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Abstract—Unmanned aerial vehicles (UAVs) offer intriguing
possibilities for Internet of Things (IoT) data collection. However,
it can also jeopardize the privacy of IoT devices. In particular,
an adversary can deduce the location of IoTs by monitoring
the UAV’s mobility patterns, which necessitates the analysis of
privacy-preserving mechanisms that protect IoT location privacy.
Nonetheless, integrating privacy measures into operations incurs
additional expenses. One of these costs is the added distance
that UAVs may need to travel to accomplish their task, in
turn increasing energy consumption. This paper investigates
the trade-off between privacy and energy in the UAV-assisted
IoT data collection application. First, we consider a preliminary
privacy mechanism and analytically obtain the upper bounds
of the extra flight distance and energy consumption for the
UAV. Then, we consider a location-based differential privacy
mechanism to achieve geo-indistinguishability. As expected, our
study shows that imposing privacy constraints on UAV-assisted
IoT data collection leads to increased UAV energy consumption.
Specifically, as privacy guarantees become more restrictive, the
energy consumption of UAVs increases exponentially. Nevertheless,
given an energy constraint, one can assure a certain level of privacy
guarantee.

Index Terms—Location Privacy, Differential Privacy, UAV, IoT
Data Collection, Energy Consumption.

I. INTRODUCTION

A. Background

Unmanned aerial vehicles (UAVs) are becoming increasingly

popular for their low cost and agility, making them viable

options for various applications. However, UAVs have raised

concerns over privacy violations by accessing areas that are

otherwise inaccessible. To address these concerns, researchers

have proposed privacy-preserving mechanisms (PPMs) that

prevent UAVs from compromising citizens’ privacy, e.g., [1]–

[3].

However, UAV users’ privacy can also be compromised

through observation of UAV flight patterns. As pointed out

in [4], adversaries can infer a UAV’s destination from its

flight path, leading to privacy breaches. To address this issue,

[4] proposed privacy-preserving path design algorithms for

UAVs in the presence of adversaries. The authors considered

two scenarios: adversaries who can and cannot see the UAV’s

destinations, and developed path planning algorithms to hide the
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destinations from the adversary. Their work provides valuable

insights into preserving UAV users’ privacy. A different

approach was developed in [5] where randomized trajectories

were introduced to confuse the adversary about the UAV’s

destination in a package delivery application.

As UAVs are highly appealing for data collection in the

realm of the Internet of Things (IoT), preserving IoT devices’

locations from an adversary observing the UAV can pose

challenges. In particular, leaking an IoT device’s location

makes it easy for an adversary to locate and potentially steal

or destroy the device [6]. In this regard, preserving UAV’s

privacy is extended to the Internet of Things (IoT) application

[7] where the UAV is employed to collect IoT data. The idea is

to randomize the UAV’s position around the IoT device instead

of hovering directly above it.

Privacy comes at a price, however, which can be reflected

in a variety of performance metrics. For instance, in an IoT

data collection scenario, it may increase the UAV’s energy

consumption. This subsequently decreases the UAV’s mission

time and the number of IoT devices it can collect data from.

Therefore, in this paper, we investigate the UAV energy

consumption and IoT location privacy trade-off in IoT data

collection applications where a UAV is employed to collect data

from IoT devices. We consider two types of location privacy

mechanisms based on the randomization of the UAV’s location:

A preliminary privacy mechanism and a differential location

privacy mechanism. The latter ensures location privacy for the

IoT devices in the sense that by observing the UAV’s location,

an adversary will have difficulty distinguishing between IoT

locations within certain distances. Therefore, each IoT device

is satisfied by a degree of privacy within a certain range.

We observe that imposing location privacy constraints on the

UAV data collection application increases the total path and

subsequently the energy consumption of the UAV. To the best

of the authors’ knowledge, this is the first paper to investigate

the trade-off between location privacy and energy consumption

in the context of UAV-assisted IoT data collection missions.

B. Related Work

As mentioned earlier, preserving citizens’ privacy from

potential UAV-related violations has been investigated from

various points of view. For example, in [8], a dynamic UAV
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FIGURE 1: UAV-assisted IoT data collection: Instead of the red circle
spot, the UAV hovers at a green spot to collect data from an IoT device.
Subsequently, the red dashed path shows the non-privacy-preserving
path and the solid green path shows a randomized privacy-preserving
path.

routing framework was proposed to ensure that UAVs do not

fly over the private property of citizens. [9] proposed a UAV

detection system to identify unauthorized UAVs flying in a

restricted area. [10] proposed a deep learning-based approach

to anonymize faces captured by UAV video recordings. As

long as the UAV’s privacy is concerned, there have been

numerous studies to protect UAVs from eavesdropping or

adversaries, e.g., [11]–[13]. For instance, in [11], using particle

swarm optimization (PSO), a path-planning algorithm has been

developed to minimize the probability of being disclosed by

an eavesdropper. [12] proposed a general privacy-preserving

public cloud audit scheme which supports dynamic data to

protect UAVs data.

Privacy challenges within the context of IoT are not a novel

issue and have been regarded as a significant concern since its

emergence [14]–[16]. Hence, various privacy-preserving tech-

niques for location data have been developed and investigated

[17]–[20]. Note that our approach to location privacy differs

from that of the literature, which typically considers sets of

location data.

C. Contributions and Organization:

The main contributions of this paper are as below:

• We propose two mechanisms for preserving IoT location

privacy in UAV-assisted IoT data collection.

• We obtain the UAV energy consumption and IoT location

privacy trade-offs of the proposed mechanisms.

• We show that by randomizing the UAV’s location, IoT

geo-indistinguishability can be obtained at the expense of

energy consumption. But, given a certain energy constraint,

one can still assure location privacy.

This paper is organized as follows:

In Section II, we describe the system model. In Section

III, we provide the privacy-preserving mechanisms and energy

consumption and in Section IV we present the results. Finally,

in Section V we conclude the paper.

II. SYSTEM MODEL

Figure 1 shows a typical UAV-assisted IoT data collection

system model. We explain the network model, the adversary

model, and the privacy-preserving mechanism in the sequel.

A. UAV-assisted IoT Data Collection Network

We assume that there are N IoT devices randomly located

in an arbitrary area A. An UAV is employed to fly from a data

center located at the origin towards each device, hover above

the devices at a fixed altitude H , and collect IoT data. The

2-dimensional coordinates of the i-th IoT device location are

shown by ui = (xi, yi), where xi, yi ∈ R
2 and i = 1, 2, . . . , N .

In a non-private scenario, the UAV would hover at (xi, yi, H) to

maximize the uplink connection performance when collecting

data from the i-th device.

However, to maintain location privacy for IoTs during data

collection, the UAV hovers over a privacy-preserving spot

selected randomly around the real location of the IoT device.

The privacy-preserving spot is denoted as vi = (x′
i, y

′
i), where

x′
i, y

′
i ∈ R

2.

B. Adversary Model

We assume that an adversary is interested in determining

the true location of devices by monitoring the UAV’s data

collection activities. Consequently, the adversary is capable

of tracking the path of the UAV and identifying its stopping

points for IoTs data collection. We assume that the adversary

cannot estimate the location by measuring the data collection

time.

C. Privacy-preserving Mechanism

As mentioned earlier, in order to keep the IoTs location

preserved from an adversary, we randomize the UAV’s data

collection spot so that the adversary would have difficulty

identifying the exact location. To this end, we first consider

a preliminary privacy mechanism and then a differential

privacy alternative where locations within a certain range are

indistinguishable. The details of the privacy mechanisms are

provided in the next section.

III. IOT LOCATION PRIVACY AND UAV ENERGY

CONSUMPTION

In this section, we provide the privacy-preserving mechanism

and the UAV energy consumption analysis. Before that, we

provide some preliminary results on the cost of location privacy-

preserving mechanisms in the proposed context.

A. Preliminary result on the distance cost of location privacy

It is quite well-known that any privacy-preserving mecha-

nism, regardless of its nature, has an associated cost to the

utility. Regarding UAV-assisted IoT data collection, this cost

could be perceived as the additional distance that the UAV

has to fly. In other words, to ensure privacy and maintain a

safe distance from the real location of the IoT device, the

UAV may need to travel further to reach the privacy-preserving

spot. This additional distance can impact the efficiency of data

collection and may result in increased energy consumption or

longer flight times for the UAV. In the following lemma, we

show that there is an upper bound on the extra distance that

any privacy mechanism with a privacy-preserving radius R
might impose. This means that the total distance that the UAV



must travel in a privacy-preserving scenario, can be adjusted

by the radius of the privacy mechanism.

Lemma 1. For N IoT devices, if we randomly choose a

privacy-preserving spot within a distance R from each device,

then the privacy-preserving path is longer than the non-privacy-

preserving path by no more than 2NR. Formally, we have

N+1
∑

i=1

d′i ≤ 2NR+
N+1
∑

i=1

di, (1)

where di = ||ui − ui−1||2 and d′i = ||vi − vi−1||2 for i =
1, . . . , N . Also, dN+1 = ||uN ||2 and d′N+1||vN ||2. In (1), the

left sum shows the overall privacy-preserving path and the

right sum shows the overall non-privacy-preserving path.

Proof. Proof can be obtained using the triangle inequality for

the devices subsequently.

Discussion: It is not difficult to see that R is the privacy

parameter. In other words, as R increases the perimeter of the

circle around the IoT device increases which makes it more

difficult for the adversary to estimate true device locations ui.

B. Privacy-preserving Mechanism

We consider a differential location privacy (DLP) approach.

It is important to note that DLP differs from Differential Privacy

(DP) in that DP is typically used for aggregating data from

multiple users. Whereas DLP is applied to the location data of a

single user. The underlying principle behind DLP is that a small

change in the location data of a user should not significantly

impact the results of queries made using that data [21]. DLP

has been developed using the notion of geo-indistinguishability

[21] and has since garnered significant attention [22]–[24].

The advantage of utilizing a DP-based approach, as opposed

to error-based approaches is particularly evident in scenarios

where the prior distribution of IoTs is either unknown or known

but results in intricate analysis.

The DLP considered in this paper is based on the Laplacian

mechanism where the noise added to ui is derived from the

following PDF

fϵ,ui(wi) =
ϵ2

2π
e−ϵd(ui,wi), i = 1, 2, . . . , N, (2)

where d(ui, wi) denotes the Euclidean distance between ui

and wi. Intuitively, (2) implies that the probability of selecting

a random spot wi decreases exponentially with increasing the

distance from ui. If we substitute ϵ with ϵ/d0, where d0 is the

desired indistinguishability distance, the mechanism provides

a (d0, ϵ)-location privacy [25].

C. Energy Consumption Model

To compute the energy consumption of the drone, we use the

propulsion power consumption of a rotary-wing UAV derived

in [26] as

P (V ) =P0

(

1 +
3V 2

U2
tip

)

+ Pi

(
√

1 +
V 4

4v40
−

V 2

2v20

)1/2

+
1

2
d0ρsAV 3, (3)

where V denotes the drone’s velocity and other parameters are

constant metrics corresponding to the drone’s physical features

[26]. We assume that the UAV’s communication power is

negligible in comparison to the propulsion power consumption.

Though future work can jointly consider communication [27]

to prove tighter energy bounds.

Following (3), we obtain the propulsion energy consumption

of the drone as below

E =

N
∑

i=0

P (V )tf,(i,i+1) +

N
∑

i=1

Phth,i, (4)

where tf,(i,i+1) denotes the flight time from the spot i to the

spot i + 1, and th,i is the hovering time above the i-th spot

obtained as below

th,i =
ωi

B log2 (1 + γi)
, i = 1, 2, . . . , N, (5)

where ωi is the i-th device’s data size, B is the bandwidth,

and γi is the received signal to noise ratio (SNR) obtained as

γi =
p0(H

2+l2)−α/2

σ2
0B

. Also, p0 is the IoT’s transmit power, l is

the horizontal distance between an IoT and the UAV, α is the

path-loss coefficient, and σ2
0 is the thermal noise density.

Furthermore, in (4), Ph is the UAV’s power consump-

tion during the hovering which can be obtained as Ph =
δ
8ρsAΩ3R3 + (1 + k)W 3/2

√
2ρA

, where the parameters refer to

fixed values that correspond to the physical attributes of the

drone [26].

Lemma 2. For the preliminary privacy-preserving mechanism

in Lemma 1, the additional energy consumption for a (d0, ϵ)-
private path (d′t) is bounded as below

E(d′t)− E(dt) ≤ P (V )
2NR

V
+ E , (6)

where E = NPh
ω
B





1

log2

(

1+
p0(H2+R2)−2

σ2
0B

) − 1

log2

(

1+
p0H−2

σ2
0B

)



.

Proof. Assuming the same data size for all the devices, the

second sum in (4) is a constant term. Therefore, energy is a

function of the total path as defined below

E(dt) = P (V )
dt
V

+NPht
h (7)

Hence, the energy difference in the private path (d′t) and the

non-private path (dt) is obtained as below

E(d′t)− E(dt) = P (V )
d′t − dt

V
+ E

≤ P (V )
2NR

V
+ E , (8)

where E is given above.



TABLE I: Simulation Parameters

Parameter Value

Number of IoT devices N = 5

UAV velocity V = 15 m/s

UAV’s altitude H = 20 m

IoT Transmit power p0 = 1 mW

Bandwidth B = 1 MHz

Data size ω = 2 Mb

Pathloss attenuation coefficient α = 2, 4

FIGURE 2: UAV energy consumption for (d0, ϵ)-privacy

IV. NUMERICAL RESULTS

We now provide the numerical results for the trade-off

between the proposed location privacy mechanism and the

UAV energy consumption. The setting of simulation parameters

follows from UAV energy minimization literature [7] [26] and

are partially written in Table I. The goal is to model the effect

of privacy parameters ϵ and d0 on the total travel length (m)

and energy consumption (kJ). For all graphs, the non-private

path (d0 = 0m) is ≈ 2600m.

Figure 2 shows the energy consumption vs. privacy guarantee

for different distinguishability settings. A d0 = 0 represents

the case where there is no differential location privacy. In other

words, there are no other locations near an IoT device’s location

that are indistinguishable from it. As the d0 increases, the

locations that are indistinguishable from the real IoT’s location

increase which means more differential location privacy is

imposed. This, in turn, increases the UAV’s energy consumption.

Observe the exponential decrease in energy required when

relaxing the privacy with ϵ.
Figure 3 shows the UAV’s energy consumption on a log

scale versus the location indistinguishability for different values

of ϵ. It can be seen that the small value of ϵ0 = 0.1 results

in a significant increase in energy consumption. Meanwhile,

with an imposed energy consumption constraint, one may

adjust the desired values of both d0 and ϵ. This (d0, ϵ)-privacy

mechanism increases UAV’s energy consumption exponentially

while in Lemma 2, we see a linear relationship between energy

consumption and the privacy parameter, R.

Figure 4 shows the total distance added to the UAV’s

FIGURE 3: UAV energy consumption and geo-indistinguishability
trade-off for (d0, ϵ)-privacy

FIGURE 4: Total path increase for (d0, ϵ)-privacy

path after imposing (d0, ϵ) privacy. The additional distance

covered assumes critical importance in scenarios where energy

consumption is not the primary concern, but flight time duration

and subsequently the freshness of updates from IoT devices, as

measured by their age of information (AoI), are of significance.

In such cases, adjusting the UAV’s velocity to comply with

the AoI constraint may be a viable option. As velocity, among

other parameters in 3, scales the energy consumption linearly.

Finally, Figure 5 presents the proportion of the total distance

covered by a privacy-preserving path relative to a non-privacy-

preserving path, providing an intuitive comparison between the

two. It is worth noting that the privacy-preserving path can be

up to three times longer than the non-privacy-preserving path.

V. CONCLUSION

In this paper, we investigated the trade-off between UAV

energy consumption and IoT location privacy in the context

of an IoT data collection application. We obtained the up-

per bound of the total distance increase and UAV’s energy

consumption increase for a preliminary privacy mechanism.



FIGURE 5: Private vs. Non-Private Path Ratio

Then, considering the differential location privacy, we obtained

the UAV’s energy consumption and privacy parameters using

simulations. We have established that, by adjusting the privacy

parameters, it is possible to attain a desired degree of privacy

while adhering to a given UAV energy constraint. Also, the

total distance added to the UAV’s path has been obtained which

can be crucial for analyzing AoI.

This paper has several avenues for future work: One can

investigate the trade-off between the energy consumption of

IoT devices and privacy policies. This is important since the

performance of IoT devices is typically constrained by their

limited power supply. Another direction is to optimize the

privacy-preserving spots among a network of IoTs such that

different IoTs could be under coverage from a shared privacy-

preserving spot. In this problem instead of subsequently flying

between different spots, a UAV may hover at the same spot for

a longer duration to collect data from more than one device.
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