
Enhancing The Tapis Streams API - Keeping it
Modern, Secure and Accessible
1st Sean Cleveland

University of Hawaii - System, Honolulu, HI, USA
seanbc@hawaii.edu

2nd Anagha Jamthe
Texas Advanced Computing Center, Austin, TX, USA

ajamthe@tacc.utexas.edu

3rd Jared McLean
University of Hawaii at Manoa, HI, USA

mcleanj@hawaii.edu

4th Smruti Padhy
Texas Advanced Computing Center, Austin, TX, USA

spadhy@tacc.utexas.edu

5th Maytal Dahan
Texas Advanced Computing Center, Austin, TX, USA

maytal@tacc.utexas.edu

6th Joe Stubbs
Texas Advanced Computing Center, Austin, TX, USA

jstubbs@tacc.utexas.edu

7th Gwen A. Jacobs
University of Hawaii - System, Honolulu, HI, USA

gwenh@hawaii.edu

Abstract—The Tapis Streams API is a production grade
quality service that provides REST APIs for storing, processing
and analyzing real-time streaming data. This paper focuses on
improvements made to Tapis 1.0 Streams API for making it
up-to-date and easily accessible. The newer version, Tapis 1.2
Streams API adopts the latest version of InfluxDB, InfluxDB 2.X,
which has built-in security features and supports next generation
data analytics and processing with a data processing language
Flux. This paper also discusses the measures implemented in
the Tapis 1.2 Streams API to mitigate potential security risks
involved in unauthorized data stream access by users who do
not own it. Additionally, new data Channel Actions supporting
3rd Party notification and web-hooks has been released. Lastly a
tool, Tapis UI, which is a self contained server less application to
access Tapis Services via rest calls is discussed in the paper. Tapis
UI is a lightweight browser only client application which allows
interactive access to Streams resources and real-time streaming
data.

Index Terms—CHORDS, Tapis, InfluxDB, Flux, UI

I. INTRODUCTION

The recent rise of inexpensive devices in the Internet of
Things (IoT) as well as the number of instruments and sensors
to observe and measure everything has led to a deluge of
data and demand for support related to storing, processing,
and analyzing time-series data. Many science use cases based
on monitoring require ongoing data processing or special
processing/modeling and notification of anomalous or special
events that can be identified by processing and computing
the data as it arrives. Systems that have been designed for
sensors are often aimed at industry, and either are complex to

Presented at Gateways 2022, San Diego, USA, October 18–20,
2022. https://zenodo.org/communities/gateways2022/

deploy and maintain or, if hosted, are expensive. This leaves
a gap for hosted academic streaming data solutions capable
of supporting data event-driven computational workflows. To
help address this cyberinfrastructure need to support streaming
data for science, the Texas Advanced Computing Center
(TACC) and the University of Hawaii (UH) have developed an
open-source unified middleware API infrastructure platform,
Tapis, with collaborative features to fill gaps in the existing
streaming time-series data landscape.

A sustainable cyberinfrastructure that supports real-time
streaming data is essential for the success of data-driven
scientific use-cases and workflows, which demand continu-
ous streaming-data processing. Very few systems designed
today support academic uses-cases and provide an end-to-
end solution for integrating streaming-data workflows, storage,
analysis, and retrieval of the time and location-sensitive data.
Streams API was developed as a part of the NSF-funded
Tapis Project [1], a collaborative grant between the Texas
Advanced Computing Center and the University of Hawaii,
to support real-time sensor data collection and analysis. The
goals of the Streams API [2] have been focused on creating
an interface that eliminates the complexities of gathering,
storing, and processing sensor data, enabling researchers and
domain scientists to create scientific gateways and workflows
using simple HTTP requests. Early adopters such as clima-
tologists working on the precipitation mapping and real-time
water quality monitoring provided requirements for developing
Streams API.

In this paper, we present the updates to the architecture
of the Tapis Streams service along with influxDB migration
implementation from 1.x to 2.x. We also provide design

Fig. 1. Tapis Streams API Architecture and New Channels Action Integrations (Slack, Discord and 3rd Party Web-hooks)

and implementation experiences such as maintaining security,
and updating to influxDB 2.x. We also present new Channel
action methods and the Tapis UI, a self-contained, serverless
application to access Tapis Services via rest calls. Tapis UI is
a lightweight browser-only client with built-in typescript and
react that enables accessing Streams resources and visualizing
the time-series data.

Further, we will discuss the background in Section II,
implementation in Section III, Tapis UI in Section IV, future
work in Section V, and opportunities related to the Tapis
Streams API in Section VI.

II. BACKGROUND

This section describes the key concepts involved in the
implementation of Tapis Streams API and the API itself.

A. InfluxDB

InfluxDB is a time series database designed to handle high
write and query loads. InfluxDB is used in many applications
involving large amounts of timestamped data, including De-
vOps monitoring, application metrics, IoT sensor data, and
real-time analytics. The Tapis Streams project has leveraged
the InfluxDB and it’s ecosystem of services, like Kapaictor
a real-time streams processing engine, as the time series
infrastructure for processing and storing time-series data. The
InfluxDB 1.X version is what was leveraged to implement the
original Tapis 1.0 Streams APIs. The latest release of the Tapis
Streams API has migrated to InfluxDB 2.0 this has resulted
in some significant implementation changes for the better.
Three major changes include moving the Kapacitor processing
engine into InfluxDB, adopting Flux as the supported scripting
language for queries and task and making the Influx database
into a bucket. Addressing these changes is discussed in more
detail in the Implementation Section.

B. Tapis v3 Streams

Tapis provides a enriched set of open source, hosted Ap-
plication Program Interface (API) platform for distributed

computation that enables researchers to manage data and
execute codes on a wide range of remote systems, from high-
speed storage and high-performance computing systems to
commodity servers.

Tapis V3 Streams API has been developed to support
real-time streaming data workflows with storage, retrieval
and analysis of the temporal sensor data. The API is built
using Python Flask web framework and interacts with other
Tapis Services such as Actors, Jobs, Security Kernel, Meta,
Tenants, and Tokens services as shown in 1. Streams resources
are hierarchical and based on the Cloud HOsted Real-time
Data Services(CHORDS) [3] resource model, for example,
Project is at the top level in the hierarchy which contains
important information such as project description, principal
investigator, owner, metadata about the project. Next in the
hierarchy is a Site. A site is a geographical location with
spatial co-ordinates such as latitude, longitude and elevation,
where the physical hardware for remote sensing is located. A
project can have multiple sites and the geo-spatial coordinates
associated with the sites can be used to search data related
to that site. The physical hardware where multiple sensing
devices are embedded is next in the hierarchy and is known
as an instrument. Each site can host multiple instruments
and they can be identified with their unique ids. Individual
sensors are referred to as variables, which sense physical
parameters such as temperature, humidity, rainfall, etc. and
these measurements are stored in the InfluxDB time-series
database. All the resources can be accessed only by authorized
users and individual user roles.

Streams API is deployed on a on-premise Kubernetes cluster
(Fig 1.) hosted at TACC along with other production grade
Tapis services. The Streams API deployment consists of four
primary components: the Python API, the CHORDS server,
the and two databases: InfluxDB for time-series measurements
and MySQL which CHORDS uses. CHORDS and InfluxDB
services are also deployed as individual services in the same
cluster. Kubernetes configmaps and secrets objects are used to

configure the deployments. A Tapis deployer tool, developed
at TACC is used to automate the creation of configmaps and
secrets, persistent volume claims and to start the entire Streams
API stack. Every user request to access Streams resources first
goes through the Tapis Security Kernel for authorization and
authentication check to ensure that the user has the necessary
role to perform requested action on the specified Streams
resource. Tokens service provides a signed service JWT, which
lets the Security Kernel and Metadata service to know that
request is coming from an authentic source, i.e., Streams
service. Metadata service provides a backend MongoDB for
Streams API, which stores all the metadata associated with
the Streams resources.

C. Tapis UI

To facilitate the usage of the Tapis APIs python and
TypeScript packages were developed. These packages provide
wrapper functions for submitting requests to Tapis. Addition-
ally, an online portal for interacting with Tapis via a user
interface, Tapis UI, was developed. This interface was created
using React, an open-source JavaScript framework for creating
web applications, and leverages the Tapis TypeScript library
for dispatching user actions to the Tapis APIs. A component
for interacting with the Tapis Streams API was included in
this portal. More details on Tapis UI is discussed in the later
sections.

III. IMPLEMENTATION

A. Updating to InfluxDB2

To keep the Tapis Streams API up to date migration from
InfluxDB 1.X was required. The latest version of InfluxDB
2 was a full rewrite by the Influx developers to enhance
performance and add additional features. This updated version
of Influx streamlined some of the services, where with the
1.X version the Kapacitor service was an add on separate
process and in the latest Influx it’s features were incorporated
directly into the main Influx service. This meant that the Tapis
Streams API had to be refactored on the backend to implement
templates and channels against a new set of Influx APIs.
Further, the Python SDK for InfluxDB 2 is a different library
with different methods for writing/reading data in addition to
Tasks.

Updating the influxDB2 deployment for the Tapis Streams
API required changing the InfluxDB container version and
tag to influxdb:2.1.1-alpine. In development environments a
docker-compose file is used for deploying all the local depen-
dencies (chords application, mysql, influxdb etc.) so the con-
tainer and tag were updated there. In production environments
Tapis is deployed on a Kubernetes cluster so this required
updating the config-map files. In addition to the container other
configuration variables had to be added to support InfluxDB2.
These included the default bucket name (this replaced the
previous influx database name), InfluxDB admin username,
password and token. With those

B. Maintaining Security

Due to the ability for users to submit Flux scripts as part of
the Streams Channels there was the potential for a bad actor to
generate a channel that could subscribe to a data stream they
did not own. To mitigate this the latest Streams implementation
takes advantage of having databases as buckets to segregates
each projects data into it’s own bucket and strips out references
to hard-coded buckets in the Flux codes. The Tapis Streams
service inserts its own project bucket reference at the time
of Channel creation that corresponds to the project definition
related to the specific instruments and variable parameters.
This ensures new Channel definitions can only access the
project bucket the user has authorized access defined.

C. Expanding Channel Actions

The first Streams API release included the ability for regis-
tering an instrument’s variable value for evaluation during in-
gestion to trigger a Tapis Actor execution. With the migration
to InfluxDB2 the lastest Steams API added some additional
actor methods. In addition to ”ACTOR” as a method there
is now ”DISCORD”, ”SLACK” and ”WEBHOOK”. These
new methods support passing a message to Slack, Discord
or a 3rd part API HTTP POST endpoint (Listing 1). The
”SLACCK” and ”DISCORD” actions were implemented to
construct POST bodies appropriate to those respective APIs
while the ”WEBHOOK” action has additional fields to define
the appropriate body for a generic HTTP POST API JSON
body. These new actions allow for lightweight integration for
notifications and integrations to other services.

1 client.streams.create_channels(channel_id="training
.discord.demo.tapis.channel",

2 channel_name=’discord-demo.tapis.channel’,
3 template_id="default_threshold",
4 triggers_with_actions=[
5 {"inst_ids":[inst_id],
6 "condition":{"key":inst_id+".rainfall",
7 "operator":">",
8 "val":150},
9 "action":{

10 "method":"DISCORD",
11 "webhook_url":"https://discordapp.com/api

/webhooks/XXXXXXXXX/XXXXX",
12 "message":"My Instrument exceeded

Rainfall threshold val ${ r.value}"
13 }}])

Listing 1. Example Streams Channel definition with Discord notification
action using the tapipy Tapis Python SDK

IV. TAPIS UI FOR THE STREAMS API

The Tapis UI Streams interface allows users to view data
stored by the Streams API. Projects, Sites, and Instruments are
listed in a hierarchical interface. Users are initially presented
with a list of projects. Clicking on a project will list the sites
associated with that project, and clicking on a site will list the
instruments associated with that site. Once a site is selected
the measurements for each variable tracked by that instrument
are displayed.

The displayed measurement data is grouped by variable
name. Each group provides a listing of the measurement values

Fig. 2. Tapis UI for the Streams API. A set of measurements for rainfall and temperature over a 24 hour period are displayed.

and a timestamp for when the measurement was taken. Ad-
ditionally, a graph representing a time series of the measured
values is provided (Figure 2). Large numbers of values are
collapsed by default, displaying only the first and last two
measurements. This can be expanded by clicking on the block
of values.

The set of returned measurements can also be limited using
a set of filters displayed at the top of the measurements
panel. The available parameters are start date, end date,
limit, and offset. Setting a start or end date will limit the
returned measurements to the specified range based on their
timestamp. The limit field specifies a maximum number of
values to be returned. The offset field specifies the first value
to be returned. For example, an offset of 5 will skip the
first four measurements and return values starting at the fifth
measurement.

This portal provides a simple pre-developed dashboard for
users to view data being pushed into the Streams API. This can
limit the need for additional developer overhead for generating
basic visuals or monitor and validate data streams.

V. FUTURE WORK

The Tapis Streams API will continue to evolve with ad-
ditional actions to include Tapis jobs integrations, advanced
search capabiites, share-able pre-authenticated data links and
ontology support for rich metadata.

VI. CONCLUSION

In conclusion this paper has presented the updates to
the Tapis Streams design and implementation that enhanced
security, utility and access while maintaining the integrity

of the specifications. These new enhancements keep the
Tapis Streams API current while allowing it to better serve
researchers through enhanced notifications, integrations and
basic data access and visualization of Stream’s data.

VII. SOFTWARE AVAILABILITY

The source code for the Tapis Streams API is avail-
able on GitHub at https://github.com/tapis-project/streams-api.
Source code for the Tapis-UI with streams can be found
https://github.com/tapis-project/tapis-ui

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
Office of Advanced CyberInfrastructure - Tapis Framework
#1931439 and #1931575.

REFERENCES

[1] J. Stubbs et al., “Tapis: An api platform for reproducible, distributed
computational research,” Future Generation Computer Systems, 2021,
accepted.

[2] S. Cleveland et al., “Tapis-chords integration: Time-series data support
in science gateway infrastructure.” Proceedings of Science Gateways
Conference 2019, 2019.

[3] B. Kerkez et al., “Cloud hosted real-time data services for the geosciences
(chords).” Geoscience Data Journal, 2016, pp. 2–4.

