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Abstract. We present a neurogeometric model for stereo vision and
individuation of 3D perceptual units. We first model the space of position
and orientation of 3D curves in the visual scene as a sub-Riemannian
structure. Horizontal curves in this setting express good continuation
principles in 3D. Starting from the equation of neural activity we apply
harmonic analysis techniques in the sub-Riemannian structure to solve
the correspondence problem and find 3D percepts.
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1 Introduction

We propose here a neurogeometrical model of stereo vision, in order to describe
the ability of the visual system to infer the three-dimensionality of a visual scene
from the pair of images projected respectively on the left and right retina.

The first differential models of the visual cortex, devoted to the description
of monocular vision, have been proposed by Hoffmann [16] and Koenderink-van
Doorn [19]. Results were unified under the name of neurogeometry by Petitot and
Tondut [23], who related psychophysical experiments of Field, Hayes and Hess [14]
with the contact geometry introduced by Hoffmann [16] and the stochastic app-
roach of Mumford [21]. The functional architecture of the visual cortex has been
described through sub-Riemannian metrics by Citti and Sarti [8] and through
Frenet frames by Zucker [29], and after that a large litterature was developed.

The geometric optics of stereo vision has been proposed by Faugeras in
[13] and a differential model for stereo was proposed by Zucker [29]. A sub-
Riemannian structure of 3D space has been introduced by Duits et al. in [11,12]
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and [24] for 3D image processing. Our model, first introduced in [4], general-
izes these models introducing a sub-Riemannian geometry for stereo vision: it is
presented in Sect. 3. In particular, we will focus on association fields, introduced
in 2D by Field, Hayes and Hess in [14] and modeled in [8,23] and [5]. We will
extend this approach to neural connectivity with integral curves and justify psy-
chophysical experiments on perceptual organization of oriented elements in R?
(19,15,17)).

The main contribution with respect to [4] is the constitution of 3D percepts,
presented in Sect. 4. We start from the model of interactions between neural pop-
ulations proposed by Bressloff-Cowan (|6]) and we modify the integro-differential
equation they propose with the connectivity kernel obtained as fundamental
solution of a sub-Riemannian Fokker Planck. Then, we generalize the stability
analysis proposed by [6] for hallucinations, by [26] for emergence of percepts,
and we show that in this case they correspond to 3D perceptual units.

2 The Stereo Problem

The stereo problem deals with the reconstruction of the three-dimensional visual
scene starting from its perspective projection through left C; and right Cg
optical centers on the two eyes. The setting of the problem involves classical
triangulation instruments (e.g. [13]), and the main issue is to couple in a correct
way the correspondent left Qr = (zr,y) and right Qr = (zg,y) points on the
parallel retinal planes (y = yr = yg), in order to project them back into the
environment space to obtain Q = (r1, 72, 73) € R3, see Fig. 1,(a). This goes under
the name of stereo correspondence.

The main clues for solving the correspondence are the slight differences in
the two projected images, namely the disparities. Our main focus will be on
horizontal positional disparity d := (2 — 2g)/2, which introduces the set of
cyclopean coordinates (x,y, d), together with the mean position = := (zp+xzg)/2.
Since binocularly driven neurons in the primary visual cortex, which perform the
binocular integration, receive input from monocular (orientation selective) cells,
we will choose as additional variables the orientations on left and right monocular
structures: 07, and 0g; but we will not consider orientation disparity, because it
does not seem to be coded directly in the visual cortex, see for example [7].

2.1 The Monocular Model for Orientation-Selective Cells

The hypercolumnar structure selective for orientation of monocular left and right
simple cells in V1 (denoted respectively ¢ = L, R) can be modeled in term of a
fiber bundle, with base (z;,y) € R? identified with the retinal plane, (see [23])
and fiber 0; € R/27Z = S!'. The response O;(z;,y,0;) of these cells to a visual
signal on the retina I'(x;, y) is quantified in terms of a function ¢(z;,y, 6;), called
receptive profile RP and well described by Gabor filters, see Fig. 1,(b). Following
the work of Citti and Sarti [8], the action of these RPs induces a choice of contact
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Fig. 1. (a) Stereo geometry. (b) Above: Gabor filter: model of 2D receptive profile, its
1D section. Below: binocular receptive profile (image adapted from [2]) (¢) The Zucker
model (image adapted from [20]).

form on the whole space:
wp, = —sinb;dx; + cos b;dy. (1)

The visual signal propagates in this cortical structure along integral curves of
vector fields lying in the kernel of this contact form.

2.2 Models of Binocular Cells and Stereo Vision

Ohzawa et al. in [2] found that binocular simple cells in V1 perform a non-
linear integration of left and right monocular cells, displayed in Fig. 1, (b). They
proposed the binocular energy model (BEM), which characterize the binocu-
lar output through an interaction term Op, product of left Op and right Og
monocular outputs:

OB = OROL- (2)

The mathematical model for stereo vision built by Zucker et al. in [1,20] is
based on neural mechanisms of selectivity to position, orientations and curva-
tures of the visual stimulus and it is expressed via instruments of Frenet dif-
ferential geometry. The connections between binocular neurons are described
by helices whose spiral develops along the depth axis, encoding simultaneously
position and orientation disparities. The model is illustrated in Fig. 1, (c).

3 A Sub-Riemannian Model for Stereo Vision

In this section we present the biologically-inspired model proposed in [4].

3.1 The Fiber Bundle of Binocular Cells

The binocular structure is based on monocular ones and it is equipped with a
symmetry that involves the left and right structures, allowing the use of cyclo-
pean coordinates (z,y,d) defined in Sect.2. The set of binocular cells will be
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expressed a fiber bundle with base B = R? the cyclopean retina of coordi-
nates (x,y). The structure of the fiber is F = R x S! x S!, with coordinates
(d,0r,0r) € F. Schematic representation is provided in Fig. 2, (a) and (b).

S IARE A

W
a

Fig. 2. Binocular cell structure and 3D reconstruction. (a) and (b) schematically rep-
resent the binocular fiber bundle in 2D: we visualized a 1D restriction to the direction
z of the basis, the fiber of disparity d in (a) and the fiber of orientations 61 and 0r
in (b). (c) describes reconstruction of a 3D curve from its projections. The normal to
the curves 71, and g on retinal planes are identified by the 1-forms wy, and we,. The
wedge product @y, Awey of their 3D counterpart identify the tangent vector to the 3D
corresponding curve v : R — R3.

3.2 Compatibility with Stereo Triangulation

We can introduce a 2-form starting from the monocular structures that embodies
the binocular energy model, since Eq. (2) can be written in terms of monocular
left and right RPs, see [4, Eq. (18),(49)], obtaining the following result.

Proposition 1. The binocular interaction term Op of (2) can be recast as
wedge product of the two monocular 1-forms wg, and we,, defined in (1):

Op = wy, Nwyg,, - (3)

It is possible to extend the monocular 1-forms wg, and wp,, on retinal planes
to Wy, and wg, l-forms in R3 and obtaining wop N W, . Through the Hodge
duality this 2-form identifies a vector that can be interpreted as the direction of
the tangent to a potential 3D curve in the scene, see Fig. 2 (c).

So, binocular cells couple positions, identified with points in R3, and orienta-
tions in S2, identified with three-dimensional unitary tangent vectors. To solve
the stereo problem the visual system must take into account suitable types of
connections ([27]). It is therefore natural to introduce the perceptual space via
the manifold M = R? X S?&wﬁ and look for appropriate curves in M.

(r1,72,73)

3.3 Stereo Sub-Riemannian Geometry

The sub-Riemannian structure on M can be expressed locally using the chart
6 € (0,27),¢ € (0,7) by considering an orthonormal frame {Y3, Yy, Y.}, where:

1
Y3 = cos 0 sin p0; + sin 0 sin 0y + cos pds, Yy = —
S

Ea@, Y@ = aw. (4)
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The vector field Y3 encodes the tangent of the stimulus, Y, involves orientation
in the depth direction, while Yy involves orientation on the fronto-parallel plane.
We take here into account that contour detectability systematically changed
with the degree to which they are oriented in depth, see [18]. Indeed the vector
Y5 is not defined for ¢ = 0, meaning that we do not perceive correctly contours
which are completely oriented in the depth direction. The vector fields satisfy
the Hérmander condition since the whole space is spanned at every point by the
vectors {Y3,Yy,Y,} and their commutators.

Remark 1. As noted by Duits and Franken in [12], the space R x S? can be
identified with the quotient SE(3)/{0rs} x SO(2). Different sections have dif-
ferent invariance properties; in [24], the authors provide a section which preserves

isotropy in the spherical tangent plane and give the same role to all the angular
variables [11, Thm.1 and Thm.4].

Integral curves with constant coefficients in the local orthonormal frame (4)
are defined by the differential equation:

I(t) = 173,1"(1&) + Cl%,l"(t) + 62?%1“(15) c1,c2 € R. (5)

These curves, displayed in Fig.3 (a), can be thought of in terms of trajectories
in R3 describing a movement in the Y3 direction, and by varying the coefficients
c1 and co in R, they can twist and bend in all space directions. Formally, the
amount of "twisting and bending" in space is measured by curvature k£ and
torsion 7, which in this setting read as: k = \/c} + c3, and 7 = —c; cotan ¢.

5

(a) (b) (c)

Fig. 3. Different families of integral curves (5). (a) General fan of integral curves
described by Eq. (5) with varying ¢; and ¢ in R, enveloping a curve v € R®. (b)
Arc of circles for constant ¢ = 7/2. (c) r3-helices for constant ¢ = 7/3.

The model is then compatible with the previous models of [8] of monocular
vision, since if ¢; = 0 or ¢ = 7/2 then I'(t)gs is a piece of circle (Fig.3, (b)). In
addition it is compatible with the results of [1], based on properties of curvature,
since if ¢ = g with g # 7/2, then I'(t)gs is a r3-helix. The main difference is
that curvature is an extracted feature in [1], while it is coded in connectivity in
our model.
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3.4 Good Continuation in 3D and Stereo Association Fields

The family (5) model neural connectivity (see [4]) and it can be related to the
geometric relationships deriving from psychophysical experiments on perceptual
organization of oriented elements in R3, the basis of the Gestalt law of good
continuation ([28]). This generalizes the 2D concept introduced by Field Hayes
and Hess in [14] (Fig. 4, (a)) of an association field in 3D.

The geometrical affinities between orientations under which a pair of position-
orientation elements in R? x S? are perceived as connected in a 3D scene, have
been determined by [17] with the theory of 3D relatability. Curves that are
suitable to connect these 3D relatable points have the properties of being smooth
and monotonic [9,15], extending good continuity/ regularity in depth. Moreover,
the strength of the relatable edges in co-planar planes with the initial edge must
meet the relations of the bi-dimensional association fields [17].

The family of integral curves (5) locally connects the association fan gener-
ated by 3D relatability geometry (Fig. 4, (b)), satisfying smoothness, monotonic-
ity and compatibility with 2D association fields.

2 :L_Q

\\\\

()

Fig. 4. Display of connectivity. (a) Field Hayes and Hess association field (top) and 2D
integral curves of the Citti-Sarti model [8] (bottom). (b) Fan of 3D relatable points con-
nected by integral curves (5).(c) Iso-surface in R?® of probability density (7) associated
to the curves (5).

4 Constitution of 3D Visual Perceptual Units

Integral curves model the good continuation law, playing a fundamental role
within the problem of perceptual grouping, individuating 3D visual units.

4.1 Sub-Riemannian Fokker Plank Equation and Connectivity
Kernel

The emergence of 3D visual percepts derives from interactions between binocular
cells: according to the Gestalt law of good continuation, entities described by
similar local orientations are more likely to belong to the same perceptual unit.

Following [3,25], we suppose that the signal starting from a binocular neuron
& € R3 x S? evolves following the stochastic process described by the SDE:

art) = YRS’F(t)dt + )\(Y@Jﬂ(t), wap(t))dB(t), AeR, (6)
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with B(t) 2-dimensional Brownian motion. The probability of interaction
between points £ and £’ € M, has a (time-independent) density:

{A (&) Paer, (7)

whose iso-surfaces in R? are displayed in Fig. 4, (c). This probability density coin-
cides with the (time-integrated) fundamental solution of the forward Kolmogorov
differential equation associated to (6) with operator £ = —Y3+A(Yy +Y2) writ-
ten in terms of the chosen vector fields (4). Analytical approximation of the
fundamental solutions have been provided in [12,24], and numerical approxima-
tion with Fourier methods and Monte-Carlo simulations in [10]. We implement
here the latter, following the approach presented in [3], since it is more physio-
logical being based on the stochastic integral curves.

Remark 2. The authors in [24] have shown that the space R? x S? can be identi-
fied with a section of SFE(3) where kernels have symmetry properties with respect
to the group law, and all angles have the same role. In our model, 3D association
field fan depends on the choice of the vector fields, which is not invariant, due to
the different meaning of the considered orientations. Nevertheless, we expect the
kernel to preserve invariance. A comparison between the two approaches based
on parametrix method will be provided in a future paper.

4.2 From Neural Activity to 3D Perceptual Units

The kernels (7) are implemented as facilitation patterns to define the evolution
in time ¢t — a(,t) of the activity of the neural population at £ € M. This
activity is usually modeled through a mean field equation, see [6]:

dal.t) = a6 +o( [ T e +hen). @

where h is the feedforward input, o is a sigmoidal function and J a symmetriza-
tion of (7). When the input h is constant over a subset 2 of M and zero else-
where, it has been proved in [26] that the domain of Eq. (8) reduces to {2 since
the population activity is negligible in the complementary set M\ (2.

We extend the stability analysis around a stationary state a; proposed by
[6] for hallucination and [26] for perceptual units. A perturbation w, difference
between two solutions a — a1, satisfies the eigenvalue problem associated to the
linearized time independent operator

1
[ aeeruie na = ~uten )
2 K
where 1 = 0/(0). As shown in [26] for the 2D case, the eigenvectors represent the

perceptual units, and the eigenvalues their salience. The whole process is strictly
linked with spectral clustering and dimensionality reduction results ([22]).
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4.3 The Proposed Model for the Correspondence Problem

The model can be described as follows. We start from two rectified stereo images.
We couple all possible corresponding points (left and right retinal points with
the same abscissa coordinate): this lifts retinal points in points &; € {2 generating
also false matches, i.e. points that do not belong to the original stimulus. We call
affinity matrix the kernel J evaluated on every couple of lifted points &;,&; € 2
Ji; = J(&,&;). Spectral analysis on J individuates 3D perceptual units, and
solves the stereo correspondence. In this process false matches are eliminated
since the similarity measure introduced by the kernel J groups elements satisfy-
ing the good-continuation constraints.

4.4 Numerical Experiments

We develop the ideas illustrated so far by numerical examples; the main steps
of the algorithm are summarized in Table 1.

Table 1. Recovering 3D visual percepts starting from rectified stereo images.

0 | Gabor filtering the left and right retinal images to obtain for every point (z;,y;) its
corresponding orientation 6; for i = L, R

1 | Recover the domain 2 C R?® x S?, &, € 2,k =1,...n, from the coupling of retinal
images by inverting perspective projections.

Call affinity matrix J the discretization of the kernel J: Ji; := J (&, &;)-

Solve the eigenvalue problem Ja = wa.

Find the ¢ largest eigenvalues {¢;}7_, and the associated eigenvectors {a;}?_;.

For k =1,...,n assign the point & to the clustered labeled by max;{a;(k)}7_;.

DO W N

Join together the clusters with less than @ elements.

Left image Right Image

Loft image Right imago — Ist Percept
7

8 8 8 8 8 8 8
8 8 8 8 8 8 8
s
PUDEES

Fig. 5. (a) Stereo images of a 3D curve. (b) Lifting of the stimulus in R® x S?: points
clustered together are marked by the same color (one main red colored 3D percept);
black points do not belong to any cluster. (c¢) Stereo images of a 3D helix and arc of a
circle. (d) Lifting of (c) in R® x S?: two main clusters (red and blue) correctly segment
into two perceptual units the 3D visual scene. (Color figure online)

The model is first tested on synthetic stereo images of 3D curves (Fig.5
(a),(c)), and perceptual units are correctly recovered (Fig.5 (c),(d)).
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Voo m)

(b)
Fig. 6. (a) Top: couple of natural images. Bottom: Gabor filtering to recover position
and orientation in retinal planes. (b) The application of the algorithm defined in Table 1
individuates the two 3D perceptual units (red and blue points). (Color figure online)

—— lIstclus

—— 2nd Cluster

A second test is performed on a natural image: we pre-process the images
via Gabor filtering, to recover position and orientation on the two retinas, and
then we apply the model. Results are illustrated in Fig. 6.
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