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Abstract

This study explores the impact of content creators’

competition on user welfare in recommendation

platforms, as well as the long-term dynamics of

relevance-driven recommendations. We establish

a model of creator competition, under the setting

where the platform uses a top-K recommendation

policy, user decisions are guided by the Random

Utility model, and creators, in absence of explicit

utility functions, employ arbitrary no-regret learn-

ing algorithms for strategy updates. We study the

user welfare guarantee through the lens of Price of

Anarchy and show that the fraction of user welfare

loss due to creator competition is always upper

bounded by a small constant depending on K and

randomness in user decisions; we also prove the

tightness of this bound. Our result discloses an

intrinsic merit of the relevance-driven recommen-

dation policy, as long as users’ decisions involve

randomness and the platform provides reasonably

many alternatives to its users.

1. Introduction

ª(Producers) are led by an invisible hand to make

nearly the same distribution of the necessaries of

life... thus without intending it, without knowing

it, advance the interest of the society.º

Ð Adam Smith, The Theory Of Moral Sentiments,

1759.

Online recommendation platforms such as Instagram and

YouTube have become prevalent in our daily life (Bobadilla

et al., 2013). At the core of those platforms is a recom-

mender system (RS) designed to match each user with the

most relevant content based on predicted relevance. Such
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a practice, often referred to as the top-K recommendation,

is believed to improve user satisfaction and has served as a

rule-of-thumb principle in both academia and industry for

decades (Konstan et al., 1997; Koren et al., 2009; He et al.,

2017).

Until recently, the community came to realize that users’ util-

ities cannot be maximized unilaterally due to the potential

strategic behaviors of content creators (Qian & Jain, 2022).

Because the content creators’ utilities are directly tied to

their content’s exposure, they are motivated to adaptively

maximize their own utilities. This leads to competition that

may potentially harm the social welfare (defined as the total

user satisfaction/engagement) (Fleder & Hosanagar, 2009).

For example, consider a scenario where the user population

contains a large group of sports fans and a small group of

travel enthusiasts. Social welfare is maximized when the

available content for recommendation covers both topics.

However, one possible equilibrium of the competition is

that all creators post homogeneous sports content when the

gain from creating niche content cannot compensate for the

utility loss caused by abandoning the exposure from the

majority of users. It is thus urgent to understand in the long

run how bad the social welfare loss could be under strategic

content creators driven by a top-K RS.

In this work, we propose the competing content creation

game to model the impact of the creators’ competition on

user engagement in a top-K RS. We measure the social wel-

fare guarantee through the lens of Price of Anarchy (PoA)

(Koutsoupias & Papadimitriou, 1999), which quantifies the

inefficiency of selfish behavior by the ratio between the

worst-case welfare value of the game’s equilibrium and that

of an optimal outcome. Some previous works touched upon

this question under different competition models, and their

answers are all pessimistic. For example, Ben-Porat & Ten-

nenholtz (2018) noticed that the PoA of social welfare under

the RS implemented by a Shapley mediator is unbounded.

Ben-Porat et al. (2019) studied a competition model in 1-

dimensional space and showed that the PoA under the top-1
matching principle could be as bad as a constant 2. These

negative results are either based on a deterministic user

choice model or assume creators compete for the shares

of content exposure. We overturn these pessimistic conclu-

sions by showing that the PoA induced by a top-K RS is at

most 1 +O( 1
logK ) when (1) K > 1, (2) user choices have

mild stochastic noises, and (3) creators are incentivized to

1



How Bad is Top-K Recommendation under Competing Content Creators?

compete for user engagement instead of content exposure.

We also prove its tightness by analyzing a lower-bound in-

stance. Thus an RS under these assumptions will approach

the optimal efficiency (i.e., PoA ratio approaches 1) when K
grows, though at a relatively slow rate of 1/ logK. Notably,

our PoA upper bound also holds in dynamic settings where

creators gradually learn to improve their strategies in an on-

line fashion. Extensive synthetic and real-world data based

simulations also support these theoretical findings. Overall,

our results robustly demonstrate that content creation com-

petitions are efficient under properly set incentives. This

echoes the famous insight of Adam Smith, as cited at the

beginning of the section, about the market’s ªinvisible handº

on driving socially efficient production of goods.

Our results rely on three key assumptions, all of which find

their roots in recommendation literature and practice. First,

on the platform side, we assume the top-K RS is based on

a relevance function that best predicts user satisfaction if

recommended content is consumed. To simplify our set-

ting, we assume the true relevance function is known to

the RS, since a tremendous amount of research has been

spent on this aspect (Bobadilla et al., 2013; Konstan et al.,

1997; Koren et al., 2009; He et al., 2017) and the goal of our

study is not to improve its estimation. Second, on the user

side, we employ the well-established Random Utility (RU)

model (Manski, 1977) to specify the distributional struc-

ture of a user’s choices and resulting utility when presented

with a list of recommendations. The RU model has been

widely adopted and found its success in marketing research

to model consumer choices (Baltas & Doyle, 2001). Third,

on the creator side, we assume that their utilities collected

from matching their content with a user are proportional to

the user’s utility, as it is a common practice by platforms

to set revenue sharing with content creators proportional

to the user’s satisfaction or engagement (Meta, 2022; Savy,

2019; Youtube, 2023; TikTok, 2022). When we move on

to the dynamic setting where the creators do not have or-

acle access to their utility functions, we allow creators to

adopt arbitrary no-regret learning algorithms, which cover a

variety of rational learning behaviors.

2. Related Work

The theoretical studies of content creators’ strategic behav-

ior under the mediation of an RS date back to the sem-

inal works from Ben-Porat & Tennenholtz (2018; 2017),

where they extended the game setting in search and ranking

systems (Ben Basat et al., 2015; Raifer et al., 2017) and

proposed an RS based on Shapley value that leads to the

unique PNE and several fairness-related requirements. How-

ever, they showed that the social welfare under the proposed

Shapley mediator could be arbitrarily bad.

Another line of work studies the RS with strategic content

creators under the Hotelling’s spatial competition frame-

work (Hotelling, 1929). First introduced by Hotelling

(1929), Hotelling’s model studied two restaurants trying

to determine their locations to attract customers who are

evenly distributed on the segment [0, 1]. The Nash equi-

librium (NE) of the resulting game is that both restaurants

locate at the center, known as the ªprinciple of minimum

differentiationº. Recently, Shen & Wang (2016) proposed

a variant of Hotelling’s competition in which each player

has its attraction region, and they showed that the PoA is

2 in the worse case. We show that their game settings are

special cases of our proposed competing content creation

game in Appendix H, and thus our main result directly im-

plies their PoA bound. A more closely related work is from

Ben-Porat et al. (2019), where they introduce the RS into

the competition as a mediator who directs users to facilities.

They studied mediators with different levels of interven-

tion and proposed a limited intervention mediator with a

good trade-off between social welfare and intervention cost.

Interestingly, their game setting under a no-intervention me-

diator also turns out to be a special case of ours. We also

note that the problem settings and theoretical discussions

in both (Shen & Wang, 2016) and (Ben-Porat et al., 2019)

are limited to pure strategy in 1-dimensional cases with a

distance-induced user utility function, while our model and

result apply to arbitrary dimensions and a generic form of

user utility functions.

Two recent works (Hron et al., 2022; Jagadeesan et al.,

2022) studied the supply-side competition where the cre-

ators’ strategy space is high dimensional. Their models

assume creators directly compete for user exposure without

considering the role of an RS. They focused on the charac-

terization of NE and the identification of conditions under

which specialization among creators’ strategies may occur.

In contrast, we study the social welfare under the impact of

a top-K RS without being limited to the existence of NE,

and our result applies to general user utility functions.

3. A Model of Content Creator Competition

In this section, we formalize the competing content

creation game. The game G is defined by a tuple

({Si}ni=1,X , σ, β,K) with the following ingredients:

1. A finite set of users X = {xj ∈ R
d}mj=1, and a set

of players (i.e., content creators1) denoted by [n] =
{1, · · · , n}. Each player i can take an action si, often

referred to as a pure strategy in game-theoretic literature,

from an action set2 Si ⊂ R
d. si can be understood as

the embedding for the type of content that creator i can

1We use these two terms interchangeably when there is no
ambiguity.

2The action sets are not assumed to be finite and thus can be
continuous.
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produce. Let S =
∏n

i=1 Si denote the space of joint

strategies. As a convention, for any s = (s1, · · · , sn) ∈
S, we use s−i to denote the joint strategy s excluding

si. Moreover, we use αi ∈ ∆(Si) to denote a mixed

strategy of player i, which is a probability measure with

support Si. Similarly, α ∈ ∆(S) is used to represent a

(possibly correlated) joint strategy profile distribution

over all players.

2. A relevance function σ(s,x) : Rd × R
d → R≥0 which

measures the relevance between a user x ∈ X and

content s. Without loss of generality, we normalize σ
to [0, 1], where 1 suggests perfect matching. We focus

on modeling the strategic behavior of creators and thus

abstract away the estimation of σ.

3. Recommendation policy: given a joint strategy s =
(s1, · · · , sn) ∈ S for all players, for each user xj , the

RS first calculates the relevance scores {σ(si,xj)}ni=1

over all available content and then generates Tj(s;K),
the subset of s containing the top-K recommendations

for user j. Formally,

Tj(s;K) = {sli |i = 1, · · · ,K}, (1)

where (li)
n
i=1 is a permutation of [n] such that

σ(sl1 ,xj) ≥ σ(sl2 ,xj) ≥ · · · ≥ σ(sln ,xj).
3

4. User utility and choice model: we employ the widely

adopted random utility (RU) model to capture users’

utility and choices of recommendations. Formally, the

RU model assumes that the utility for user xj to con-

sume content si is σ(si,xj) + εi, where εi is a noise

term containing any additional uncertainty that cannot

be captured by the RS’s prediction σ(si,xj) (e.g., user’s

mood at that moment). The RU model assumes that {εi}
are i.i.d. random, which are often assumed to follow

the Gumbel distribution with cumulative distribution

function Gumbel(µ, β) = e−e
−

x−µ
β

.4 We further as-

sume εi is zero mean, thus implying µ = −βγ where

γ ≈ 0.577 is the Euler±Mascheroni constant. The vari-

ance of Gumbel(−βγ, β) is πβ√
6

and the parameter β

measures the noise level.

Upon receiving the recommended list Tj(s;K), user j

3When (li)
n
i=1 is not unique, Tj(s;K) can be the top-K trun-

cation of any such permutation with equal probability.
4There are many natural reasons to use the Gumbel noise model.

This noise model is nearly indistinguishable from a Gaussian distri-
bution empirically, but has slightly thicker tails, allowing for more
aberrant user behavior. The RU model with Gumbel noise is also
known as the multinomial logit model (McFadden, 1974). It deeply
connects to the discrete choice model (McFadden, 1984), quantal
response equilibrium to capture bounded rational behaviors (McK-
elvey & Palfrey, 1995), and entropy regularizer for optimizing
randomized strategies (Ling et al., 2018).

chooses i∗j ∈ Tj(s;K) that maximizes her utility:

i∗j = arg max
si∈Tj(s;K)

{σ(si,xj) + εi}. (2)

Note that i∗j is random, with randomness inherited from

{εi}. Consequently, user j derives the following ex-

pected utility πj from consuming the selected content

πj(s) ≜ E{εi}

[

max
si∈Tj(s;K)

{σ(si,xj) + εi}
]

. (3)

5. Player utilities: following the convention, we assume

that each player i’s expected utility is the sum of the

utilities from users that i served, i.e.,

ui(s) =

m
∑

j=1

E[σ(si,xj) + εi|xj � si] ·Pr[xj � si],

(4)

where ªxj � siº denotes the event i∗j defined in (2)

equals i. Elegantly, Pr[xj � si] ∝ eβσ(xj ,si) for any

i ∈ Tj(s;K) (McFadden, 1974) and Pr[xj � si] = 0
if i /∈ Tj(s;K).

6. Social welfare: the social welfare function is defined as

the total utilities from all the users:

W (s) =
m
∑

j=1

πj(s). (5)

Note that under the player utility function (4), we have

W (s) =
∑n

i=1 ui(s). That is, the social welfare is also

the total utility of players.

We remark that the player i’s utility defined in (4) de-

pends on not only the proportion of users matched with

i, but also the user’s engagement reflected in the term

E[σ(si,xj) + εi|xj � si]. This differs crucially from

the settings in Hotelling’s competition (Hotelling, 1929)

and its recent applications to recommender systems (Shen

& Wang, 2016; Ben-Porat et al., 2019; Hron et al., 2022;

Jagadeesan et al., 2022), where players’ utilities are set to

the total user exposure, i.e., total number or proportion of

user visits (regardless of how satisfied the users are with

the recommendations). Both metrics have been widely used

in current industry practice to reward creators (Meta, 2022;

Savy, 2019). In this paper, we primarily consider user en-

gagement (i.e., the previously less studied case) as the cre-

ator’s utility, and in Section 4.2 we will compare it with the

user exposure metric to highlight their different impact.

Our research question and equilibrium concept. We are

particularly interested in quantifying the average social wel-

fare when creators learn to update their strategies adaptively.

Specifically, we consider the repeated form of a competing

3
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content creation game played by n creators over a period

of time T . At each time t, each creator chooses an action,

observes the utility induced by all creators’ strategies at

that round, and uses the feedback to adjust their subsequent

actions. Naturally, creators aim to optimize their accumu-

lated utility over the course of interactions. However, in

real-world online recommendation platforms, creators can

only evaluate the utility of their chosen actions and have

to gradually learn their optimal strategies through trial and

error with such limited information (i.e., bandit feedback).

A natural notion for capturing the ªreasonableº learning

behavior under such an environment is no regret. The (ex-

ternal) regret Ri(T ) for player i is defined as the difference

between her optimal utility in hindsight and the realized

accumulated utilities, i.e.,

Ri(T ) = max
s
′
i

T
∑

t=1

E
s−i∼α

t
−i

[ui(s
′
i, s−i)]−

T
∑

t=1

E
s∼α

t [ui(s)]

(6)

where αt =
∏n

i=1 α
t
i denotes the joint-strategy distribution

at time t. Player i’s learning has no regret if Ri(T ) = o(T ),
or equivalently, the average regret Ri(T )/T → 0 as T goes

to infinity. Note that such no-regret algorithms exist since

any no-regret adversarial online learning algorithm (e.g.,

Exp3 in bandit literature (Auer et al., 2002)) guarantees no

regret in such a multi-agent learning setup.

To characterize the outcome under no-regret learning play-

ers, we focus on an equilibrium concept termed coarse cor-

related equilibrium (CCE), as it is well known that the em-

pirical action distribution of any no-regret playing sequence

in a repeated game converges to its set of CCEs (Blum et al.,

2008). The formal definition of CCE is as follows:

Definition 1. A coarse correlated equilibrium (CCE) is a

distribution α over the space of joint-strategy profile S such

that for every player i and every action s
′
i ∈ Si,

Es∼α[ui(s)] ≥ Es∼α[ui(s
′
i, s−i)]. (7)

Thanks to the nice connection between no-regret dynamics

and CCE, we first establish the welfare guarantee for CCE in

Section 4.1 and then extend it to account for the accumulated

welfare induced by repeated plays in Section 4.2.

We also note that the concept of CCE is particularly useful

for two additional reasons. First, CCE always exists in any

finite games (thus in our game), hence eliminating the ne-

cessity to address the existence of Nash equilibrium (NE),

perhaps the most celebrated solution concept, as in previous

research (Hron et al., 2022). In fact, when the action sets

are continuous, the existence of NE (either pure or mixed)

cannot be guaranteed in our game as the player utility func-

tion defined in (4) is not continuous. This is an inherent

challenge of the problem, as any change in σ(s,x) may

result in a different top-K recommendation list Tj(s;K),
leading to dramatically different player utilities. Similar

challenges and the non-existence of mixed NE have also

been observed by Hron et al. (2022), though their utility

model and research questions differ from ours. Second,

even in situations where NE exists, it is more realistic to

assume that players eventually achieve some CCE rather

than NE due to various criticisms about NE, including the

computational concerns (Daskalakis et al., 2009) of NE.

4. The Price of Anarchy Analysis

We analyze the social welfare of any top-K RS under any

possible CCE; or more specifically, how bad can the welfare

possibly be due to the competition among self-interested

content creators ± compared to the idealized non-strategic

situation in which the platform can ªdictateº all creators’

content choices and thus globally optimize the welfare func-

tion (5). This can be captured by the celebrated concept of

the Price of Anarchy (PoA) (Koutsoupias & Papadimitriou,

1999). As its name indicates, PoA captures the welfare inef-

ficacy due to players’ selfish behavior. Our main result in

this section is a comprehensive characterization of the PoA

of competing content creation games.

Definition 2 (PoA under CCE). Define the price of anarchy

of a game G as

PoA(G) = maxs∈S W (s)

min
α∈CCE(G) Es∼α[W (s)]

, (8)

where CCE(G) is the set of CCEs of G.

By definition, PoA(G) ≥ 1 always holds and larger values

indicate worse welfare. Our choice of the CCE concept leads

to the strongest possible welfare guarantee in the sense that

any upper bound of PoA under CCE also trivially holds for

the PoA under refined solution concepts such as correlated

equilibrium (CE), PNE or mixed NE (if they exist), since

these are all CCEs as well. Unless otherwise emphasized,

any PoA in this paper refers to the PoA under CCE.

4.1. Matching PoA Upper and Lower Bounds

Our main theoretical findings are an upper and lower bound

for the PoA, which match with each other and thus demon-

strates the tightness of our analysis. We first present the

upper bound as follows.

Theorem 1. The PoA of any competing content creation

game instance G with parameter β ≥ 0 and K ≥ 1 satisfies

PoA(G) < 1 +
1

c(β,K)
, (9)

where c(β,K) is defined as

c(β,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)− logK)
, b = e

1
β − 1. (10)
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The proof of Theorem 1 is intricate and thus the detailed

arguments are relegated to Appendix A. The primary chal-

lenge in the proof is to analyze various smoothness proper-

ties of the welfare and players’ utility functions, especially

how the welfare function changes after excluding any player

i’s participation. In Section 4.3, we highlight some of the

noteworthy properties of the welfare function, including

its submodularity, which we develop en route to proving

Theorem 1 but is also of independent merit towards under-

standing the competing content creation game.

The format of c(β,K) may not be intuitive enough for the

readers to appreciate the derived PoA upper bound. We thus

provide the following observations, which reveal various

properties of c(β,K) aiding the interpretation of (9):

1. For any β > 0 and K ≥ 1, we have c(β,K) ≥ 1 and

thus PoA(G) < 2 always holds.

2. c(β,K) = 1 if and only if K = 1 or β → 0.

3. Fix any β > 0, c(β,K) monotonically increases in

K; similarly, fix any K ≥ 1, c(β,K) monotonically

increases in β.

4. For sufficiently large β and K, c(β,K) ≈ (1+β) logK
asymptotically, and therefore

PoA(G) < 1 +
1

(1 + β) logK
. (11)

Based on these observations, Theorem 1 has multiple in-

teresting and immediate implications. First, the welfare

loss under any CCE is at most half in any situation, as the

PoA is always upper bounded by 2. The second and third

facts above show that such worst-case PoA occurs and only

occurs when users’ choices are made in a ªhardº manner:

either the RS dictates the user’s choice by setting K = 1
or the randomness in users’ choices is extremely low (i.e.,

β → 0). Note that in the latter case, the user will only con-

sume the most relevant content (i.e., the top-ranked content)

due to small decision randomness.

Second, the welfare guarantee improves as either K in-

creases (i.e., more items are recommended) or β increases

(i.e., users’ choices have more randomness). Welfare im-

provement in the latter situation is intuitive because when

supplied with multiple items, the user can pick the content

with large εi (i.e., the reward component that is not pre-

dictable by the RS) to gain utility. These together reveal an

interesting operational insight that when the RS cannot per-

fectly predict user utility (i.e., β > 0), providing more items

can help improve social welfare. This justifies top-K recom-

mendation and the necessity of diversity in recommendation

(Hurley & Zhang, 2011).

Our following second main result shows that this PoA upper

bound is tight, up to negligible constants.

Theorem 2. Given any 0 ≤ β ≤ 1, n > 2 and any 1 ≤
K ≤ min{n − 1, e

1
5β }, there exists a competing content

creation game instance G({Si}ni=1,X , σ, β,K) such that

PoA(G) > n− 1

n
+

1

1 + 5β logK
. (12)

This theorem also implies that the argument we employed

for Theorem 1, which is based on the smoothness proof de-

veloped by Roughgarden (2015), yields a tight PoA bound

for our proposed game. The tightness of the smoothness ar-

gument is itself an intriguing research question. Only three

classes of games are known to enjoy a tight PoA bound

derived from the smoothness argument: congestion games

with affine cost (Christodoulou & Koutsoupias, 2005), sec-

ond price auctions (Christodoulou et al., 2008), and the valid

utility game (Vetta, 2002), which are all fundamental classes

of games. Theorem 2 suggests that our competing content

creation game subscribes to this list. The proof of Theorem

2 is to explicitly construct a game instance which provably

yields the stated PoA lower bound (see Appendix D).

4.2. Implications of the PoA Bounds

We have discussed some direct implications of Theorem 1.

Now we develop new results which are either derived from

or can be compared to Theorem 1 and 2. They will reveal

additional insights from our main theoretical results.

Welfare implications to learning content creators. The

PoA bounds presented in Theorem 1 and 2 are based on the

assumption that creators are aware of the game parameters

and play some CCEs of the game. While CCE is a reason-

able equilibrium concept, one potential critique is that to

find the CCE, it is assumed that each creator has knowl-

edge about the system parameters (e.g., all other creators’

strategies and the σ function), which can be unrealistic.

Fortunately, in real-world scenarios where creators utilize

no-regret algorithms to play a repeated competing content

creation game with bandit feedback, we can still establish a

slightly worse PoA upper bound leveraging the fact that the

average strategy history of no-regret players converges to a

CCE, as shown in the following Corollary 1.

Corollary 1. [Dynamic Version of Theorem 1] Suppose
each player in a repeated competing content creation
game G({Si}ni=1,X , σ, β,K) independently executes some
no-regret learning algorithm, with worst regret R(T ) =
maxi Ri(T ) as defined in (6). Then we have

maxs∈S W (s)
1

T

∑T

t=1
E

s∼α
t [W (s)]

< 1+
(

1+
n

β logK
·
R(T )

T

)

·
1

c(β,K)
,

(13)

where α
t denotes the joint-strategy distribution at step t

and c(β,K) is the constant defined in (10).

In other words, the average welfare across all rounds
1
T

∑T
t=1 Es∼α

t [W (s)] is close to the maximum possible

5
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welfare maxs∈S W (s), up to a constant factor. The quan-

tity in the LHS of (13) is also known as the ªprice of total

anarchyº (Blum et al., 2008). It is a substitute for PoA

when we want to characterize the welfare of an outcome

from repeated play which does not necessarily fall into any

equilibrium concept. The proof of Corollary 1 is presented

in Appendix B. Because R(T )/T → 0 as T → ∞ for

any no-regret algorithm (most no-regret algorithms have

R(T ) = O(
√
T )), the RHS of (13) is still strictly less than

2 for any fixed constants (n, β,K).

Theorem 1 relies on two crucial platform features: 1. the

player’s utility in (4) is defined as the total user engagement

that accounts for the user utility σ(si,xj) + εj , as opposed

to just ªuser exposureº (i.e., the expected total number of

matches); 2. the platform uses the top-K recommenda-

tion policy. Next, we illustrate the insights revealed from

Theorem 1 with respect to these two key features.

The importance of rewarding user engagement rather

than solely exposure. A key reason for the nice

PoA guarantee in our competing content creation game

is each player i’s utility is chosen as the user engagement
∑

j E[σ(si,xj) + εi|xj � si]Pr(xj � si) in (4), while

not the following user exposure metric:

User exposure for player i :
m
∑

j=1

Pr(xj � si). (14)

Our next result shows that incentivizing creators to maxi-

mize user exposure can lead to significantly worse welfare.

Proposition 1. Let G̃ denote the variant of the competing

content creation game G = ({Si}ni=1, {xj}mj=1, σ, β,K)
by substituting player utility function in (4) by the above

user exposure in (14). Then for any K ≥ 1, 0 ≤ β ≤
min{0.14, 1

5 logK }, there exist G and G̃ such that

PoA(G̃) > 2 > PoA(G). (15)

Moreover, when K = 1 or β approaches 0, PoA(G̃) can be

arbitrarily large.

In stark contrast to Theorem 1 guaranteeing PoA(G) < 2,

Proposition 1 implies the deterioration of user welfare when

content creators are incentivized to compete for the expected

exposure of their content. However, we find in practice both

metrics are used: for example, user engagement has been

used more often as a reward metric for established creators,

whereas user exposure is used more for new creators (Meta,

2022; Savy, 2019). Our result serves as a theoretical defense

for rewarding creators by user engagement if the system

aims to improve overall welfare of the users.

To prove Proposition 1, we construct a game instance in

which the user welfare at NE is arbitrarily close to zero. Our

construction also reveals interesting insights about situations

where user welfare can be very bad. Hence, we briefly ex-

plain our construction here and leave our formal arguments

in Appendix E. Our constructed game has two groups of

users: one dispersed group that is fine with any content but

is never very happy with it (i.e., a low relevant score for

all content) and one focused group who looks for a specific

type of high-quality content (a high relevance score on such

content); but only a small group of specialized creators can

produce such high-quality content. However, if players are

incentivized to compete for exposure, even creators from the

small group tend to produce low-quality content that appeals

to the dispersed group rather than high-quality content that

benefits the focused group. This, in the worse case, can lead

to arbitrarily worse welfare for the platform.

The welfare efficiency of top-K recommendation policy.

One may wonder whether the top-K recommendation is

indeed a good policy for securing the platform’s welfare,

i.e., is it possible that other recommendation policies (e.g., a

probabilistic policy based on Plackett-Luce model (Plackett,

1975; Luce, 1959)) may even lead to better equilibrium out-

comes? Our following analysis, as a corollary of Theorem

1, shows that the answer is to some extent no since any rec-

ommendation policy cannot be better than the top-K rule by

more than a tiny fraction of the theoretical optimality. We

believe this finding also serves as a theoretical justification

for the wide adoption of the top-K principle in practice.

Corollary 2. Consider an arbitrary recommendation policy

providing at most K recommendations, which induces a

different competing content creation game G′. Let CCE(G′)
denote the corresponding CCE set of G′ and W (G′) =
min

α∈CCE(G′) Es∼α[W (s)] be its worst-case CCE wel-

fare. Then we have

W (G′) ≤ W (G) +W ∗
K/

(

1 +
K log(K + b)

K + b

)

, (16)

where W ∗
K is the best possible social welfare achieved via

any centralized recommendation policy with K slots.

As indicated by (16), the fraction of the loss of welfare is

approximately O( 1
logK ) as K

K+b ∼ O(1) when K is large.

The proof is straightforward based on Theorem 1 and can

be found in Appendix C.

4.3. Proof Highlights of Theorem 1

Our first step is to derive clean characterizations for the

game primitives by utilizing properties of Gumbel distri-

bution. The form of the user utility πj and welfare W are

corollaries of RU models (Baltas & Doyle, 2001), however,

the closed-form of the creator utility ui is a new property

we derive. Detailed argument is deferred to Appendix A.1.

The main proof of Theorem 1 is based on a smoothness

argument framework developed in the seminal work by

Roughgarden (2015). For any strategy profile s, W (s) =

6
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∑

i ui(si, s−i) is its total welfare function. A game is

(λ, µ)-smooth if λW (s′) − µW (s) ≤ ∑

i ui(s
′
i, s−i) for

any (s, s′) ∈ S. Roughgarden (2015) observes that the

PoA of any (λ, µ)-smooth game can be upper bounded by
1+µ
λ . After plugging in the expression of W (s), the (λ, µ)-

smoothness condition can be re-written as
∑

i

[λui(s
′
i, s

′
−i)− ui(s

′
i, s−i)] ≤

∑

i

µui(s).

Intuitively, the smoothness parameters bound how much

externality other players’ actions (i.e., s′−i or s−i) impose

on any player i’s utility. Moreover, the tighter this bound

is, the smoother the game is and the smaller the PoA is.

To gain some intuition and also as a sanity check, consider

the extreme situation in which each player’s utility is not

affected by other players’ actions at all (i.e., the no external-

ity situation), we have λ = 1 and µ = 0 implying PoA=1.

That is, if any player’s utility is not affected by others, then

self-interested utility-maximizing behaviors also maximize

social welfare, which is a straightforward observation. Cer-

tainly, we cannot hope for such a nice property to hold in

general, but fortunately, many well-known games have been

shown to be smooth. For example, second-price auctions

are (1, 1)-smooth as shown by Christodoulou et al. (2008),

congestion games are ( 53 ,
1
3 )-smooth as shown by Rough-

garden (2015), and all-pay auctions are (1/2, 1)-smooth as

shown by Roughgarden et al. (2017).

Hence, the key challenge in proving Theorem 1 is to pin

down the tightest possible (λ, µ) parameters for our compet-

ing content creation game. This boils down to a fundamental

question in top-K RS ± i.e., to what extent does the exis-

tence of other competing content creators affect a creator’s

utility? To answer this question, we discover multiple inter-

esting properties of the welfare and creator utility functions

formulated as follows. Besides proving our main result in

Theorem 1, we believe these properties are also of interest

for us to understand recommender systems.

Our Lemma 1 demonstrates the submodularity of W (s).
That is, the marginal gain of welfare from adding a new

player decreases as the total number of creators increases.

Lemma 2 further relates this marginal welfare increase with

the added player’s own utility. It shows that the increased

welfare after introducing a new player i with strategy si

is at most i’s utility under si, multiplied by a shrinkage

factor c−1(β,K) ∈ (0, 1]. These two lemmas together al-

low us to prove that the competing content creation game is

(c−1(β,K), c−1(β,K))-smooth, yielding Theorem 1. De-

tailed proofs are presented in Appendix A.2.

Lemma 1. [Submodularity of Welfare] For any s =
(s1, · · · , sn) ∈ S, let S = {s1, · · · , sn}. The social wel-

fare function defined in Eq (5) is submodular as a set func-

tion, i.e., for any S, sx, sy it holds that

W (S∪{sx})−W (S) ≥ W (S∪{sx, sy})−W (S∪{sy}).

Lemma 2. [Smoothness of Welfare] For any s =
(s1, · · · , sn) ∈ S, i ∈ [n] and c(β,K) defined in Eq (10),

player-i’s utility function ui(s) defined in Eq (4) satisfies

W (s)−W (s−i) ≤ c−1(β,K) · ui(si; s−i).

5. Experiments

To confirm our theoretical findings and also to empir-

ically measure the social welfare induced by creators’

competition, we conduct simulations on game instances

G({Si}ni=1,X , σ, β,K) constructed from two synthetic

datasets and the MovieLens-1m dataset (Harper & Kon-

stan, 2015). Before presenting our results, we provide a

detailed overview of the simulation environment, including

the characteristics of the datasets utilized and the metrics

employed for evaluation.

5.1. Specification of Datasets

Synthetic Dataset-1. Dataset-1 simulates the situation

where content creators compete over an unbalanced user

interest distribution. We construct n user clusters with the

largest cluster containing half of the population, and let

each strategy from a creator’s action set generate content

that only appeals to a specific user group.

Specifically, the user population is given by disjoint clusters

X = ∪n
i=1Xi such that |X1| = m

2 , and the sizes of smaller

clusters |Xl| are sampled uniformly at random such that
∑n

l=2 |Xl| = m
2 . Players share the same action set Si =

{s1, · · · , sn}, and the σ function satisfies that for any i ∈
[n],

σ(si,x) =

{

1, if x ∈ Xi,
0, otherwise.

(17)

Dataset-1 depends on the randomness of the partition

∪n
i=1Xi.

Synthetic Dataset-2. Dataset-2 simulates the situation

where content creators can either ªchase the trendº by gen-

erating mediocre content or cater to a specific user interest

group with high-quality content. Similar to the construction

of dataset-1, we let the user population comprise of n clus-

ters and allow each player to take actions targeting at any

specific user group. But, in addition, we also allow each

player to take a ªsafeº action s0 by producing some popular

content that can satisfy all users to a certain extent δ.

Specifically, the user population is also given by disjoint

clusters X = ∪n
i=1Xi, where the sizes of all clusters |Xl|

are sampled uniformly at random such that
∑n

l=i |Xl| = m.

Players share the same action set Si = {s0, s1, · · · , sn},

and the σ function satisfies that for any i ∈ [n],

σ(si,x) =







1, if x ∈ Xi, i ≥ 1
δ, if i = 0
0, otherwise.

(18)
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Table 1. PoA under β = 0.1. Results reflect the worst cases ob-

tained from 10 independently sampled game instances.

K
n

* 2 3 4 5

1 2.00 1.33 1.54 1.66 1.72

2 1.93 1.28 1.46 1.56 1.60

3 1.89 1.42 1.47 1.51

4 1.86 1.43 1.42

5 1.84 1.42

∗ denotes the theoretical upper bound.

Dataset-2 depends on the randomness of the partition

∪n
i=1Xi and the parameter δ ∈ [0, 1].

The Dataset Generated from MovieLens-1m. We use

deep matrix factorization (Fan & Cheng, 2018) to train user

and movie embeddings targeted at movie ratings from 1 to 5.

The total number of users m = 6040, the number of movies

k = 3883, and the embedding dimension is set to d =
32. To validate the quality of the trained representations,

we first performed a 5-fold cross-validation and obtain an

averaged RMSE =0.883 on the test sets, and then train

the user/item embeddings with the complete dataset. The

resulting user embeddings X = {xj}j∈[m] are used as

the user population. To construct each player-i’s action

set Si, we randomly sample 500 vectors from the trained

movie embedding set M (|M| = 3883) independently. To

normalize the relevance score to [0, 1], we let σ(s,x) = 1
when the predicted rating of movie s to user x is at least 4,

i.e., σ(s,x) = I[⟨s,x⟩ ≥ 4].

5.2. Evaluation Metrics

We use both PoA and PotA in our experiments. The eval-

uation of PoA requires solving two optimization prob-

lems, which are both intractable in general due to the

non-concavity of W (·) and the undetermined structure

of CCE(G). As a result, we use simulated annealing to

approach maxs∈S W (s) when the exact computation is

intractable. To compute min
α∈CCE(G) Es∼α[W (s)], we

compute its exact solution by solving a linear program with

kn variables and kn constraints (Papadimitriou & Rough-

garden, 2005) for small n and a moderate size of action set k.

To deal with larger problems, we let each player run Exp3

(Auer et al., 2002) over T = 5000 rounds and compute

the price of total anarchy PotA(G) = maxs∈S W (s)
1
T

∑
T
t=1 E

s∼α
t [W (s)]

.

More details are disclosed in Appendix I.

5.3. Results

Empirical PoA from simulations. We first demonstrate the

empirical welfare under different game parameter (n,K, β)
for dataset-1. We fix β = 0.1 and report PoA and PotA

under varying n and K. Results are reported in Table 1 and

2. We observe that for fixed n, both PoA and PotA decrease

Table 2. PotA under β = 0.1. Results reflect the worst cases

obtained from 10 independently sampled game instances.

K
n

* 5 10 15 20 40

1 2.00 1.59 1.59 1.60 1.50 1.38

3 1.89 1.37 1.39 1.42 1.41 1.32

5 1.84 1.35 1.34 1.33 1.36 1.31

7 1.80 1.30 1.31 1.30 1.29

∗ denotes the theoretical upper bound.

w.r.t. K and β, as revealed in Theorem 1. Furthermore,

under fixed (β,K), PoA approaches its theoretical upper

bound as n increases. However, PotA follows this trend

for values of n less than 15, but begins to decrease as n
increases further. This discrepancy can be attributed to

the fact that for larger values of n (i.e., in Table 2), the

approximated optimal welfare becomes less accurate and as

such, the PotA tends to be underestimated. We report the

results under different β in Appendix J.1.

Comparison between user engagement/exposure metrics.

Next we investigate the consequence of utilizing two dif-

ferent incentive metrics, namely user engagement vs., user

exposure. However, Dataset-1 is no longer a good bench-

mark for this purpose, as the utility functions derived under

a simple binary valued σ(·, ·) are almost indistinguishable

under these two metrics. To this end, we use dataset-2,

which has a more complex σ(·, ·) function that models the

situation in which creators could focus on chasing the trends

other than paying attention to the content quality.

We fix (β,K) = (0.1, 2) and report PotA under different

n and δ. The results, shown in Figure 1, demonstrate the

advantage of using the user engagement metric, which con-

sistently leads to a smaller PotA across different values of

n and δ. For n larger than 10, PotA with user-exposure

can exceed 2 as revealed by Proposition 15. The perfor-

mance gap between the two metrics is more distinct when

δ gets smaller, which can be understood as when creators

can produce popular content with lower effort, simply using

exposure to reward creators can be catastrophic to the total

user welfare. Additional results under different experimen-

tal conditions can be found in Appendix J.2.

Social welfare under different levels of rationality. In

this experiment, we aim to investigate the competition out-

comes when players utilize online-learning algorithms with

varying levels of rationality. To better simulate what hap-

pens in practice, we employed the dataset generated from

MovieLens-1m (Harper & Konstan, 2015). In our simula-

tion, we model the scenario in which each player runs Exp3

under different exploration rates ϵ (i.e., with probability ϵ,
each player will take a random action in each round). We

5Again, due to the approximation error in computing optimal
W , the PotA could be underestimated as n gets larger.
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Appendix to ªHow Bad is top-K Recommendation under Competing Content
Creators?º

A. Proof of Theorem 1

First we derive the closed-forms of the utility and welfare functions of competing content creation game.

Lemma 3. Given {εi} are drawn i.i.d. from zero-mean Gumbel(−βγ, β), the utility and welfare functions defined in (3),

(4) and (5) have the following closed forms

πj(s) = β log
[

∑

sk∈Tj(s;K)

exp (β−1σ(sk,xj))
]

, (19)

ui(s) =

m
∑

j=1

πj(s)
I[si ∈ Tj(s;K)] exp(β−1σ(si,xj))
∑

sk∈Tj(s;K) exp(β
−1σ(sk,xj))

, (20)

W (s) = β

m
∑

j=1

log
[

∑

sk∈Tj(s;K)

exp (β−1σ(sk,xj))
]

. (21)

A.1. Proof of Lemma 3: Closed Forms of Utility and Welfare Functions

We start with a few known and useful properties of Gumbel distributions.

Lemma 4. [e.g., (Balog et al., 2017)] Let (v1, · · · , vn) ∈ R
n be any real-valued vector and ε1, · · · , εn be independent

samples from Gumbel(µ, β). Then

argmax
i

(vi + εi) ∼ Categorical
( exp(β−1vi)
∑n

j=1 exp(β
−1vj)

)

, (22)

and

max
i

(vi + εi) ∼ Gumbel
(

µ+ β log
(

n
∑

j=1

exp(β−1vj)
)

, β
)

. (23)

Derivation of user utility and welfare. These derivations follow easily from Lemma 4. Since we assumed that

εi ∼Gumbel(−βγ, β), leveraging properties in Lemma 4 we conclude that xj’s choice distribution over K alternatives

{s1, · · · , sK} = Tj(s;K) follows the soft-max rule

Pr[xj � si] =
exp(β−1σ(si,xj))

∑

sk∈Tj(s;K) exp(β
−1σ(sk,xj))

, (24)

and the expected user utility after making choices has the following form

πj(xj) = E

[

max
i∈[K]

{σ(si,xj) + εi}
]

= β log





∑

sk∈Tj(s;K)

exp(β−1σ(sk,xj))



 . (25)

Taking expectation over all users, we obtain the following welfare function

W (s) =

m
∑

j=1

E

[

max
sk∈Tj(s;K)

{σ(sk,xj) + εi}
]

= β

m
∑

j=1

log





∑

sk∈Tj(s;K)

exp (β−1σ(sk,xj))



 . (26)

By setting W̃ (s) = βW (s), σ̃(s,x) = β−1σ(s,x), we have W̃ (s) =
∑m

j=1 log[
∑

sk∈Tj(s;K) exp (σ̃(sk,xj))]. Therefore,

under a rescaling of constant β it is with out loss of generality to consider a scoring function σ ∈ [0, 1
β ], the user utility

function and the social welfare function in the following form

12
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πj(s) = log
[

∑

sk∈Tj(s;K)

exp (σ(sk,xj))
]

, (27)

W (s) =

m
∑

j=1

log
[

∑

sk∈Tj(s;K)

exp (σ(sk,xj))
]

. (28)

Derivation of creator utility. This turns out to be a new result which requires non-trivial arguments. The players’ utility is

given by

ui(s) =

m
∑

j=1

E[σ(si,xj) + εi|xj � si] ·Pr[xj � si] (29)

=

m
∑

j=1

E[σ(si,xj) + εi|xj � si] ·
exp(σ(si,xj))

∑

sk∈Tj(s;K) exp(σ(sk,xj))
, (30)

According to the definition in (30), what we need to show is that for i.i.d. random variables {εi}Ki=1 sampled from

Gumbel(−βγ, β),

E[σ(si,xj) + εi|xj � si] = E[max
k∈[K]

{σ(sk,xj) + εi}] = log
[

∑

sk∈Tj(s;K)

exp (σ(sk,xj))
]

, (31)

i.e., for any (v1, · · · , vK) ∈ R
K and i.i.d. random variables {εi}Ki=1 sampled from Gumbel(0, 1),

E[vi + εi|i = arg max
k∈[K]

(vk + εk)] = γ + log
(

K
∑

k=1

exp(vk)
)

. (32)

Let Yi = maxk∈[K],k ̸=i(vk + εk) ∼ Gumbel(log(
∑

k ̸=i exp(vk)), 1) and Xi = vi + εi ∼ Gumbel(vi, 1). Then Xi has the

probability density function

fi(x) = exp(−((x− vi) + e−(x−vi))), (33)

and Y has the cumulative distribution function

Fi(y) = exp(−e−(y−log(
∑

k ̸=i exp(vk))))). (34)

13
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Therefore we can explicitly compute the conditional expectation of Xi as follows:

E[vi + εi|i = arg max
k∈[K]

(vk + εk)]

=E[vi + εi|vi + εi ≥ max
k∈[K],k ̸=i

(vk + εk)]

=E[X|X ≥ Y,X ∼ Gumbel(vi, 1), Y ∼ Gumbel(log(
∑

k ̸=i

exp(vk)), 1)] (35)

=

∫

R
xfi(x)Fi(x)dx

∫

R
fi(x)Fi(x)dx

=

∫

R
x exp(−((x− vi) + e−(x−vi))) exp(−e−(x−log(

∑
k ̸=i exp(vk)))))dx

∫

R
exp(−((x− vi) + e−(x−vi))) exp(−e−(x−log(

∑
k ̸=i exp(vk)))))dx

=

∫

R≥0
− ln t · exp(−t

∑K
k=1 exp(vk))dt

∫

R≥0
exp(−t

∑K
k=1 exp(vk))dt

(36)

= ln
(

K
∑

k=1

exp(vk))
)

+

∫

R≥0
− ln s · exp(−s)ds

∫

R≥0
exp(−s)ds

(37)

= ln
(

K
∑

k=1

exp(vk))
)

− d

dα

∫

R≥0

sαe−sds

= ln
(

K
∑

k=1

exp(vk))
)

− d

dα
Γ(α+ 1)

∣

∣

∣

α=0

= ln
(

K
∑

k=1

exp(vk))
)

+ γ. (38)

where (35) holds because of Lemma 4, (36) and (37) hold by change of variables t = e−x and s = t
∑K

k=1 exp(vk)), and

(38) is from the definition of Euler-Mascheroni constant. Therefore we show (32) and the players’ utility function has the

following form

ui(s) =

m
∑

j=1

(

log
[

∑

sk∈Tj(s;K)

exp (σ(sk,xj))
])

I[si ∈ Tj(s;K)] exp(σ(si,xj))
∑

sk∈Tj(s;K) exp(σ(sk,xj))
. (39)

A.2. Proof of Lemma 1 and 2: Properties of Utility and Welfare Functions

We consider the utility and welfare functions given in (27), (39) and (28) under the re-scaling of constant β with the

new assumption that σ(s,x) ∈ [0, 1
β ], ∀s ∈ ∪n

i=1Si,x ∈ X . To simplify the subsequent analysis, we first specify some

useful notations and conventions. For any joint strategy profile s = (s1, · · · , sn), we use capital letter S to denote its set

representation, i.e., S = {s1, · · · , sn}. In this way we can view Tj(s;K), πj(s), ui(s),W (s) defined in (1), (3), (4), (5)

as set functions Tj(S;K), πj(S), ui(S),W (S). From now on, we will use the set notation S and the vector notation s

interchangeably, depending on the context. Similarly, we use S−i to denote the set {s1, · · · , sn} excluding element si.

Moreover, we extend the definition of Tj(S;K) by allowing |S| = K − 1 in the following sense: when |S| = K − 1, we let

Tj(S;K) = S ∪ {s̄}, where s̄ is a default external choice such that σ(s̄,x) = 0 for all x ∈ X . This extension captures

the situation when the system does not have enough active content creators to allocate to the users. When such a situation

happens, the system will put a default choice s̄ in the top-K list without any utility guarantee. We remark that this extended

definition is introduced merely for the convenience of presentation and does not affect the implication of our main result.

Prior to the proofs for Lemma 1 and 2, we present two intermediate results in Proposition 2 and Lemma 5. Proposition 2

reveals a rather basic property of social welfare W which is useful in the proof of Theorem 1, and Lemma 5 is useful in the

proof of Lemma 2.

Proposition 2. Fix a joint strategy S = {s1, ..., sn} in any n−player competing content creation game G. If we add an

additional player indexed by n+ 1 with pure strategy sn+1 to the game and let S′ = {s1, ..., sn, sn+1}, the social welfare

14
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W will strictly increase, i.e.,

W (S′) > W (S). (40)

Proof. By definition,

W (S′) =
m
∑

j=1

(

log
[

∑

s∈Tj(S′;K)

exp (σ(s,xj))
])

, (41)

W (S) =

m
∑

j=1

(

log
[

∑

s∈Tj(S;K)

exp (σ(s,xj))
])

, (42)

It is obvious that for any fixed user j, the sum of exponential scores of top-K choices from S′ is better than that from S , i.e.,

∑

s∈Tj(S′;K)

exp (σ(s,xj)) ≥
∑

s∈Tj(S′;K)

exp (σ(s,xj)).

Therefore, (40) holds immediately by the monotonicity of the logarithmic function.

Proposition 2 reveals an important yet natural property of real-world content provider competitions: when there are more

competitors in the market, users are facing more alternatives and thus their welfare will always increase.

Lemma 5. The following function

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)− log y)
, (x, y) ∈ R+ × N+, (43)

is monotonically increasing in y for any x ∈ R+, and is monotonically decreasing in x for any integer y ∈ N+.

Proof. We first demonstrate the monotonicity of f(·, y) by directly calculating its partial derivatives. Note that t ≥ log(1+t)
holds for any t ≥ 0, we have

1

x+ 1

∂f(x, y)

∂y
=

log(1 + x
y ) + log(x+ y)[xy − log(1 + x

y )]

[(x+ y)(log(x+ y)− log y)]2
> 0, (44)

which implies that f(x, y) is increasing in y. Now it remains to show the monotonicity w.r.t. x when fixing y = K, which is

slightly more intricate. The derivative of f(x,K) w.r.t. x now writes

f ′(x,K) =
(K − 1) log(x+K) log(1 + x

K )− (x+ 1) logK

[(x+K)(log(x+K)− logK)]2
≜

−g(x,K)

[(x+K)(log(x+K)− logK)]2
, (45)

and

g′(x,K) =
1

x+K

[

(2K + x− 1) logK − 2(K − 1) log(x+K)
]

(46)

=
2(K − 1)

x+K

[2K + x− 1

2(K − 1)
logK − log(x+K)

]

=
2(K − 1)

x+K

[ x+ 1

2(K − 1)
logK − log(1 +

x

K
)
]

(47)

≥ 2(K − 1)

x+K

[ x+ 1

2(K − 1)
logK − x

K

]

≥ x

x+K

[

logK − 2(K − 1)

K

]

. (48)

We claim g′(x,K) ≥ 0, ∀K ∈ N
+, and this is because

1. if K = 1, from (46) we have g′(x,K) = 0.

15
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2. for K ≥ 5, we can verify logK − 2(K−1)
K > 0. From (48) we have g′(x,K) > 0.

3. for K ∈ {2, 3, 4}, we can verify x+1
2(K−1) logK− log(1+ x

K ) > 0 for any x ≥ 0. Therefore (47) we have g′(x,K) > 0.

Now since g′(x,K) ≥ 0, we conclude that g(x,K) ≥ g(0,K) = logK ≥ 0, which implies f ′(x,K) ≤ 0, ∀K ∈ N
+.

Hence, f(x,K) is decreasing in x.

Now we are ready to prove Lemma 1 and 2.

Proof of Lemma 1. By the definition we only need to show the submodularity of πj(S) for any j ∈ [m], i.e.,

πj(Tj(S ∪ {sx};K))− πj(Tj(S;K)) ≥ πj(Tj(S ∪ {sx, sy};K))− πj(Tj(S ∪ {sy};K)). (49)

With out loss of generality we assume σ(sx,xj) ≥ σ(sy,xj), and let

{v1, · · · , vK} = {exp(σ(s,xj))|s ∈ Tj(S;K)},

where v1 ≤ · · · ≤ vK . Then depending on the values of vx = exp(σ(sx,xj)), vy = exp(σ(sy,xj)) and K, there are three

situations :

1. vx ≤ v1: (49) holds because its LHS and RHS are both equal to 0.

2. vx > v1,K = 1: The LHS of (49) is equal to log vx

v1
> 0, the RHS of (49) is equal to 0.

3. vx > v1,K ≥ 2: The LHS of (49) is equal to log vx+v2+a
v1+v2+a , the RHS of (49) is equal to log

vx+vy+a
vy+v2+a , where

a =
∑K

k=3 vk if K ≥ 3 and a = 0 if K = 2. We can verify

(vx + v2 + a)(vy + v2 + a)− (v1 + v2 + a)(vx + vy + a)

=(v2 − v1)(a+ v1 + v2) + (vx − v1)(vy − v1) ≥ 0.

Therefore, (49) holds and Lemma 1 follows by summing (49) over all j ∈ [m].

Proof of Lemma 2. By definition,

ui(si; s−i) =

m
∑

j=1

(

log
[

∑

s
′∈Tj(S;K)

exp (σ(s′,xj))
])

I[si ∈ Tj(S;K)] exp(σ(si,xj))
∑

s
′∈Tj(S;K) exp(σ(s

′,xj))
, (50)

and

W (S) =

m
∑

j=1

πj(Tj(S;K)). (51)

It is sufficient to prove that for any user j,

(

log
[

∑

s
′∈Tj(S;K)

exp (σ(s′,xj))
])

I[si ∈ Tj(S;K)] exp(σ(si,xj))
∑

s
′∈Tj(S;K) exp(σ(s

′,xj))
≥ c(β,K) ·

[

πj(Tj(S;K))− πj(Tj(S−i;K))
]

.

(52)

Note that when si /∈ Tj(S;K), (52) is trivial as its LHS=RHS=0. Now we suppose si ∈ Tj(S;K) and thus Tj(S−i;K)
and Tj(;K) only differ in one element. Without loss of generality we let

{exp(σ(s,xj))|s ∈ Tj(S−i;K)} = {v′1, v2, · · · , vK},

and

{exp(σ(s,xj))|s ∈ Tj(S;K)} = {v1, v2, · · · , vK}, v1 ≥ v′1.
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Because of our extended definition of Tj(S;K), Tj(S−i,K) is well defined when K = n, under which case we have

v′1 = exp(σ(s̄,xj)) = 1. Now we let z = v2 + · · ·+ vK , (52) is equivalent to

v1
v1 + z

log(v1 + z) ≥ c(β,K) · log
[v1 + z

v′1 + z

]

. (53)

Since v′1 = exp(σ(·,xj)) ≥ 1, a sufficient condition for (53) to hold is

v1
v1 + z

· log(v1 + z)

log(v1 + z)− log(1 + z)
≥ c(β,K). (54)

Note that x = v1 − 1 ∈ [0, e1/β − 1], y = z + 1 ∈ [K, (K − 1)e1/β + 1], the LHS of (54) becomes a function of (x, y)
which has the following form

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)− log y)
. (55)

From Lemma 5 we know f(x, y) is monotonically increasing in y for any x > 0 and is monotonically decreasing in x any

integer K ≥ 1. Therefore, it holds that

f(x, y) ≥ f(x,K) ≥ f(e1/β − 1,K) = c(β,K). (56)

Hence, (52) holds and we complete the proof.

A.3. Proof of Theorem 1

With the help of Proposition 2, Lemma 2 and 1, now we are ready to prove our claim in Theorem 1. We will demonstrate

that any competing content creation game instance G({Si}ni=1,X , σ, β,K) is a smooth game with parameter (λ, µ) =
(c(β,K), c(β,K)) so that its PoA can be upper bounded by 1+µ

λ = 1 + 1
c(β,K) .

Proof. Let s = (s1, ..., sn) and s
∗ = (s∗1, ..., s

∗
n) be two different strategy profiles. First, due to function W ’s sub-modular

property disclosed in Lemma 1, for every i ∈ [n] we have

W ([s∗i , s−i])−W (s−i) ≥ W ([s∗1, · · · , s∗i−1, s
∗
i , s])−W ([s∗1, · · · , s∗i−1, s]). (57)

Summing over all player i we obtain

n
∑

i=1

(W ([s∗i , s−i])−W (s−i)) ≥
n
∑

i=1

(W ([s∗1, · · · , s∗i−1, s
∗
i , s])−W ([s∗1, · · · , s∗i−1, s]))

= W ([s∗, s])−W (s)

> W (s∗)−W (s), (58)

where the last inequality holds because of Proposition 2. On the other hand, from Lemma 2 it also holds that

ui(s
∗
i ; s−i) ≥ c(β,K) ·

[

W ([s∗i , s−i])−W (s−i)
]

, (59)

And therefore

n
∑

i=1

ui(s
∗
i ; s−i) ≥ c(β,K) ·

n
∑

i=1

[

W ([s∗i , s−i])−W (s−i)
]

(60)

> c(β,K)[W (s∗)−W (s)]. (61)

where inequality (60) holds by (59), and inequality (61) holds by (58).

Since (61) holds for any s ∈ S , for any α ∈ CCE(G) we can take expectation over s ∼ α and obtain
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n
∑

i=1

Es∼α[ui(s
∗
i ; s−i)] > c(β,K)[W (s∗)− Es∼α[W (s)]]. (62)

Therefore,

Es∼α[W (s)] = Es∼α[

n
∑

i=1

ui(s)]

≥ Es∼α[

n
∑

i=1

ui(s
∗
i ; s−i)] (63)

≥ c(β,K) ·
n
∑

i=1

[

Es∼α[W ([s∗i , s−i])]− Es∼α[W (s−i)]
]

> c(β,K)[W (s∗)− Es∼α[W (s)]]. (64)

where inequality (63) follows by the definition of CCE and inequality (64) holds by (61). Rearranging terms we obtain

PoA(G) = maxs∈S W (s)

min
α∈CCE(G) Es∼α[W (s)]

< 1 +
1

c(β,K)
. (65)

A.4. Proof of the Property of c(β,K)

Proof. The c(β,K) function has the following form:

c(β,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)− logK)
, b = e

1
β − 1. (66)

We prove the following facts one by one.

1. Fix any β > 0, c(β,K) is monotonically increasing in K; similarly, fix any K ≥ 1, c(β,K) is monotonically

increasing in β.

Note that e
1
β − 1 is decreasing in β, from Lemma 5 the claim holds.

2. c(β,K) = 1 if and only if K = 1 or β → 0.

When K = 1, c(β,K) = 1 directly holds. When β → 0, b → +∞ and c(β,K) → 1. The ªonly ifº direction follows

from the monotonicity property of c(β,K).

3. For any β > 0 and K ≥ 1, we have c(β,K) ≥ 1 and thus PoA(G) < 2 always holds.

By the monotonicity of c, c(β,K) ≥ c(β, 1) = 1. Hence, PoA(G) < 1 + 1
c(β,K) ≤ 2.

4. For sufficiently large β and K, c(β,K) ≈ (1 + β) logK asymptotically, and therefore

PoA(G) < 1 +
1

(1 + β) logK
. (67)

When β is sufficiently large, b = e
1
β − 1 ≈ 1

β → 0. Therefore,

c(β,K) =
(b+ 1) log(b+K)

(b+K) log(1 + b
K )

≈ (b+ 1)K log(b+K)

(b+K)b
since log(1 + x) ≈ x as x → 0

≈ (b+ 1) logK

b
since K >> b

≈ (1 + β) logK. since b ≈ 1
β
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B. Proof of Corollary 1

Proof. Let ϵ(T ) = R(T )
T , and s

∗ = (s∗1, ..., s
∗
n) be a global maximizer of W (s). By definition,

Es∼α[ui(s)] ≥ Es∼α[ui(s
∗
i , s−i)]− ϵ(T ). (68)

Summing over all player i ∈ [n] we obtain

Es∼α[W (s)] =

n
∑

i=1

Es∼α[ui(s)] ≥
n
∑

i=1

Es∼α[ui(s
∗
i , s−i)]− nϵ(T ). (69)

On the other hand, by (61) from the proof of Theorem 1, we have

n
∑

i=1

ui(s
∗
i ; s−i) > c(β,K)[W (s∗)−W (s)], ∀s ∈ S. (70)

Taking the expectation of s over distribution α we obtain

n
∑

i=1

Es∼α[ui(s
∗
i ; s−i)] > c(β,K)

(

W (s∗)− Es∼α[W (s)]
)

. (71)

(69) and (71) together imply that

Es∼α[W (s)] + nϵ(T ) > c(β,K)
(

W (s∗)− Es∼α[W (s)]
)

. (72)

Note that for any s ∈ S , we have W (s) =
∑m

j=1

(

log
[

∑

s∈Tj(s;K) exp (σ(s,xj))
])

≥ β logK and therefore, nϵ(T ) ≤
nϵ(T )
β logKEs∼α[W (s)]. Substituting it into (72), we obtain (13).

C. Proof of Corollary 2

Proof. Note that fix any players’ strategy profile s, the top-K matching mechanism maximizes the social welfare W .

Therefore, W (G′) ≤ W ∗
K . On the other hand, from the PoA bound in Theorem 1 it holds that

W ∗
K

W (G) < 1 +
(b+K)(log(1 + b/K))

(b+ 1) log(b+K)

< 1 +
(b+K)(b/K)

(b+ 1) log(b+K)

= 1 +
b+K

K log(b+K)
.

Rearranging term yields W (G′)−W (G) ≤ W ∗
K −W (G) ≤ W ∗

K/(1 + K log(b+K)
b+K ).

D. Proof of Theorem 2

Proof. Let b = exp(1/β)− 1. Consider an n-player game where each player-i has the same action set Si = {x1, · · · ,xn}.

Let the user population X be a set with size m = n+ (n− 1)a, in which n users have profile x1 and a users have profile xi

for i = 2, · · · , n. Here a = β logK + 1 is a constant whose choice will become clear later. Let the scoring function σ be

the indicator function defined as follow:
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σ(s,x) =

{

1, if s = x,
0, otherwise.

(73)

First we lower bound the optimal welfare maxs∈S W (s). Consider the joint-strategy profile s
∗ = (x1,x2, · · · ,xn),

under which each user gets one player with σ score 1 and K − 1 player with σ score 0. In this case, each user-j’s utility

πj(s) = β log(b+K) and the social welfare W (s) = mβ log(b+K). Therefore, the optimal social welfare

max
s∈S

W (s) ≥ W (s∗) = mβ log(b+K). (74)

Next we show that s = (x1,x1, · · · ,x1) is a pure NE of G and thus s ∈ CCE(G). Given players’ joint-strategy s, n
users will be assigned with K players with σ score 1 and (n− 1)a users will be assigned with K players with σ score 0.

Therefore, the utility for an arbitrary player-i is given by

ui(s) =
[

n · (β logK + 1) + a(n− 1) · β logK
]

/n

= β logK + 1 +
a(n− 1)β logK

n
. (75)

If player-i switches from strategy s1 to sj , n users still get K players with score 1, (n− 2)a users get players with score 0,

and a users get K players with scores (1, 0, · · · , 0). Therefore, player-i’s utility after the deviation is

ui(sj , s−i) = n · 0 + a(n− 2) · β logK · 1
n
+ a · β log(b+K) · e

1
β

e
1
β +K − 1

=
a(n− 2)β logK

n
+

b+ 1

b+K
· aβ log(b+K).

We can verify that ui(s) ≥ ui(sj , s−i) for any 2 ≤ j ≤ n if we take

a = β logK + 1 ≤ β logK + 1

β
(

b+1
b+K log(b+K)− 1

n logK
) . (76)

This is because: 1. The inequality in (76) always holds as b+1
b+K log(b + K) < log(b + 1) = 1

β when β ∈ [0, 1] (this is

due to the monotonicity of log x/x); 2. ui(s) = ui(sj , s−i) when a = β logK+1

β

(

b+1
b+K

log(b+K)− 1
n
logK

) . Hence, s is an NE of G.

Putting (74), (75), and (76) together, we have

PoA(G) = maxs∈S W (s)

min
α∈CCE(G) Es∼α[W (s)]

≥ W (s∗)

W (s)

=
mβ log(b+K)

nui(s)
≥ m

nui(s)
(77)

=
n+ (n− 1)a

n(β logK + 1) + a(n− 1)β logK

=
n− 1

n
+

1− t2a(a− 1)

a+ ta(a− 1)
(t =

n− 1

n
)

>
n− 1

n
+

1

5a− 4
(78)

=
n− 1

n
+

1

1 + 5β logK
.

where inequality (77) holds because β log(b+K) ≥ β log(b+ 1) = 1, and (78) holds because when a = 1 + β logK ∈
[1, 1.2] and t = n−1

n ∈ [0.5, 1), it is easy to verify that
1−t2a(a−1)
a+ta(a−1) > 1

5a−4 . It is equivalent to 4t2a + 4 > 5t2a2 + ta,

which is true because t2a(5a− 4) + ta < a(5a− 4) + a < 4.
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E. Proof of Proposition 1

Proof. Consider a population of two users X = {x1,x2} and n players in which one player has two pure strategies and the

other n− 1 players only have access to a single strategy, i.e, Si = {s0}, i = 2, . . . , n and S1 = {s1, s2}. Let the scoring

function σ be

σ(s,x) =







1, if s = s1,x = x1,
δ, if s = s2,
0, otherwise.

(79)

We will show that for any given K ≥ 1, 0 ≤ β ≤ min{0.14, 1
5 logK } there exists δ ∈ (0, 1) such that the PoA of game

G̃({Si}ni=1,X , σ, β,K) is always strictly greater than 2.

From the proof of Lemma 3, the user utility and welfare functions of G̃ share the same form as in (19), (21), while the player

utility functions of G̃ have the following form

ui(s) =

m
∑

j=1

I[si ∈ Tj(s;K)] exp(β−1σ(si,xj))
∑

sk∈Tj(s;K) exp(β
−1σ(sk,xj))

. (80)

Let b = exp(1/β) − 1 and we choose any δ ∈ [δ0, 1) such that exp(δ0/β) +K − 1 = 2
1
K

+ 1
b+K

. Such δ0 ∈ (0, 1) must

exist because function f(δ) = exp(δ/β) +K − 1 is monotonically increasing in [0, 1] with range [K, b+K] ⊃ 2
1
K

+ 1
b+K

.

Given such choice of δ, we can verify that

2u1(s2, s0, · · · , s0) =
2 exp(δ/β)

exp(δ/β) +K − 1

≥ 2 exp(δ0/β)

exp(δ0/β) +K − 1

=
exp(1/β)

exp(1/β) +K − 1
+

1

K

≥ exp(1/β)

exp(1/β) +K − 1
+

1

n
= 2u1(s1, s0, · · · , s0),

which indicates that (s2, s0, · · · , s0) is a PNE of G̃. Therefore, by picking δ = δ0 we have

PoA(G̃) = maxs∈S W (s)

min
α∈CCE(G̃) Es∼α[W (s)]

≥ W (s1, s0, · · · , s0)
W (s2, s0, · · · , s0)

=
log(exp(1/β) +K − 1) + logK

2 log(exp(δ0/β) +K − 1)
(81)

=
log(b+K) + logK

2 log[2K(b+K)]− 2 log(b+ 2K)
by the choice of δ0 (82)

> 2, (83)

where (83) holds because (83) is equivalent to

(b+ 2K)4 > 16K3(b+K)3. (84)

And we show the correctness of (84) by verifying the following situations:

1. when K ∈ {2, 3}, (84) holds for all β ∈ [0, 0.14], b = exp(1/β)− 1.

2. when K ≥ 4, from β ≤ 1
5 logK we know b+K = exp(1/β) +K − 1 > K5 and thus

(b+2K)4

(b+K)3 > b > K5 ≥ 16K3.

Therefore, (84) holds.
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Finally we show that when K = 1 or β → 0, PoA(G̃) can be arbitrarily large.

1. when β → 0, we have b → ∞. From (82) we have for any fixed K,

lim
β→0

PoA(G̃) = lim
b→+∞

{ log(b+K) + logK

2 log[2K(b+K)]− 2 log(b+ 2K)

}

= lim
b→+∞

log(b+K) → +∞.

2. when K = 1, the user’s choice is deterministic and thus any δ ∈ (0, 1) makes (s2, s0, · · · , s0) a PNE of G̃. Let δ → 0
and from (81) we have for any fixed β,

lim
δ→0

PoA(G̃) = lim
δ→0

{ log(exp(1/β) +K − 1) + logK

2 log(exp(δ/β) +K − 1)

}

= lim
δ→0

1

2δ
→ +∞.

F. Additional Discission on Related Work

Our user decision model (see Section 3) stems from the RU model (Baltas & Doyle, 2001) in econometrics, which explains

how an individual makes choices among a discrete set of alternatives. In the RU model, the utility that a decision maker

could obtain from alternative j is decomposed into Uj = Vj + ϵj , where Vj is the known parameterized part, and ϵj is

the unknown stochastic part. The observed choice is then given by the alternative with the maximum utility. It is shown

that if the unobserved stochastic utility follows the extreme value distribution (i.e., Gumbel distribution), then the choice

probability is given by the logit formula, i.e., Pj ∝ exp(Vj) (Luce et al., 1965). In our work, we apply the RU model to

explain how a typical user allocates her attention across the recommended list.

To analyze the equilibrium efficiency of the competing content creation game, we employed the standard framework of the

price of anarchy (PoA). This originates from the seminal work of (Koutsoupias & Papadimitriou, 1999) and has since led to

an extensive literature on understanding the efficiency of numerous strategic games. Our discussion by no means can do

justice to this rich literature; here, we only mention the few works that are closely related to ours. Since Nash equilibrium

(NE) is not guaranteed to exist in our problem with non-continuous agent utilities (Hron et al., 2022), it is thus crucial

for us to consider a solution concept that is weaker than NE and thus to prove a stronger PoA bound. Specifically, we

consider coarse correlated equilibrium (CCE). The PoA for CCE is first studied by (Blum et al., 2008), who considered the

efficiency of a dynamic setup with no-regret learners and coined the new notion of the price of total anarchy, which turns out

to be equivalent to the PoA bound for CCE. This is precisely the question we want to address, but the structure of our new

competing content creation game is significantly different from the games they studied, such as Hotelling’s game on a graph

and the valid utility game of (Vetta, 2002). Thus their techniques are not readily applicable to our problem. We instead

employed a recent framework of (Roughgarden, 2015) using the smoothness argument. It is well-known that this framework

can yield strong PoA bound applicable to CCE. However, the bounds obtained by this powerful framework are usually not

tight; so far, it is only known that it yields tight PoA bounds for linear cost congestion games (Christodoulou & Koutsoupias,

2005), second price auctions (Christodoulou et al., 2008), and the valid utility games (Vetta, 2002). Interestingly, We show

that the smoothness argument also yields a tight PoA bound for our competing content creation game and thus register an

additional member to this important list of games.

G. Additional Discussion on Stability

Our characterization of social welfare does not require any stability property of the creators’ competition. While previous

works (Ben-Porat & Tennenholtz, 2018; 2017; Ben-Porat et al., 2019) strive to establish a unique pure Nash equilibrium

(PNE) guarantee in similar game-theoretic settings, we do not consider such a stability requirement crucial for the system’s

design for two reasons. First, as demonstrated in previous works (Ben-Porat & Tennenholtz, 2018; 2017; Ben-Porat et al.,

2019), the unique PNE is not guaranteed for top-K RS in general. However, our main result indicates the social welfare can

be ensured under top-K RS regardless of the existence of a PNE, thus eliminating the need for tradeoffs between stability

and the complexity of the recommendation algorithm. Second, even in cases where a PNE does exist, it is unclear how

creators can achieve such a stable outcome in practice. For instance, Ben-Porat & Tennenholtz (2018; 2017) showed that

creators following best-response dynamic (Monderer & Shapley, 1996) converge to the unique PNE in their game-theoretical

setting, but it requires creators to have oracle access to their utility functions, which is unrealistic as creators can only

evaluate the utility of their taken actions (i.e., bandit feedback) in practice. Therefore, we refrain from discussing stability

and instead focus on characterizing the average social welfare under the evolving strategies of creators.
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H. Connections to Existing Models

As an extended discussion to the related work, we show how our competing content creation games connect to the following

three previously proposed competition models for content creators. All the following models do not consider the presence

of an RS and match each user with all content creators (players), which corresponds to the case K = n in our setting.

Interestingly, we found that each of them turns out to be a special case of our competing content creation game.

Facility location games under the no intervention mediator (Ben-Porat et al., 2019)

Consider the following competing content creation game instance:

1. the user population X ⊆ [0, 1] is a finite set of size m,

2. each player i ∈ [n] shares the same action set Si = [0, 1],

3. the scoring function is given by σ(s, x) = |s− x|,
4. (β,K) = (0, n),

5. utility function is the user exposure metric, i.e., ui(s) =
∑

x∈X Pr(x � si).

If we let m → ∞ so that X becomes a continuum with density function g over the unit interval [0, 1], the game instance

G̃({Si}ni=1,X , σ, β,K) 6 defined above is equivalent to the facility location game under the no intervention mediator

proposed by (Ben-Porat et al., 2019).

Hotelling-Downs model with limited attraction under support utility functions (Shen & Wang, 2016)

Consider the following competing content creation game instance:

1. the user population X = {x1, · · · , xm} ⊆ [0, 1] is a finite set of size m,

2. each player i ∈ [n] shares the same action set Si = [0, 1]× [0, 1]. For each action si = (si, wi) taken by player-i, it is

associated with an attraction region Ri = [si − wi

2 , si +
wi

2 ] ∩ [0, 1].

3. for each i ∈ [n], the scoring function is given by σ(si, x) = I[x ∈ Ri],

4. (β,K) = (0, n),

5. the utility function is induced by the user engagement metric, i.e., ui(s) =
∑m

j=1 πj(s)Pr(xj � si).

In fact, given β = 0 and the above definition of σ, we can see the utility functions under both exposure and engagement

metrics are identical, because it holds that πj(s) ∈ {0, 1} and πj(s) = 1 if and only if Pr(xj � si) > 0. We can verify that

the game instance G({Si}ni=1,X , σ, β,K) defined above is equivalent to the Hotelling-Downs model with limited attraction

under support utility functions proposed by (Shen & Wang, 2016).

Exposure games (Hron et al., 2022)

Consider the following competing content creation game instance:

1. the user population X ⊆ R
d is a finite set of size m,

2. each player i ∈ [n] is associated with an action set Si on the unit sphere in R
d, i.e., Si ∈ S

d−1,

3. the scoring function is given by the inner product, i.e., σ(s,x) = ⟨s,x⟩,
4. (β,K) = (τ, n),

5. the utility function is induced by the user exposure metric, i.e., ui(s) =
∑

x∈X Pr(x � si).

Note that in exposure games the parameter β no longer represents the user decision noise but becomes a temperature

parameter τ controlling the spread of exposure probabilities over items. The game instance G̃({Si}ni=1,X , σ, β,K) defined

above is equivalent to the exposure games proposed by (Hron et al., 2022).

6Note that we use G̃ to refer to the variant of G that utilizes the user exposure metric instead of the user engagement metric in player
utility functions.
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I. The Detailed Experimental Setup

I.1. The computation of globally optimal social welfare

We use two heuristic methods for the computation of maxs∈S W (s), when the exact solution is computationally infeasible:

Simulated Annealing (SA) shown in Algorithm 1 and Best-response Search (BRS) shown in Algorithm 2. For SA, we set

T = 5000 and the temperature schedule τt = 0.1/
√
t; for BRS, we set T = max{30, 2n} and take the best output from 5

independent runs. Both methods perform as well as the brute-force search when the number of players n and the size of

action set k are less than 6, thus yielding the exact global optimal under such situations. For larger problem scales, we run

both methods and select the best output to approximate maxs∈S W (s).

Algorithm 1 Simulated Annealing for Computing the Globally Optimal Welfare

Input: Time horizon T , joint action space S =
∏n

i=1 Si, welfare function W (s), temperature schedule {τt}Tt=1.

Initialization: A randomly selected joint action s
(0) = (s

(0)
1 , · · · , s(0)n ) ∈ S .

for t = 0 to T do

Randomly choose a player i ∈ [n] and randomly perturb her action s
(t)
i in s

(t) to yield s
′(t).

Compute W (s′(t)),W (s(t)).
if W (s′(t)) > W (s(t)) then

Set s(t+1) = s
′(t).

else

With probability e(W (s′(t))−W (s(t)))/τt , set s(t+1) = s
′(t); otherwise, s(t+1) = s

(t).

end if

end for

Output: maxt∈[T ] W (s(t)).

Algorithm 2 Best-response Search for the Globally Optimal Welfare

Input: Time horizon T , joint action space S =
∏n

i=1 Si, welfare function W (s).

Initialization: A randomly selected joint action s
(0) = (s

(0)
1 , · · · , s(0)n ) ∈ S .

for t = 0 to T do

Randomly choose a player i ∈ [n] and search for her best-response that maximizes W , i.e.,

s
(t+1)
i = arg max

si∈Si

W (si, s
(t)
−i).

Set s(t+1) = (s
(t+1)
i , s

(t)
−i).

end for

Output: W (s(T )).

I.2. The computation of the worst case welfare under CCE

We can express the definition of CCE into a set of linear constraints. Let α ∈CCE(G) be a probability distribution over the

joint action space S =
∏n

i=1 Si. Then α satisfies

∀i, ∀s′i,
∑

s∈S
α(s)ui(s) ≥

∑

s∈S
α(s)ui(s

′
i, s−i). (85)

And min
α∈CCE(G) Es∼α[W (s)] is solving

min
α∈CCE(G)

α(s)W (s) (86)

under linear constraints (85). Suppose each Si shares the same size k, then we obtain a linear program with kn variables

and kn constraints.

I.3. The details of no-regret dynamic simulation and computation of PotA

For the computation of PotA, we need to simulate each player’s sequence of play. We let all players run the following

Exp-3 algorithm 3 simultaneously to update their strategies in a fixed time horizon T = 5000. According to (Auer et al.,
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Table 3. PoA under β = 0.5. Results reflect the worst cases obtained from 10 independently sampled game instances.

K
n

* 2 3 4 5

1 2.00 1.33 1.54 1.66 1.72

2 1.77 1.11 1.24 1.32 1.34

3 1.65 1.08 1.13 1.18

4 1.57 1.05 1.08

5 1.52 1.02

∗ denotes the theoretical upper bound.

Table 4. PotA under β = 0.5. Results reflect the worst cases obtained from 10 independently sampled game instances.

K
n

* 5 10 15 20 40

1 2.00 1.59 1.59 1.60 1.50 1.38

3 1.65 1.13 1.20 1.21 1.22 1.20

5 1.52 1.03 1.10 1.12 1.14 1.14

7 1.45 1.05 1.08 1.09 1.11

∗ denotes the theoretical upper bound.

2002), Algorithm 3 enjoys sublinear regret if η = ϵ ∼ O(
√

k log k
T ). However, it is not realistic to assume content creators

in practice are sophisticated enough to figure out the game parameters and the optimal learning/exploration rates. Hence,

unless specified, we always use a fixed value (η, ϵ) = (0.1, 0.1) in our experiments.

Algorithm 3 Exp3 for player-i

Input: Time horizon T , number of actions k, exploration parameter ϵ, learning rate η.

Initialization: The score vector y0 = (y1(0), · · · , yk(0)) = (0, · · · , 0).
for t = 0 to T do

Compute a mixed strategy from the accumulated scores:

pj(t) = (1− ϵ)
exp(yj(t))

∑

l∈[k] exp(yl(t))
+

ϵ

k
, ∀j ∈ [k].

Draw action si,t ∈ [k] randomly accordingly to the distribution pt = (p1(t), p2(t), . . . pk(t)).
Play action si,t and observe the utility ui(si,t, s−i,t).
Update the score

ysi,t
(t+ 1) = ysi,t

(t) + η · ui(si,t, s−i,t)

psi,t
(t)

.

end for

J. Additional Experiment Result

J.1. Empirical PoA from simulations

In Table 3 and 4 we summarize the PoA and PotA under β = 0.5 for game instances constructed from dataset-1. Keeping

n fixed, the trend with respect to K is consistent with the results observed for β = 0.1. When compared to the results

in Tables 1 and 2, it is observed that both PoA and PotA values are smaller for any fixed K ≥ 2, thereby confirming the

theoretical claim made in Theorem 1 that the PoA monotonically decreases with respect to β.

J.2. Comparison between user engagement/exposure metrics

The results presented in Figure 3 further support the superiority of utilizing the user engagement metric across a range of

environments (β,K). It is also observed that the advantage of the engagement metric over the exposure metric diminishes

as either β or K increases. This might suggest that the PotA under the exposure metric also decreases with respect to K and

β, although this claim remains unproven. Nonetheless, it constitutes an interesting question for further investigation.
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