) |

Check for
| updates

DRUM: A Real Time Detector
for Regime Shifts in Data Streams
via an Unsupervised, Multivariate

Framework

Adnan Bashir®)@® and Trilce Estrada

Computer Science Department, University of New Mexico, Albuquerque, NM, USA
{abashir,estrada}@cs.unm.edu

Abstract. In this work we present DRUM, an unsupervised approach
that is based on statistical properties of multivariate data streams to
identify regime shifts in real time. DRUM processes streams in small
chunks, learns their statistical properties, and makes generalizations as
time goes by. We show how this straightforward approach requires min-
imal computation and reaches state of the art accuracy, making it ideal
for embedded and cyber physical systems.

Keywords: Multivariate data streams - Change point detection -
Statistical analysis + Unsupervised * Real time + Online detection

1 Introduction

A regime shift refers to a sudden or significant change over time in the behavior
of a system. It can occur in various natural and social systems, ranging from
ecosystems and climate patterns to economic and social systems. Regime shifts
in cyber physical systems can indicate potential problems or pattern changes
that need to be dealt with in real time [3]. Regime Shift Detection (RSD), or
Change Point Detection (CPD) refers to the identification of such changes in
the underlying distribution of data streams [5]. Detection of regime shifts is of
vital importance in many real-world problems such as weather monitoring, early
detection of cyber security threats, medical monitoring, speech analysis, market
analysis, human activity monitoring and many more [23]. For dynamic cyber
physical systems, real time detection of regime shifts is essential for prevention
and mitigation of system failures. Understanding when a regime shift is under-
way enables informed decision making, improved risk management, and accurate
policy development, leading to increased resilience of the overall system.

In this paper we present DRUM (A real time Detector for Regime shifts
in data streams via an Unsupervised and Multivariate framework). DRUM has
the following properties that make it suitable for solving regime shift detection
in data streams: Unsupervised - Our method doesn’t require labels or human
intervention. Real time responsiveness - Due to very low computation, it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wrembel et al. (Eds.): DaWaK 2023, LNCS 14148, pp. 294-302, 2023.
https://doi.org/10.1007/978-3-031-39831-5_27

DRUM June 2023 295

offers minimum lag in detecting change points. Online - Our method processes
data as a stream and does not require retraining or batch processing to adapt to
changes over time. General - Our method has been tested on various univariate
and multivariate datasets, and it was able to perform as well or with higher
accuracy as other frameworks.

2 Related Work

Offline Methods - Offline CPD refers to those methods that require a com-
plete data stream for detection [5]. Numerous offline CPD algorithms have been
proposed in the past few decades. CUSUM method [21] was one of the earliest
change point detectors that identified points in time series with their cumula-
tive sum exceeding a threshold value. DRE-CUSUM |[2] is built upon CUSUM
which splits the data stream from an arbitrary point and compares the distri-
bution on both sides to detect any change. Binary segmentation was introduced
as an approximate change point detection method that greedily splits the data
stream into disjointed segments based on a cost function. To reduce the higher
time complexity of binary segmentation, pruning was added [14]. Wild Binary
Segmentation extended the original binary segmentation method by applying
CUSUM on subsets of data stream [10].

Online Methods - Online CPD refers to those methods that process the data
as it arrives. They can be viewed as e-real time algorithms [5]. Where € is the
delay in timestamps required by the algorithm to accurately detect a change
point. To incorporate multivariate data streams and online requirement of CPD,
Binary Online Changepoint Detection (BOCD) was proposed [1]. BOCD intro-
duced a term called run-length, which denotes data stream since the most recent
change point. BOCD approximates the probability distribution over run-length
and compares it with previously approximated distribution for change point
detection. Lately, several methods were proposed that were based on BOCD
namely BOCPDMS [16] and RBOCPDMS [15]. We have compared all variants
of BOCP due to its online detection ability.

Supervised Methods - Supervised learning algorithms have proven to be very
effective when it comes to change point detection but they require labeled data
and a training phase. Traditional machine learning methods like SVM [8], ran-
dom forests [6], decision trees [22], hidden Markov models [20], nearest neigh-
bors [19], and other binary classifiers [4] have been used to deal with this problem
as a supervised classification problem. Among them, REPOP [9] detects change
points in an offline setting by engineering the cost function via dynamic pro-
gramming algorithm. Another such approach is PELT [14] which minimizes the
detection delay in univariate time series. Facebook has proposed PROPHET [25]
which works as a regression model which requires domain expertise for tuning.
This is not feasible for unsupervised and online applications.

Deep Learning and Neural Network-based Models - Neural Networks
have been readily used for time series analysis. But they also suffer some limita-
tions when it comes to online CPD. As stated by Zhang et al. [27], the network

296 A. Bashir and T. Estrada

structure, training method and sample data may affect the performance and
accuracy of Neural Network based methods. Also training Neural Networks is a
time-consuming process and usually requires a big chunk of data in training. For
example, GAN (Generative Adversarial Networks [11]) based models require
entire variable set concurrently to tune the hidden layer parameters (such as
MAD-GAN [18]). Re-tuning these models is again a time-consuming process
that compromises the real time response of these detectors. Hence a majority of
Neural Network based CPD algorithms outperform when trained in an offline
setting.

3 DRUM

In this section we describe our approach (DRUM) which consists of two modules:
a scoring module, which computes statistics of the individual data streams; and a
detection module, which quantifies the rate of change and determines if a regime
shift has occurred.

Scoring Module: this module takes a multivariate data stream and calculates
our Lobo Change Score (LCS), which is the weighted sum of change in mean
(Am), change in standard deviation (As), and change in fluctuations across the
running mean (Afrm) between two data windows of the data stream. Formally,
the data stream is an infinite sequence of values generated by an underlying sys-
tem and is denoted as S = {1, 2, ..., Tt—1, Tt, T+1, ...}, where for a multivariate
time-series with n variables, z; is the n-dimensional data vector at time ¢ [26].
LCS is computed for small chunks of data that we call windows. That is, given
variable i of the stream, for a window of size d 4+ 1 starting in position j, our
algorithm processes the sequence w; [; j+4) = 1% 5 TF G415 Td G LD wso3 Zi j+d}- LCS
is composed of three components:

Amg g = |m(wij4+d)) — M(Ws e k+d)| (1)
Asi g = |s(wi g ra) — 5(Wi gk kra)] (2)
Afrm gk = | frm(wijjtq) — Frm(ws e k+ap)| (3)

where for two windows: wj [;44 starting at position j, and w; [k, k+q) Starting
at position k; both of them corresponding to variable i, Am; ;. is the absolute
difference between their mean; As; ; is the absolute difference in their standard
deviation; and Afrm is the absolute difference of fluctuation across the running
mean. frm is computed by counting the number of intersections between the
running mean and the signal itself within the current window. Then, LCS for
windows [4,7 + d] and [k, k + d] is the weighted sum of the three components
described above, as shown by Eq. 4:

n n n
LCS;k = aZAmi,j,k "f‘ﬂZASi,j,k +’72Af7‘mi,j,k (4)

=1 =1 i=1

DRUM June 2023 297

where «, # and 7 are weight coefficients, used to differentiate the contribution
of the three components. They can have values between 0 and 1, these values
can be updated adaptively depending on the data characteristics, or can be kept
constant to simplify hyperparameter selection. As shown in Algorithm 1, we use
two types of windows for calculating LCS. LCSp is calculated using disjointed
windows, that is, windows of size d + 1 that do not overlap, they track coarse
changes over a period of time. While LCSg uses consecutive sliding windows to
detect with finer precision when a change occurs. Figurel visually explains the
two types of windows.

Algorithm 1: DRUM
Input: Multivariate data stream S; window length d + 1; «, 8, v
Output: LCSp, LCSs
te—0le—t+1;,j—d+1; k1,
LCSp ={} ,LCSs ={}
while S # {} do
while t + 4+ < d do

I Viw; [k k+d] < Ti,¢ /* gather data for window [k, k -+ d] */
end

t+ + /* use t as the timestamp counter */
/* compute LCSp for disjoint windows j and k */
if j <t<j+dthen

' Viw; [, j+d) < Tt /* gather data for window [j,7 + d] */
end

if t=j+d then
LCSp <« VialAm ik + BAs: 556 +YAfrma
kej
jei+d+1
end
/* compute LCSg for comsecutive sliding windows ending at ¢ */
update \V/iwi,[t——d,t~l}
update Viw; [r—dt1.,¢
LCS, « VialAm; t—qi—a+1 + BAS; t—dt—ar1 + YAfrMit—d,t—d+1
LCSs.append(LCS;)
if detectChange(LCSp) then
| return maxChange(LCSs)
end
end

298 A. Bashir and T. Estrada

d+2 1
= ()) ()
I 1 >l W ndey ||Wopdrsy || W
T [t-d,t- ,[t-d+1, Lt-d+2,+ i)
Vasiable 1 w],[k,k+d wl,/jj+dl | I 11__ 5 Variable 1
ariable
- e M“’*v\m , Mw
A ; ;
i :

Variable 2

Variable 2
/A

ST
Variable i
f\/‘/‘/vM B U | [
-
\Esiy
Time Time
a) Disjointed Window b) Sliding Window

Fig. 1. Visualization of a) Disjointed Windows and b) Sliding Windows

Detection Module: Once LCS is calculated for disjointed (LC'Sp) and sliding
windows (LCSg), it is evaluated by the detection module. The first step in
detecting regime shift is to identify the window in which the change has occurred.
If LCSp has increased or decreased by 5% or more, the window is marked as
a change point window. Once the change window is identified, we use LC'Sg to
further identify the specific timestamp with the maximum change score. This
timestamp is returned as a change point.

4 Evaluation

To evaluate the accuracy and performance of our method, we compared its
behavior on datasets labeled for CPD (see Table 1) with respect to other state of
the art methods (see Table2). Additional details regarding these methods were
presented in Sect. 2. We used three metrics for comparison: NAB score, F'1 score,
and execution time. Below we present the results of such comparisons.

Table 1. Datasets and Benchmarks used for Evaluation

DATASET | Description # of Variables | Length # of Series

TCPD [7] |Real-world dataset for 1-5 15-991 42
bench-marking CPD
algorithms

TSSB [24] | Subset of UCR TS datasets |1 572-15970 | 66

SKAB [13] | Sensors on a testbed 8 666-1327 |34

TEP [12] |Industrial chemical process 52 500-960 |22

MDS Mesa, Del Sol microgrid 18 518960 1

DRUM June 2023 299

Table 2. Properties of CPD frameworks used for evaluation

METHOD Year | Online | No Training | Unsupervised | Multivariate
DRUM (ours) 2023 |V v v v
RFPOP [9] 2019 | ® v ® ®
RBOCPDMS [16] | 2018 | v/ v v v
PROPHET [25] |2018|% ® ® ®
BOCPDMS [15] |2018 | v v v
WBS [10] 2012 | % (4 v ®
PELT [14] 2012 | % v v ®
BOCPD [1] 2007 |V v v v

NAB Score. NAB [17] was proposed in 2015 by Numenta'. It was the first
anomaly and change point detection benchmark designed to evaluate unsuper-
vised and real time algorithms. It rewards early detection and uses a scaled
sigmoidal function to score false positives and false negatives. Figure2 shows
the NAB standard profile score. Our approach outperforms other methods in
four out of five datasets (TCPBD, TEP, MDS, SKAB), and performs compet-
itively in TSSB. It is important to note that NAB score allows the framework
to perform a change point detection within a window (by default it is 5% of the
length of time series).

1.0
0.9- mmm Ours mmm BOCP mEm PROPHET mEE WBS

0.8/ & HEE RBOCPDMS mmm BOCPDMS mmm RFPOP mmm PELT
g L i

g Ll

0 0.6

(8)

Sos| E B

% 0.4
0.31

0.2
0.1

TCPDB TSSB TEP MDS SKAB
Datasets

Fig.2. NAB Standard Profile Score, Empty bars show that the framework is not
multivariate capable

F1 Score. When a framework has a binary output (in this case change or no
change), F1-Score has been readily used by the research community to evaluate
such frameworks. F1 scores for the different methods are presented in Table3
with the highest score per dataset in bold. Our approach outperforms other
methods in four out of five datasets.

! https://numenta.com/.

300 A. Bashir and T. Estrada

Table 3. F1 Score. Empty fields mean that the framework is not designed for multi-

variate time series data

METHOD TCPDB | TSSB | SKAB | TEP |MDS
DRUM (ours) | 0.804 |0.715|0.634 |0.664 |0.714
BOCPD [1] 0.818 |0.345 |0.568 |0.608 |0.640
BOCPDMS [15] |0.620 [0.589 |0.618 |0.652 |0.687
RBOCPDMS [16][0.447 |0.548 |0.623 |0.325 |0.686
PELT [14] 0.787 |0.563 |- - -
PROPHET [25] |0.534 |0.446 |- : -
WBS [10] 0.533 |0.214 |- - -
RFPOP [9] 0.531 |0.197 |- - i

Execution Time. We also compared the runtime of CPD frameworks both on
univariate and multivariate time series. All Experiments were run on an Intel
Core i7-8750H @ 2.20 GHz with 6 cores and 32 GB of RAM. Implementation
was done using Python 3.7 on Windows 11. Fig. 3a shows the execution time for
univariate time series from 10,000 to 100,000 instances, sampled at intervals of
10,000. Our approach has the lowest execution time with approximately linear
behavior, while others show an exponential response. Figure 3b shows the exe-
cution time for multivariate time series with a fixed length of 10,000 but with
the number of features ranging from 2 to 20. Computation time for BOCPD and
its variants depends on change point location: if a change point is not detected
more samples are stored to approximate the distribution of the data stream.
This results in longer execution over time. While our approach always used a
constant amount of data and exhibits linear scalability.

1750{ —*- Ours —— Ours #*
-#- RBOCPDMS 4000{ —=- RBOCPDMS ,,/
«» 15001 -a- BOCP " —~. BOCP S 527
° -+~ BOCPDMS o —«. BOCPDMS ;o
[= ~ o
S 1230) _.- proPHET §3000 A
@ 1000| --- RFPOP - o i
(%] e n 4 < P
= —»— WBS ey & 360 B
*= 7501 —— PELT eVl B 2l
o . » Pl @ ///,f >
£ 500 £ s
F . | F 1000 L5
250 x o= s T P
l=dr__—\'-__ A .7
0 ZeTt ELEl chiing 0 -l =
10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 2 3456 7 8 91011121314151617181920

of samples # of variables

(a) Univariate time series of increasing (b) Multivariate time series of length
length 10K with an increasing number of
features

Fig. 3. Comparison of execution time

5

DRUM June 2023 301

Conclusion

In this work, we present an unsupervised change point detector that works on
streams and scales linearly with the number of variables being tracked. It requires
minimal computations and can be applied toward detecting different events hap-
pening in a system in real time. Such events include system failures, concept
drift, and state transitions. Since it is lightweight, it can be run on IoTs with
low compute power.

Acknowledgments. This work was supported by National Science Foundation (NSF)
EPSCoR. grant number OIA-1757207.

References

1.

2.

=

10.

11.

12.

13.

14.

15.

Adams, R.P., MacKay, D.J.C.: Bayesian Online Changepoint Detection (2007).
http://arxiv.org/abs/0710.3742

Adiga, S., Tandon, R.: Unsupervised change detection using dre-cusum. arXiv
preprint arXiv:2201.11678 (2022)

. Ahamed, R., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detec-

tion for streaming data. Neurocomputing 262, 134-147 (2017). https://doi.org/10.
1016/j.neucom.2017.04.070

. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change

point detection. Knowl. Inf. Syst. 51(2), 339-367 (2016). https://doi.org/10.1007/
s10115-016-0987-z

. Aminikhanghahi, S., Wang, T., Cook, D.J.: Real-time change point detection with

application to smart home time series data. IEEE Trans. Knowl. Data Eng. 31(5),
1010-1023 (2019). https://doi.org/10.1109/TKDE.2018.2850347

Athey, S., Tibshirani, J., Wager, S.: Generalized random forests (2019)

van den Burg, G.J., Williams, C.K.: An evaluation of change point detection algo-
rithms. arXiv, pp. 1-33 (2020)

Camci, F.: Change point detection in time series data using support vectors. Int.
J. Pattern Recognit. Artif. Intell. 24(01), 73-95 (2010)

. Fearnhead, P., Rigaill, G.: Changepoint detection in the presence of outliers. J.

Am. Stat. Assoc. 114(525), 169-183 (2019)

Fryzlewicz, P.: Wild binary segmentation for multiple change-point detection. Ann.
Stat. 42(6), 2243-2281 (2014)

Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672-2680 (2014)

Katser, I., Kozitsin, V., Lobachev, V., Maksimov, I.: Unsupervised offline change-
point detection ensembles. Appl. Sci. 11(9), 1-19 (2021). https://doi.org/10.3390/

app11094280
Katser, 1.D., Kozitsin, V.O.: Skoltech anomaly benchmark (SKAB) (2020).
https://www.kaggle.com/dsv/1693952. https://doi.org/10.34740/ KAGGLE/
DSV/1693952

Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a
linear computational cost. J. Am. Stat. Assoc. 107(500), 15901598 (2012)
Knoblauch, J., Damoulas, T.: Spatio-temporal Bayesian on-line changepoint detec-
tion with model selection. In: International Conference on Machine Learning, pp.
2718-2727. PMLR (2018)

302

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

A. Bashir and T. Estrada

Knoblauch, J., Jewson, J.E., Damoulas, T.: Doubly robust Bayesian inference for
non-stationary streaming data with divergences. In: Advances in Neural Informa-
tion Processing Systems, vol. 31 (2018)

Lavin, A., Subutai, A.: Numenta anomaly benchmark. In: International Conference
on Machine Learning and Applications, vol. 14 (2015)

Li, D., Chen, D., Shi, L., Jin, B., Goh, J., Ng, S.K.: MAD-GAN: multivariate
anomaly detection for time series data with generative adversarial networks. arXiv,
vol. 1, pp. 703-716 (2019)

Liu, Y.W., Chen, H.: A fast and efficient change-point detection framework based
on approximate k-nearest neighbor graphs. arXiv preprint arXiv:2006.13450 (2020)
Miller, D.J., Ghalyan, N.F., Mondal, S., Ray, A.: Hmm conditional-likelihood based
change detection with strict delay tolerance. Mech. Syst. Signal Process. 147,
107109 (2021)

Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100-115 (1954)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile
phones to determine transportation modes. ACM Trans. Sen. Netw. 6(2) (2010).
https://doi.org/10.1145/1689239.1689243

Reeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q.: A review and comparison
of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol.
46(6), 900-915 (2007)

Schéfer, P., Ermshaus, A., Leser, U.: ClaSP - time series segmentation. In: CIKM
(2021)

Taylor, S.J., Letham, B.: Business time series forecasting at scale. PeerJ Preprints
5:¢3190v2 35(8), 48-90 (2017)

Tran, D.H.: Automated change detection and reactive clustering in multivariate
streaming data. In: 2019 IEEE-RIVF International Conference on Computing and
Communication Technologies (RIVF), pp. 1-6. IEEE (2019)

Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:
the state of the art. Int. J. Forecast. 14(1), 35-62 (1998). https://doi.org/10.1016/
S0169-2070(97)00044-7

Check for i

1
Y

l updates ;

Hierarchical Graph Neural Network
with Cross-Attention for Cross-Device
User Matching

Ali Taghibakhshi’»?(®0) Mingyuan Mal, Ashwath Aithal’, Onur Yilmaz!,
Haggai Maron!, and Matthew West?

! NVIDIA, Santa Clara, USA
2 Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, USA
alit2@illinois.edu

Abstract. Cross-device user matching is a critical problem in numer-
ous domains, including advertising, recommender systems, and cyber-
security. It involves identifying and linking different devices belonging
to the same person, utilizing sequence logs. Previous data mining tech-
niques have struggled to address the long-range dependencies and higher-
order connections between the logs. Recently, researchers have modeled
this problem as a graph problem and proposed a two-tier graph contex-
tual embedding (TGCE) neural network architecture, which outperforms
previous methods. In this paper, we propose a novel hierarchical graph
neural network architecture (HGNN), which has a more computation-
ally efficient second level design than TGCE. Furthermore, we introduce
a cross-attention (Cross-Att) mechanism in our model, which improves
performance by 5% compared to the state-of-the-art TGCE method.

Keywords: Graph neural network + User matching Cross-attention

1 Introduction

Ensuring system security and effective data management are critical challenges
in the modern day [3,4]. In this regard, data integration plays a vital role in
facilitating data management, as it enables the integration of data from diverse
sources to generate a unified view of the underlying domain. One of the primary
challenges in data integration is the problem of entity resolution, which involves
identifying and linking multiple data records that correspond to the same real-
world entity. The problem of entity resolution arises in a wide range of domains,
including healthcare, finance, social media, and e-commerce. Entity resolution is
a challenging problem due to various factors, including the presence of noisy and
ambiguous data, the lack of unique identifiers for entities, and the complexity of
the relationships between different entities.

A. Taghibakhshi—This work was done while Ali Taghibakhshi was an intern at
NVIDIA.
@© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wrembel et al. (Eds.): DaWaK 2023, LNCS 14148, pp. 303-315, 2023.
https://doi.org/10.1007/978-3-031-39831-5_28

304 A. Taghibakhshi et al.

Device 1 Device 2

For the same
person?

m——
e O [o SO

Fig. 1. Cross-device user matching problem: only based the URL visit logs of two
different devices, determine whether or not they belong to the same real-world person.

Among entity resolution tasks, cross-device user matching is of significant
importance. This task involves determining whether two separate devices belong
to the same real-world person based on their sequential logs. The device sequen-
tial logs are time-stamped actions taken by the user over a relatively long period
of time, say a few months. These actions are often in the form of browsing a
Uniform Resource Locator (URL), and almost always, user identifications are
not available due to privacy reasons. Refer to Fig.1 for an illustration of the
cross-device user matching task.

It is a common occurrence for users to engage in online activities across
multiple devices. However, businesses and brands often struggle with having
insufficient user identities to work with since users are perceived as different
individuals across different devices due to their unique activities. The ability
to automatically identify the same user across multiple devices is essential for
gaining insights into human behavior patterns, which can aid in applications
such as user profiling, online advertising, improving system security. In recent
years, the has been a flourishing amount of studies focusing on cross-device user
matching [9].

With the advent of machine learning-based methods for entity resolution,
several studies have focused on learning distributed embeddings for the devices
based on their URL logs [6,11,12]. The earlier studies focused on utilizing unsu-
pervised feature learning techniques (7], developing handcrafted features for the
device logs, or relied on co-occurrence of key attributes of URL logs in pairwise
classification [12].

Methods that utilize deep learning have a greater ability to convey dense con-
nections among the sequential device logs. For instance, researchers have utilized
a 2D convolutional neural network (CNN) framework to encode sequential log
representations to understand the relationship between two devices [16]. How-
ever, this model primarily captures local interactions within user sequence logs,
limiting its ability to learn the entire sequence or a higher-level pattern. Recently,
there has been further emphasis on the effectiveness of sequential models like
recurrent neural networks (RNNs) and attention-based techniques in modeling
sequence patterns and achieving promising results in numerous sequence mod-
eling tasks [5,13,15]. Although these methods work well for sequence modeling,
they are not specifically designed for user-matching tasks and may not be opti-
mal for learning sequential log embeddings.

Hierarchical GNN with Cross-Attention 305

Recently, researchers proposed a two-tier graph contextual embedding
(TGCE) network for the cross-device user matching [6] task. While previous
methods for the task often failed at long-range information passing along the
sequence logs, TGCE leverages a two-level structure that can facilitate infor-
mation passing beyond the immediate neighborhood of a device log. This was
specifically achieved by considering a random walk starting from every node in
a device log, connecting all of the visited nodes to the original node, and per-
forming a round of message passing using the newly generated shortcut edges.

Although the two-tier structure seems to enable long-range information shar-
ing, we note two major limitations with the existing method. First, in the device
graph, the random walk on the URL nodes may randomly connect two URLs
that have been visited at two far-away time-stamps. Intuitively, two different
URLSs browsed by a device with weeks of gap in between share less information
than two URLs visited in a shorter time frame. Second, at the end of the TGCE
architecture, for the pairwise classification task, the generated graph embeddings
for two devices are entry-wise multiplied and sent through a fully connected net-
work to determine if they belong to the same person. However, there could be
significant key features in the learned embeddings that may be shared between
the devices, which can alternatively get lost if the architecture does not compare
them across one another.

To address the above two issues, we propose a new hierarchical graph neural
network (HGNN) inspired by the star graph architecture [10]. In the terminology
of HGNN, we refer to the URL nodes as fine nodes, and in an unraveled sequence
of URL logs, HGNN assigns a coarse node to every K consecutive fine nodes.
The message passing between the coarse and fine nodes enables effective long-
range message passing without the need to excessively add edges, as in the
random walk method. Moreover, for the pairwise classification task, we utilize
a cross-attention mechanism inspired by Li et al. [8], which enables entry-wise
cross-encoding of the learned embeddings. The main contributions of this paper
are summarized as follows:

— We model a given device log as a hierarchical heterogeneous graph, which is
6x faster than the previous state-of-the-art while keeping a competitive level
of accuracy and performance.

— We employ a cross-attention mechanism for pairwise matching of the graphs
associated with a device log, which improves the accuracy of the overall
method by about 5%.

2 Related Work

The cross-device user matching task was first introduced in the CIKM Cup 2016*
on the Data Centric Alliance (DCA) dataset, and the first proposed methods
for the task mainly considered hand-crafted features. For instance, the runner-
up solution [9] produces sub-categories based on the most significant URLs to

! http://cikm2016.cs.iupui.edu/cikm-cup/.

306 A. Taghibakhshi et al.

generate detailed features. Furthermore, the competition winner solution pro-
posed by Tay et al. [14] utilizes “term frequency inverse document frequency”
(TD-IDF) features of URLs and other related URL visit time features. How-
ever, their manually designed features did not fully investigate more intricate
semantic details, such as the order of behavior sequences, which restricted their
effectiveness. Aside from the hand-crafted features, the features that are devel-
oped from the structural information of the device URL visit data are also crucial
for accomplishing the task of user matching. To further process sequential log
information, studies have applied LSTM, 2D-CNN, and Doc2vec to generate
semantic features for a sequence visited by a device [11,12,16].

Sequence-based machine learning models have also been employed for dif-
ferent entity resolution tasks; for instance, recurrent neural networks (RNN)
have been utilized to encode behavior item sequential information [5]. Never-
theless, long-range dependencies and more advanced sequence features are not
well obtained using sequence models [6]. With the advent of graph neural net-
works (GNN), studies have leveraged their power for many entity resolution
tasks. By utilizing neighborhood-based aggregation, GNNs effectively capture
and propagate structural information, which enables them to perform excellently
in numerous tasks such as node and graph classification. In order to employ
GNNs, researchers have modeled device logs as individual graphs where nodes
and edges represent visited URLs and transitions between URLs. Each node
and/or edge has an initial feature vector obtained from the underlying problem,
and the layers of GNNs are then employed to update these features based on
information passing in the local neighborhood of every node, such as the SR-
GNN paper [17]. Another example is the LESSR [1] method for recommendation
systems where the method is capable of long-range information capturing using
an edge-order preserving architecture. However, these methods are specifically
designed for the recommendation task and do not necessarily achieve desirable
results on the cross-device user matching task.

Recently, researchers have proposed TGCE [6], a two-tier GNN for the cross-
device user matching task. In the first tier, for every device log, each URL is
considered as a node, and directional edges denote transitions between URLs.
In the second tier, shortcut edges are formed by starting a random walk from
every node and connecting all of the visited nodes to it. After a round of mes-
sage passing in the first tier, the second tier is supposed to facilitate long-range
information sharing in the device log. After the second tier, a position-aware
graph attention layer is applied, followed by an attention pooling, which outputs
the learned embedding for the whole graph. For the final pairwise classification,
these learned embeddings for each of the devices are multiplied in an entry-wise
manner and are sent to a fully connected deep neural network to determine
whether they belong to the same user.

3 Hierarchical Graph Neural Network

In this section, we discuss how we employ a two-level heterogeneous graph neural
network for the cross-device user matching problem.

Hierarchical GNN with Cross-Attention 307

3.1 Problem Definition

The aim of the cross-device user matching problem is to determine whether
two devices belong to the same user, given only the URL visits of each device.
Denote a sequence of visited URLs by a device v by Sy = (s1, 82, -, $n), where s;
denotes the 7’th URL visit by the device (note that s; and s; are not necessarily
different, for 4 # j). We build a hierarchical heterogeneous graph, Gy, based on
the sequence S, as follows: for a visited URL, s;, consider a fine node in &, and
denote it by f;. Note that if multiple URL visits (s;) correspond to the same URL,
we only consider one node for it in G,. Then, we connect nodes corresponding
to consecutively visited URLs by directed edges in the graph (preferred over
undirected edges to emphasize on the temporal order of URL visits); we connect
f; and fi41 by a directional edge (if f; and f;11 correspond to the same URL,
the edge becomes a self-loop). Up to this point, we have defined the fine-level
graph, and we are ready to construct the second level, which we call the coarse
level.

To construct the second level, we partition the sequence S, into non-
overlapping subgroups of K URLs (where K is a hyperparameter), where each
subgroup consists of consecutively visited URLs (the last subgroup may have
less than K URLs). For every subgroup j, we consider a coarse node, c;j, and
connect it to all of the fine nodes corresponding to the URLs in subgroup j via
undirected edges.

3.2 Fine Level

In the fine level of the graph G,, for every node f;, we order the nodes corre-
sponding to the URLs that have an incoming edge to f; according to their posi-
tion in S,. We denote this ordered sequence of nodes by N; = (fj,, fips s fie)-
Also, we denote the feature vector of the fine node f; by z;. The I-th round of
message passing in the fine-level graph updates the node features according to
the following update methods:

]\/Iz‘(l) = @(l)([le s Tjgy e T Til) (1)
2TV = 0O, M), (2)
where &) is a sequence aggregation function (such as sum, max, GRU, LSTM),
for which we use GRU [2] (to leverage temporal order of URLs in encoding),

and ¥ is a function for updating the feature vector (e.g., a neural network),
for which we use a simple mean.

3.3 Coarse Level

In every round of heterogeneous message passing between fine and coarse level
nodes, we update both the fine and coarse node features. Consider the coarse
node c;, and denote its feature by ;. Also, denote the fine neighbor nodes of ¢;

308 A. Taghibakhshi et al.

asouanbag YN Indy|
1
(jona7 autd)
1ndjnQ Japoau3 ydeis

.y L
o 0
g g
o (¢}
S 51
Q

8 8
= =
(1)) (1)
(7] w
17 (7]
() 0
((e] «Q
o o
v U
o (W)
(7] (7]
7 7}
=] =3
«Q {(e]

Fig. 2. From left to right: heterogeneous (fine and coarse) graph modeling from a given
URL sequence. The hierarchical message passing blocks consist of message passing
on the fine nodes with a GRU aggregation function. Next, the coarse node features
are updated using a mean aggregation function. Finally, the fine node features are
updated using their previous feature vector as well as an aggregated message from
their associated coarse nodes obtained via an attention mechanism between coarse and
fine level nodes.

by N (¢j). In the I-th layer of heterogeneous message passing, the coarse node
feature update is as follows:

~(1+1) i)
z; = O (W;"7z;), 3
J iEN(Cj)(! z) ()

where T/Vl(l) is a learnable matrix and [J is an aggregation function (such as mean,
max, sum), for which we use mean (which was the most effective in our case).
Denote by N(f;) the set of coarse nodes connected to the fine node f;. We first
learn attention weights for the heterogeneous edges, and then we update fine
nodes accordingly. In the I-th round of heterogeneous message passing, the fine
node features are updated as follows:

l l ! 1)~
e = p(WPad, WPz, (4)
0)
explée; -
agzj) _ P(z,a) o (5)
D jen(s:) &P(€;5)
l l 1) ~(1
2 =2, S oz, (6)
JEN(fi)

where WQ(Z) and Wél) are learnable matrices, and & and ¢ are update functions
(such as a fully connected network). Figure2 shows the overall architecture of
fine and coarse level message passing.

Hierarchical GNN with Cross-Attention 309

3.4 Cross Attention

After the message passing rounds in the fine level and long-range information
sharing between fine and coarse nodes, we extract the learned fine node embed-
dings and proceed to cross encoding and feature filtering, inspired by the Gra-
phER architecture [8]. We consider two different device logs v and w, and their
learned fine node embeddings as a sequence, ignoring the underlying graph struc-
ture. We denote the learned fine node embeddings for device logs v and w as
X, € R™*4 and X, € R™w %2 where m, and m,, are the number of nodes
in the fine level of G, and G, respectively. We learn two matrices for cross-
encoding X, into X, and vice-versa. Consider the i-th and j-th rows of X,
and X, respectively, and denote them by z,; and ;. The entries &; ; of
the matrix A, ,, for cross-encoding X, into X,, are obtained using an attention
mechanism (and similarly for A ,):

éi,j = C(T/Vf&m’u,ia VVg.’L’w,j)’ (7)
) exp(&i,5)

Qi i = SR T 8
S exp(éi) v

where ¢ is an update function (such as a neural network), for which we use
a simple mean. After obtaining the cross-encoding weights, we apply feature
filtering, a self-attention mechanism that filters important features. The filtering
vector is obtained as B, = sigmoid(Wytanh(WsXI)), where Wy and W5 are
learnable weights (3,, is obtained similarly). We apply the feature-filtering vector
to the cross-encoding matrix as follows:

Lyw = [diag(ﬁv)(Av,wa - Xv)] © [diag(ﬂv)(Av,wa - Xu)l, (9)

where ® denotes the Hadamard product (L., is also obtained similarly). The
Lyw € R™v¥d gnd Ly € R™wXd matrices come from the Fuclidean distance
between the cross-encoding of X, into X, and X,, into X,,, and therefore are a
measure of the closeness of the original sequence logs of v and w.

To obtain a size-independent comparison metric, we apply a multi-layer per-
ceptron (MLP) along the feature dimension of I matrices (the second dimension,
d), followed by a max-pooling operation along the first dimension. Finally, we
apply a dropout and a ReLU nonlinearity. This yields vectors 7y, and ry,, that
have a fixed size for any pair of v and w. For the final pairwise classification
task, we concatenate 7y, and 7y, and pass it through an MLP followed by a
sigmoid activation to determine if the two devices belong to the same user or
not:

9 = sigmoid(MLP (74 ||7w,v))- (10)

The overall cross attention architecture employed in this paper is illustrated in
Fig. 3.

310 A. Taghibakhshi et al.

Feature Filtering

Cross- Difference
Encoding 4, Measuring Ly,

UojeAndy
pue jnodoiq

sainjea Buoly 41N
SapoN
Buo|y joodxepy

Concat Output

Difference
Measuring Ly,

uojeAndy
pue jnodoiqg

Encoding 4y,

sainjea buoly 41N
SapoN
Buojy |[codxep

Feature Filtering

Fig. 3. Pairwise device graph matching: After the message passing, the two device
graphs are cross-encoded via an attention mechanism followed by an attention-based
feature filtering. The resulting matrix for each graph is then passed through an MLP
layer, acting along the feature, followed by a maxpool operator along the nodes. Next,
the obtained vectors pass through a dropout layer followed by an activation function.
Finally, the resulting vectors of the two graphs are concatenated and passed through
an MLP to obtain the final output.

4 Experiment

In this section, we will describe the dataset, training details, and discuss how
our method outperforms all other baselines, including TGCE [6], the previous
state-of-the-art.

4.1 Training Details

We studied the cross-device user matching dataset made publicly available by
the Data Centric Alliance? for the CIKM Cup 2016 competition. The dataset
consists of 14,148,535 anonymized URL logs of different devices with an average
of 197 logs per device. The dataset is split into 50,146 and 48,122 training and
test device logs, respectively. To obtain the initial embeddings of each URL, we
applied the same data preprocessing methods as in [6,11]. We used a coarse-to-
fine node ratio of K = 6, a batch size of 800 pairs of device logs, a learning rate
of 1073, and trained the model for 20 epochs (the hyperparameters are fixed for
optimal perfomance of the model using grid search). We used the binary cross-
entropy (BCE) loss function for training our model. The training, evaluation, and
test were all executed on an A100 NVIDIA GPU. The BCE loss during training
as well as the validation F'1 score are shown in Figs. 4 and 5, respectively.

2 https://competitions.codalab.org/competitions/11171.

Hierarchical GNN with Cross-Attention 311

1501 — TGCE
—— HGNN-+Cross-Att (ours)
1251
7]
S 100
o]
m 751
50
251 i i . '
0 5 10 15
Iteration

Fig. 4. Binary cross-entropy loss of our proposed method against that of TGCE. During
training, our method obtains strictly better loss values.

0.850
0.825 1
© 0.800 -
[e]
@
© 0775
[T
0.750 1
—— HGNN+Cross-Att(ours)
0.725 1 TGCE
0 5 10 15
Iteration

Fig. 5. Validation F1 score during training. Throughout the training, our method
achieves strictly better F1 scores for the validation set compared to that of TGCE.

4.2 Results

In this section, we evaluate the precision, recall, and F1 score of our method on
the test set and compare it to available baselines. All of the baselines have been
obtained similarly as described in [6]. We present two variants of our method;
the first one, which we label “HGNN”, only differs from TGCE in the design of
the second tier, i.e., we use the hierarchical structure presented in Subsects. 3.2
and 3.3, followed by the rest of the TGCE architecture. The second variant, which
we label “HGNN+Cross-Att”, uses the hierarchical structure in Subsects. 3.2
and 3.3, and also utilizes the cross-attention mechanism presented in Subsect. 3.4
after the hierarchical structure. As shown in Table 1, the “HGNN+Cross-Att”
variant outperforms all of the baselines on the F1 score metric, including the
second-best method (TGCE) by 5% on the test data.

312 A. Taghibakhshi et al.

Table 1. Precision, Recall, and F1 score of different methods for cross-device user
matching on DCA dataset.

Precision at Recall at Best | Best

Best F1 Score |F1 Score F1 Score
TF-IDF 0.33 0.27 0.26
Doc2vec 0.29 0.21 0.24
SCEmNet 0.38 0.44 0.41
GRU 0.37 0.49 0.42
Transformer 0.39 0.47 0.43
SR-GNN 0.35 0.34 0.34
LESSER 0.41 0.48 0.44
TGCE 0.49 0.44 0.46
HGNN (ours) 0.48 0.43 0.45
HGNN+Cross-Att (ours) | 0.57 0.48 0.51

We also compare the training time of the two variants of our method with
that of TGCE. As shown in Table2, our hierarchical structure is significantly
more efficient than that of TGCE while keeping a competitive F1 score. Table 2
essentially indicates that by simply replacing the second-tier design of TGCE
with our hierarchical structure (presented in Subsects. 3.2 and 3.3), the method
becomes 6x faster while almost keeping the same performance. This is due to
the large number of artificial edges generated in the random walk passes in
the creation of the second tier of TGCE. Moreover, although including cross-
attention slows down the model, we can still obtain the same training time as
TGCE and achieve 5% better overall F1 score.

Table 2. Best F1 score and end-to-end training time of HGNN (without Cross-Att),
HGNN+Cross-Att, and TGCE. The HGNN model is 6x faster than TGCE with a
slight trade-off (about 1%) on the accuracy side. The HGNN+Cross-Att model has the
same training time as TGCE while achieving 5% better F'1 score.

Best End-to-end Number of
F1 Score | Training Time | Epochs
TGCE 0.46 60h 20
HGNN (ours) 0.45 10h 20
HGNN+Cross-Att (ours) [0.51 60 h 6

Hierarchical GNN with Cross-Attention 313

Lo
(=)

—— HGNN+Cross-Att (ours)
— TGCE

Precision
© o
(o)} [e)

°
K

o
N
i

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 6. Precision-Recall curve of the proposed method and that of TGCE on the test
data.

Figure 6 shows the precision-recall curve of our method (the HGNN+Cross-
Att variant, trained for 6 epochs) with that of TGCE (trained for 20 epochs).
As shown in the figure, the precision-recall curve of our method is strictly better
than that of TGCE. In other words, for every recall score, our method has a
better precision. Additionally, we further trained the HGNN+Cross-Att variant
for 20 epochs (the same number of epochs TGCE was trained for) to study if any
further improvement is achieved on the test set. We also plot the F'1 score with
different thresholds (from 0 to 1 incremented by 0.01) for our model trained for
6 and 20 epochs and compare it to that of TGCE. As shown in Fig. 7, our model
trained for 20 epochs strictly outperforms TGCE (also trained for 20 epochs) for
every threshold for obtaining the F1 score. We note that for the full 20 epoch
training, our model would require about three times more training time, and
achieves F1 score of just about two percent higher than TGCE. Nevertheless,
after training our model for six epochs, it achieves the highest overall F'1 score,
surpassing TGCE by a remarkable 5%. This achievement is particularly note-
worthy considering that, as indicated in Table2, our model requires the same
amount of time to train as TGCE. Hence, we conclude that our model only needs
6 training epochs to achieve the best perfomance and training it for 20 epochs
results in overfitting as discussed.

314 A. Taghibakhshi et al.

0.5 1
0.4
g
]
n 0.3
—
.
0.2 —— HGNN+Cross-Att (ours), Epoch 20
—— HGNN+Cross-Att (ours), Epoch 6
— TGCE
0.11 :

0.0 0.2 0.4 0.6 0.8 1.0
Rounding Threshold

Fig. 7. F1 score against rounding threshold for our method (both for networks trained
for 6 and 20 epochs) compared to that of TGCE (trained for 20 epochs).

5 Conclusions

In this paper, we present a novel graph neural network (GNN) architecture for a
demanding entity resolution task: cross-device user matching, which determines
if two devices belong to the same user based only on their anonymized internet
logs. Our method comprises of designing an effective hierarchical structure for
achieving long-range message passing in the graph obtained from device URL
logs. After passing device logs through such a hierarchical GNN, we employ a
cross-attention mechanism to effectively compare device logs against each other
to determine if they belong to the same user. We demonstrate that our method
outperforms available baselines by at least 5%, while having the same training
time as the previous state-of-the-art method, establishing the effectiveness of our
proposed method.

Acknowledgements. This research was supported by NVIDIA Corporation.

References

1. Chen, T., Wong, R.C.W.: Handling information loss of graph neural networks
for session-based recommendation. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1172-1180
(2020)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

3. Gharaibeh, A., et al.: Smart cities: a survey on data management, security, and
enabling technologies. IEEE Commun. Surv. Tutor. 19(4), 2456-2501 (2017)

4. Gholizadeh, N.: Iec 61850 standard and its capabilities in protection systems (2016)

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

Hierarchical GNN with Cross-Attention 315

Huang, H., et al.: Two-tier graph contextual embedding for cross-device user
matching. In: Proceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management, pp. 730-739 (2021)

Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188-1196. PMLR (2014)

Li, B., Wang, W., Sun, Y., Zhang, L., Ali, M.A., Wang, Y.: Grapher: token-centric
entity resolution with graph convolutional neural networks. In: Proceedings of the
AAAT Conference on Artificial Intelligence, vol. 34, pp. 8172-8179 (2020)

Lian, J., Xie, X.: Cross-device user matching based on massive browse logs: the
runner-up solution for the 2016 cikm cup. arXiv preprint arXiv:1610.03928 (2016)
Pan, Z., Cai, F., Chen, W., Chen, H., De Rijke, M.: Star graph neural networks
for session-based recommendation. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 1195-1204 (2020)
Phan, M.C., Sun, A., Tay, Y.: Cross-device user linking: url, session, visiting time,
and device-log embedding. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 933-936
(2017)

Phan, M.C., Tay, Y., Pham, T.A.N.: Cross device matching for online advertising
with neural feature ensembles: first place solution at cikm cup 2016. arXiv preprint
arXiv:1610.07119 (2016)

Qiu, R., Yin, H., Huang, Z., Chen, T.: Gag: global attributed graph neural net-
work for streaming session-based recommendation. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 669-678 (2020)

Ramos, J., et al.: Using tf-idf to determine word relevance in document queries. In:
Proceedings of the First Instructional Conference on Machine Learning, vol. 242,
pp. 29-48. Citeseer (2003)

Sun, F., et al.: Bertdrec: sequential recommendation with bidirectional encoder
representations from transformer. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 1441-1450 (2019)
Tanielian, U., Tousch, A.M., Vasile, F.: Siamese cookie embedding networks for
cross-device user matching. In: Companion Proceedings of the the Web Conference
2018, pp. 85-86 (2018)

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 346-353 (2019)

