended to the Internet of Things (IoT) application
[7] where the UAV is employed to collect IoT data. The idea is
to randomize the UAV’s position around the IoT device instead
of hovering directly above it.

Privacy comes at a price, however, which can be reflected
in a variety of performance metrics. For instance, in an [oT
data collection scenario, it may increase the UAV’s energy
consumption. This subsequently decreases the UAV’s mission
time and the number of IoT devices it can collect data from.

Therefore, in this paper, we investigate the UAV energy
consumption and IoT location privacy trade-off in IoT data
collection applications where a UAV is employed to collect data
from IoT devices. We consider two types of location privacy
mechanisms based on the randomization of the UAV’s location:
A preliminary privacy mechanism and a differential location
privacy mechanism. The latter ensures location privacy for the
IoT devices in the sense that by observing the UAV’s location,
an adversary will have difficulty distinguishing between IoT
locations within certain distances. Therefore, each IoT device
is satisfied by a degree of privacy within a certain range.
We observe that imposing location privacy constraints on the
UAV data collection application increases the total path and
subsequently the energy consumption of the UAV. To the best
of the authors’ knowledge, this is the first paper to investigate
the trade-off between location privacy and energy consumption
in the context of UAV-assisted [oT data collection missions.

B. Related Work

As mentioned earlier, preserving citizens’ privacy from
potential UAV-related violations has been investigated from
various points of view. For example, in [8], a dynamic UAV
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FIGURE 1: UAV-assisted IoT data collection: Instead of the red circle
spot, the UAV hovers at a green spot to collect data from an [oT device.
Subsequently, the red dashed path shows the non-privacy-preserving
path and the solid green path shows a randomized privacy-preserving
path.

routing framework was proposed to ensure that UAVs do not
fly over the private property of citizens. [9] proposed a UAV
detection system to identify unauthorized UAVs flying in a
restricted area. [10] proposed a deep learning-based approach
to anonymize faces captured by UAV video recordings. As
long as the UAV’s privacy is concerned, there have been
numerous studies to protect UAVs from eavesdropping or
adversaries, e.g., [11]-[13]. For instance, in [11], using particle
swarm optimization (PSO), a path-planning algorithm has been
developed to minimize the probability of being disclosed by
an eavesdropper. [12] proposed a general privacy-preserving
public cloud audit scheme which supports dynamic data to
protect UAVs data.

Privacy challenges within the context of IoT are not a novel
issue and have been regarded as a significant concern since its
emergence [14]-[16]. Hence, various privacy-preserving tech-
niques for location data have been developed and investigated
[17]-[20]. Note that our approach to location privacy differs
from that of the literature, which typically considers sets of
location data.

C. Contributions and Organization:

The main contributions of this paper are as below:

o We propose two mechanisms for preserving IoT location
privacy in UAV-assisted IoT data collection.

« We obtain the UAV energy consumption and IoT location
privacy trade-offs of the proposed mechanisms.

o We show that by randomizing the UAV’s location, IoT
geo-indistinguishability can be obtained at the expense of
energy consumption. But, given a certain energy constraint,
one can still assure location privacy.

This paper is organized as follows:

In Section II, we describe the system model. In Section
III, we provide the privacy-preserving mechanisms and energy
consumption and in Section IV we present the results. Finally,
in Section V we conclude the paper.

II. SYSTEM MODEL

Figure 1 shows a typical UAV-assisted IoT data collection
system model. We explain the network model, the adversary
model, and the privacy-preserving mechanism in the sequel.

A. UAV-assisted IoT Data Collection Network

We assume that there are N [oT devices randomly located
in an arbitrary area A. An UAV is employed to fly from a data
center located at the origin towards each device, hover above
the devices at a fixed altitude H, and collect IoT data. The
2-dimensional coordinates of the i-th IoT device location are
shown by u; = (2;,y;), where x;,9; € R?andi = 1,2,..., N.
In a non-private scenario, the UAV would hover at (z;, y;, H) to
maximize the uplink connection performance when collecting
data from the i-th device.

However, to maintain location privacy for IoTs during data
collection, the UAV hovers over a privacy-preserving spot
selected randomly around the real location of the IoT device.
The privacy-preserving spot is denoted as v; = (z},y;), where
zh,yl € R2.

B. Adversary Model

We assume that an adversary is interested in determining
the true location of devices by monitoring the UAV’s data
collection activities. Consequently, the adversary is capable
of tracking the path of the UAV and identifying its stopping
points for IoTs data collection. We assume that the adversary
cannot estimate the location by measuring the data collection
time.

C. Privacy-preserving Mechanism

As mentioned earlier, in order to keep the IoTs location
preserved from an adversary, we randomize the UAV’s data
collection spot so that the adversary would have difficulty
identifying the exact location. To this end, we first consider
a preliminary privacy mechanism and then a differential
privacy alternative where locations within a certain range are
indistinguishable. The details of the privacy mechanisms are
provided in the next section.

III. IOT LOCATION PRIVACY AND UAV ENERGY

CONSUMPTION

In this section, we provide the privacy-preserving mechanism
and the UAV energy consumption analysis. Before that, we
provide some preliminary results on the cost of location privacy-
preserving mechanisms in the proposed context.

A. Preliminary result on the distance cost of location privacy

It is quite well-known that any privacy-preserving mecha-
nism, regardless of its nature, has an associated cost to the
utility. Regarding UAV-assisted IoT data collection, this cost
could be perceived as the additional distance that the UAV
has to fly. In other words, to ensure privacy and maintain a
safe distance from the real location of the IoT device, the
UAV may need to travel further to reach the privacy-preserving
spot. This additional distance can impact the efficiency of data
collection and may result in increased energy consumption or
longer flight times for the UAV. In the following lemma, we
show that there is an upper bound on the extra distance that
any privacy mechanism with a privacy-preserving radius R
might impose. This means that the total distance that the UAV



must travel in a privacy-preserving scenario, can be adjusted
by the radius of the privacy mechanism.

Lemma 1. For N 10T devices, if we randomly choose a
privacy-preserving spot within a distance R from each device,
then the privacy-preserving path is longer than the non-privacy-
preserving path by no more than 2NV R. Formally, we have

N41 N+1
> d<2NR+ Y d;, (1)
i=1 i=1
where d; = ||u; — u;—1]|2 and d} = |Jv; — v;_1]|2 for i =
1,...,N. Also, dyy1 = [|un||2 and dy_,||vn|]2. In (1), the

left sum shows the overall privacy-preserving path and the
right sum shows the overall non-privacy-preserving path.

Proof. Proof can be obtained using the triangle inequality for
the devices subsequently. O

Discussion: It is not difficult to see that R is the privacy
parameter. In other words, as R increases the perimeter of the
circle around the IoT device increases which makes it more
difficult for the adversary to estimate true device locations u;.

B. Privacy-preserving Mechanism

We consider a differential location privacy (DLP) approach.
It is important to note that DLP differs from Differential Privacy
(DP) in that DP is typically used for aggregating data from
multiple users. Whereas DLP is applied to the location data of a
single user. The underlying principle behind DLP is that a small
change in the location data of a user should not significantly
impact the results of queries made using that data [21]. DLP
has been developed using the notion of geo-indistinguishability
[21] and has since garnered significant attention [22]-[24].
The advantage of utilizing a DP-based approach, as opposed
to error-based approaches is particularly evident in scenarios
where the prior distribution of 10Ts is either unknown or known
but results in intricate analysis.

The DLP considered in this paper is based on the Laplacian
mechanism where the noise added to wu; is derived from the
following PDF

2
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where d(u;,w;) denotes the Euclidean distance between u;
and w;. Intuitively, (2) implies that the probability of selecting
a random spot w; decreases exponentially with increasing the
distance from w;. If we substitute € with €/dy, where d is the
desired indistinguishability distance, the mechanism provides
a (do, €)-location privacy [25].

C. Energy Consumption Model

To compute the energy consumption of the drone, we use the
propulsion power consumption of a rotary-wing UAV derived

in [26] as

P(V) =P, (1 + ?f;) + P, (
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where V' denotes the drone’s velocity and other parameters are
constant metrics corresponding to the drone’s physical features
[26]. We assume that the UAV’s communication power is
negligible in comparison to the propulsion power consumption.
Though future work can jointly consider communication [27]
to prove tighter energy bounds.

Following (3), we obtain the propulsion energy consumption
of the drone as below

1
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where ty (; ;1) denotes the flight time from the spot ¢ to the
spot ¢ + 1, and ¢ ; is the hovering time above the i-th spot
obtained as below
_ wi :
~ Blog, (1 +%')7Z
where w; is the ¢-th device’s data size, B is the bandwidth,
and ~y; is the received signal to noise ratio (SNR) obtained as
Y = W. Also, pg is the IoT’s transmit power, [ is
the horizontal distance between an IoT and the UAY, « is the
path-loss coefficient, and o3 is the thermal noise density.
Furthermore, in (4), P, is the UAV’s power consump-
tion during the hovering which can be obtained as P, =
gpsAQ3R3 + (1 + k)%, where the parameters refer to
fixed values that correspond to the physical attributes of the
drone [26].
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Lemma 2. For the preliminary privacy-preserving mechanism
in Lemma 1, the additional energy consumption for a (dy, €)-
private path (d}) is bounded as below

E(d) — B(d) < PO 2R L ¢,

v (6)

where & = NP, 5
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Proof. Assuming the same data size for all the devices, the
second sum in (4) is a constant term. Therefore, energy is a
function of the total path as defined below

dy

E(d;) = P(V)V + NPyth (7

Hence, the energy difference in the private path (d}) and the
non-private path (d;) is obtained as below

d, —d,

E(dy) ~ E(dy) = P(V) " 4 €
2N
< P(V)—VR + &, (®)
where £ is given above. O



TABLE I: Simulation Parameters

Parameter Value
Number of IoT devices N =5
UAV velocity V =15 m/s
UAV’s altitude H=20m
IoT Transmit power po =1 mW
Bandwidth B =1MHz
Data size w=2Mb
Pathloss attenuation coefficient a=24
26.5
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FIGURE 2: UAV energy consumption for (do, €)-privacy

IV. NUMERICAL RESULTS

We now provide the numerical results for the trade-off
between the proposed location privacy mechanism and the
UAV energy consumption. The setting of simulation parameters
follows from UAV energy minimization literature [7] [26] and
are partially written in Table I. The goal is to model the effect
of privacy parameters € and dy on the total travel length (m)
and energy consumption (kJ). For all graphs, the non-private
path (dp = Om) is ~ 2600m.

Figure 2 shows the energy consumption vs. privacy guarantee
for different distinguishability settings. A dy = 0 represents
the case where there is no differential location privacy. In other
words, there are no other locations near an IoT device’s location
that are indistinguishable from it. As the dy increases, the
locations that are indistinguishable from the real IoT’s location
increase which means more differential location privacy is
imposed. This, in turn, increases the UAV’s energy consumption.
Observe the exponential decrease in energy required when
relaxing the privacy with e.

Figure 3 shows the UAV’s energy consumption on a log
scale versus the location indistinguishability for different values
of e. It can be seen that the small value of ¢y = 0.1 results
in a significant increase in energy consumption. Meanwhile,
with an imposed energy consumption constraint, one may
adjust the desired values of both dy and e. This (dy, €)-privacy
mechanism increases UAV’s energy consumption exponentially
while in Lemma 2, we see a linear relationship between energy
consumption and the privacy parameter, R.

Figure 4 shows the total distance added to the UAV’s
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FIGURE 3: UAV energy consumption and geo-indistinguishability
trade-off for (do, €)-privacy
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FIGURE 4: Total path increase for (do, €)-privacy

path after imposing (dp, €) privacy. The additional distance
covered assumes critical importance in scenarios where energy
consumption is not the primary concern, but flight time duration
and subsequently the freshness of updates from IoT devices, as
measured by their age of information (Aol), are of significance.
In such cases, adjusting the UAV’s velocity to comply with
the Aol constraint may be a viable option. As velocity, among
other parameters in 3, scales the energy consumption linearly.
Finally, Figure 5 presents the proportion of the total distance
covered by a privacy-preserving path relative to a non-privacy-
preserving path, providing an intuitive comparison between the
two. It is worth noting that the privacy-preserving path can be
up to three times longer than the non-privacy-preserving path.

V. CONCLUSION

In this paper, we investigated the trade-off between UAV
energy consumption and IoT location privacy in the context
of an IoT data collection application. We obtained the up-
per bound of the total distance increase and UAV’s energy
consumption increase for a preliminary privacy mechanism.
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Then, considering the differential location privacy, we obtained
the UAV’s energy consumption and privacy parameters using
simulations. We have established that, by adjusting the privacy
parameters, it is possible to attain a desired degree of privacy
while adhering to a given UAV energy constraint. Also, the
total distance added to the UAV’s path has been obtained which
can be crucial for analyzing Aol.

This paper has several avenues for future work: One can
investigate the trade-off between the energy consumption of
IoT devices and privacy policies. This is important since the
performance of IoT devices is typically constrained by their
limited power supply. Another direction is to optimize the
privacy-preserving spots among a network of 10Ts such that
different IoTs could be under coverage from a shared privacy-
preserving spot. In this problem instead of subsequently flying
between different spots, a UAV may hover at the same spot for
a longer duration to collect data from more than one device.

REFERENCES

[1] B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici, “Drones’ crypt-
analysis - smashing cryptography with a flicker,” in IEEE Symposium
on Security and Privacy (SP), San Fransisco, CA, USA, May 2019, pp.
1397-1414.

A. Raja and J. Yuan, “Detecting spying activities from the sky via deep
learning,” in IEEE International Conference on Communications (ICC),
Montreal, Qc, Canada, June 2021, pp. 1-6.

N. Grigoropoulos and S. Lalis, “Flexible deployment and enforcement
of flight and privacy restrictions for drone applications,” in 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), Valencia, Spain, July 2020, pp.
110-117.

I. Vakilinia, M. Jafari, D. Tosh, and S. Vakilinia, “Privacy preserving
path planning in an adversarial zone,” in International Symposium on
Networks, Computers and Communications (ISNCC), Montreal, QC,
Canada, Oct. 2020, pp. 1-6.

S. Enayati, D. Goeckel, A. Houmansadr, and H. Pishro-Nik, “Privacy-
preserving path-planning for UAVS,” in International Symposium on
Networks, Computers, and Communications, (ISNCC’22), Shenzhen,
China, July. 2022.

M. Bradbury and A. Jhumka, “Quantifying source location privacy routing
performance via divergence and information loss,” IEEE Transactions
on Information Forensics and Security, pp. 1-1, Early Access, 2022.

S. Enayati, D. Goeckel, and H. Houmansadr, Amir Pishro-Nik, “Location
privacy protection for UAVs in package delivery and IoT data collection,”
Under Review in IEEE Internet of Things Journal, Jan. 2023.

[2

—

[3

=

[4

=

[5]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

P. Blank, S. Kirrane, and S. Spiekermann, “Privacy-aware restricted areas
for unmanned aerial systems,” IEEE Security Privacy, vol. 16, no. 2, pp.
70-79, Mar. 2018.

A. Aouto, J.-M. Lee, and D.-S. Kim, “UAV detection using split-parallel
CNN for surveillance systems,” in 2021 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea, Republic of, October 2021, pp. 1178-1181.

H. Lee, M. U. Kim, Y. Kim, H. Lyu, and H. J. Yang, “Development
of a privacy-preserving UAV system with deep learning-based face
anonymization,” IEEE Access, vol. 9, pp. 132652-132 662, September
2021.

Y. Gu, X. Cao, and C. Sun, “A route planning algorithm for privacy
protection of UAV states against eavesdropping,” in 2020 35th Youth
Academic Annual Conference of Chinese Association of Automation
(YAC), Zhanjiang, China, 2020, pp. 837-842.

J. Liu, X. A. Wang, Z. Liu, H. Wang, and X. Yang, “Privacy-preserving
public cloud audit scheme supporting dynamic data for unmanned aerial
vehicles,” IEEE Access, vol. 8, pp. 79428-79439, April 2020.

Z. Lv, L. Qiao, M. S. Hossain, and B. J. Choi, “Analysis of using
blockchain to protect the privacy of drone big data,” IEEE Network,
vol. 35, no. 1, pp. 4449, January/February 2021.

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125-1142, October 2017.

S. Wilson, N. Moustafa, and E. Sitnikova, “A digital identity stack to
improve privacy in the IoT,” in 2018 IEEE 4th World Forum on Internet
of Things (WF-10T), Singapore, February 2018, pp. 25-29.

A. Assiri and H. Almagwashi, “IoT security and privacy issues,” in 2018
1st International Conference on Computer Applications & Information
Security (ICCAIS), Riyadh, Saudi Arabia, April 2018, pp. 1-5.

C. Hu, J. Zhang, and Q. Wen, “An identity-based personal location system
with protected privacy in I0T,” in 2011 4th IEEE International Con-
ference on Broadband Network and Multimedia Technology, Shenzhen,
China, 2011, pp. 192-195.

I. Ullah and M. Ali Shah, “A novel model for preserving location privacy
in internet of things,” in 22nd International Conference on Automation
and Computing (ICAC), Colchester, UK, Sept. 2016, pp. 542-547.

C. Yin, J. Xi, R. Sun, and J. Wang, “Location privacy protection based
on differential privacy strategy for big data in industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp.
3628-3636, August 2018.

M. Bi, Y. Wang, Z. Cai, and X. Tong, “A privacy-preserving mech-
anism based on local differential privacy in edge computing,” China
Communications, vol. 17, no. 9, pp. 50-65, September 2020.

M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based systems,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 901-914.

I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1-38,
2018.

H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Location
privacy-preserving mechanisms in location-based services: A compre-
hensive survey,” ACM Computing Surveys (CSUR), vol. 54, no. 1, pp.
1-36, 2021.

Y. Zhao and J. Chen, “A survey on differential privacy for unstructured
data content,” ACM Computing Surveys (CSUR), vol. 54, no. 10s, pp.
1-28, 2022.

E. ElSalamouny and S. Gambs, “Differential privacy models for location-
based services,” Transactions on Data Privacy, vol. 9, no. 1, pp. 15-48,
2016.

Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing uav,” I[EEE Transactions on Wireless
Communications, vol. 18, no. 4, pp. 2329-2345, Apr. 2019.

Z. Wang, R. Liu, Q. Liu, J. S. Thompson, and M. Kadoch, “Energy-
efficient data collection and device positioning in uav-assisted iot,” IEEE
Internet of Things Journal, vol. 7, no. 2, pp. 1122-1139, 2020.



