
Federated Reinforcement Learning: Linear Speedup Under Markovian
Sampling

Sajad Khodadadian 1 Pranay Sharma 2 Gauri Joshi 2 Siva Theja Maguluri 1

Abstract

Since reinforcement learning algorithms are no-
toriously data-intensive, the task of sampling ob-
servations from the environment is usually split
across multiple agents. However, transferring
these observations from the agents to a central
location can be prohibitively expensive in terms
of the communication cost, and it can also com-
promise the privacy of each agent’s local behavior
policy. In this paper, we consider a federated
reinforcement learning framework where multi-
ple agents collaboratively learn a global model,
without sharing their individual data and poli-
cies. Each agent maintains a local copy of the
model and updates it using locally sampled data.
Although having N agents enables the sampling
of N times more data, it is not clear if it leads to
proportional convergence speedup. We propose
federated versions of on-policy TD, off-policy TD
and Q-learning, and analyze their convergence.
For all these algorithms, to the best of our knowl-
edge, we are the first to consider Markovian noise
and multiple local updates, and prove a linear
convergence speedup with respect to the number
of agents. To obtain these results, we show that
federated TD and Q-learning are special cases of
a general framework for federated stochastic ap-
proximation with Markovian noise, and we lever-
age this framework to provide a unified conver-
gence analysis that applies to all the algorithms.

1H. Milton Stewart School of Industrial & Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
2Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 15213, USA,. Correspondence to: Sajad
Khodadadian <skhodadadian3@gatech.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction

Reinforcement Learning (RL) is an online sequential
decision-making paradigm that is typically modeled as a
Markov Decision Process (MDP) (Sutton & Barto, 2018). In
an R L task, the agent aims to learn the optimal policy of the
MDP that maximizes long-term reward, without knowledge
of its parameters. The agent performs this task by repeatedly
interacting with the environment according to a behavior
policy, which in turn provides data samples that can be used to
improve the policy. This MDP-based R L framework has
a vast array of applications including self-driving cars
(Yurtsever et al., 2020), robotic systems (Kober et al., 2013),
games (Silver et al., 2016), UAV-based surveillance (Yun et
al., 2022), and Internet of Things (IoT) (Lim et al., 2020).

Due to the high-dimensional state and action spaces that are
typical in these applications, R L algorithms are extremely
data hungry (Duan et al., 2016; Kalashnikov et al., 2018;
Akkaya et al., 2019), and training R L models with limited
data can result in low accuracy and high output variance
(Islam et al., 2017; Xu et al., 2021). However, generating
massive amounts of training data sequentially can be ex-
tremely time consuming (Nair et al., 2015). Hence, many
practical implementations of R L algorithms from Atari do-
main to Cyber-Physical Systems rely on parallel sampling of
the data from the environment using multiple agents (Mnih
et al., 2016; Espeholt et al., 2018; Chen et al., 2021a; Xu
et al., 2021). It was empirically shown in (Mnih et al., 2016)
that the federated version of these algorithms yields faster
training time and improved accuracy. A naive approach
would be to transfer all the agents’ locally collected data to
a central server that uses it for training. However, in appli-
cations such as IoT (Chen & Giannakis, 2018), autonomous
driving (Shalev-Shwartz et al., 2016) and robotics (Kalash-
nikov et al., 2018), communicating high-dimensional data
over low bandwidth network link can be prohibitively slow.
Moreover, sharing individual data of the agents with the
server might also be undesirable due to privacy concerns
(Yang et al., 2019; Mothukuri et al., 2021).

Federated Learning (FL) (Kairouz et al., 2019) is an emerg-
ing distributed learning framework, where multiple agents
seek to collaboratively train a shared model, while comply-
ing with the privacy and data confidentiality requirements

N

N
j

V V V

´

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Central Server

V t + K =
1 X

V t + K
j = 1

V t
1

V t j
V t

N
t + K t + K t + K

Agent 1 Agent j Agent N

K local updates to the Local observations & policy

Value function Vt
not shared with central agent

Figure 1. Schematic representation of FRL where N agents follow a
Markovian trajectory and synchronize their parameter every K
time steps.

(Qi et al., 2021; Yang et al., 2019). The key idea is that
the agents collect data, use on-device computation capabil-
ities to locally train the model, and only share the model
updates with the central server. Not sharing data reduces
communication cost and also alleviates privacy concerns.

Recently, there is a growing interest in employing F L for
R L algorithms (also known as FRL) (Nadiger et al., 2019;
Liu et al., 2019; Ren et al., 2019; Xu et al., 2021; Zhang et
al., 2022). Unlike standard supervised learning where data
is collected before training begins, in FRL, each agent
collects data by following its own Markovian trajectory,
while simultaneously updating the model parameters.

To ensure convergence, after every K time steps, the agents
communicate with the central server to synchronize their
parameters (see Figure 1). Intuitively, using more agents
and a higher synchronization frequency should improve the
convergence of training algorithm. However, the following
questions remain to be concretely answered:

1. With N agents, do we get an N -fold (linear) speedup
in the convergence of F R L algorithms?

2. How does the convergence speed and the final error
scale with synchronization frequency K ?

While these questions are well-studied (Wang & Joshi, 2021;
Stich, 2018; Qu et al., 2020; Li et al., 2019) in federated su-
pervised learning, only a few works (Wai, 2020; Shen et al.,
2020) have attempted to answer them in the context of FRL.
However, none of them have established the convergence
analysis of FRL algorithms by considering Markovian local
trajectories and multiple local updates (see Table 1).

In this paper, we tackle this challenging open problem
and answer both the questions listed above. We propose
communication-efficient federated versions of on-policy TD,

off-policy TD, and Q-learning algorithms. In addition, we
are the first to establish the convergence bounds for these
algorithms in the realistic Markovian setting, showing a lin-
ear speedup in the number of agents. Previous works (Liu
& Olshevsky, 2021; Shen et al., 2020) on distributed R L
have only shown such a speedup by assuming i.i.d. noise.
Moreover, based on experiments, (Shen et al., 2020) conjec-
tures that linear speedup may be possible under the realistic
Markov noise setting, which we establish analytically. The
main contributions and organization of the paper are sum-
marized below.

• In the on-policy setting, in Section 4 we propose and
analyze federated TD-learning with linear function
approximation, where the agents’ goal is to evaluate a
common policy using on-policy samples collected in
parallel from their environments. The agents only share
the updated value function (not data) with the central
server, thus saving communication cost. We prove a
linear convergence speedup with the number of agents
and also characterize the impact of communication
frequency on the convergence.

• In the off-policy setting, in Section 5 we propose and
analyze the federated off-policy TD-learning and fed-
erated Q-learning algorithms. Again, we establish a
linear speedup in their convergence with respect to
the number of agents and characterize the impact of
synchronization frequency on the convergence. Since
every agent samples data using a private policy and
only communicates the updated value or Q-function,
off-policy F R L helps keep both the data as well as the
policy private.

• In Section 6, we propose a general Federated
Stochastic Approximation framework with Markovian
noise (FedSAM) which subsumes both federated TD-
learning and federated Q-learning algorithms proposed
above. Considering Markovian sampling noise poses
a significant challenge in the analysis of this algo-
rithm. The convergence result for FedSAM serves as
a workhorse that enables us to analyze both federated
TD-learning and federated Q-learning. We character-
ize the convergence of FedSAM with a refined analysis
of general stochastic approximation algorithms, funda-
mentally improving upon prior work.

2. Related Work

Single node TD-learning and Q-learning. Most existing
R L literature is focused on designing and analyzing algo-
rithms that run at a single computing node. In the on-policy
setting, the asymptotic convergence of TD-learning was
established in (Tsitsiklis & Van Roy, 1997; Tadic, 2001;
Borkar, 2009), and the finite-sample bounds were studied

ˇ `

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Table 1. Comparison of sample complexity results for federated supervised learning (local SGD) and reinforcement learning algorithms.
The possible distributed architectures are: 1) Worker-server, with a central server that coordinates with N agents; 2) Decentralized, where
each agent directly communicates with its neighboring agents, without a central server; and 3) Shared memory, where each agent modifies a
subset of the parameters of a global model held in a shared memory, that is accessible to all agents. (Recht et al., 2011).

Algorithm

Local SGD

Local SGD

TD(0)

Stochastic Approximation

A3C-TD(0)

A3C-TD(0)

TD & Q-learning

Architecture

Worker-server

Worker-server

Worker-server

Decentralized

Shared memory

Shared memory

Worker-server

References

(Khaled et al., 2020)

(Spiridonoff et al., 2021)

(Liu & Olshevsky, 2021)

(Wai, 2020)

(Shen et al., 2020)

(Shen et al., 2020)

This paper

Local
Updates

7

7

7

Markov Linear
Noise Speedup

7

7

7

7

7

7

in (Dalal et al., 2018; Lakshminarayanan & Szepesvari,
2018; Bhandari et al., 2018; Srikant & Ying, 2019; Hu &
Syed, 2019; Chen et al., 2021c). In the off-policy set-ting,
(Maei, 2018; Zhang et al., 2020) study the asymptotic and
(Chen et al., 2020a; 2021c) characterize the finite time
bound of TD-learning. The Q-learning algorithm was first
proposed in (Watkins & Dayan, 1992). There has been a
long line of work to establish the convergence properties of
Q-learning. In particular, (Tsitsiklis, 1994; Jaakkola et al.,
1994; Bertsekas & Tsitsiklis, 1996b; Borkar & Meyn, 2000;
Borkar, 2009) characterize the asymptotic convergence of Q-
learning, (Beck & Srikant, 2012b; 2013; Wainwright, 2019;
Chen et al., 2020a; 2021c) study the finite-sample conver-
gence bound in the mean-square sense, and (Even-Dar &
Mansour, 2004; Li et al., 2020; Qu & Wierman, 2020) study
the high-probability convergence bounds of Q-learning.

Federated Learning with i.i.d. Noise. When multiple
agents are used to expedite sample collection, transferring
the samples to a central server for the purpose of training
can be costly in applications with high-dimensional data
(Shao et al., 2019) and it may also compromise the agents’
privacy. Federated Learning (FL) is an emerging distributed
optimization paradigm (Konecny et al., 2016; Kairouz et al.,
2019) that utilizes local computation at the agents to train
models, such that only model updates, not data, is shared
with the central server. In local Stochastic Gradient De-
scent (Local SGD or FedAvg) (McMahan et al., 2017; Stich,
2018), the core algorithm in FL , locally trained models
are periodically averaged by the central server in order to
achieve consensus among the agents at a reduced communi-
cation cost. While the convergence of local SGD has been
extensively studied in prior work (Khaled et al., 2020; Spiri-
donoff et al., 2021; Qu et al., 2020; Koloskova et al., 2020),
these works assume i.i.d. noise in the gradients, which is
acceptable for SGD but too restrictive for R L algorithms.

Distributed and Multi-agent R L . Some recent works have
analyzed distributed and multi-agent R L algorithms in the
presence of Markovian noise in various settings such as
decentralized stochastic approximation (Doan et al., 2019;
Sun et al., 2020; Wai, 2020; Zeng et al., 2020), TD learning
with linear function approximation (Wang et al., 2020a),
and off-policy TD in actor-critic algorithms (Chen et al.,
2021e;f). However, all these works consider decentralized
settings, where the agents communicate with their neighbors
after every local update. On the other hand, we consider a
federated setting, with each agent performing multiple
local updates between successive communication rounds,
thereby resulting in communication savings. In (Shen et al.,
2020), a parallel implementation of asynchronous advantage
actor-critic (A3C) algorithm (which does not have local
updates) has been proposed under both i.i.d. and Markov
sampling. However, the authors prove a linear speedup only
for the i.i.d. case, and an almost linear speedup is observed
experimentally for the Markovian case.

3. Preliminaries: Single Node Setting

We model our R L setting with a Markov Decision Process
(MDP) with 5 tuples (S ; A; P ; R;) , where S and A are
finite sets of states and actions, P is the set of transition
probabilities, R is the reward function, and 2 (0; 1) de-
notes the discount factor. At each time step t, the system
is in some state St , and the agent takes some action A t

according to a policy (jSt) in hand, which results in re-
ward R (S t ; A t) for the agent. In the next time step, the
system transitions to a new state S t + 1 according to the state
transition probability P (jSt ; At). This series of states and
actions (St ; At)t0 constructs a Markov chain, which is the

source of the Markovian noise in RL. Throughout this paper
we assume that this Markov chain is irreducible and aperi-
odic (also known as ergodic). It is known that this Markov

X

P
t = 0

X

T

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

chain asymptotically converges to a steady state, and we
denote its stationary distribution with .

To measure the long-term reward achieved by following
policy , we define the value function

"
1

#

V (s) = E t R(St ; At) jS0 = s; At (jSt) : (1)
t = 0

Equation (1) is the tabular representation of the value func-
tion. Sometimes, however, the size of the state space jS j is
large, and storing V (s) for all s 2 S is computationally
infeasible. Hence, a low dimensional vector v 2 Rd ,
where d jS j, can be used to approximate the value

function as V (s) (s) > v (Tsitsiklis & Van Roy,
1997). Here (s) 2 Rd is a given feature vector corre-
sponding to the state s. Using a low-dimensional vector
v to approximate a high-dimensional vector (V (s)) s 2 S is
referred to as the function approximation paradigm in

RL . For each (s; a) pair, we also define the Q-function,
Q(s; a) = E[1 t R(S t ; At) jS0 = s; A0 = a], which
will be employed in Q-learning.

3.1. Temporal Difference Learning

An intermediate goal in R L is to estimate the value function
(either (V (s)) s 2 S or v) corresponding to a particular pol-icy
using data collected from the environment. This task is
denoted as policy evaluation and one of the commonly-
used approaches to accomplish this is Temporal Difference
(TD)-learning (Sutton, 1988). TD-learning is an iterative
algorithm where the elements of a d (or jS j, in the tabular
setting) dimensional vector is updated until it converges to
v (or V). This evaluated value function can be employed in
different R L algorithms such as actor-critic (Konda &
Tsitsiklis, 2000). In the on-policy function approximation
setting, the update of the n-step TD-learning is as follows

Sample A t + n (j S t + n) ; S t + n + 1 P (j S t + n ; A t + n)

defined as V () = Es[V (s)]. This scalar quantity is a metric
of average long-term rewards achieved by the agent, when it

starts from distribution and follows policy . The ultimate
goal of the agent is to obtain an optimal policy which
results in the maximum long-term rewards, i.e. 2 arg

max V (). Throughout the paper, we denote
the parameters corresponding to the optimal policy with ,
e.g., V

() V (). The task of obtaining the optimal policy

in R L is denoted as the control problem.

Q-learning (Watkins & Dayan, 1992) is one of the
most widely used algorithms in R L to solve the con-
trol problem. At each time step t, Q-learning pre-
serves a jS j:jAj dimensional table Qt, and updates it
table as Qt+1 (s; a) = Qt (St ; At) + (R (S t ; A t) +
maxa Qt (St+1 ; a) Qt (St ; At)), if (s; a) = (St ; At) and
Qt+1 (s; a) = Qt(s; a) otherwise. The jS jjAj elements of
the vector Qt are updated iteratively until it converges to
Q, corresponding to an optimal policy. Using Q, one can
obtain an optimal policy via greedy selection.

3.3. Stochastic Approximation and Finite Sample
Bounds

Both TD-learning and Q-learning can be seen as variants
of stochastic approximation (Chen et al., 2020b; 2019b;a;
2021d; Tsitsiklis, 1994). While generic stochastic approxi-
mation algorithms are studied under i.i.d. noise (Even-Dar
& Mansour, 2004; Shah & Xie, 2018; Wainwright, 2019;
Liu et al., 2015; Dalal et al., 2018), to apply them for study-
ing R L we need to understand stochastic approximation
under Markovian noise (Tsitsiklis, 1994; Qu & Wierman,
2020; Srikant & Ying, 2019; Chen et al., 2021c) which is
significantly more challenging.

For a generic stochastic approximation (i.i.d. or Markovian
noise) with constant step size , parameter vector x T , and
convergent point x, it can be shown that the algorithm have
the following convergence behaviour

t + n 1

update v t + 1 = v t + (S t) l t (R (S l ; A l) E[kxT xk2] C1(1 C0)T + C2; (3)
l = t

+ (S l+1) > v t (S l) > v t) ;
(2)

where is the step size. Note that in this setting, the evaluat-
ing policy and the sampling policy coincide. In contrast, in
the off-policy setting these two policies can in general differ,
and we need to account for this difference while running the
algorithm. We will further expand on TD-learning and its
variants in Sections 4.1 and 5.1.1.

3.2. Control Problem and Q-learning

Assuming some initial distribution on the state space,
the average value function corresponding to policy is

where C0; C1; and C2 are some problem dependent positive
constants (Look at Appendix A for a discussion on a lower
bound on the convergence of general stochastic approxima-
tion). The first term is denoted as the bias and the second
term is called the variance. According to this bound, x T

geometrically converges to a ball around x with radius
proportional to C2. Notice that we can always reduce the

variance term by reducing the step size , but this will lead to
slower convergence in the bias term. In particular, in
order to get E[kx xk2] , it is easy to see that we

need T O C2 log 1 sample complexity. Now suppose
the constant C2 is large. In this case, the variance term in
the bound in (3) is large, and the sample complexity, which
is proportional to C2 will be poor. Notice that by the dis-

0

0

t + 1 t t t ;n

p

2

^ c

T
c

c t

TP
t = 0 T T

~

0 0 l l + 1

t + n + 1t + n t + n
i i

ei
t ; l = R (S i

l ; A i
l) l+1 t l t

t
P

l = t t

t + 1 t t t ;n

t + 1 N

P
j = 1 t + 1

^
 1

c

P N i
^

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

cussion in Appendix A, this bound is tight and cannot be
improved.

This is where the F L can be employed in order to control
the variance term by generating more data. For instance,
in federated TD-learning, multiple agents work together
to evaluate the value function simultaneously. Due to this
collaboration, the agents can estimate the true value function
with a lower variance. The same holds for estimating Q in
Q-learning.

4. Federated On-policy R L

4.1. On-policy TD-learning with linear function
approximation

In this section we describe the TD-learning with linear func-
tion approximation and online data samples in the single
node setting. In this problem, we consider a full rank feature
matrix 2 jS j d, and we denote s-th row of this matrix
with (s); s 2 S . The goal is to find v 2 Rd which solves
the following fixed point equation:

v = ((T)n v): (4)

In equation (4), () is the projection with respect to the
weighted 2-norm, i.e., (V) = arg minv 2 R d kv Vk. Here
kVk = V > V and is a diagonal matrix with
diagonal entries corresponding to . In equation (4), (T) n

denotes the n-step Bellman operator (Tsitsiklis & Van
Roy, 1997). It is known (Tsitsiklis & Van Roy, 1997) that
equation (4) has a unique solution v, and v is “close” to
the true value function V . n-step TD-learning algorithm,
which was shown in (2), is an iterative algorithm to obtain
this unique fixed point using samples from the
environment. Note that in this algorithm states and actions
are sampled over a single trajectory, and hence the noise in
updating v t is Markovian. Furthermore, since the policy
which samples the actions and the the evaluating policy
are both , this algorithm is on-policy. As described in
(Tsitsiklis & Van Roy, 1997; Bertsekas & Tsitsiklis, 1996a),
the TD-learning algorithm can be studied under the umbrella
of linear stochastic approximation with Markovian noise.
More recently, the authors in (Bhandari et al., 2018; Srikant
& Ying, 2019) have shown that the update parameter of TD-
learning v t converges to v in the form E[kvt vk2] O((1
C0)t +). In the next section we show how F L can improve
this result.

4.2. Federated TD-learning with linear function
approximation

The federated version of on-policy n-step TD-learning with
linear function approximation is shown in Algorithm 1.
In this algorithm we consider N agents which collabo-
ratively work together to evaluate v. For each agent

i; i = 1; 2; : : : ; N , we initialize their corresponding pa-

rameters v i = 0. Furthermore, each agent i samples
its initial state S i from some given distribution . In the
next time steps, each agent follows a single Markovian tra-
jectory generated by policy , independently from other
agents. At each time t, the parameter of each agent i is
updated using this independently generated trajectory as
v i = v i + (S i) E i . Finally, in order to ensure con-
vergence to a global optimum, every K time steps all the
agents send their parameters to a central server. The central
server evaluates the average of these parameters and returns
this average to each of the agents. Each agent then continues
their update procedure using this average.

Notice that the averaging step is essential to ensure syn-
chronization among the agents. Smaller K results in more
frequent synchronization, and hence better convergence
guarantees. However, setting smaller K is equivalent to
more number of communications between the single agents
and the central server, which incurs higher cost. Hence, an
intermediate value for K has to be chosen to strike a balance
between the communication cost and the accuracy. At the
end, the algorithm samples a time step T qT , where

qc (t) = P T 1

t

0
for t = 0; 1; : : : ; T 1 (5)

t 0 =0

and c > 1 is some constant. Since we have qc (t) 0 and
T 1 qc (t) = 1, it is clear that qc () is a probability

distribution over the time interval [0; T 1]. In Theorem
4.1 we characterize the convergence of this algorithm as
a function of , N , and K . Throughout the paper, O()
ignores the logarithmic terms.

Algorithm 1 Federated n-step TD (On-policy, Function
Approx.)

1: Input: Policy ;
2: Initialization: v i = 0 and S i and f A i ; S i g for

0 l n 1 and all i
3: for t = 0 to T 1 do
4: for i = 1; : : : ; N do

5: Sample A i (jS i) ; S i
6:

P (j S t + n ; A t + n)
+ (S i) > v i (S i) > v i for

l = t; : : : ; t + n 1
7: E i

; n = t + n 1 l t ei; l
8: v i = v i + (S i) E i 9:
end for

10: if t + 1 mod K = 0 then
11: v i 1 N v j ; 8 i 2 [N]
12: end if
13: end for
14: Sample T q T

T D L 15:

Return: N i = 1

v
T

N

T N T̂
^

T 2
1

1 0 2

3 4

i

T ^ 2
~ 1

i

~

t + 1

^

^

^
T

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Theorem 4.1. Let v ^ = 1 P i = 1 v i denote the
average
of the parameters across agents at the random time T . For
small enough step size , and T O(log 1), there exist
constant c T D L 2 (0; 1) (see Section C.1 for precise state-
ment), such that we have

E[kv ^ vk2] C T D L (1 C T D L) T + C T D L
N

2
+

C T D L (K 1)2
 + C T D L 32;

where C T D L , i = 0; 1; 2; 3; 4 are problem dependent
constants, and = O(log(1=)). By choosing =
O(lo g (N T)) and K = T =N , we achieve E[kvT vk2] within
T = O N iterations.

For brevity purposes, here we did not show the exact depen-
dence of the constants C T D L , i = 0; 1; 2; 3 on the problem
dependent constants. For a discussion on the detailed ex-
pression look at Section C.1 in the appendix.

Theorem 4.1 shows that federated TD-learning with linear
function approximation enjoys a linear speedup with respect
to the number of agents. Compared to the convergence
bound of general stochastic approximation in (3), the bound
in Theorem 4.1 has three differences. Firstly, the variance
term which is proportional to the step size is divided
with the number of agents N . This will allow us to control
the variance (and hence improve sample complexity) by
employing more number of agents. Secondly, we have
an extra term which is zero with perfect synchronization
K = 1. Although this term is not divided with N , but it is
proportional to 2, which is one order higher than the
variance term in (3). Finally, the last term is of the order
O(3), which can be handled by choosing small enough
step size.

Furthermore, according to the choice of K in Theorem 4.1,
after T iterations, the communication cost of federated TD is
T =K = N . However, by employing federated TD-learning
in the naive setting where all the agents communicate with
the central server at every time step, the communication cost
will be O(T). Hence, we observe that by carefully tuning
the hyper parameters of federated TD, we can significantly
reduce the communication cost of the overall algorithm,
while not loosing performance in terms of the sample com-
plexity.

Finally, federated TD-learning Algorithm 1 preserves the
privacy of the agents. In particular, since the single agents
only require to share their parameters v i , the central
server will not be exposed to the state-action-reward tra-
jectory generated by each agent. This can be essential in
some applications where privacy is an issue (Mothukuri
et al., 2021; Truex et al., 2019). Examples of such applica-
tions include autonomous driving (Liang et al., 2019; Zhao
et al., 2021), Internet of Things (IoT) (Nguyen et al., 2021;

Ren et al., 2019; Wang et al., 2020b), and cloud robotics
(Liu et al., 2019; Xu et al., 2021).

Remark. In algorithm 1, the randomness in choosing T is
independent of all the other randomness in the problem.
Hence, in a practical setting, one can sample T ahead of
time, before running the algorithm, and stop the algorithm
at time step T and output v ^ . By this method, we require
only a single data point to be saved, which results in the
memory complexity of O(1) for the algorithm.

5. Federated Off-Policy R L

On-policy TD-learning requires online sampling from the
environment, which might be costly (e.g. robotics (Gu et al.,
2017; Levine et al., 2020)), high risk (e.g. self-driving cars
(Yurtsever et al., 2020; Maddern et al., 2017)), or unethical
(e.g. in clinical trials (Gottesman et al., 2019; Liu et al.,
2018; Gottesman et al., 2020)). Off-policy training in R L
refers to the paradigm where we use data collected by a
fixed behaviour policy to run the algorithm. When employed
in federated setting, off-policy R L has privacy advantages
as well (Foerster et al., 2016; Qi et al., 2021; Zhuo et al.,
2019). In particular, suppose each single agent attains a
unique sampling policy, and they do not wish to reveal
these policies to the central server. In off-policy FL, agents
only transmit sampled data, and hence the sampling policies
remain private to each agent.

In Section 5.1 we will discuss off-policy TD-learning and
in Section 5.2 we will discuss Q-learning, which is an off-
policy control algorithm. For the off-policy algorithms,
we only study the tabular setting. Notice that it has been
observed that the combination of off-policy sampling and
function approximation in R L (also known as deadly triad
(Sutton & Barto, 2018)) can result in instability or even di-
vergence (Baird, 1995). Recently there has been some work
to overcome deadly triad (Chen et al., 2021b). Extension of
our work to function approximation in the off-policy setting
is a future research direction.

5.1. Federated Off-Policy TD-learning

In the following, we first discuss single-node off-policy TD-
learning, and then we generalize it to the federated setting.

5.1.1. O FF - P O L I C Y TD- L E A R N I N G

In off-policy TD-learning the goal is to evaluate the value
function V = (V (s)) s 2 S corresponding to the policy using
data sampled from some fixed behaviour policy b. In this
setting, the evaluating policy and the sampling policy b can
be arbitrarily different, and we need to account for this
difference while performing the evaluation. Although and
b can be different, notice that the value function V does
not depend on b. In order to account for this

b (a j s)

t

i i(A j S)

^
T

T 2

T D p
e 1 + m i n

n + 1 2

T D0 < c < 1.

T N

P
i = 1 T̂

^ 1 T1 2 N

3

I 4 n 2
m a x

31 1 2

0 0 l l + 1

t + n t + n t + n + 1

t + n t + n
i i i

t
i

t
i

tP
l = t

t + 1

j j j t t

t + 1 t

t + 1 N

P
j = 1 t + 1

^

N

c

P N i
^

 m a x
2 3: = C3 : m a x

2 4C , C ,
T D
i

T ’ T D

T 1

~
N

 m a x
5 (1) 9

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

difference, we introduce the notion of importance sampling
as Ib (s; a) = (a j s) which is employed in the off-policy

TD-learning.

Recently, several works studied the finite-time convergence
of off-policy TD-learning. In particular, the authors in (Kho-
dadadian et al., 2021; Chen et al., 2021c; 2020b; 2021d)
show that, similar to on-policy TD, off-policy TD-learning
can be studied under the umbrella of stochastic approxi-
mation. Hence, this algorithm enjoys similar convergence
behaviour as (3).

5.1.2. F E D E R AT E D O FF - P O L I C Y TD- L E A R N I N G

The federated version of n-step off-policy TD-learning is
shown in Algorithm 2. In this algorithm, each agent i at-
tains a unique (and private) sampling policy i and fol-

lows an independent trajectory generated by this policy.
Furthermore, at each time step t, each agent i attains a jSj-
dimensional vector V i and updates this vector using the sam-

ples generated by i . In order to account for the off-policy
sampling, each agent utilizes I (i) (S i ; A i) = i (A i j S i) in
the update of their algorithm. We further define Im a x =
maxs;a; i I (i) (s; a), which is a measure of discrepancy be-
tween the evaluating policy and sampling policy i of all the
agents.

In order to ensure synchronization, all the agents transmit
their parameter vectors to the central server every K time
steps. The central server returns the average of these vec-
tors to each agent and each agent follows this averaged
vector afterwards. Notice that in federated off-policy TD-
learning Algorithm 2, each agent share neither their sam-
pled trajectory of state-action-rewards, nor their sampling
policy with the central server. This provides two levels
of privacy for the single agents. At the end, the algo-
rithm samples a time step T q c T D , where the distri-
bution qc is defined in (5) and c T D = 1 ’ T D , where
’ = 1 r 0 : 5 e 1 = 4 (2 m i n (1 n + 1)) . Here, we de-

2 (1)
2 2 m i n (1 n + 1)

note min = mins;i
i

(s). The constant c T D is carefully
chosen to ensure the convergence of Algorithm 2. Further-
more, for small enough step size , it can be shown that

Theorem 5.1 states the convergence of this Algorithm.

Theorem 5.1. Consider the federated n-step off-policy TD-
learning Algorithm 2. Denote V ^ = 1 N V i . For
small enough step size and large enough T , we have

E [k V T Vk2] C T D T
1

c T
D + C T D T

2
+

C T D T (K 1)2;

where C T D T = C T D T :
m i n (1)

 , C T D T =

Algorithm 2 Federated n-step TD (Off-policy Tabular Set-
ting)

1: Input: Policy ;
2: Initialization: V i = 0 and S i and f A i ; S i g i for

0 l n 1 and all i
3: for t = 0 to T 1 do
4: for i = 1; : : : ; N do
5: Sample A i i (jS i) ; S i P (jS i

; A i)
6: et;l = R (S l ; A l) + V i (S l + 1) V i (S l)
7: Update V i (s) = V i (s) +

t + n 1 l t l = t I (i) (S i ; A i) ei; l if s = S i

and V i (s) = V i (s) otherwise.
8: end for
9: if t + 1 mod K = 0 then

10: V i 1 N V j ; 8 i 2 [N]
11: end if
12: end for
13: Sample T q T

T D

14: Return: 1 i = 1 V T

T D T I
3 n 1 j S j log 2 (j S j) T D T T D T I

7 n 3 j S j 2
 log 2 (j S j)

m i n (1) 4
m i n (1) 8

and C T , i = 1; 2; 3 are universal problem indepen-
dent constants. In addition, choosing = 8 l o g (N T)

and K = T =N , we have E[kV ^ Vk2] after T =
O 1 : I 7 n 3 j S j 2

 log 2 (j S j) iterations.
m i n

The proof is given in Section C.2 in the appendix.

Note that similar to on-policy TD-learning Algorithm 1,
off-policy TD-learning also enjoys a linear speedup while
maintaining a low communication cost. In addition, this
algorithm preserves the privacy of the agents by holding
both the data and the sampling policy private.

5.2. Federated Q-learning

So far we have discussed policy evaluation problem with
on and off-policy samples. Next we aim at solving the
control problem by employing the celebrated Q-learning
algorithm (Watkins & Dayan, 1992; Tsitsiklis, 1994). In
the next section we will explain the Q-learning algorithm.
Further, in Section 5.2.2 we will provide a federated version
of Q-learning along with its convergence result.

5.2.1. Q-L E A R N I NG

The goal of Q-learning is to evaluate Q, which is the unique
Q-function corresponding to the optimal policy. Knowing
Q, one can obtain an optimal policy through a greedy
selection (Puterman, 2014), and hence resolve the control
problem.

T ’ Q

b

0 0

bt t t + 1 t t
i i i i

i i i i i i i

i i i i

t + 1 N

P
j = 1 t + 1

^ c

N
P N i

^

2

p
e 1 + m i n

2 min

T N
P

i = 1 T̂

T 1 Q
Q Q

2

N
Q

3 4 (1) 8

1
2
m i n (1) 41 1 2 2 3

i

T 1

~
N 5 (1) 9

t

0

t + 1 t t t t t

t

t N

P
j = 1 t

^ c c c
0t = 0

c

T

t

t

! 1 t

! 1 t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Suppose fSt ; At gt0 is generated by a fixed behaviour pol-
icy b. At each time step t, Q-learning preserves a jS j:jAj
table Qt and updates the elements of this table as shown in
Section 3.2. By assuming b to be an ergodic policy, the
asymptotic convergence of Qt to Q has been established
in (Bertsekas & Tsitsiklis, 1996b). Furthermore, it can be
shown that Q-learning is a special case of stochastic ap-
proximation and enjoys a convergence bound similar to (3)
(Beck & Srikant, 2012a; L i et al., 2020; Qu & Wierman,
2020; Chen et al., 2021c).

Two points worth mentioning about the Q-learning algo-
rithm. Firstly, Q-learning is an off-policy algorithm in the
sense that only samples from a fixed ergodic policy is needed
to perform the algorithm. Secondly, as opposed to the TD-
learning, the update of the Q-learning is non-linear. This
imposes a sharp contrast between the analysis of Q-learning
and TD-learning (Chen et al., 2019a).

5.2.2. F E D E R AT E D Q-L E A R N I NG

Algorithm 3 provides the federated version of Q-learning.
We characterize its convergence in the following theorem.

Algorithm 3 Federated Q-learning
1: Input: Sampling policy i for i = 1; 2; : : : ; N , initial

distribution
2: Initialization: Qi = 0 and S i for all i 3:
for t = 0 to T 1 do
4: for i = 1; : : : ; N do
5: Sample A i i (jS i) ; S i P (jS i ; A i)
6: Update Q t + 1 (s; a) = Q t (S t ; A t) +

R (S t ; A t) + maxa Q t (S t + 1 ; a) Q t (S t ; A t) , if
(s; a) = (S t ; A t) and Q t + 1 (s; a) = Qt (s; a)
otherwise.

7: end for
8: if t + 1 mod K = 0 then
9: Qi 1 N Qj ; 8 i 2 [N]

10: end if
11: end for
12: Sample: T q T

Q

13: Return: 1 i = 1 QT

Theorem 5.2. Consider the federated Q-learning Algo-
rithm 3 with cQ = 1 ’ Q 2 (0; 1) , where ’ Q =
1 r 0 : 5 e 1 = 4 (2 m i n (1)) and we denote =

2 (1) 2
2 m i n (1)

mins;a;i
i
(s)i (ajs). Denote Q ^ = 1 N Qi . For

small enough step size and large enough T , we have

E[kQ ^ Qk2] C1
1

cT + C2
 + C3 (K 1)2;

where C Q = C Q :
m i n (1) 3 , C Q = C Q : j S j log 2 (jS j) , C Q =

C Q : jS j 2 log 2 (jS j) , and C Q , i = 1; 2; 3 are universal problem
m i n

independent constants. In addition, choosing = 8 l o g (N T)

and K = T =N , we have E[kQ ^ Qk2] within

T = O 1 : j S j 2 log 2 (j S j) iterations.
m i n

According to Theorem 5.2, federated Q-learning Algorithm
3, similar to federated off-policy TD-learning, enjoys lin-
ear speedup, communication efficiency as well as privacy
guarantees. We would like to emphasize that the update of
Q-learning is non-linear. Hence the result of Theorem 5.2
cannot be derived from Theorems 4.1 and 5.1.

6. Generalized Federated Stochastic
Approximation

In this section we study the convergence of a general fed-
erated stochastic approximation for contractive operators,
FedSAM, which is presented in Algorithm 4. In this algo-
rithm there are N agents i = 1; 2; : : : ; N . At each time
step t 0, each agent i maintains the parameter i 2 Rd . At
time t = 0, all agents initialize their parameters with i =
0. Next, at time t 0, each agent i updates its param-eter as i

= i + G i (i ; y i) i + b i (y i) . Here denotes the step
size, and y i is a noise which is Marko-vian along the time

t, but is independent across the agents i. This notion is
defined more concretely in Assumption 6.4. We note that
functions G i (;) and b i () are allowed to be dependent on

the agent i. This allows us to employ the convergence
bound of FedSAM in order to derive the convergence

bound of off-policy TD-learning with different behaviour
policies across agents. In order to avoid diver-

gence, every K time steps we synchronize the parameters
of all the agents as i t , 1 N j ; for all i 2 [N].
Note that although smaller K corresponds to more frequent
synchronization and hence more “accurate” updates, at the
same time it results in a higher communication cost, which
is not desirable. Hence, in order to determine the optimal
choice of synchronization period, it is essential to charac-
terize the dependence of the convergence on K . This is one
of the results which we will derive in Theorem B.1. Finally,
the algorithm samples T qT , where qT (t) = P T 1

t

 t 0

and outputs ^. This sampling scheme is essential for the
convergence of overall algorithm. We further make some
assumptions regarding the underlying process.

First, we assume that the expectation of G i (; y i) geometri-
cally converges to some function G i () and the expectation of
b i (y i) geometrically converges to 0. In particular, we
have the following assumption.

Assumption 6.1. For every agent i, there exist a function
G i () such that we have

t
lim E[G i (; y i)] = G i ()

t
lim E[b i (y i)] = 0: (6)

0

t + 1 t t t t t

t + 1 N

P
j = 1 t + 1

^

N

TP N i
^

hat for every i = 1; 2; : : : ; N ,

t

t
(7)

t

t

i ij j

2

N

P
i = 1 t

T
1

^ c
1

F S A M

2

N
i

T ’ 2

~
N

^
2

T

~

~

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Algorithm 4 Federated Stochastic Approximation with
Markovian Noise (FedSAM)

1: Input: c F S A M ; T ; 0 ; K; 2: i

= 0 for all i = 1; : : : ; N . 3: for t
= 0 to T 1 do
4: i = i + G i (i ; y i) i + b i (y i) ; 8 i 2 [N]
5: if t + 1 mod K = 0 then
6: i = t + 1 , 1 N j ; 8 i 2 [N]
7: end if
8: end for
9: Sample T q c F S A M ().

10: Return: 1 i = 1 T

t
Furthermore, there exists m1; m2 0 and 2 [0; 1), such

kG i () E[Gi (; y i)]kc m1kkc
t

kE[bi (y i)]kc m2
t;

where k kc is a given norm.

Next, we assume a contraction property on the expected
operator G i () .
Assumption 6.2. We assume all expected operators G i ()
are contraction mappings with respect to k kc with contrac-
tion factor c 2 (0; 1). That is, for all i = 1; 2; : : : ; N ,

kGi (1) Gi (2)kc ck1 2kc; 8 1; 2 2 Rd :

Next, we consider some Lipschitz and boundedness proper-
ties on G i (;) and bi ().

Assumption 6.3. For all i = 1; : : : ; N , there exist constants
A1 , A2 and B such that

1. kGi (1 ; y i) Gi (2 ; y i)kc A1k1 2kc, for all 1; 2; yi .

2. kGi (; y i)kc A2kkc for all ; y i . 3.

kbi (y i)kc B for all y i .

Remark. By Assumption 6.2 and due to the Banach fixed
point theorem, G i () has a unique fixed point for all i =
1; 2; : : : ; N . Furthermore, by Assumption 6.3, we have
G i (0; y) = 0. Hence the point 0 is the unique fixed point of
G i () .

Finally, we impose an assumption on the random data y i .
Assumption 6.4. We assume that the Markovian noise y i

(Markovian with respect to time t) is independent across
agents i. In other words, for all measurable functions f ()
and g(), we assume the following

E t r [f (y t) g (yt)] = E t r [f (yt)] E t r [g (yt)];

for all r t; i = j .

Theorem 6.1 states the convergence of Algorithm 4.
Theorem 6.1. Consider the federated stochastic approxi-
mation Algorithm 4 with c F S A M = 1 ’ 2 2 (0; 1) (’ 2 is
defined in Equation (14) in the appendix), and synchroniza-
tion frequency K . Denote t = 1 N i , and consider ^
as the output of this algorithm after T iterations. As-
sume = d2 log e. For T m a x f K + ; 2g and small
enough step size , we have

E[kT k
2] C1 cT 2 + 1 + C2

 + C 3 (K 1)2
 + C4

32; (8)

where C , i = 1; 2; 3; 4 are some constants which are
specified precisely in Appendix B, and are independent of
K ; ; N . Choosing = 8 l o g (N T) and K = T =N ,

we get T = O 1 sample complexity for achieving
E[kT kc] .

Theorem 6.1 establishes the convergence of ^ to zero in
the expected mean-squared sense. The first term in (8) con-
verges geometrically to zero as T grows. The second term
is proportional to similar as (3). However, the number of
agents N in the denominator ensures linear speedup,
meaning that for small enough (such that =N is the dom-
inant term), the sample complexity of each individual agent,
relative to a centralized system, is reduced by a factor of
N . The third term has quadratic dependence on , and is
zero when we have perfect synchronization, i.e. K = 1.
The last term is proportional to 3, and has the weakest
dependency on the step size . For K > 1 we can merge
the last two terms by upper bounding 3 2. The current upper
bound, however, is tighter since with K = 1 (i.e.
perfect synchronization) we have no term in the order 2.
Note that similar bounds (sans the last 3 term) have been
established for the simpler i.i.d. noise case in the federated
setting (Khaled et al., 2020; Koloskova et al., 2020). Conse-
quently, we achieve the same sample complexity results for
the more general federated setting with Markov noise.
Remark. The bound in Theorem 6.1 holds only after T >
maxfK + ; 2g and for all synchronization periods K 1. At
K = 1 the third term in the bound goes away, and we will
be left only with the first order term, which is linearly
decreasing with respect to the number of agents N , and the
third order term O(3). The last term, however, is not tight
and can be further improved to be of the order O(j); j > 3.
However, for that we need to assume larger , which means the
bound only hold after a longer waiting time. In particular, by
choosing = dr log e, we can get O(2r 1) for the last term
(see the proof of Lemma B.2).

Acknowledgment

This work was partially supported by NSF awards CCF-
1944993, CCF-2045694, CNS-2112471, CMMI-2112533,
EPCN-2144316, and an award from Raytheon technologies.

´
´ ´

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., Schneider, J., Tezak, N., Tworek, J., Welin-
der, P., Weng, L., Yuan, Q., Zaremba, W., and Zhang,
L . Solving Rubik’s cube with a robot hand. Preprint
arXiv:1910.07113, 2019.

Baird, L. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning Proceed-
ings 1995, pp. 30–37. Elsevier, 1995.

Banach, S. Sur les operations dans les ensembles abstraits
et leur application aux equations integrales. Fund. math,
3(1):133–181, 1922.

Beck, A. First-order methods in optimization, volume 25.
SIAM, 2017.

Beck, C. L . and Srikant, R. Error bounds for constant
step-size Q-learning. Syst. Control. Lett., 61:1203–1208,
2012a.

Beck, C. L . and Srikant, R. Error bounds for constant
step-size Q-learning. Systems & control letters, 61(12):
1203–1208, 2012b.

Beck, C. L . and Srikant, R. Improved upper bounds on the
expected error in constant step-size Q-learning. In 2013
American Control Conference, pp. 1926–1931. IEEE,
2013.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996a.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996b.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and
Bertsekas, D. P. Dynamic programming and optimal
control, volume 2. Athena scientific Belmont, MA, 1995.

Bhandari, J., Russo, D., and Singal, R. A finite time anal-
ysis of temporal difference learning with linear function
approximation. In Conference on learning theory, pp.
1691–1692. PMLR, 2018.

Borkar, V. S. Stochastic approximation: a dynamical sys-
tems viewpoint, volume 48. Springer, 2009.

Borkar, V. S. and Meyn, S. P. The ODE method for con-
vergence of stochastic approximation and reinforcement
learning. SIAM Journal on Control and Optimization, 38
(2):447–469, 2000.

Chen, T. and Giannakis, G. B. Bandit convex optimization
for scalable and dynamic iot management. IEEE Internet
of Things Journal, 6(1):1276–1286, 2018.

Chen, T., Zhang, K., Giannakis, G. B., and Basar, T.
Communication-efficient policy gradient methods for dis-
tributed reinforcement learning. I E E E Transactions on
Control of Network Systems, 2021a.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke,
J.-P. Finite-sample analysis of nonlinear stochastic ap-
proximation with applications in reinforcement learning.
Under review by Automatica, Preprint arXiv:1905.11425,
2019a.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke,
J.-P. Performance of Q-learning with linear function ap-
proximation: Stability and finite-time analysis. In OptRL
Workshop at NeuRIPS 2019, 2019b.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K . Finite-sample analysis of stochastic ap-
proximation using smooth convex envelopes. Under Re-
view at Mathematics of Operations Research, Preprint
arXiv:2002.00874, 2020a.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K . Finite-sample analysis of stochastic
approximation using smooth convex envelopes. In
Advances in Neural Information Processing Sys-
tems, 2020b. URL h t t p s : / / p r o c e e d i n g s .
n e u r i p s . c c / p a p e r / 2 0 2 0 / f i l e /
5d44ee6f2c3f71b73125876103c8f6c4-Paper.
pdf.

Chen, Z., Khodadadian, S., and Maguluri, S. T.
Finite-Sample Analysis of Off-Policy Natural Actor-
Critic with Linear Function Approximation. Preprint
arXiv:2105.12540, 2021b. Submitted to NeurIPS 2021.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam,
K. A Lyapunov Theory for Finite-Sample Guarantees
of Asynchronous Q-Learning and TD-Learning Vari-
ants. Under review by JMLR, Preprint arXiv:2102.01567,
2021c.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shan-
mugam, K . Finite-Sample Analysis of Off-Policy TD-
Learning via Generalized Bellman Operators. Preprint
arXiv:2106.12729, 2021d.

Chen, Z., Zhou, Y., and Chen, R. Multi-agent off-policy td
learning: Finite-time analysis with near-optimal sam-ple
complexity and communication complexity. arXiv
preprint arXiv:2103.13147, 2021e.

Chen, Z., Zhou, Y., Chen, R., and Zou, S. Sample
and communication-efficient decentralized actor-critic
algorithms with finite-time analysis. arXiv preprint
arXiv:2109.03699, 2021f.

https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf

¨ ´

´

ˇ ` ´

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Dalal, G., Szorenyi, B., Thoppe, G., and Mannor, S. Finite
sample analysis for TD(0) with function approximation.
In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Doan, T., Maguluri, S., and Romberg, J. Finite-Time Anal-
ysis of Distributed TD(0) with Linear Function Approx-
imation on Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning, pp. 1626–
1635, 2019.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl 2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., Legg, S., and Kavukcuoglu, K . IMPALA: Scalable
Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures. In International Conference on
Machine Learning, pp. 1406–1415, 2018.

Even-Dar, E. and Mansour, Y. Learning Rates for Q-
Learning. J. Mach. Learn. Res., 5:1–25, 2004. ISSN
1532-4435.

Foerster, J. N., Assael, Y. M., De Freitas, N., and Whiteson,
S. Learning to communicate with deep multi-agent re-
inforcement learning. arXiv preprint arXiv:1605.06676,
2016.

Gottesman, O., Johansson, F., Komorowski, M., Faisal, A.,
Sontag, D., Doshi-Velez, F., and Celi, L . A. Guidelines
for reinforcement learning in healthcare. Nature medicine,
25(1):16–18, 2019.

Gottesman, O., Futoma, J., Liu, Y., Parbhoo, S., Celi, L.,
Brunskill, E., and Doshi-Velez, F. Interpretable off-policy
evaluation in reinforcement learning by highlighting in-
fluential transitions. In International Conference on Ma-
chine Learning, pp. 3658–3667. PMLR, 2020.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

Hu, B. and Syed, U. A. Characterizing the exact be-
haviors of temporal difference learning algorithms us-
ing markov jump linear system theory. arXiv preprint
arXiv:1906.06781, 2019.

Islam, R., Henderson, P., Gomrokchi, M., and Precup,
D. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Jaakkola, T., Jordan, M. I., and Singh, S. P. Convergence of
stochastic iterative dynamic programming algorithms. In
Advances in neural information processing systems, pp.
703–710, 1994.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Preprint arXiv:1912.04977, 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation.
Preprint arXiv:1806.10293, 2018.

Khaled, A., Mishchenko, K., and Richtarik, P. Tighter
theory for local sgd on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020.

Khodadadian, S., Chen, Z., and Maguluri, S. T. Finite-
Sample Analysis of Off-Policy Natural Actor-Critic Algo-
rithm. In International Conference on Machine Learning,
2021.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381–5393. PMLR, 2020.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008–1014, 2000.

Konecny, J., McMahan, H. B., Ramage, D., and Richtarik, P.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

Lakshminarayanan, C. and Szepesvari, C. Linear stochas-
tic approximation: How far does constant step-size and
iterate averaging go? In International Conference on Ar-
tificial Intelligence and Statistics, pp. 1347–1355, 2018.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. Preprint arXiv:2005.01643, 2020.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Sample Com-
plexity of Asynchronous Q-Learning: Sharper Analysis
and Variance Reduction. Advances in neural information
processing systems, 2020.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Liang, X., Liu, Y., Chen, T., Liu, M., and Yang, Q. Federated
transfer reinforcement learning for autonomous driving.
arXiv preprint arXiv:1910.06001, 2019.

Lim, H.-K., Kim, J.-B., Heo, J.-S., and Han, Y.-H. Federated
reinforcement learning for training control policies on
multiple iot devices. Sensors, 20(5):1359, 2020.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., and
Petrik, M. Finite-sample analysis of proximal gradi-
ent TD algorithms. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, pp.
504–513, 2015.

Liu, B., Wang, L., and Liu, M. Lifelong federated reinforce-
ment learning: a learning architecture for navigation in
cloud robotic systems. I E E E Robotics and Automation
Letters, 4(4):4555–4562, 2019.

Liu, R. and Olshevsky, A. Distributed td (0) with almost no
communication. arXiv preprint arXiv:2104.07855, 2021.

Liu, Y., Gottesman, O., Raghu, A., Komorowski, M., Faisal,
A. A., Doshi-Velez, F., and Brunskill, E. Representation
Balancing MDPs for Off-policy Policy Evaluation. Ad-
vances in Neural Information Processing Systems, 31:
2644–2653, 2018.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P. 1
year, 1000 km: The oxford robotcar dataset. The Interna-
tional Journal of Robotics Research, 36(1):3–15, 2017.

Maei, H. R. Convergent actor-critic algorithms under off-
policy training and function approximation. Preprint
arXiv:1802.07842, 2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K . Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. A survey on security
and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

Nadiger, C., Kumar, A., and Abdelhak, S. Federated re-
inforcement learning for fast personalization. In 2019

IEEE Second International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE), pp. 123–127.
IEEE, 2019.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon,
R., De Maria, A., Panneershelvam, V., Suleyman, M.,
Beattie, C., Petersen, S., et al. Massively parallel meth-
ods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne,
A., Li, J., and Poor, H. V. Federated learning for inter-
net of things: A comprehensive survey. arXiv preprint
arXiv:2104.07914, 2021.

Puterman, M. L . Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Qi, J., Zhou, Q., Lei, L., and Zheng, K . Federated rein-
forcement learning: Techniques, applications, and open
challenges. arXiv preprint arXiv:2108.11887, 2021.

Qu, G. and Wierman, A. Finite-Time Analysis of Asyn-
chronous Stochastic Approximation and Q-Learning. In
Conference on Learning Theory, pp. 3185–3205. PMLR,
2020.

Qu, Z., Lin, K., Kalagnanam, J., L i , Z., Zhou, J., and
Zhou, Z. Federated learning’s blessing: Fedavg has linear
speedup. arXiv preprint arXiv:2007.05690, 2020.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient
descent optimal for strongly convex stochastic optimiza-
tion. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, pp.
1571–1578, 2012.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A
lock-free approach to parallelizing stochastic gradient de-
scent. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., and Weinberger, K . Q. (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran As-
sociates, Inc., 2011. UR L h t t p s : / / p r o c e e d i n g s .
n e u r i p s . c c / p a p e r / 2 0 1 1 / f i l e /
218a0aefd1d1a4be65601cc6ddc1520e-Paper.
pdf.

Ren, J., Wang, H., Hou, T., Zheng, S., and Tang, C. Feder-
ated learning-based computation offloading optimization
in edge computing-supported internet of things. I E E E
Access, 7:69194–69201, 2019.

Shah, D. and Xie, Q. Q-learning with nearest neighbors. In
Advances in Neural Information Processing Systems, pp.
3111–3121, 2018.

https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf

´

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous driv-
ing. Preprint arXiv:1610.03295, 2016.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Shao, K., Tang, Z., Zhu, Y., Li , N., and Zhao, D. A survey
of deep reinforcement learning in video games. arXiv
preprint arXiv:1912.10944, 2019.

Shen, H., Zhang, K., Hong, M., and Chen, T. Asynchronous
advantage actor critic: Non-asymptotic analysis and lin-
ear speedup. arXiv preprint arXiv:2012.15511, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484, 2016.

Spiridonoff, A., Olshevsky, A., and Paschalidis, I. C.
Communication-efficient sgd: From local sgd to one-shot
averaging. In Advances in Neural Information Processing
Systems, volume 34, 2021.

Srikant, R. and Ying, L. Finite-time error bounds for linear
stochastic approximation and TD learning. In Conference
on Learning Theory, pp. 2803–2830. PMLR, 2019.

Stich, S. U. Local sgd converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2018.

Sun, J., Wang, G., Giannakis, G. B., Yang, Q., and Yang, Z.
Finite-time analysis of decentralized temporal-difference
learning with linear function approximation. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 4485–4495. PMLR, 2020.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tadic, V. On the convergence of temporal-difference learn-
ing with linear function approximation. Machine learn-
ing, 42(3):241–267, 2001.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pp.
1–11, 2019.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
Q-learning. Machine learning, 16(3):185–202, 1994.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-
difference learning with function approximation. In Ad-
vances in neural information processing systems, pp.
1075–1081, 1997.

Wai, H.-T. On the convergence of consensus algorithms
with markovian noise and gradient bias. In 2020 59th
I E E E Conference on Decision and Control (CDC), pp.
4897–4902. IEEE, 2020.

Wainwright, M. J. Stochastic approximation with cone-
contractive operators: Sharp ‘1 -bounds for Q-learning.
Preprint arXiv:1905.06265, 2019.

Wang, G., Lu, S., Giannakis, G., Tesauro, G., and Sun, J.
Decentralized TD Tracking with Linear Function Ap-
proximation and its Finite-Time Analysis. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 13762–13772. Curran Associates,
Inc., 2020a. URL h t t p s : / / p r o c e e d i n g s .
n e u r i p s . c c / p a p e r / 2 0 2 0 / f i l e /
9ec51f6eb240fb631a35864e13737bca-Paper.
pdf.

Wang, J. and Joshi, G. Cooperative sgd: A unified frame-
work for the design and analysis of local-update sgd algo-
rithms. Journal of Machine Learning Research, 22(213):
1–50, 2021.

Wang, X., Wang, C., Li , X., Leung, V. C., and Taleb, T.
Federated deep reinforcement learning for internet of
things with decentralized cooperative edge caching. IEEE
Internet of Things Journal, 7(10):9441–9455, 2020b.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Xu, M., Peng, J., Gupta, B., Kang, J., Xiong, Z., Li, Z., and
Abd El-Latif, A. A. Multi-agent federated reinforcement
learning for secure incentive mechanism in intelligent
cyber-physical systems. IEEE Internet of Things Journal,
2021.

Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., and Yu,
H. Federated learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 13(3):1–207, 2019.

Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mo-
haisen, A., and Kim, J.-H. Cooperative multi-agent deep
reinforcement learning for reliable surveillance via au-
tonomous multi-uav control. I E E E Transactions on In-
dustrial Informatics, 2022.

https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec51f6eb240fb631a35864e13737bca-Paper.pdf

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K . A
survey of autonomous driving: Common practices and
emerging technologies. I E E E Access, 8:58443–58469,
2020.

Zeng, S., Doan, T. T., and Romberg, J. Finite-time anal-
ysis of decentralized stochastic approximation with ap-
plications in multi-agent and multi-task learning. arXiv
preprint arXiv:2010.15088, 2020.

Zhang, S., Liu, B., Yao, H., and Whiteson, S. Provably con-
vergent two-timescale off-policy actor-critic with function
approximation. In International Conference on Machine
Learning, pp. 11204–11213. PMLR, 2020.

Zhang, S. Q., Lin, J., and Zhang, Q. A multi-agent rein-
forcement learning approach for efficient client selection
in federated learning. arXiv preprint arXiv:2201.02932,
2022.

Zhao, L., Ran, Y., Wang, H., Wang, J., and Luo, J. Towards
cooperative caching for vehicular networks with multi-
level federated reinforcement learning. In I C C 2021-
IEEE International Conference on Communications, pp.
1–6. IEEE, 2021.

Zhuo, H. H., Feng, W., Lin, Y., Xu, Q., and Yang, Q.
Federated deep reinforcement learning. arXiv preprint
arXiv:1901.08277, 2019.

X

2
0

X X

t 0

X

X
0 k

X
k

0

X X
k

0

X
!

0
1 (1) 2

2

0 2

0 2 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Appendices
The appendices are organized as follows. In section A we discuss the lower bound on the convergence of general stochastic
approximation. In Section B we derive the convergence bound of FedSAM algorithm. Next, we employ the results in
Section B to derive the convergence bounds of federated TD-learning in Section C and federated Q-learning in Section D.

A. Lower Bound on the Convergence of General Stochastic Approximation

In this section we discuss the convergence of general stochastic approximation. In this discussion we provide a simple
stochastic approximation with iid noise which can give insight into the general convergence bound in (3). In particular, we
show that the convergence bound in (3) is tight and cannot be improved.

Consider a one dimensional random variable X with zero mean E [X] = 0 and bounded variance E[X 2] = 2. Consider the
following update

x t + 1 = x t + (X t xt); t 0; (9)

where we start with some fixed deterministic x0 and X t is a an iid sample of the random variable X . It is easy to see that the
update (9) is a special case of the update of the general stochastic approximation with the fixed point x = 0.

By expanding the update (9), we have

t 1

x t = (1)t x0 + (1) t k 1 X k :

Hence, we have

x t = (1)2t x2 +

k = 0

t 1
! 2 t 1

(1)t k 1 X k + 2(1)t x0 (1)t k 1 X k :
k = 0 k = 0

Taking expectation on both sides, and using the zero mean property of X k , we have

t 1
! 2

E[x2] = (1)2t x2 + 2 E (1)t k 1 X k

0 k = 0 1
t 1 t 1

= (1)2t x2 + 2 E @ (1)2(t k 1) X 2 + (1)2t k k 0 2 X k X 0 A

0
k = 0 k ; k 0 = 0 ; k = k 0

1
t 1 t 1

= (1)2t x2 + 2 @ (1)2(t k 1) 2 + (1)2t k k 0 2 E[Xk]E[X 0] A
k = 0 k ; k 0 = 0 ; k = k 0

t 1

= (1)2t x2 + 2 (1)2(t k 1) 2

k = 0

= (1)2t x2 + 22
1 (1)

t

=x2 (1)2t + 2 1 (1)2t

= (x 2
2

)(1)2t +
2

 : | {z
} | {z }

T1 :bias T2 :variance

(iid property)

(zero mean)

(10)

It is clear that (10) has the same form as the bound in (3) with T1 as the geometric term which converges to zero as t ! 1 , and
T2 term proportional to the step size . In addition, note that in the above derivation, we did not use any inequality, and hence
the bounds in (10) as well as (3) are tight.

2

T N

P N
T̂

T c 2

2

2
c m C 2

1e ’ l 2 C2 1

2
2 2

4m

2 2 2

1 ~2 2

~

2’ T

^
2 1

~

^

N
tN

1 N

1 N

t

N
N

t t

N
N

t

N
N

t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

B. Analysis of Federated Stochastic Approximation

First, we restate Theorem 6.1 with explicit expressions of the different constants.
Theorem B.1. Consider the FedSAM Algorithm 4 with c F S A M = 1 ’ 2 (’ 2 is defined in (14)), and suppose Assumptions
6.1, 6.2, 6.3, 6.4 are satisfied. Consider small enough step size which satisfies the assumptions in (21), (23), (32), (35).
Furthermore, denote = d2 log e, and take large enough T such that T > m a x f K + ; 2g. Then, the output of the
FedSAM Algorithm 4, ^ , 1 i = 1

i , satisfies

E[k^k2] C1
1

1
’ 2 T 2 + 1

+ C2

N

 + C 3 (K 1)2
 + C4

32; (11)

where C1 = 16ucmM0(log
1 + 1), M0 = 1 1 B + (A2 + 1) k0kc + B + k0kc , C2

= 8ucm

C8 + 2 + C12 = ’2 , and C3 = 80B 2 C17 ucm 1 + B (1) = ’ 2 and C4 = 8ucm C7

+ C11 + 0:5C3 C9 + C3 C10 + 2C1 C3 C10 + 3A1 C3 + C13 = ’2 . Here the constants
ucm ; lcm ; ’2 ; C1 ; C3 ; C7 ; C8 ; C9 ; C10 ; C11 ; C12 ; C13 ; C17 ; B are problem dependent constants which are defined in
the following proposition and lemmas.

Next, we characterize the sample complexity of the FedSAM Algorithm 4, where we establish a linear speedup in the
convergence of the algorithm.

Corollary B.1.1. Consider FedSAM Algorithm 4 with fixed number of iterations T and step size = 8 log (N T) . Suppose T
is large enough, such that satisfies the requirements of the step size in Theorem B.1 and T > 4. Also take K = T =N .
Then we have E[kT kc] after T = O N iterations.

Corollary B.1.1 establishes the sample and communication complexity of FedSAM Algorithm 4. The O(1=(N)) sample
complexity shows the linear speedup with increasing N . Another aspect of the cost is the number of communications
required between the agents and the central server. According to Corollary B.1.1, we need T =N = O(N) rounds of
communications in order to reach an -optimal solution. Hence, even in the presence of Markov noise, the required number of
communications is independent of the desired final accuracy , and grows linearly with the number of agents. Our result
generalizes the existing result achieved for the simpler i.i.d. noise case in (Khaled et al., 2020; Spiridonoff et al., 2021).

In the following sections, we discuss the proof of Theorem B.1. In Section B.1, we introduce some notations and preliminary
results to facilitate our Lyapunov-function based analysis. Next, in Section B.2, we state some primary propositions, which
are then used to prove Theorem B.1. In Sections B.3,B.4,B.5, we prove the aforementioned propositions. Along the way, we
state several intermediate results, which are stated and proved in Sections B.6 and B.7, respectively.

Throughout the appendix we have several sets of constants. The constants C i ; i = 1; : : : ; 17 are problem dependent
constants which we define recursively. The final constants which appears in the resulting bound in Theorem B.1 are shown as
Ci ; i = 1; : : : ; 4. Finally, the constant c is used in the sampling of the time step T .

B.1. Preliminaries

We define the following notations:

• t , 1 P i = 1
i : virtual sequence of average (across agents) parameter.

• t = t ; : : : ; t : set of local parameters at individual nodes.
• Y t = y t ; : : : ; yt : Markov chains at individual nodes.

• i : the stationary distribution of y i as t ! 1 .

• G (t ; Y t) , 1 P i = 1 G i (i ; y i) : average of the noisy local operators at the individual local parameters. •

G (t ; Y t) , 1 P i = 1 G i (t ; y i) : average of the noisy local operators at the average parameter.

• b (Y t) , 1 P i = 1 b i (y i) : average of Markovian noise.

N
N

t

 1 N

i i 1 N i 1 N i

i i = 1 ; : : : ; N

f
1

2 2c s f

2
2

1 2

c c

1 2

1 + u2
 c s

2

1 2

‘ 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

• G (t) , 1 P i = 1 G i (i) : average of expected operators evaluated at the local parameter. •

G (t) , N
P i = 1 G i (t) : average of expected operator evaluated at the average parameter.

• = 0 is the unique fixed point satisfying = G i () for all i = 1; : : : ; N . Note that this follows directly from the
assumptions. In particular, by Assumption 6.2, G i () is a contraction, and hence by Banach fixed point theorem
(Banach, 1922), there exist a unique fixed point of this operator. Furthermore, by Assumption 6.3, we have

kGi (0)kc = k E y i [Gi (0; y)]kc E y i kGi (0; y)kc A 2 E y i [k0kc] = 0:

Hence G i (0) = 0 and 0 is the unique fixed point of the operator G i () .

• t = kt tkc; t = N
P i = 1 t;

t = N
P

i = 1 (t) 2 : measures of synchronization error.

Throughout this proof we assume k kc as some given norm. Et [] , E[jFt], where F t is the sigma-algebra generated by
fr gr=1; : : : ; t . Unless specified otherwise, k k denotes the Euclidean norm.

Generalized Moreau Envelope: Consider the norm k kc which appears in Assumptions 6.1-6.3. Square of this norm need not
be smooth. Inspired by (Chen et al., 2020a), we use the Generalized Moreau Envelope as a Lyapunov function for the
analysis of the convergence of Algorithm 4. The Generalized Moreau Envelope of f () with respect to g(), for > 0, is
defined as

M ;g (x) = min f (u) + g (x u) : (12)
u 2 R d

Let f (x) = 1 kxk2 and g (x) = 1 kxk2, which is L-smooth with respect to k ks norm. For this choice of f ; g, M ;g () is
essentially a smooth approximation to f , which is henceforth denoted with the simpler notation M (). Also, due to the
equivalence of norms, there exist lcs ; ucs > 0 such that

lcs k ks k kc ucsk ks: (13)

We next summarize the properties of M () in the following proposition, which were established in (Chen et al., 2020a).

Proposition B.1 ((Chen et al., 2020b)). The function M () satisfies the following properties.

(1) M () is convex, and L -smooth with respect to k ks. That is, M (y) M (x) + hrM (x) ; y x i + L kx yks for all
x ; y 2 Rd .

(2) There exists a norm, denoted by k km, such that M (x) = 2 kxkm .

(3) Let ‘ c m = (1 + ‘2s)1=2 and ucm = (1 + u2
s)1=2. Then it holds that ‘ c m k km k kc ucmk km .

By Proposition B.1, we can use M () as a smooth surrogate for 2 k kc . Furthermore, we denote

’ 1 =
1

+

‘ c s

; ’ 2 = 1 c ’1=2 ; and ’ 3 =
114L(1 + ucs)

: (14)
c s

Note that by choosing > 0 small enough, we can ensure ’ 2 2 (0; 1).

B.2. Proof of Theorem B.1

In this section, first we state three key results (Propositions B.2, B.3, B.4). These are then used to prove Theorem B.1. The first
step of the proof is to characterize the one-step drift of the Lyapunov function M (), with the parameters generated by the
FedSAM Algorithm 4, which is formally stated in the following proposition.

Proposition B.2 (One-step drift - I). Consider the update of the FedSAM Algorithm 4. Suppose the assumptions 6.1, 6.2,
6.3, and 6.4 are satisfied. Consider = d2 log e and t 2, we have

E t 2 [M (t+1)]

2 2
3 4

c
2 2 2l l l 2

l2
c

C

L L
l 2 l2 2

u 3u2 2

22 2
2 3

c

C 4

L c c
2 2

c s
2 2
3 4

3u 3 L u A2 2 2
 1

{z }

L
2

3u2

2l 2

 2m uc m L
2 1 c s

4 2

C 7

4

2 l2 c

c

15
2

c
l 2 l2 2 2 4 c m

1
2

’ 2

N

t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

 1 2 ’ 2 1 2
2LA 2 2 L (A 1 + 1)

 2

+ 2 6Lu2

m m1 +
(A2 + 1)2

E t 2 [M (t)] c s c s c s

+ 2 m2 L
E t 2 [kt t kc] (15)

| {zs }

 3

+ + A2 1 + c m + (A1 + 1) c m + 2 + 3m1
2 E t 2 [kt t k2] (16)

| c s cs {z }

+
|

lc s

2

m +
2

(A1 + 1) + A2 +
2l

 m +
3

2

2
E t 2 [

t] (17)
C 5

+ c m + 3 (A1 + 1) + m1 E t 2 [
t] (18) | c s 3 {z }

C 6

2 2 2

+
|

2
l

{z }
(19)

+
1

1 +
3 L 2 Et 2 kb(Yt)k2 ; (20)

| {z c s }
C 8

where 1, 2, 3, and 4 are arbitrary positive constants.

Proof. The proof of Proposition B.2 is presented in full detail in Section B.3.

Before discussing the bound in its full generality, we discuss a few special cases.

• Perfect synchronization (K = 1) with i.i.d. noise: since
t = 0 for all t, = 0 (independence across time), and C7 = 0 (see Lemmas B.2 and B.5 in Section B.6), the terms (15),
(16) (17),(18), (19) will not appear in the bound, which is the form we get for centralized systems with i.i.d. noise
(Rakhlin et al., 2012).

• Infrequent synchronization (K > 1) with i.i.d. noise: = 0 , and C7 = 0, the terms (15), (16),(18), (19) will not
appear in the bound, which is the form we get for federated stochastic optimization with i.i.d. noise (Khaled et al.,
2020).

• Perfect synchronization (K = 1) with Markov noise: since
t = 0 for all t, the bound in Proposition B.2 generalizes the results in (Srikant & Ying, 2019; Chen et al., 2021c).

Next, we substitute the bound on kt t kc (Lemma B.6) and kt t k2 (Lemma B.7) to further bound the one-step drift.
Establishing a tight bound for these two quantities are essential to ensure linear speedup.

Proposition B.3 (One-step drift - II). Consider the update of the FedSAM Algorithm 4. Suppose Assumptions 6.1, 6.2, 6.3,
and 6.4 are satisfied. Define C () = 6 m 1 L u c m + 6 L (A 2 + 1) 2 u 2

m + 144(A2 + 1)C u2 2. For
c s c s

 min
360(A2

+ 1)
;

2C15 ()
; (21)

 = d2 log e, and t 2, we have

E t 2 [M (t+1)] (1 ’ 2) E t 2 [M (t)] + C14 ()4 + C16 ()
2

+ C17
X

E t 2 [

k]; k = t

9
u 2

l 2
c D

2 2

u 2 B 2

l 2
c D

1 2u 8m uc D c D
1

6

2 2 2 2 2 2

2 2 2
c D c D

2l l (1)

c

N

t

N

 min 2 ~; ;

v

v
~(1 + A 1

s !

’ 2
~ 2

2C17 ~ 10C 24m 1X X X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

where C14 () = C7 + C11 + 0:5C3 C 2 + C3 C10 + 2C1 C3 C10 + 3A1 C3 + C13 + C8 c D 2m2
2 2, C16 () =

C8 c D + 2 + C12
2 and C17 = (3A1 C3 + 8A2 C4 + C5 + C6). Here we define C9 = 8

l c D

B , C10 = l c D (1) ,

C11 = 8 C 1 C 3 u c m , C12 = 8 C 4 u c D B 2

, C13 = 1 4 C 4 u c D m 2 .

Proof. The proof of Proposition B.3 is presented in full detail in Section B.4.

Conditional expectation E t 2 []. The conditional expectation E t 2 [] used in Proposition B.3 is essential when dealing with
Markovian noise. The idea of using conditional expectation to deal with Markovian noise is not novel per se. In the
previous work (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al., 2021c), conditioning on t is sufficient to
establish the convergence results. Due to the mixing property (Assumption 6.1), the Markov chain geometrically converges to
its stationary distribution. Therefore, choosing “large enough” , and conditioning on t , one can ensure that the Markov
chain at time t is “almost in steady state.” However, in federated setting, conditioning on t results in bounds that are too
loose. In particular, consider the differences kt t kc and kt t k2 in (15) and (16) respectively. In the centralized setting, as
in (Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al., 2021c), these terms can be bounded deterministically to yield 2
bound. However, in the federated setting, this crude bound does not result in linear speedup in N . In this work, to achieve a
finer bound on kt t kc, we go steps further back in time. This ensures that the difference behaves almost like the difference
of average of i.i.d. random variables, resulting in a tighter bound (see Lemma B.6). By exploiting the conditional expectation E t

2 [], we derive a refined analysis to bound this term as O(2=N + 4), which guarantees a linear speedup (see Lemmas B.6 and
B.7).

Taking total expectation in Proposition B.3 (using tower property), we get

E [M (t+1)] (1 ’2) E [M (t)] + C14 ()4 + C16 ()
2

+ C17
X

E[

k] (22)
k = t

To understand the bound in Proposition B.3, consider the case of K = 1 (i.e. full synchronization). In this case we have
i = 0 for all i, and the bound in Proposition B.3 simplifies to E [M (t+1)] (1 ’2) E [M (t)] + C14 ()3 + C16 ()

2
. This

recursion is sufficient to achieve linear speedup. However, the bound in Proposition B.3 also include terms which are
proportional to the error due to synchronization. In order to ensure convergence along with linear speedup, we need to
further upper bound this term with terms which are of the order O (3 (K 1)) and M (i). The following lemma is the
next important contribution of the paper where we establish such a bound for weighted sum of the synchronization error.
Notice that the weights fwt g are carefully chosen to ensure the best rate of convergence for the overall algorithm.

Proposition B.4 (Synchronization Error). Suppose T > K + . For such that

2

1 ln(5=4)
’ 2 2(1 + A 1) (K 1)2

2(log() + 1)
2K 2 ; (23)

2(log() + 1)3 exp

’ 2

2 log + 1

4 K

exp ’ 2
2

ln(5=4)
)

;

where v =
8 0 A 2 C 1 7 u c m

, the weighted consensus error satisfies

T
"

t
#

T

’ 2 W T t = 2

wt
‘ = t

E

‘ 2 B 2
’2

1 7 1 +
B (1)

(+ 1) (K 1) +
2WT t = 0

wt EM (t): (24)

Proof. The proof is presented in Section B.5.

Finally, by incorporating the results in Propositions B.2, B.3, and B.4, we can establish the convergence of FedSAM in
Theorem B.1.

2
2wt

’ 2 ’
2

’ ’2 2

tX

2 t2w tw C tX

2
T

W

T

2 2 1 X

W ’

T t
" #

2w2 1 2 2C17 X X

2 ’ 2 2C17
T tX X

" #

 1 T t

1 TX 2 ’ 2

~ 0C
24m 1

TX

TX 41 ’ 4

~ 0C
24m ’

0

~ 0 C 1 24m 4

TX + 1 14

2W ’ 2 N

~ ^ ^
 1
~

T T

T
1 1

~ ~W W

X X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Theorem B.1. Assume w0 = 1, and consider the weights wt generated by the recursion wt = wt 1

1 ’ 2 1.
Multiplying both sides of (22) by ’ 2

, and rearranging the terms, we get

wt EM (t)
2wt 1

’ 2 EM (t)
2wt EM (t + 1) 2 2

+
2wt C14 ()4 + C16 ()

N
+

2wtC17

‘ = t

E [

‘]

=
’ 2

[wt 1 EM (t) wt EM (t+1)] +
’ 2

C14 ()3 + C16 ()
N

+

2
’ 2

17

‘ = t

E [

‘] ; (25)

where we use wt 1 = wt

1 ’ 2 . Summing (25) over t = 2 to T (define WT =
P t = 2 wt), we get

1 X
w

t

EM (
t

)
T

t = 2
T

’ 2 W T

[w2 1EM (2) wT EM (T + 1)] +
’ 2

 C14 ()3 + C16 ()
N WT t = 2

wt

+
1 X 2wtC17 X

‘ T t = 2 2 ‘ = t

T t

’ 2 w T

EM (2) +
’ 2

 C14 ()3 + C16 ()
N

+

’ 2 W T t = 2

wt
‘ = t

‘ (* M () 0; WT wT) =
’ 2

1
2

2 T 2 + 1
EM (2) +

’ 2
C14 ()3 + C16 ()

N

+

’ 2 W T t = 2

wt
‘ = t

‘ : (26)

Substituting the bound on W T

P t = 2 wt

h P ‘ = t

‘

i
from Proposition B.4 into (26), we get

WT t = 2

wt EM (t)
’ 2

1
2

2 T 2 + 1
EM (2) +

’ 2
C14 ()3 + C16 ()

N

+ 2 B 2 1
’2

1 7 1 +
B (1

)

(+ 1) (K 1) +
2WT t = 0

wt EM (t))

WT t = 2

wt E [M (t)]
’ 2

1
2

2 T 2 + 1
M0 +

’ 2
C14 ()3 + C16 ()

N

+ 2 B 2 2
’2

1 7 1 +
B (1

)

(+ 1) (K 1) + 2 1
2

2 T 2 + 1
M0; (27)

where M is a problem dependent constant and is defined in Lemma B.6. To simplify (27), we define C18 () =
B 2 4

’ 2
7 1 + B (1) , C19 () = ’ 2

C16 (). We have

1
T

t =

2

w
t

EM (
t

)
4

2
+ 21

’ 2 T 2
M0 +

4 C
’

() 3 + C 1 8 () (K

1)2 + C19 ()

: (28)

Furthermore, define WT =
P t = 0 wt WT . By definition of T , we have E[M (T)] =

W T

P t = 0 wt EM (t), and hence

2 1 T

E[M (^)] = wt EM (t) + wt EM (t) T
t = 0 T t = 2

2
~ 2 24 m

’ 2

~ 24 m

2 2 2

2
3 9

’ 2

M 1
~ ~W W

X X

~ ~W W

T

w ~W

T

2 ~W

X

T

2 W

4 ’
14

2 N

2 ’ N
4M 0

T T
21 1

2
c m

^ c

^
2

2 N
2 2 2 2

’ 2

1 12 2 2 4

e
2 2

2 2

1 1 8 1 4 1 1 1 1

2
2

’ 2

2 2
2 2((2 2))

’ ’2 2

c (
’

1 1 1C 1 C e = C eT T

=
T

1 2C ’ T 1

=

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

2 1 T

 0 wt + wt EM (t) T
t = 0 T t = 2

2M0w2 1 +
1 X

wt EM (t) T T

t = 2

(Lemma B.6)

(wt wt +1 for all t 0)

2M0w2 1 +
1 X

wt EM (t) T T
t = 2

=2M0 1
’ 2 T 2 + 1

+
1 T

wt EM (t) T
t = 2

2M0 1
’ 2 T 2 + 1

+
1 X

wt EM (t) T t = 2

 4 +
’ 2

M0 1
2

2 T 2 + 1
+

4
C

’

() 3 + C 1 8 () (K 1)2 + C19 () (by (28))

=C2 0 () 1
’ 2 T 2 + 1

+
4C14() 3 + C 1 8 () (K 1)2 + C19 ()

; 2

where C20 (;) = 4M0 + ’ 2
. Furthermore, by Proposition B.1, we have M (^) = 2 k^km 2u

 kT k
2, and hence

E[kT kc] C1(;) 1
’ 2 T 2 + 1

+ C2()

+ C3 () (K 1)2 + C4()3 (29)

where C1(;) = 2ucm C20(;), C2() = 2ucm C19 (), C3() = 2ucm C18 () and C4() = 2ucm : 4C1 4 () .

Finally, note that by definition of , we have = d2 log e 1 + 2 log = 1 + 2(ln)(log e) = 1 + (2 log
1) ln 1 1 + (2 log e) .

Hence, we have C1(;) 2ucmM0(4 + log e + ’
) 16ucmM0(log e + ’

) = C1: , where C1 = 16ucmM0(log e + ’ 2
).

Furthermore, we have C2() = 2ucm C19 () = 2ucm ’ 2
C16 () = 8 u c m (C 8 + 1 + C 1 2) 2 8 u c m C 8 + 1 + C 1 2

 = C2, where we

denote to emphasize the dependence of on , and C2 = 8 u c m C 8 + 1 + C 1 2 .
Note that we have = O(log(1=)).

In addition, C3() = 2ucm C18 () =
8 0 B 2 C 1 7 u c m (1 + B (1)) : C3, where C3 And lastly,

C4() = 8 u c m (C 7 + C 1 1 + 0 : 5 C 3 C 9 + C 3 C 1 0 + 2 C 1 C 3 C 1 0 + 3 A 1 C 3 + C 1 3) 2

8ucm C7 + C11 + 0:5C 2C 2 + C3 C10 + 2C1 C3 C10 + 3A1 C3 + C13 = ’2 .

=
8 0 B 2 C 1 7 u 2

m

2

1 + B (1)

) .

C4
2, where C4 =

Next we will state the proof of Corollary B.1.1.

Proof of Corollary B.1.1. By this choice of step size, for large enough T , will be small enough and can satisfy the
requirements of the step size in (21), (23), (32), (35). Furthermore, the first term in (29) will be

1 ’ 2 T 2 + 1 1 4 l o g (N T) (T 2+ 1) ’ 2 T l o g ((N T) 4) (1 + 1

2) 2 8 log(N T)

C1 ’2 T 1 (1 + 1 2)

8 log(N T) N 4T 4

0:5

8 log(N T) N 4T 4 (Assumption on T)

C1 ’2 T 1
8 log(N T) N 2T 2

~ C ’1 2

~C = O :

~
2 2

T 2 3

2
~

T N T

~ 2 3

N T

O 2 2
N

L 2

2 s

| {z | {z }

noise b (Y)

| {z } | {z }

2
2
s| {z

t t t

t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= O
N T

:

Furthermore, for the second term we have
2 C2 = ’2

 2

N N T

Finally, for the third and the fourth terms we have

C 3 (K 1)2
 + C4

32 = O (C3 = ’2 + C4 = ’3)
N

log2(N T)

= O

(C3 = ’2 + C4 =’2)
:

Upper bounding (29) with , we get O C 1 ’ 2 + C 2 = ’ 2 + C 3 = ’ 2 + C 4 = ’ 2

 . Hence, we need to have T =

~ C 1 ’ 2 + C 2 = ’ 2 + C 3 = ’ 2 + C 4 = ’ 3

number of iterations to get to a ball around the optimum with radius .

B.3. Proof of Proposition B.2

The update of the virtual parameter sequence f t g can be written as follows

t + 1 = t + (G (t ; Y t) t + b (Y t)) :

Using p 1 -smoothness of M () (Proposition B.1), we get

M (t + 1) M (t) + hrM (t); t + 1 t i +
2

kt +1 tks

(30)

(Smoothness of M ())

= M (t) + hrM (t) ; G(t ; Y t) t + b (Y t) i +
L 2

kG (t ; Y t) t + b(Y t)k2

= M (t) +
rM (t) ; G (t) t

}
+ hrM (t) ; b (Y t) i T 1 : Expected update

T 2 : Error due to Markovian
t

+ hrM (t) ; G(t ; Y t) G (t) i + h r M (t) ; G (t) G(t) i :
T 3 : Error due to Markovian noise Y k T 4 : Error due local updates

+
L 2

kG (t ; Y t) t + b(Y t)k
}

: (31)

T 5 : Error due to noise and discretization

The inequality in (31) characterizes one step drift of the Lyapunov function M (t). The term T1 is responsible for negative drift
of the overall recursion. T2 and T3 appear due to the presence of the Markovian noises b i (y i) and G i (i ; y i) in the update
of Algorithm 4. T4 appears due to the mismatch between the parameters of the agents i ; i = 1; : : : ; N . Finally, T5 appears
due to discretization error in the smoothness upper bound. Next, we state bounds on T1; T2; T3; T4; T5 in the following
intermediate lemmas.

Lemma B.1. For all 2 Rd , the operator G () satisfies the following
T1 =
r M () ; G ()

 2 ’2 M ():

Lemma B.1 guarantees the negative drift in the one step recursion analysis of Proposition B.2. It follows from the Moreau
envelope construction (Chen et al., 2021c) and the contraction property of the operators G i () ; i = 1; : : : ; N (Assumption
6.2).

Lemma B.2. Consider the iteration t of the Algorithm 4, and consider = d2 log e. We have

E t [T2] = E t h rM (t) ; b (Y t) i

2

4
2 2

l 2 l2 2 1

2

+

2
3l l l2 2 2

 c m c m

2 3
+ + 2 +2 2 2+ E k k2

h i

2

2
3

3 1 2

2 l2 2
c s c

c m

3
+ + +2 2 E [

];

2 L uc m
4

4

s

2 2

l l l2 2 2
2

1

2

1

1
2

11 B
c

uc D p
N

u 8mc D 2

X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

2

L
2 lc s

E t kt t kc +
2

E t kb(Y t)kc

+
m2 L

E t kt tkc +
1 Lm2

2 ucm
2

+ 2 Et [M (t)]; c s
1 c s

where 1 is an arbitrary positive constant.

In the i.i.d. noise setting, E[T2] = 0. In Markov noise setting, going back steps (which introduces t) enables us to use
Markov chain mixing property (Assumption 6.1).

Lemma B.3. For any t 0, denote T3 = hrM (t) ; G(t ; Y t) G(t) i . For any < t, we have
E t [T3]

2
2LA 2 + 2 L (A 1 + 1)

+
6m1 Lucm E t [M (

t

)]
c s c s c s

2LA 2 1 u2 L (A 1 + 1) 3u2 3m1 L
lcs 2 22 lcs 22 lcs

t t t c

+
3ucm +

2

L (A

l
+ 1)

+
L A

s
E t [

t

]
3u2 3 L (A 1 + 1) m1 L
22 2 lcs 2lcs

t t

where 2 and 3 are arbitrary positive constants.
Lemma B.4. For any t 0, we have

2 2
T4 = hrM (t) ; G(t) G (t) i 4 M (t) +

2lcs
2 2

t ;

where 4 is an arbitrary positive constant.
Lemma B.5. For any 0 < t, we have

T5 = kG (t ; Y t) t + b(Y t)k2
6(A2 + 1)2ucm M (t) +

3A1

t +
3

kb(Yt)kc : c s c s c s

Substituting the bounds in Lemmas B.1, B.2, B.3, B.4, B.5, and taking expectation, we get the final bound in Proposition
B.2.

B.4. Proof of Proposition B.3

First we state the following two intermediate lemmas, which are proved in Section B.7.
Lemma B.6. Suppose = d2 log e and

()

 min
1 2

p
A 2

+ 1

;
8(A2 + 1)

: (32)

For any 0 t 2 we have the following

2
!

M (t)
l c m C 2 B + (A2 + 1) k0kc +

2C1
+ k0k2 M0 (33)

Furthermore, for any t 2, we have the following

E t 2 [kt

t kc] 4C1 E
t

 2 [ktk
c

] + 8

l c D

B +
l c D 1

2
(
1 + 2C1)

t (34)
+ 6A1 E t 2 [i]: i = t

1 1 1
2

2

c 1 c

u2

2
 2

l 1 2

u2

2l N

1 t

2u 8m uc D c D

p
N

t !

p

N

X !

p
N

t

1 3 c
2 6

3
p

N
X 1 1

2 2 k

1 C 2
3 u2

6
6 p

N
t

6
1

3 9
1 2

t

c 1 c 1

+
2

c D

c 2
2 2 2l l 1)

 + :

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Lemma B.7. Suppose = d2 log e and

 min
C1

;
4C2

;
40C1

; (35)

where C1 = 3
p

A 2 + 1 and C2 = 3C1 + 8. We have the following

E t 2 [kt t k2] 82 2 C 2 Et 2 ktk2 + 8 c D B
2

22 c D

+ 14 c D m
24

+ 82A2
X

E t 2
2

i : c D i = 0

In Lemma B.6, we define C9 , 8
l c D

B ; C10 , l c D (1) . Hence, we can bound the term in (15) as

2 C3 Et 2 [kt t kc]

 2 C3 4C1 Et 2 [ktkc] + C9 + C10
2(1 + 2C1) + 6A1

X
E t 2 [k] k = t

h i t

 2 C3 4C1 uc m Et 2 2M (t) + C9 p + C10
2(1 + 2C1) + 6A1 E t 2 [k]

k = t

(Proposition B.1)

=
1

4C1 C3ucm
5=2

p
6

p
2 E t 2

[M (t)]

6

+ 2 C3 C9 + C10
2(1 + 2C1) + 6A1

X
E t 2 [k]

!

(p: is concave, 6 > 0)
k = t

8

C

2 C 2 u2
m 52 + 2 Et 2 [M (t)] + C3 C9 + C3 C10

4 (1 + 2C1)
6

t

+ 6A1 C3 E t 2
5 + 2 (Young’s inequality)

k = t

8C 2

2

 c m 52 + 2 Et 2 [M (t)] + C3 C9

3
 + 4 [C3C10(1 + 2C1) + 3A1 C3 (+ 1)] | {z }

C 1 1

+ 3A1 C3
X

E t 2 [
k] (By (58))

k = t

 C11
52 + 2 Et 2 [M (t)] +

2
C 2 C 2 4 +

2
N

+ 4[C3C10(1 + 2C1) + 3A1 C3 (+ 1)] + 3A1 C3
X

E t

2 [
k]:

k = t

Furthermore, using Lemma B.7, (58) and Proposition B.1, the term in (16) can be bounded as follows:

C 4 E t 2 kt t k2

 162 2 C 2 C4u2

m Et 2 [M (t)] + 82 A2C4
X

E t 2 [

t k] k = 0

8C4 uc D B 2 2
2 14C4u2D m2

4

| {z }
N

| c D (
{z }

C 1 2 C 1 3

(36)

(37)

2

2l 2 1 c

1 2 l l2 23 4 6

u2

l23 9 2

0

u B2 2

2l 2 N 1

t

p
3 9

u 2

2
c D

0 2

q q
’ ’2 2l l2 2

c s c s
2 1

2 2

l 2 l2 2
2 2

3 u2
c D

2
D

B 2 2

1

X

3 2

2 N

X

 c D B
l 2

1 2 ’ 2

3 2

q
ln 5=4)
~1

N

P N i 2

~ 24m ~
X

c

~ u 2 2 A 22 2

l l2 2
c 2 c 2

~ ~ u
c 2

’ W

T t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Inserting the upper bounds in (36) and (37) in the upper bound in Proposition B.2, we have

E t 2 [M (t+1)]

1 2 ’ 2 2 2 2LA 2 2 L (A 1 + 1)
 2 2 c s c s

+ 2 6Luc m m1 +
(A2 + 1

)

2
+ 2162C 2C4u2

m E t 2 [M (t)] c s

+ C 5 E t 2 [
t] + C 6 E t 2 [
t]

+ C7 + C11
2 + 0:5C 2C 2 + C3 C10 + 2C1 C3 C10 + 3A1 C3 (+ 1) + C13 + C8

 c D 2m22 4 |
{z c D } C 1 4 ()

+ C8
 c D +

+ C12

2
2

+

3A1 C3 + 82 A2C4
 X

E t 2 [
k]: (38) c D k = t

We define C 1 4 () C 14() , C 7 + C 1 1 + 0:5C 2 C 2 + C 3 C 1 0 + 2C 1 C 3 C 1 0 + 3A1C 3 + C 1 3 + C 8 l
c D 2m2

2 2 . Also, we

choose 1 = 4 = 6 = ’2 =10, 2 = 10 2 L A
 , 3 = 10 L (A

+ 1) , and denote

C15 () =
6m1 Lucm +

6L(A 2 + 1)2ucm + 144(A2

+ 1)C4ucm
2 : (39)

c s c s

This yields
 E t

2 [M (t+1)] 1
2
’ 2 + 2 C15 () E t 2 [M (t)] + C8

lc

 +
2

+ C12
2

N
t

+ C14 ()4 + (3A1 C3 + 82 A2 C4 + C5 + C6) E t 2 [
k]

k = t

t

1 ’ 2 + 2 C15 () E t 2 [M (t)] + C14 ()4 + C16 () + C17 E t 2 [
k]; (40)

k = t

where C16 () = C8
u 2

c D

2 + 2 + C12

2 and C17 = (3A1 C3 + 8A1 C4 + C5 + C6). Due to 2C 1 5 () , we have 1 2 ’ 2 +

C15 () 1 ’ 2 . This completes the proof.

B.5. Proof of Proposition B.4

First we state the following lemma, which characterizes a bound on the expectation of the synchronization error
t .

Lemma B.8. Suppose Assumptions 6.1, 6.3 holds and the step size satisfies
2 (1 + A

(
) (K 1)2 . Then, for s K t (s

+ 1) K 1, where s = bt=K c, the network consensus error

t , 1 i = 1 kt tkc satisfies
t 1

E
t 52(t s K) B 2 1 +

B (1)
+ 52(t sK) A 2

t 0 = s K

E kt0 k2 ; (41)

where A1 = 2 A 1 c 2 ; A2 = 2 u c 2 ; B = l
c 2 B . Here, A1 ; A2 ; B are the constants defined in Assumption 6.3, and lc2; uc2

are constants involved in the equivalence of the norms: lc2 kk2 kkc uc2 kk2.

Due to the assumption on the step size, the bound in Lemma B.8 hold. Substituting the bound on
‘ from Lemma B.8, we get

2C17 X
wt

"
X

E

‘

2 T t = 2 ‘ = t

2C17 X
~ 24m ~

X X
2

2C17 X X
~ 24m

|

T t X

|

B 24m 0C 1 TX tX

~ 24m 0C 1 TX tX

~
2 0C

"
4m 1

TX
#

~ 24m 0C

2C
’ W

~
X X X

c

~
2

’ W

X X X

2

~ 20C u2

’ W

6
6
4

X X X

|
t =

X X X 7
7
5

K t X

X X X

X X

X

X X X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

T t
"

‘ 1
#

’ 2 W T t = 2

wt
‘ = t

52 (‘ s ‘ K) B 2 1 +
B (1)

+ 52 (‘ s ‘ K) A 2
t 0 = s ‘ K

E kt0 kc : (42)

where s ‘ = b ‘=K c. Hence, s ‘ K denotes the last time instant before ‘ when synchronization happened. The first term in
(42) can be upper bounded as follows.

T t

’ 2 W T t = 2

wt
‘ = t

52 (‘ s ‘ K) B 2 1 +
B
(1

)

= 2 ~2 1 +
B (1)

1
’2

1 7

WT t = 2

wt
‘ = t

(‘ s ‘ K)
 2 B 2 1

+
B (1

)

1
’2

1 7

WT t = 2

wt
‘ = t

(K 1)

= 2 B 2 1 +
B (1)

1
’2

1 7

WT t = 2

wt (+ 1) (K 1)

 2 B 2 1 +
B (1

)

1
’2

1 7 (+ 1) (K 1):

Next, we compute the second term in (42).

T t ‘ 1
17 wt 52 (‘ s ‘ K) A 2 k‘0 k2 2

T t = 2 ‘ = t ‘ 0 = s ‘ K

 2 A2
20C17ucm

T

wt

t

(‘ s ‘ K)
‘ 1

M (‘0) 2
T t = 2 ‘ = t ‘ 0 = s ‘ K

(‘ s ‘ K K 1)

(43)

(Proposition B.1)

3

6 K t ‘ 1 T t ‘ 1 7
 2 A2

17 c m 6 wt (‘ s ‘ K) M (‘0) + wt (‘ s ‘ K) M (‘0)7 ; (44)
2 T t = 2 ‘ = t {z ‘

0 = s ‘ K } | K + 1 ‘ = t {z ‘
0 = s ‘ K }

I 1 I 2

where if K < 2, I 1 = 0. Next, we bound I 1 ; I 2 separately.

I 1 =
X

wt
X

(‘ s ‘ K)
‘ 1

M (‘0)
t = 2 ‘ = t ‘ 0 = s ‘ K

K t ‘ 1

 (K 1) wt M (‘0) (for ‘ < K , s ‘ = 0; for ‘ = K , ‘ s ‘ K = 0)
t = 2 ‘ = t ‘ 0 = 0

K t 1

 (K 1)(+ 1) wt M (‘0)
t = 2 ‘ 0 = 0

K 1

 (K 1) (K 2 + 1)(+ 1)wK M (t); (45)
t = 0

where, (45) follows since wt 1 wt; 8 t. Next, to bound I 2 in (44), we again split it into two terms.

K + t ‘ 1

I 2 = wt (‘ s ‘ K) M (‘0) +
X

wt

X

(‘ s ‘ K)
‘ 1

M (‘0) :
t = K + 1 ‘ = t {z ‘ 0 = s ‘ K

I 3

} t = K + + 1 ‘ = t {z ‘ 0 = s ‘ K }
I 4

3

X X X t X

X X X X X
" #

"
X X X

#

X X

X X

| {z }

X

T t X

"
X X X X

"
X X X X

#

"
X X X X

#

X X
" #

X X
" #

"
X X

#

"
X X X

X X
!

X X
!

0
X 0 X X

(1)
K

"
X X X

#

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

First, we bound I .

K +
"

K ‘ 1

I 3 wt (‘ s ‘ K) M (‘0) +
X

(‘ s ‘ K)
‘ 1

#

M (‘0)
t = K + 1 ‘ = t ‘ 0 = s ‘ K ‘ = K + 1

K + K ‘ 1 t ‘ 1

wt ‘ M (‘0) + (‘ K) M (‘0)

‘ 0 = s ‘ K

(s ‘ = 0 for ‘ < K , s ‘ 1 for K ‘ K +)
t = K + 1 ‘ = t ‘ 0 = 0 ‘ = K + 1 ‘ 0 = K

K + K 1 t 1

wt K (K + 1 t +) M (‘0) + (t K) 2 M (‘0)
t = K + 1 ‘ 0 = 0 ‘ 0 = K

K 1 K + 1

 w K + K 2 M (t) + 3 w K + M (t): (46)
t = 0 t = K

Next, we bound I4 , assuming t 0 K + T < (t0 + 1) K + , where t0 is a non-negative integer.
T t ‘ 1

I 4 = wt (‘ s ‘ K) M (‘0)
t = K + + 1

‘ = t

 K 1 ‘
0 = s ‘ K

 (K 1)
X

wt
X ‘ 1

M (‘0)
t = K + + 1 ‘ = t ‘ 0 = s ‘ K

K + + 1 ‘ 1 2 K + 1 ‘ 1

= (K 1) w K + + 1 M (‘0) + + w K + + K 1

#

M (‘0)
‘ = K + 1 ‘ 0 = s ‘ K ‘ = 2 K 1 ‘ 0 = s ‘ K

2 K + ‘ 1 3 K + 1 ‘ 1

+ (K 1) w 2 K + M (‘0) + + w 3 K + 1 M (‘0)
‘ = 2 K ‘ 0 = s ‘ K

t 0 K +

+ + (K 1) w t 0 K +

‘ = 3 K 1 ‘ 0 = s ‘ K

‘ 1 T ‘ 1

M (‘0) + + wT M (‘0)
‘ = t 0 K ‘ 0 = s ‘ K ‘ = T ‘ 0 = s ‘ K

K + 2 K + 2

 (K 1)(+ 1) w K + + 1 M (‘) + + w 2 K + 1 M (‘)
‘ = K ‘ = K

2 K + 1 3 K + 2

+ (K 1)(+ 1) w 2 K + M (‘) + + w 3 K + 1 M (‘)
‘ = 2 K ‘ = 2 K

t 0 K + 1 T 1

+ + (K 1)(+ 1) w t 0 K + M (‘) + + wT M (‘)
‘ = t 0 K ‘ = t 0 K

2 K + 2 3 K + 2

 (K 1) K (+ 1) w 2 K + 1 M (‘) + w 3 K + 1 M (‘0) + + wT

T 1
#

M (‘)

"

 (K 1) K (+ 1) w 2 K + 1

‘ = K ‘ 0 = 2 K ‘ = t 0 K

2 K 1 2 K + 2

M (‘) + M (‘)
‘ = K ‘ = 2 K

3 K 1 3 K + 2

+ w 3 K + 1 M (‘0) + M (‘0)
‘ 0 = 2 K

+ + w t 0 K + 1 @
t 0 K 1

‘ 0 = 3 K 1
t K + 1

M (‘0) + M (‘0) A + wT

T 1
#

M (‘)
‘ 0 = (t 0 1) K ‘ 0 = t 0 K ‘ = t 0 K

 2 K 1 3 K 1 T 1

 (K 1) K (+ 1) w ‘ + K + 1 M (‘) + w ‘ + K + 1 M (‘) + + wT M (‘)
‘ = K ‘ = 2 K ‘ = t 0 K

X X

1 12
2

X Xw w
’ 2
2

" #

2

1 ’ 2
 K + 1

X

X X

1 ’ 2
 K + 1

X

2C
’ W

~
X X X

c

~
2

’ W

X X
" #

~
2

’ W
1 ’ 2 K + 1

X X
" #

K

2
~

W ’

X

2
~ 7

W ’

K 1X w wt t

2
~

W ’

K 1X
2 2#

1 ’ 2 K t

~
2

"
1 ’ 2

#

1’ W2 T

X

1
2W

X

~
2

’ 2 2

1

 x ’ 1
1 ’ 2

2()

’ 2
2 ~ K

 1

2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

"
T K T 1

#

 (K 1)(+ 1) w ‘ + K + 1 M (‘) + wT M (‘)
‘ = K ‘ = T K + 1

T K T 1

= (K 1)(+ 1) ’
‘

K + 1 M (‘) +
 ‘

T ‘ M (‘)
‘ = K ‘ = T K + 1

(wt = wt +1 1 ’ 2)

(K 1)(+ 1) T 1

wtM (t): (47)
2 t = K

Using the bounds on I 3 ; I 4 from (46) and (47) respectively, we can bound I2 .

I 2 w K + K 2 K
 1

M (t) + 3 w K +

K + 1

M (t) +
(K

1)(+ 1) T 1

wtM (t): (48)
t = 0 t = K 2 t = K

Substituting the bounds on I 1 ; I 2 from (45), (48) respectively, into (44), we get

T t ‘ 1
17 wt 52 (‘ s ‘ K) A 2 k‘0 k2

2
T t = 2 ‘ = t

‘ 0 = s ‘ K

 2 A2
20C17ucm (K 1) (K 2 + 1)(+ 1)wK

K 1

M (t) + K 2 w K +
K 1

M (t) 2 T
t = 0 t = 0

+ 2 A2
20C17ucm 3 w K +

K + 1

M (t) +
(K 1)(+ 1) T 1

wtM (t) (49)
2 T t = K 2 t = K

We analyze the terms in (49) separately. First, for the terms with
P t = 0

1 M (t),

1 2 A2
20C17ucm K (+ 1) [(K

2 + 1)wK + w K +]

K 1

M (
t

)
T 2

" t = 0 #

=
1T

2A2
20C1

2

ucm K (+ 1)
t = 0

"

(K 2 + 1)
1 ’ 2 K

t
 +

1 ’ 2

K
+

t

 M (t)

=
1 2 A2

20C17ucm K (+ 1) (K 2 + 1) +
wt M (t)

T 2 t = 0 2 2

 2 A2
20C17ucm K (+ 1) (K 2 + 1) + ’ 2

1 K 1

wtM (t) 2
t = 0

K 1

wtM (t); (50)
T t = 0

where (50) holds since we choose small enough such that
" #

2 A2
20C17ucm (K 2 + 1) +

1

’ 2 K (+ 1)

2
:

To get this, we use the inequality 1 x exp 1 x for x < 1, 2
2 2 and < 2 log + 1, we get 1

exp ’ 2 2 log + 1 . For (50) to hold, it is sufficient that
()

2
80C17 ucm A2 K 2(log() + 1)

min
1

;
2(log

()

+ 1) exp

’ 2 log

 + 1

(51)

~
2 3

2 2
’ 4

2

~2

2

 A ;

2
~

W ’T 2

K

1 1 ’ 2
 K + 1

X X

2W

T

~
c

2C 1
’ W 2W

X X X X

2C
’ W

X X

~ 0C 24m 1 TX

p

p

p
N

2

l
u2

2l N 2

c

2 2 2 2

2

f

?

m m

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Next, for the remaining terms in the third line of (49), by the assumption on the step size, we have

2 A2
20C17ucm

1
’

2

1

;

2 20C17ucm (+ 1) (K 1) 1
’ 2 1 ’ 2 K + 1 4

and hence we get

1 2 A2
20C17ucm

"

3 w

’ 2

K + 1

M (
t

) +

(+ 1) (K 1) T

wtM (
t

)

2 t = K

2 t = K

1 X
wtM (t): T

t = K

Substituting (50), (53) in (49), we get
T t ‘ 1 T

17 wt 52 (‘ s ‘ K) A 2 ktk2 wtM (t): 2
T t = 2 ‘ = t t = s ‘ K T t = 0

Finally, substituting the bounds in (43), (54) into (42), we get
T

"
t

#
17 wt E
‘

2

T t = 2 ‘ = t

 2 B 2 1
’2

1 7 1 +
B (1)

(+ 1) (K 1) +
2WT t = 0

wt EM (t):

B.6. Auxiliary Lemmas

(52)

(53)

(54)

(55)

The following lemma is of central importance in proving linear speedup of FedSAM.
Lemma B.9. Let l c D and uc D be constants that satisfy l c D k k D k kc ucD k kD , where k k D = x > D x for some
positive definite matrix D 0. Note that for any D 0, these constants always exist due to norm equivalence. Furthermore, in
case the norm kxkc is defined in the form x > D x for some D 0, we take l c D = uc D = 1. We have

E t r [kb(Yt)kc]
uc D

B
 + 2m2

r (56)
c D

E t r [kb(Yt)kc] c D B 2
+ 2m2

2r : (57)
c D

Lemma B.9 is essential in characterizing the linear speedup in Theorem B.1. This lemma characterizes the bound on the
conditional expectation of kb(Y t)kc and kb(Yt)k2 , conditioned on r time steps before. In order to understand this lemma,
consider the bound in (57). For the sake of understanding, suppose the noise Y t is i.i.d. In this case we will end up with the first
term which is proportional to 1=N . This is precisely the linear reduction of the variance of sum of N i.i.d. random
variables. Furthermore, in order to extend the i.i.d. noise setting to the more general Markovian noise, we need to pay an
extra price by adding the exponentially decreasing term to the first variance term.
Lemma B.10. The following hold

kG (t ; Y t) G (t ; Y t)k c A1 t A1
t

t

t : (58)
Lemma B.11. For the generalized Moreau Envelope defined in (12), it holds that

r M ;g (x) = kxk ;
D

r M f
;g (x); x

E
 2Mf

;g (x):

N

l

?
m m| z | {z }

?

(a)

 1

N

NX

 1

N
u

l

l

2

?

1

l l

L
2 c c

2

c
c c

2

c

2 2 ?

| {z }
T

 1 ?

 1 ?

l s s

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

B.7. Proof of Lemmas

Proof of Lemma B.1. Using Cauchy-Schwarz inequality, we have

r M () ; G ()

krM ()k

{
 G ()

}
 hrM (); i ;

T 1 1 T 1 2

where k km denotes the dual of the norm k km . Furthermore, by Proposition B.1 we have

T11 kkm :kG()km

kkm :lcm
 1

G i ()

i = 1 c

(59)

(Lemma B.11)

(By (13))

kkm :lcm
1 X

G i () c i = 1

kkm: c m c kkm c m

=
2uc m c M (): c m

Furthermore, by the convexity of the k km norm (Lemma B.11), we have

T12 kkm = 2M ():

Hence, using (60), (61) in (59) we get

(triangle inequality)

(Assumption 6.2, Proposition B.1)

(60)

(61)

r M () ; G ()

 2 1

ucm c

M () = 2 ’2 M (); c m

where ’ 2 is defined in (14).

Proof of Lemma B.2. Given some < t, T2 = hrM (t) ; b (Y t) i can be written as follows:

T2 = h r M (t) r M (t) ; b (Y t) i + hrM (t) ; b (Y t) i k rM (t)
r M (t)ks :kb(Yt)ks + hrM (t) ; b (Y t) i

L

kt t kc:
1

kb(Yt)kc + hrM (t) ; b (Y t) i
c s

2
c s

2 lcs
kt t k2 +

2
kb(Yt)k2 + hrM (t) ; b (Y t) i :

Taking expectation on both sides, we have

(62)

(Cauchy–Schwarz)

(Proposition B.1)

(63)

E t [T2] =
2L2 l

4

s
E t kt t k2 +

2
E t kb(Yt)k2 + hrM (t); Et [b (Y t)] i

2L2 l
4

s
E t kt t kc +

2
E t kb(Yt)kc + k r M (t)ks kEt [b(Yt)] ks : (64)

2 1

For T21, we have

T21 lcs k r M (t)ks kEt [b(Yt)]kc

 lcs

[krM (t)ks m2
]

m2
2

[krM (t) rM (t)k ? + krM (t)k?] c s

(Assumption 6.1)

(assumption on)

s

l

l

l2

cl 2 l2 2

l l2 2

1

2

1
1

2
c s

c c
m2

4 2
s

2

1

| {z }

| {z }

| {z }

N

N

t t t

N

NX
?
s| {z

T

t tt s| {z
T

?

t t t

c s t t t
 1 i i

l t

l t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling
m2

2 L
k t tks + k rM (t) rM (0)k ?

c s

m2
2 L

[kt tkc + ktkc] c s

m2

L

k t tkc +
m2

2ucm L
 1ktkm c s 1 c s

m2

L

kt tk +
1 m2

2ucm L 2

+ 2M (t): c s
1 c s

Substituting (65) in (64), we get

(Proposition B.1)

(By (13))

(Proposition B.1; 1 > 0)

(65)

E t [T2]
2

L
2 lc s

E t kt t k2 +
2

E t kb(Yt)k2 +

lc

L
E t kt tkc +

2

m2

l
ucm L 2

+ 2 Et [M (t)]:

Proof of Lemma B.3.

T3 = h r M (t) ; G (t ; Y t) G (t) i
= h r M (t) r M (t) ; G (t ; Y t) G (t) i

T 3 1

+ hrM (t) ; G (t ; Y t) G (t ; Y t) + G (t) G (t) i (66)

T 3 2

+ hrM (t) ; G(t ; Y t) G (t) i : T 3 3

Next, we bound all three terms individually.

I. Bound on T31:

For T311, we have

T31 =
1 X

r M (t) r M (t) ; G i (i ; y i) G i (i)

i = 1

1

i = 1

k rM (t) r M (t)k
}

G i (i ; y i) G i (i)
}

: (67)

3 1 1 3 1 2

T311 = k r M (t) r M (t)ks
L

kt

t kc; (68)
c s

where the inequality follows from Proposition B.1 and (13). For T312, we have,

T312 = k G i (i ; y i) E y i G i (i ; y)k s

l 1 G i (i ; y i) c
 + E y i G i (i ; y) c

lcs [A2kt kc + A2ktkc]
2A2

ki tkc + ktkc
c s

=
2 A 2 i + ktkc : c s

(Triangle and Jensen’s inequality)

(Assumption 6.3)

(triangle inequality)

(69)

?

i i i

N

t2l N

X
" #

2
i

l N 2

2
c s

NX 1 2
 c m

2
 2

l N 2 2 2c t c m

2
c s

2
 c m

l 2 2 2
2 2 1

N

N

t t t t t t

N

N

i = 1
t

i i
t s

?

| {z s t|
y i

tz

¨

l c c

t t t

1
t t

i i i
t

1 i i
t

i

l t c tc c

lc s

i i

N

2l N 3

i i

N

X
i i #

1
2
c s

1 1 NX u2
 c

2
3

2 i2 i

1 1 NX
i2 i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Substituting (68) and (69) in (67), we get

T31
2LA 2

"
1 X

k t t kc i + ktkc

c s i = 1

2LA 2 1 N

kt t kc t

+

ucm kt t kc 2ktkm
c s

" i = 1 #
2LA 2 1

i = 1
2

kt t k2 +
1

(i)2 +
u

2
kt t k2 +

2
ktk2 =

2 L A 2 1

+
u

2
kt t kc + 2 M (t) +

2

t :

(Proposition B.1)

(Young’s inequality)

(70)

I I . Bound on T32:

T32 =
1 X

r M (t) ; G i (i ; y i) G i (i
 ; y i) + G i (i

) G i (i)

i = 1

1 X

k r M (t)k
}

kG i (i ; y i) G i (t ; {
) + G i (t) G i (i)k

}
; (71)

T 3 2 1 T 3 2 2

where the last inequality is by Holder’s inequlaity. For T321, we have

T321 = k r M (t) rM (0)k s
L

k t 0ks

L

[ktk + kt t k] : c s

For T322, we have

(Proposition B.1)

(72)

T322 =k G i (i ; y t) G i (t ; yt) + G i (i
) G i (i)k s

lc s
G i (i ; y i) G i (t ; yt)c

 + G i (t) G i (i) c

lc s
A1kt t kc + c ki t kc

A1 + 1 i t + kt t k + t i
c s

=
A 1 + 1

t + kt t kc + t :

Substituting (72) and (73) in (71), we get

(triangle inequality)

(Assumptions 6.2 and 6.3)

(c 1; triangle inequality)

(73)

T32
L (A 1 + 1)

"
1 X

3 k t k c
1

t + kt t kc + t

c s i = 1

+
1 N

kt t kc t + kt t kc + t

i = 1

L (A l + 1)
2 3 ktkm +

2N
i = 1

 m
t + kt t kc + t

2

+
2

kt t kc +
2N

i = 1
t + kt t kc + t

2 (Young’s inequality)

1
2
c s

X

2 2

2 2
3 32 2 2

1

i = 1
3 c t t

1
2
c s

3
3u2

 c m 2
2
c m

2 22 2

s

N

N
i i i

c sl N

N

s t t t

l N

N

s t

l N

N

s t

2l N

N

c
i

2l N

N

c
i

1
2

s

NXm 1
c c

1 1 i 2

2
c s

c cl 2

2
2

cl 2

?
s| {z | {z

? ?

l

l

l
p

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

L (A l + 1) 2M (t) +
3ucm + 2kt t k2 +

3ucm +
3

N

N

(i)2 + (i
)2

L (A l + 1) 2M (t) +

23
+ 2kt

t kc +
3u

3
+

3
[

t +
t] : (74)

I I I . Bound on T33: Taking expectation on both sides of T33, we have
E t [T33] =
r M (t); Et [G(t ; Y t)] G (t)

=
1 X

r M (t); Et [G i (t ; yt)] G i (t)

i = 1

1 1 X

k r M (t)k? E t [G i (i
 ; y i)] G i (i

)c
 i = 1

1 1 X

k r M (t)k? m1ki kc
 c s

i = 1

m1 1 X
k r M (t)k? ki kc

c s i = 1

m1 L 1 X
k t k kt kc c s

i = 1

m1 L 1 X
k t k kt kc + kt t kc

c s
" i = 1 #

lc

L
kt k2 +

N
i = 1

2
kt k2 +

2 t t c
m1 L

E t 3

ktk2 + kt t k2 +
1

t

=
m 1 L

E t 6ucm M (t) + 3 kt t k2 +
1

t : c s

Substituting the bounds on T31; T32; T33 from (70), (74), (75), in (66), we get the result.

(By (13))

(Assumption 6.1)

(assumption on)

(By Proposition B.1 and (13))

(tringle inequality)

(Young’s inequality)

((a + b)2 2a2 + 2b2)

(75)

Proof of Lemma B.4. Denote T4 = hrM (t) ; G(t) G(t) i . By the Cauchy–Schwarz inequality, we have

T4 krM (t)k
}

kG(t) G(t)k
}

: T 4 1

T 4 2

For T41 we have

krM (t)k s = k r M (t) rM (0)k s

L
kt ks

L

ktkc c s

Lu c m ktk
m

c s

=
L u c m 2M (t):

c s

(76)

(Proposition B.1)

(By (13))

(Proposition B.1)

(77)

N N

N NX X
t t

l N l N

N N

t tc c

l l N

N

t c

N

t cN l2

NX
4

1 1
2

i 2 L 2 2

c s
4 2

2 L uc m
4 2

2

2

2
s| s{z | {z

2 2

 2

 2

c

l2

1 1
N N

X X
t t t t t t

2 2

N l 2

N

t t t c
2

2

N

t t

A 1
l2

2 2

l l2 2 s

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

For T42 we have

kG(t) G(t)ks = 1 G i (i) G i (t)
1

G i (i) G i (t) s
 i = 1

s i = 1

1 X

G i (i) G i (t)

 c X i t

; c s i = 1
c s i = 1

where (78) follows from Assumption 6.2. Combining (77) and (78), for an arbitrary 4 > 0, we get

T4
Lu c m p 2 M (t) c X i t

c s c s

i = 1

1 X

4
p

2 M (t)
1 i t

Lu c m

i = 1 4

c s

N

i = 1

2M (t) +
24

t t c

l

 ucm

2 2

= 4 M (t) +
2lcs 4

2

t :

(Jensen’s inequality)

(78)

(c 1)

(Young’s inequality)

(79)

Proof of Lemma B.5. Denote T5 = kG (t ; Y t) t + b(Y t)ks . We have

T5 = k G (t ; Y t) + G (t ; Y t) G (t ; Y t) t + b (Y t)ks
3 kG(t ; Y t) t k

}
+3 kG(t ; Y t) G (t ; Y t)k

}
+ 3 kb (Y t)ks : T 5 1

T 5 2

For T51 we have

T51 lcs (kG(t ; Y t)kc + ktkc)2 lcs

(A2 ktkc + ktkc)2 =
2(A 2 +

1)2u2
m M (t):

c s

(80)

(By (13))

(Assumption 6.3)

(81)

For T52 we have
N 2 N

T52 = (G i (i ; y i) G i (t ; y i)) G i (i ; y i) G i (t ; y i) s i = 1

s i = 1

1 X

G i (i ; y i) G i (t ; y i)2 c s i = 1

A1 1 X i

2 lcs

N
i = 1 c

2
=

t: c s

Using the bounds in (81), (82), we get

T5
6(A2 + 1)2ucm M (t) +

3A1

t + 3 kb(Yt)k2 ; c s c s

where the last inequality is by the assumption on .

(k ks is convex)

(By (13))

(Assumption 6.3)

(82)

(83)

 1 N i

N N

N N
i i i i i i

N l
i i

l

(A + 1)

N

N

l l l l

N

N
i

i 1 N j j j j j

i

N N N

N N N l
j j j

l

N

l

2

2(+ 1)

N

N

l l l

N
N l l l

N

N
i

X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Lemma B.6. Define l = N
P i = 1 l c . By the update rule of Algorithm 4, if l + 1 mod K = 0, we have

l + 1 =
1 X

l + 1 c =
1 X

l + (G i (l ; y l) l + b i (y l)) c i = 1 i = 1

l +
 X

k G i (i ; y i) k c + kikc + kbi (y i)kc

i = 1

l +
1 X

(A 2 + 1)kl kc + B

i = 1

= (1 + (A2 + 1))l + B :

(triangle inequality)

(Assumption 6.3)

(84)

Furthermore, if l + 1 mod K = 0, we have l + 1 = N
P

j = 1 (l + (G j (l ; y l) l + b j (y l
))), and hence

l + 1 =
1 X

l + 1 c =
1 X

 1 X
(j + (G j (l ; y l) l + b j (y j)))

i = 1

i = 1 j = 1 c

l +
 X

k G i (i ; y l) k c + kl kc + kbi (y i)kc ; i = 1

and the same bound as in (84) holds. By recursive application of (84), we get

l + 1 (1 + (A2 + 1)) l+1
0 + B

X
(1 + (A2 + 1)) ‘ ‘ = 0

= (1 + (A2 + 1)) l+1
0 + B

(1 + (
A A

+ 1)) l + 1

1

:

(triangle inequality)

(85)

Notice that for x log 2 , we have (1 + x) + 1 1 + 2x(+ 1). If 0 l 2 1, by the assumption on , we have (1 + (A2 +
1)) l + 1 (1 + (A2 + 1))2 1 + 4(A2 + 1) 2. Hence, we have

l 20 + B
4(A2 + 1)

= 20 + 4B : 2

Furthermore, we have

kl + 1 lkc =kG (l ; y l) l + b(yl)kc kG(l ; y l)

lkc + kb(yl)kc

=
1 X

(G i (i ; y i) i) + kb(yl)kc i = 1 c

1 X

G i (i ; y i) i c + B i = 1

1 X

(A 2 + 1) l c + B i = 1

= (A 2 + 1)l + B :

(86)

(triangle inequality)

(convexity of norm)

(Assumption 6.3)

(87)

Suppose 0 t 2. We have
"

t 1
#

kt 0kc kk + 1 k kc (triangle inequality)
k = 0

X

X

1 B

1 2

1
N

1

2l2
2

2l2

1
2

l2
2

c

1
2

1
2

B 2

2
c

c c c

c
2

c c0

@ 1
N

X
l

1

A
c c c

1
N

NX
l c c c

X
c c c

2 c c c

2 c c 1 l

2

2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

"
t 1

#

(A2 + 1)k + B k = 0

t 1

B t + (A2 + 1) (20 + 4B) k = 0

2(B + (A2 + 1)(20 + 4B))

C1
B + (A2 + 1) 0 +

2C1
:

Furthermore, by Proposition B.1, we have M (t) = 2 ktkm, and hence for any 0 t 2 we have

(By (87))

(By (86))

(t 2)

(88)

M (t)
1

ktkc c m

=
1

(kt 0 + 0kc)2 c m

2lcm
(kt 0kc + k0kc)2 (triangle inequality)

1
(kt 0kc + k0k2)
c m

2
!

l c m C1
B + (A2 + 1) k0kc +

2C1
+ k0kc ;

which proves the first claim.

Next we prove the second claim. By the update rule in 30, we have

kl + 1 lkc = 2 k G (l ; Y l) l + b(Y l)k 2

3 2 kG(l ; Y l) lk2 + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2 62 (kG(l ; Y l)k2 +

klkc) + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2

N 2

=62 G i (l ; y i) + klk2 + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2 0
i = 1

c
! 2

 1

62 @ G i (l ; y i) c + kl k2 A + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2 i = 1

0

62 @

(convexity of norm)

N
! 2

A2kl kc + kl k2 A + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2

i = 1

(Assumption 6.3)

=62 (A2 + 1)klk2 + 32 kb(Yl)k2 + 3 2 kG(l ; Y l) G(l ; Y l)k 2

62(A2 + 1)klk2 + 32 kb(Yl)k2 + 32A22; (89)

where (89) follows from Lemma B.10. Taking square root on both sides, we get
q

kl + 1 lkc 3 A2 + 1klkc + 2kb(Yl)kc + 2A1 l : (90)

Combining the above inequality with the fact that kl+1 kc klkc k l + 1 lkc, we get
q

kl+1 kc (1 + 3 A2 + 1)klkc + 2kb(Yl)kc + 2A1 l

2

|

l

l

p
N

p
N

u c D B

lX
"

lX

X X

l
p

N
uc D

"

p
N

X k

uc D X

1C
#

uc D

C 1

p
N C 1

B 1

u
c D

p
N 1

p
Nl 1

X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= (1 + C1)kl kc + 2kb(Yl)kc + 2A1 l ; (91)

where we denote C1 = 3
p

A 2 + 1. Assuming t l t, and taking expectation on both sides, we have

E t 2 [kl+1kc] (1 + C1)E t 2 [klkc] + 2Et 2 [kb(Yl)kc] + 2A1 Et 2 [l]

 (1 + C1)E t 2 [klkc] + 2
ucD

B
 + 2m2

l t + 2 + 2A1 Et 2 [l] c D

 (1 + C1)E t 2 [klkc] + 2
ucD

B
 + 2m2

l t + + 2A1 Et 2 [l] c D

= (1 + C1)E t 2 [klkc] + ct (l) + 2A1 Et 2 [l];
h i

where ct (l) = 2 l c D
p

N
+ 2m2

l t + . By applying this inequality recursively, we have

E t 2 [kl+1kc] (1 + C1)E t 2 [klkc] + ct (l) + 2A1 Et 2 [l]

(Lemma B.9)

(Assumption on)

(92)

 (1 + C1) [(1 + C1)E t 2 [kl 1kc] + ct (l 1) + 2A1 Et 2 [l 1]] + ct (l) + 2A1 Et 2 [l]

 (1 + C 1) l + 1 t +

E t 2 [kt kc] + (1 + C1) l k ct (k) + 2A1 Et 2 (1 + C1) l k
k

t

k = t
"

t
k

= t
#

 (1 + C 1) + 1 E t 2 kt kc + (1 + C1)t k ct (k) +2A1 Et 2 (1 + C1)t k
k : (93)

k

= t

 {z }

T 1

| k = t {z }
T 2

We study T1 and T2 in (93) separately. For T1 we have

T1 = 2
ucD X

(1 + C1) k

B
 + 2m2

k
c D k = 0 #

= 2
l c D

"
B

(1 + C 1) + 1

1

+ 2m2(1 + C1)

k = 0
1 +

C1

 2
l c D B

(1 + C 1) + 1 1

+ 2m2(1 + C1)

k = 0

k (> 0) 2
l c D

p
N

(1 + C 1) + 1

1

+ 2m2(1 + C1)
1

: (94)

Notice that for x log 2 , we have (1 + x) + 1 1 + 2x(+ 1). By the assumption on , we have (1 + C 1) + 1 1 + 2C1 (+
1) 1 + 4C1 2 and (1 + C1) 1 + 2C1 1 + 1=2 2. Hence, we have

T1 2
l

c D

B
 2(+ 1) +

4m2: (95)

Furthermore, for the term T2 we have

T2 =
X

(1 + C1) k
t + k

X
(1 + C1)

t + k k = 0 k = 0

X
(1 + 2C1)t + k 2

X
t k :

(due to > 0)

(96)
k = 0 k = 0

Subtituting (95), (96) in (93), for every t l t, we get

E t 2 [klkc] 2Et 2 [kt kc] +
2ucD

4B

 +
4m2

+ 4A1

t k : (97) c D k =
0

2 2

X

X

X
2

p
Nl 1

X
3

X u
l

B
N

X

2
p

Nl 1

3

p
N

u u
c D c D

1 t 1X

c D
p

N
uc D

l 1 1
t

p
Nl l 1

t

c c c 1 l

| | |{z } {z } {z }

2 2 1 1

2 2 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

But we have
"

t 1
#

E t 2 kt t kc E t 2 k i + 1 i kc
i = t

t 1

E t 2 [C1kikc + 2kb(Y i)kc + 2A1 i]

(triangle inequality)

(by (90))
i = t

t 1

C1 42E t 2 [kt kc] +
2ucD

4B

 +
4m2

+ 4A1

E t 2 [t j]5 i = t c D j = 0
t 1

+ 2 c D p + 2m2
i t + 2

i = t c D

t 1

+ 2A1 E t 2 [i] i = t

 C 1 42E t 2
 [kt

 kc] + 2ucD

4B +

4m2

+ 4 A 1

X
E t 2

 [t
j]5 c D j = 0

(by (97))

(Lemma B.9)

+ 2
lc D

B
 + 42 lc D m2 1

+ 2A1
i = t

E t 2 [i] (assumption on)

2C1 Et 2 [kt kc] +
uc D B 8C1

2 2 + 2

+

l c D

 8m2

C
1

2
+

4m2
2

+ (4A1
2 C1 + 2A1)

X
E t 2 [i] (i 0) i = t

 2C1 Et 2 [kt kc] + 4
uc D

B
 +

uc D 4m2 2(1 + 2C1) + 3A1
X

E t 2 [i]: (98) c D c D

i = t

Furthermore, by triangle inequality, we have kt kc kt t kc + ktkc. By assumption on , we have 2C1kt kc
2C1kt t kc + 2C1ktkc 0:5kt t kc + 2C1ktkc. By taking expectation on both sides, and substituting it in (98), we get
(34).

Proof of Lemma B.7. From (91) we have

kl+1 k2 (1 + C1)2klk2 + 42 kb(Yl)k2 + 42A22

+ 4(1 + C1)kl kc kb(Yl)kc + 4A1 (1 + C1)kl kc l + 82 A1 l kb(Y l)kc : (99)
T 1 T 2 T 3

For T1 we have

T1 = 2
p

(1

+ C1)kl kc 2

p
(1

+ C1)kb(Y l)kc

2(1 + C1)kl kc + 2(1 + C1)kb(Y l)kc 4klkc +

4kb(Yl)kc ;

where the last inequality is by the assumption on . Analogously for T2 we have

T2 = 2
p

(1

+ C1)kl kc 2 A 1

p
(1

+ C1) l

4klkc + 4A1 l :

(ab 2 a2 + 2 b2)

(100)

(101)

c 1 l

2 2 2 2 2

c c c 1 l c 1 l

c c 1 l
2 2 2 2

2
2

c c c 1 l

u2

2l N
2 2

c t 1 l

t
u 2

l 2

2

N 2

c
2

t
2 2

t
2 2

c

X
t 1

X
i

c

X
t

|

2
X

i

u2

2l N 2
u2
 c D

2

 c
2 2

c D

2

N C l +X 2

 c Du B2 2

2

 c

C l2 2
c D

2

X

2

 c c
2 2
c D c D

2l N C l

 c D
2

B 2u m

2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

For T3 we have

T3 =2kb(Y l)k c 4A1 l

22 kb(Yl)k2 + 82A22: (102)

Combining the bounds in (100), (101), and (102), and noting that (1 + C1)2 1 + 3C1, from (99) we have

kl+1 kc (1 + 3C1)kl kc + 42 kb(Yl)kc + 42A1 l

+ 4klk2 + 4kb(Yl)k2 + 4klk2 + 4A2 2 + 22 kb(Yl)k2 + 82A22 = (1 + (3C1 +

8))klk2 + (62 + 4)kb(Yl)k2 + A2(122 + 4)2

(1 + C2)kl kc + 10kb(Yl)kc + 16A1 l : (103)

where C2 = 3C1 + 8. Taking expectation on both sides, we have

E t 2 kl+1 k2 (1 + C2)E t 2 klk2 + 10Et 2 kb(Y l)k2 + 16A2 Et 2 [2]

 (1 + C2)E t 2 klkc + 10 c D B 2
+ 2m22(l t + 2) + 16A1 Et 2 [l] c D

= (1 + C2)E t 2 klk2 + c (l) + 16A2 Et 2 [2];
h i

where c (l) = 10 c D B
 + 2m222(l t +) . Hence, for any t l t, we have c D

E t 2 kl+1 k2 (1 + C2) (1 + C2)E t 2 kl 1kc + c (l 1) + 16A1 Et 2 [l 1]

(Lemma B.9)

(104)

+ c (l) + 16A1 Et 2 [l]
l

"
l

#

(1 + C 2) l + 1 t + E t 2 kt k2 + (1 + C2) l i c (i) + 16A2 Et 2 (1 + C2) l i 2

t

i = t
"

t

i = t
#

 (1 + C 2) + 1 E t 2 kt k2 + (1 + C2)t i c (i) +16A1 Et 2 (1 + C2)t i 2 : (105) i = t

{z } | i = t {z }
T 4 T 5

For the term T4 we have

T4 =10 c D
X

(1 + C2) i B 2
+ 2m222i

c D i = 0

=10
l

cD

B 2 (1 + C 2) + 1

1

+ 20
u2

D m2
2(1 + C2)

i = 0
1 C2

i

10
l

cD

 N
(1 + C 2) + 1

1

+ 20
u2

D m22(1 + C2)

i = 0

2i 10
u2

D B
2

(1 + C2) + 1

1

+ 20
u2

D m22(1 + C2)
1

1
2 :

(C2 0)

(106)

By the same argument as in Lemma B.6, and by the assumption on , we have (1 + C 2) + 1 1 + 2C2 (+ 1) 1 + 4C2 2
and (1 + C2) 1 + 2C2 1 + 1=2 2. Hence, we have

2
 2 2

2

T4 40
l

cD

N
 +

1 2
 : (107)

Furthermore, for T5, we have

T5 =
X

(1 + C2) i E t 2 [t + i] i = 0

2

2

X
2

u2

2
c D

B 2

2
1 2

X
2 2 2

2
X

X
2

X
1 c c 1

2

c

1

X
"

c
u2

2
m2

l N 1 2 1
2

#

1
u2

2
B 2

l N
2

X X
i

1 c
u2
 c D

2 3
 c

2 2
c D

m 2m2 2
 2 2B u B

2

1
2 X 2

c

c c c1 1

1 1c c c c

1
N

N N

N N
i i 2

X X
s t t t t

2 2

N

NX
4

X
t

X
i i i 5

i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

X
(1 + C2) E t 2 [t + i] i = 0

X
(1 + 2C2)Et 2 [t + i] i = 0

2 E t 2 [t i]: i = 0

(C2 > 0)

(assumption on)

(108)
Combining the bounds on T4 (107) and T5 (108) in (105) we have for any t l t,

E t 2 klkc 2Et 2 kt kc + 40
l

c D
N

 + m23
1 2

 + 32A1
i = 0

E t 2 [t i]: (109)

Furthermore, we have

kt t kc

t 1
! 2

k i + 1 i kc (triangle inequality)
i = t

t 1

k i + 1 i kc i = t

t 1
2C 2kik2 + 32kb(yi)k2 + 32 A2

i : i = t

Taking expectation on both sides, and using the bounds in Lemma B.9 and (109), we get

E t 2 kt t k2

 2 C 2
t 1

2Et 2 kt k2 + 40 c D B 2
 + 2

3

+ 32A2

X
E t 2 [t i]

i = t c D i = 0
t 1 t 1

+ 32 c D + 2m2
2(i t + 2) + 32A2 E t 2

2 i = t
c D i = t

 2 2C 2 2Et 2 kt k2 + 40
l

cD

N
 +

1

2 + 32

l

2
D

N

2
+

1

 2

+ 2A2 (3 + 32C1) E t 2 t i :
i = 0

(from (89))

()

(110)
Furthermore, by triangle inequality, we have kt kc kt t kc + ktkc. Squaring both sides, we have kt k2

(kt t kc + ktkc)2 2kt t k2 + 2ktk2. By assumption on , we have 222C 2kt k2 422C 2kt

t k2 + 422C2ktk2 0:5kt t k2 + 422C2ktk2.

Proof of Lemma B.8. For s K + 1 t (s + 1) K 1, where s = bt=K c,

t ,
1 X

t
2 =

1 X
k t

tkc i = 1 i = 1

N t 1 2

= i
K s K + G i (i

0 ; y i
0) i0 + b i (y i

0) (G(t 0 ; yt0) t0 + b(yt 0))
i = 1 2

t 1

t 0
=sK

2
t 1 2 3 c

b i (y i
0) b(yt 0) + G i (t 0 ; yt0) t0 (G(t 0 ; yt0) t0) i = 1

t 0 = s K c t 0 = s K c

(* s K = s K and Young’s inequality)

2 2

N

N

4
X

t

6
2

X
t t

7
5

N

X X
2

2t t t
2

2 2
6
4

X X

N l2 t c

X
t t

3

7
5

X X4 2 u2

N l2
t

i 2
c

i 2
c

2 c

2 2

2

2 2

l N

X X
t t

X X4 2 2u2

N l2

n
t

i
t

2
c

i 2
c

o
t

2
c

c
2

c

l l N

X X
t 2 t c

X X 2u2

N l2
2 i

c
2

c
i

c

c
2

c

l l N l

X X X

0 00

X

t = s K

2A2u2 2A2u2

l l2 2 c

X
c 1 2

2 2

l 1 l l2 2 2 c

:

t t

2

t

8
<

t

2
N j =

2
N ;

4 1
c2

t t
1

l N

X
j

c

8 9

: ;

3

5

l

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling
2 3

2 uc2

X
6

t 1

b i (y i

0) b(yt 0)2 +
t 1

b i (y i
0) b(yt 0); bi (y i

0 0) b(yt 0 0)
7

i = 1 t0 =sK t 0 ; t 0 0 = s K
t 0 =t 0 0

+
42

(t s K)
t 1 N h

uc2 G i (i
0 ; y i

0) G(t 0 ; yt0)2 + i0 t0 c

i
t 0 = s K i = 1

2
(Triangle inequality, and kkc uc2 kk2)

2 uc2 N

 6 t 1 1
b i (y i

0)2 +
t 1

b i (y i
0) b(yt 0); bi (y i

0 0) b(yt 0 0) 7
i = 1 t0 =sK c

2 t 0 ; t 0 0 = s K
t 0 =t 0 0

t 1 N

+ (t s K) c2 G i (i
0 ; yt0) + t0 t0 : (lc2 kk kk and V ar (X) E [X 2])

t 0 = s K i = 1 c2

Taking expectation

E [

t]
2 uc2 (t s K) B 2 +

4 uc2 N
t 1

E
b i (y i

0) b(yt 0); Et 0 b i (y i
0 0) b(yt 0 0)

c
2 i = 1 t 0 ; t 0 0 = s K

t 0 <t 0 0

t 1 N

+ (t s K) E c2 G i (i
0 ; yt0) G i (t 0 ; y i

0) + G i (t 0 ; yt0) + i0 t0

t 0 = s K i = 1 c2
(using Assumption 6.3)

22u2

2 (t s K) B 2 +
42u2

2 N
t 1

E b i (y i
0) b(yt 0) Et 0 b i (y i

0 0) b(yt 0 0)
c
2 c2 i = 1 t 0 ; t 0 0 = s K

t 0 <t 0 0

(using lc2 kk2 kkc)

+
42

(
t s K

)
 t 1 N

E c2
n

A 1 t0 t0
2 + A2 kt0 k2

o
+ t0 t0

2 (Assumption 6.3)
t 0 = s K i = 1 c2

(a) 22u2
2 (t s K) B 2 +

42u2
2 2m2B N t 1 t 1

E
h

t0 0 t0
i

c
2 c2 c2 i = 1 t 0 = s K t 0 0 = s K

t < t
t 1

+ 42(t s K) 1 + 1 c2

t0 + 2 c2 kt0 k2
0 c2

c2

(b) 22u2
2 (t s K) B 2 +

4m2B

+ 42(t s K)

t 1

1 +
2A2uc2

t0 +
2A2uc2 kt0 k2; (111) c2 t 0 = s K c2 c2

where (a) follows since
E b i (y i

0) b(yt 0)2 Et 0 b i (y i
0 0) b(yt 0 0)c

3 9 3

 E 4 b i (y i
0)2

 Et 0 b i (y i
0 0)c

 + Et 0 4 1 X
b (y t 0 0) 5 5 (V ar (X) E [X 2] , and Triangle inequality)

j = 1 c

< N h i =
 E b i (y i

0) c
 Et 0 b i (y i

0 0) c
 + Et 0 b(yt 0 0) (Jensen’s inequality)

j = 1

B

 2m2E
h

t00 t0
i

: (Assumption 6.1, 6.3)
c2

0 00

h iX X X X X t t

1

=

:

l c 21 2
2 A u 2 A u2 2 2 2

l l2 2
~ ~ ~

"
~ 24m X

~ ~ 2

#

~ 24m ~
X

c ~
X

"

~ ~ 24m X
~ ~ 2

#

| {z

~ 24m ~
i

~
"

X
c

~
X

2

#

~ ~
X

"
~ ~ 24m ~

X
2

~
X

#

24m Y
~ ~

~ ~
Y X

2

~ ~
Y X

~ ~
Y X

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Finally, the inequality in (b) follows since
t 1 t 1 t 1 t 1 t 1 0

E t00 t0
= t00 t0

=
t 0 = s K t 0 0 = s K t 0 = s K t 0 0 = t 0 +1 t 0 = s K

t < t

(t s K) 1 t s K 1
1

(t s K) 1

For simplicity, we define A = 1 c 2 ; A = 2 c 2 ; B = u c 2 B . Hence, (111) simplifies to
c 2 c 2

t 1
E
t 22(t s K) B 2 1 +

B (1)
+ 2

t 0 = s K

(1 + A 1)E

t0 + A2 E kt 0 kc : (112)

Recursively applying (112), going back 2 steps, we see
t 1 t 2

E

t 22B2(t s K) 1 +
B (1)

+ 42(t sK) A 2
t 0 = s K

E kt0 k2 + 42(t sK)(1 + A 1)
t 0 = s K

E

t0

t 2

+ 42(t sK)(1 + A1) 22(t

 s K

1)

B 2

1 +

B (1

)

+ 2
t 0 = s K

(1 + A 1)E

t0 + A2 E kt 0 kc

}

h
t 1

= 22B2(t s K) 1 +
B (1)

1 + 42(1 + A1)(t 1 s K)

t 1 t 2

+ 42(t sK) A 2 kt0 k2 + 42(1 + A1)(t 1 s K) E kt0 kc
t 0 = s K t 0 = s K

h i t 2

+ 42(t sK)(1 + A1) 1 + 42(1 + A1)(t 1 s K) E
t0 t 0 = s K

h i t 1

 42(t s K) 1 + 42(1 + A1)(t 1 s K) B 2 1 +
B (1

)

+ A2
t 0 = s K

E kt0 kc t

2

+ (1 + A1) E
t0 : (113) t 0 = s K

To derive the bound for going back, in general, j steps (such that t j sK), we use an induction argument. Suppose for
going back k (< j) steps, the bound is

k 1 h i
E
t 42(t s K) B 2 1 +

B (1)
‘ = 1

1 + 42(1 + A1)(t ‘ s K)

k 1 h i t 1

+ 42(t sK) A 2 1 + 42(1 + A1)(t ‘ s K) E kt0 kc
‘ = 1 t 0 = s K

k 1 h i t k

+ 42(t sK)(1 + A1) 1 + 42(1 + A1)(t ‘ s K) E
t0 : (114) ‘ = 1 t 0 = s K

We derive the bound for k + 1 steps. For this, we further bound the last term in (114).

k 1 h i "
t k 1

#

42(t sK)(1 + A1) 1 + 42(1 + A1)(t ‘ s K) E
t0 + E
t k ‘ = 1 t 0 = s K

~ ~
Y X

Y
~ ~

"
24m X

~ ~ ~ 2

#

~ ~
Y X

Y
~

"
24m X

~ ~ ~ ~ 2

#

Y
~

"

~ 24m ~
X

c
~

#

X
~

Y
~

~

5

~
4

24m~ ~
X

c ~ K| {z
= 0

~ 24m ~
X

2

q

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

k 1 h i t k 1

 42(t sK)(1 + A1) 1 + 42(1 + A1)(t ‘ s K) E
t0 ‘ = 1 t 0 = s K

k 1 h i
+ 42(t sK)(1 + A1) 1 + 42(1 + A1)(t ‘ s K)

‘ = 1
t k 1

 42(t k s K) B 2 1 +
B (1

)

+
t 0 = s K

(1 + A 1)E

t0 + A2 E kt 0 kc (using (112))
k 1 h i t k 1

 42(t sK)(1 + A1) 1 + 42(1 + A1)(t ‘ s K) E
t0 ‘ = 1 t 0 = s K

k 1 h i
+ 42(t s K) 1 + 42(1 + A1)(t ‘ s K)

‘ = 1
t k 1

 42(1 + A1)(t k s K) B 2 1 +
B (1)

+
t 0 = s K

(1 + A 1)E

t0 + A2 E kt 0 kc : (115)

Substituting (115) into (114), we see that the induction hypothesis in (114) holds. We can go back as far as the last instant
of synchronization, j t sK . For j = t sK , we get

t 1 s K h i
E

t 42(t s K) 1 +

42(1 + A1)(t ‘ s K) ‘ = 1

t 1

 B 2 1 +
B (1

)

+ A2
t 0 = s K

E kt0 k2 + (1 + A) E

s K : (116)

Next, using 1 + x ex for x 0, we get

t 1 s K h i
1 + 42(1 + A1)(t ‘ s K) exp

t 1 s K
!

42(1 + A1)(t ‘ s K)
‘ = 1 ‘ = 1

 exp 22(1 + A1)(t sK) 2

4

; (117)

if is small enough such that 22(1 + A 1) (K 1)2 ln 5 , which holds true by the assumption on the step size. Using (117)
in (116), we get

2 3 t 1

E

t 52(t s K) 4 B 2 1 +
B
(1

)

+ A2
t 0 = s K

E kt0 k2 +

(1 + A) E
s }

5 t 1

= 52(t s K) B 2 1 +
B (1)

+ 52(t sK) A 2
t 0 = s K

E kt0 kc ; (118)

which concludes the proof.

Proof of Lemma B.9. We have

E t r [kb(Yt)kc] u c D E t r [kb(Y t)kD]

= u c D E t r b (Y t) > D b (Y t)
q

uc D E t r [b (Y t) > D b (Y t)] (concavity of square root)

4

 vu
ut

1
N N

N N

t t

3

uuu
N

i
N N

i i j

i j

i

v
ut

N

t DN N
vu
t i 21 2

N N

X X >
j

 2
c D

i
t

2
c

1 1
N N l

u u
t tX X

l
1
N

2
N

X
t

j

2
N

 2
s X

i j

N

s
 2

:

2

N

N

t t t

N

N

t t t

!

N

N
i

!

N

N
2 i 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= u c D

u
E t r

 2
X

b i (y i)

! >

D
1

X

b i (y i)

!
5

i = 1 i = 1
v 2 3

= u c D t E t r 4 1
2

X
b i (y t) > D b i (y t) +

2
2

X
b i (y t) > D b j (y t) 5

i = 1 i < j

= u c D

u
12

X

E t r

h

bi (y i)2

i

+

2

2

X

E t r b i (y t) >

D E t r

h
b j (y t)

i
i = 1

i < j

"
u N h i s h i #

 uc D 2 E t r b i (y t) D
 + 2 E t r b i (y t) D E t r b j (y t) :

|
i = 1

{z } |
i < j

 {z }
T 1 T 2

For the term T1 we have
v v
u N h i u N

T1 E t r l b i (y) E t r [B 2]
i = 1 c D

 i = 1

=
B

p :
c D

(Assumption 6.4)

(119)

(Assumption 6.3)

(120)

For the term T2 we have
s h i

T2 kE t r b i (y i) k D kEt r b j (y t) k D

i < j
h i

lc D kEt r b i (y t) kc kEt r b j (y t) kc
i < j

2 X

l c D m 2 r m2 r

i < j

2m2
r

l c D

Substituting (120) and (121) in (119), we get the result in (56).

The proof of (57) follows analogously.

Proof of Lemma B.10. By definition, we have

kG (t ; Y t) G(t ; Y t)k c =
1 X

(G i (i ; y i) G i (t ; y i))

2

i = 1

c

1 X
G i (i ; y i) G i (t ; y i) c

2

i = 1

1 X
A 1 k t tkc

2

i = 1

= (A1 t)2

1 X

A 1 k t tkc i = 1

(Cauchy–Schwarz)

(Assumption 6.1)

(121)

(convexity of norm)

(Assumption 6.3)

(convexity of square)

2

2
N N

N Nt t

f f 2 m

m

?

m m m m?

2

t t

1 N 1 N

t t t
i i i

t t t

t t t t l = t l+ t l t

t
1

t l = t l l
i

l

t

t 0
t

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= A 1

t: (By definition of
t)

Furthermore, by the convexity of ()2 , we have

t =
1 X

i

! 2

1 X

(i) 2 =
t: i = 1 i = 1

Proof of Lemma B.11. Since M ;g () is convex, and there exists a norm, k km, such that M ;g (x) = 1 kxk2 (see
Proposition B.1), using the chain rule of subdifferential calculus,

r M f
;g (x) = kxkm ux;

where ux 2 @ kxkm is a subgradient of kxkm at x. Hence,

r M f
;g (x)

?
= kxkm kux km ;

where kk? is the dual norm of kk . Since kk is convex and, as a function of x, is 1-Lipschitz w.r.t. kk , we have
kux km 1 (see Lemma 2.6 in (Shalev-Shwartz et al., 2012)).

Further, by convexity of kkm norm, k0km kxkm + hux; x i . Therefore,
D

r M f
;g (x); x

E
= kxkm hux ; xi kxkm = 2Mf

;g (x):

C. Federated TD-learning

C.1. On-policy Function Approximation

Proposition C.1. On-policy TD-learning with linear function approximation Algorithm 1 satisfies the following:

1. i = v i v

2. S t = (S t ; : : : ; St) and A t = (A t ; : : : ; At)

3. y i = (S i ; Ai ; : : : ; St + n 1 ; A t + n 1 ; S t + n) and Y t = (St ; At ; : : : ; St+n 1 ; A t + n 1 ; S t + n)

4. : Stationary distribution of the policy .

Furthermore, choose some arbitrary positive constant > 0. The corresponding G i (i ; y i) and b i (y i) in Algorithm 1 for
On-policy TD-learning with linear function approximation is as follows

1. G i (i ; y i) = i + 1 (S i)
P t + n 1 l t

(S i

1) > i (S i) > i

2. b i (y i) = (S i)
P t + n 1 l t

R (S i ; A i) + (S l +

1) > v (S i) > v

where v solves the projected bellman equation v = ((T)n v). Furthermore, the corresponding step size in Algorithm 4
is .

Lemma C.1. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM Algorithm 4 (see
Proposition C.1). Suppose the trajectory fS i gt =0; 1 ; : : : converges geometrically fast to its stationary distribution as follows
dT V (P (S i = jS i)jj i ()) m for all i = 1; 2; : : : ; N . The corresponding G i () in Assumption 6.1 for the federated TD-learning
is as follows

1

2

p

2

2

X

| {z }
i

i

| {z }
t

i
t l l

i
t l t

t t

X
l l

i vt| l vt|
i i

X1
t tt l+ t l t

i i

1i i
X

l l
i

l

t

!

i 1 X
j

t| {z
i

N

N
j

| {z }

1i i i i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

G i () = + > (n (P) n) ; (122)

where > 0 is an arbitrary constant introduced in Proposition C.1. In addition, (6) holds. Furthermore, for t n + 1, we
have m = maxf 2 A

n
m ; 2Bm g, where A2 and B are specified in Lemma C.3 and = .

Lemma C.2. Consider the federated on-policy TD-learning 1 as a special case of FedSAM (as specified in Proposition C.1).
Consider the jS j jS j matrix U = > (n (P) n I) with eigenvalues f1; : : : ; jS jg. Define max = maxi ji j and = maxi

Re[i] > 0, where Re[] evaluates the real part. By choosing large enough in the linear function (122), there exist a
weighted 2-norm kk = > , such that G i () is a contraction with respect to this norm, i.e.,
kGi (1) G i (2)k ck1 2k for c = 1 8 m a x

.

Lemma C.3. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM (as specified in
Proposition C.1). There exist some constants A1 , A2 , and B such that the properties of Assumption 6.3 are satisfied.
Lemma C.4. Consider the federated on-policy TD-learning Algorithm 1 as a special case of FedSAM (as specified in
Proposition C.1). Assumption 6.4 holds for this algorithm.

C.1.1. PROOFS

Proof of Proposition C.1. Items 1-4 are by definition. Subtracting v from both sides of the update of the TD-learning, we
have

t + n 1

v i
+ 1 v = v t v + (S t) l t R (S i ; A i) + (S l+1) > v i (S i) > v i

i

l = t
t + 1

t+n 1

= i + (S i)
l = t

l t R (S i ; A i) + (S l+1) > (v i
{z }

+ v) (S i) > (v i
{z }

+ v) t t

t + n 1

= i + i + (S i) l t (S i
1) > i (S i) > i |

l = t {z }
G i (t ; y t)

t + n 1

 t + (S t) l t R (S i ; A i) + (S l+1) > v (S i) > v :

| l = t {z }
b i (y i)

which proves items 1 and 2. Furthermore, for the synchronization part of TD-learning, we have

v t

=) v i v
}

t

N

N
j = 1

v t

1 X
(v t v);

j = 1 j
t

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point v.

Proof of Lemma C.1. It is easy to observe that

G i (; y t) = + (S t)
 n (S t + n) > (S t) > :

i
1

t t t

t

1
t t t

t

t 1 i i i i

i
1

t t t

0 0
P

l = 0 l l l + 1 l

t t t t

y t t t t 0 t

t
i i

0 t
c

t

tX t t t 0

i i i

i

t t t 0

i i i i i i i

i i i

X

i
t

i

i i i i i i i i i

i i i i i i i i i i

X

t t t

i ii i i i i i i i i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Taking expectation with respect to the stationary distribution, we have

G i () = E S t
 + (S i) n (S i

+ n) > (S i) >

= E S i E + (S i) n (S i

+ n) > (S i) > S i (tower property of expectation)
= E S i + (S t) n E[() (S t + n) jS t] () (S t) = E S t

 +

(S i)
 n ((P) n) (S i) () (S i)

= +

1

> (n (P) n) :

where P is the transition probability matrix corresponding to the policy , and is a diagonal matrix with diagonal
entries corresponding to elements of .

As explained in (Tsitsiklis & Van Roy, 1997), the projection operator is a linear operator and can be written as =
(>) 1 > , where is a diagonal matrix with diagonal entries corresponding to the stationary distribution of the policy . Hence, the
fixed point equation is as follows v = (>) 1 > ((T)n v) . Since is a full column matrix, we can eliminate it from both sides of
the equality, and further multiply both sides with > . We have > v =
> ((T)n v) , and hence > ((T) n v v) = 0, which is equivalent to E S [> (S)((T) n v) (S)
(v)(S)] = 0. By expanding (T)n , we have E S i [> (S i) n 1 (R(S i ; A i) + (v) (S i) (v)(S i))] = 0, which
means

E y b i (y) = 0; (123)

and proves (6).

Moreover, we have

kG i () E[Gi (; y i)]kc = E y i [G i (; y i)] E [G i (; y i)
c

=

X
(y i)

P (y i = y i jy i)G i (; y i)
i

X
(y i) P (y t = yt jy i) : Gi (; y i)c y

i

(y i) P (y i = y i jy i):A2 kkc : y i

(kaxkc = jajkxkc)

(Assumption 6.3)

For brevity, we denote P (S t = st) = P (st). We have
X

(y i) P (y i = y i jy i)
y t

=
X

(st ; at ; : : : ; st+n) P (st ; at ; : : : ; st+n jy0)
s t ; a t ; : : : ; s t + n

= (st)(at jst)P (st+1 jst ; at) : : : P (st+n jst+n 1 ; at+n 1)
s t ; a i ; : : : ; s t + n

 P (st jSn)(at jst)P (st+1 jst ; at) : : : P (st+n jst+n 1 ; at+n 1) (t n + 1)

= (st) P (st jSn)(at jst)P (st+1 jst ; at) : : : P (st+n jst+n 1 ; at+n 1)
s i ; a i ; : : : ; s i + n

i

t t n

t n
t

t

t it tX
t t t 0 t

y t

y t c

t t t 0 t

i
t

i i i

t

m a x2 2 22 2 2= = =

1 + = 1 + +2 2 2

 1 + +2 2

 max
2 2

4 2

p

c 8 2

t t

t

t t t

i j

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=
X

(s i) P (s i jS i) s t

=2dT V (P (S i = jS i)jj()) 2m
n

=(2m n) :

E[b i (y i)] c
 = E [b i (y i)] E y t

 [bi (y i)]
c

 =
(y i) P (y i = y i jy i) b i (y i)

i

X
(y i) P (y i = y i jy i)b i (y i) c i

X
(y i) P (y t = yt jy0)B

y t

2B m

(By (123))

(Assumption 6.3)

Proof of Lemma C.2. Consider the jS j jS j matrix U = > (n (P) n I) with eigenvalues f1; : : : ; jS jg. As shown in
(Tsitsiklis & Van Roy, 1997), since is a full rank matrix, the real part of i is strictly negative for all i = 1; : : : ; jSj.

Furthermore, define max = maxi ji j and = maxi Re[i] > 0, where Re[] evaluates the real part. Consider the
matrix U0 = I + 1 U . It is easy to show that the eigenvalues of U0 are f1 + 1 ; : : : ; 1 + j S j g. For an
arbitrary i, the norm of the i’th eigenvalue satisfies

m a x m a x

i
2 Re[i] 2

Im[i] 2

2max= 2max= 2max=

Re[i] Im[i] 2

2max=

2max=
2

 1 +
2max=

+
2max=

2
= 1 :

max

(Re[i] < 0)

Hence, all the eigenvalues of U0 are in the unit circle. By (Bertsekas et al., 1995), Page 46 footnote, we can find a weighted
2-norm as kk = > such that U0 is contraction with respect to this norm with some contraction factor c. In

particular, there exist a choice of such that we have = 1
2

.
m a x

Proof of Lemma C.3. The existence of A1 and A2 immediately follows after observing that G i (i ; y i) is a linear function of
i . Furthermore, the result on B follows due to v being bounded as shown in (Chen et al., 2021b).

Proof of Lemma C.4. For the sake of brevity, we write S i = si simply as si , and similarly for other random variables. We
have

E t r [f (y t) g (yt)]

i i i i i

t t

i i i i i
t t

j j
t

i j

j j j

X

i i i i

j j j j

i i i i j j j
t

i
t

X

i i i i

j j j j

j j j ji i i i i
t

i j

2c
T

’
2

2

1

2

2

t t

1 N 1 N

t t t
i i i

i l = t j j jt t t t tl + l

t i l = t j j j l l l + l

i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

=
X

P (st ; at ; : : : ; st+n 1 ; at+n 1 ; st+n ; sj ; aj ; : : : ; st+n 1 ; at+n 1 ; s j
+ n jF t r) f (y t) g (yt)

s t ; a t ; : : : ; s t + n 1 ; a t + n 1 ; s t + n

s j ; a j ; : : : ; s t + n 1 ; a t + n

1 ; s t + n

= P (st r ; : : : ; st+n 1 ; at+n 1 ; st+n ; st r ; : : : ; st+n 1 ; at+n 1 ; s j
+ n jF t r) f (y t)

g (y j) s t r ; : : : ; s t + n 1 ; a t + n 1 ; s t + n

s t r ; : : : ; s t + n 1 ; a t + n 1 ; s t + n

= P (st r ; : : : ; st+n 1 ; at+n 1 ; st + n jFt r)P (st r ; : : : ; st+n 1 ; at+n 1 ; st + n jFt

r) f (y t)g (y j) s t r ; : : : ; s t + n 1 ; a t + n 1 ; s t + n

s t r ; : : : ; s t + n 1 ; a t + n 1 ; s t + n

= E t r [f (yt)] E t r [g (yt)]:

Proof of Theorem 4.1. By Proposition C.1 and Lemmas C.1, C.2, C.3, and C.4, it is clear that the federated TD-learning with
linear function approximation Algorithm 1 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 on the FedSAM Algorithm 4.
Furthermore, by the proof of Theorem B.1, we have wt = (1 ’ 2) t , and the constant c T D L in the sampling distribution q

T D L in Algorithm 1 is c T D L = (1 2

) 1. Furthermore, by choosing the step size small enough, we can satisfy the

requirements in (21), (23), (32), (35). By choosing K large enough, we can satisfy K > . Hence, the result of Theorem
B.1 holds for this algorithm with some c T D L > 1. Also, it is easy to see that (1 ’ 2

) = O(1), which is a constant

that can be absorbed in C T D L . Finally, for the sample complexity result, we simply employ Corollary B.1.1.

Next, we derive the constant c T D L . Since k kc = k k, which is smooth, we choose g() = 1 k k2 . By taking = 1, we have

lc s = ucs = 1. Therefore, we have ’ 1 = 1, and ’ 2 = 1 c, and c T D L = 1
(
1 c) 1

, where c is defined in

Lemma C.2.

C.2. Off-policy Tabular Setting
In this subsection, we verify that the Off-policy federated TD-learning Algorithm 2 satisfies the properties of the FedSAM
Algorithm 4. In the following, V is the solution to the Bellman equation (124).

V (s) =
X

(a j s)

"

R (s ; a) +
X

P (s 0 j s ; a) V (s0)

#

(124)
a s0

Note that V is independent of the sampling policy of the agent. Furthermore, we take k kc = k k 1 .

Proposition C.2. Off-policy n-step federated TD-learning is equivalent to the FedSAM Algorithm 4 with the following
parameters.

1. i = V i V

2. S t = (S t ; : : : ; St) and A t = (A t ; : : : ; At)

3. y i = (S i ; Ai ; : : : ; St + n 1 ; A t + n 1 ; S t + n) and Y t = (St ; At ; : : : ; St+n 1 ; A t + n 1 ; S t + n)

4. i : Stationary distribution of the sampling policy of the i-th agent.

5. G i (i ; y i) s = i (s) + 1 f s = S t g
P t + n 1 l t

l = t I (i) (S i ; A i) i (S i

1) i (S i)

6. b i (y i) s = 1 f s = S t g
P t + n 1 l t

l = t I (i) (S i ; A i) R (S i ; A i) + V (S i

1) V (S i)

Lemma C.5. Consider the federated off-policy TD-learning Algorithm 2 as a special case of FedSAM (as specified in
Proposition C.2). Suppose the trajectory fSt gt=0;1; : : : converges geometrically fast to its stationary distribution as follows

t 0
t

2

(
if

m a x1 (I)
I

(
if

m a x1 (I)

V i

{z }
i

i

| {z }
i

i

X
l

j j l
i i i

t
i

!

i

t

(
X

l
j j

"

l l
i i

t

i

| {z }
i

i

t l l)
| {z

t l

l

(

t t t

X

t t

i i i i

!

j j j t

i

X

i

j j j l l l + l

)

i 1 X
j

i

|
i

N

N
j

| {z }

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

dT V (P (S i = jS i)jj i ()) m for all i = 1; 2; : : : ; N . The corresponding G i () in Assumption 6.1 for the federated TD-
learning is as follows

G i () s = (s) + n i (P) n i (s):

Furthermore, for t n + 1, we have m1 = 2 A
n

m , where A2 is the constant specified in Assumption 6.3, m2 = 0, and =
.
Lemma C.6. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in Proposition
C.2). The corresponding contraction factor c in Assumption 6.2 for this algorithm is c = 1 min(1 n + 1) , where min =
mins;i

i (s).
Lemma C.7. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in
Proposition C.2). The constants A1 , A2 , and B in Assumption 6.3 can be chosen as follows: A1 = A2 = 1 +

(1 +)
n

1 I m a x

n
o.w.

Imax = 1
; and B = 2

1
m a x

n

1 I m a x

n
o:w:

Im a x = 1
, where Im a x =

maxs i ; a i ; i I (i) (s i ; a i) .
Lemma C.8. Consider the federated off-policy TD-learning 2 as a special case of FedSAM (as specified in Proposition
C.2). Assumption 6.4 holds for this algorithm.

C.2.1. PROOFS

Proof of Proposition C.2. Items 1-4 are by definition. Furthermore, by the update of the TD-learning, and subtracting V
from both sides, we have

| t + 1 V
(s) = V t V (s)

t +
1

(s) t (s)

t+n 1 h i
+ 1 f s = S t g

l t
j = t I (i) (S i ; A i) R (S i ; A l) + V t (S l + 1) V i (S l)

l = t

= t (s)
t+n 1

+ 1 f s = S i g
l t

j = t I (i) (S i ; A i) R (S i ; A i) + V t (S l + 1) V (S l + 1) + V (S l + 1)
l = t i (S l + 1)

)

 V i (S i) V (S i
}

+ V (S i)
i (S i)

t+n 1

= i (s) + i (s) + 1 f s = S i g
l t l

= t I (i) (S i ; A i) t (S l + 1) t (S l) i (s) |
l = t {z }

G i (i ; y i) s

t+n 1

+ 1 f s = S t g
l t l

= t I (i) (S i ; A i) R (S i ; A i) + V (S i
1) V (S i) ; |

l = t {z } b i (y t) s

which proves items 5 and 6. Furthermore, for the synchronization part of TD-learning, if t mod K = 0,

V t

=
) V t

{ z
V

}
t

N

N

j = 1

V t

1 X
(V t V) ;

j = 1 j
t

t
i

t t

X
j j j l + l

X
i i j j j l + l

| {z }

r rk k

t l t

l i i i i

i i
l 1

h
j j l

h
l l l +

i

l l l
i i

l l l
i

= P (S i = s; Ai = ajS i) l
i (s)

X
l l

(ajS i
l)
i
l

X
l l l

t t

l 2
j

i i
l

i
l

i i
l 2

j
i

l
i

l
i

ti i t

X

i

i i i i i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point V .

Proof of Lemma C.5. By taking expectation of G i (i ; y t) s , we have
"

t+n 1
! #

G i () s = E S i i (s) + 1 f s = S i g
l t l

= t I (i) (S i ; A i) (S i
1) (S i) l = t

t+n 1 h i
= (s) + E S t

i 1 f s = S t g
l t l

= t I (i) (S i ; A i) (S i
1) (S i) :

l = t
T l

Denote E i [] = E[j fS i ; A i gr k 1 ; S i]. For Tl, we have
h h i i

Tl = E S i i

h
E i 1 f s = S i g

l t
j = t I (i) (S j ; A j) (S l + 1) (S l)

i i i= E S t
i 1 f s = S t g

l t
j = t I (i) (S i ; A i) E i I (i) (S i ; A i) (S i

1) (S l) :

Here,

E i
h

I (i) (S i ; A i) (S l + 1)
i

=
X

P (S l + 1 = s; Ai = a jS i) I (i) (S i ; A l = a)(s) s ; a

X (ajS i)

s ; a
 l + 1

l l i (ajSl)

=
s ; a

i (ajS i)P (sjS i ; a) i (ajS

)

(s)

= P (sjS i ; a)(ajS i)(s) [P](S i); s ; a

where [P]s 0 ;s 1 =
P a P (s1js0; a)(ajs0). Hence, we have

h h i i

Tl = E S i i

h
1 f s = S i g

l t
j = t I (i) (S i ; A j) E l 1 I (i) (S i

1 ; Al 1) (P) (S i) (S i)

= E S t
i 1 f s = S t g

l t
j = t I (i) (S i ; A j) ((P)2)(S i

1) (P) (S l 1)

= : : :
h i

= E S t
i 1 f s = S t g

l t ((P) l t + 1) (S i) ((P) l t) (S i) = i (s) l t

((P) l t +1)(s) ((P) l t)(s)

= l t (i (P) l t +1)(s) (i (P) l t)(s) = l

t + 1 i (P) l t + 1 l t i (P) l t (s);

where we denote i as diagonal matrix with diagonal entries corresponding to the stationary distribution i . Hence, in total we
have

t + n 1

G i () s = (s) + l t + 1 i (P) l t + 1 l t i (P) l t (s)
l = t

= (s) + n i (P) n i (s):

Furthermore, by the same argument as in the proof of Lemma C.1, we have

kG i () E[Gi (; yt)]kc
X

i (y t) P (y t = yt jy0):A2 kkc ; y t

i

t t t 0
t

t t

X
l i i i i i i

"

t

X
j j j l l l + l

#

6
t

X
l 1

j j l l l l l + l
| {z }

7

X
l

i

i i (ajS)

X
l l l

X
i

X
l l l

1

1

m

s t

X
j j j

i i

!

t

X

s

j j j l +
i

!

X
j j j

i i i i
" #

s
l

j j

X
l + ll + l

" #

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

and
X

i (y i) P (y i = y i jy
i

) (2m
n

) ;
y t

which proves that m1 = 2m A2
 n constant. In addition, we have

 "
t + n 1

#

E[bi (y i)] c
 = E 1 f s = S i g

l t
j = t I (i) (S j ; A j) R (S l ; Al) + V (S l + 1) V (S l)

l = t c

t+n 1 h i
= E 1 f s = S i g

l t E l
l

= t I (i) (S i ; A i) R (S i ; A i) + V (S i
1) V (S i)

 2 l = t c 3
t+n 1 h i

= E 4 1 f s = S i g
l t

j = t I (i) (S i ; A i) E l I (i) (S i ; A i) R (S i ; A i) + V (S i
1) V (S i) 5 :

l = t
T c

For the term T , we have
" #

T = i (ajS i): (ajSl)
 R (S i ; a) + P (s0 jS i ; a)V(s0) V (S i) a

"
l s0

#

= (ajSl) R (S i ; a) + P (s0 jS i ; a)V(s0) V (S i) a
s0

=0;

which shows that m2 = 0.

Proof of Lemma C.6.
kGi (1) Gi (2)kc = 1 + n + 1 i (P) n + 1

1 i 1

2 + n + 1 i (P) n + 1

2 i 2 1 = I i (I n + 1 (P) n + 1) (1

2) 1

I i (I n + 1 (P) n + 1) k1 2 k 1 : (definition of matrix norm)
Since the elements of the matrix I i (I n + 1 (P) n + 1) is all positive, we have I i (I n + 1 (P) n + 1) =
(I i (I n + 1 (P) n + 1)) 1 1

 = k1 i (1 n + 1 1) k 1 = 1 i in(1 n + 1) 1 min(1 n + 1) .

Proof of Lemma C.7.

kGi (1 ; y) Gi (2 ; y)kc

t+n 1

= max 1(s) 2(s) + 1 f s = S i g
l t l

= t I (i) (S i ; A i) 1 (S l + 1) 1 (Sl) l = t

t+n 1

 1 f s = S i g
l t l

= t I (i) (S i ; A i) 2 (S i
1) 2 (Sl) (* c = 1)

l = t
t + n 1

 max j1(s) 2(s)j + l t l
= t I (i) (S i ; A i) 1 (S l + 1) 2 (S l + 1) 1 (Sl) 2 (Sl)

l = t
(triangle inequality)

t + n 1

 max j1(s) 2(s)j + l t
j = t I (i) (S i ; A i) 1 (S i

1) 2 (S i
1) + 1 (S i) 2 (S i)

l = t
(triangle inequality)

X
j j js

s

"
X

max

#

X

(
n

t
S i ; A i : : : ;S i t

X
j j j

i i i i

t t
i

X
j= t j j l l l + 1 l

t t t

X
max l l l + 1 l

t t t

X
max

l l l + 1 l

t t
i

X
max

 1
1 1

2 I
1

X

=

(

n

1 I m a x

t 2 T

2

T D

 1

2 p
p

e

1 + p

1 + c
2 2

1 + ‘ 42 2
c s c

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling
"

t + n 1
#

max j1(s) 2(s)j + l t l
= t I (i) (S i ; A i) [k1 2 k 1 + k1 2 k 1]

l = t
t + n 1

 max j1(s) 2(s)j + l t I l t + 1 [k1 2 k 1 + k1 2 k 1] l = t

(definition of k k 1)

(definition of Imax)
n 1

= k1 2 k 1 + [k1 2 k 1 + k1 2 k 1] I m a x (Im a x) l

l = 0

= k1 2 k 1 + [k1 2 k 1 + k1 2 k 1] I m a x 1 (I m a
x

) n 1

I m a x

if Im a x = 1
o:w:

Furthermore, we have

t+n 1

kbi (y i)kc = max 1 f s = S i g
l t l

= t I (i) (S i ; A i) R (S l ; Al) + V (S l + 1) V (S l) t t

t + n l = t
t + n 1

max l t l I (i) (S i ; A i) R (S i ; A i) + V (S i
) V (S i) (triangle inequality)

S i ; A i : : : ; S t + n l = t
t + n 1

max l t I l t + 1 R (S i ; A i) + V (S i
) V (S i)

S i ; A i : : : ; S i + n l = t
t + n 1

max l t I l t + 1 R (S i ; A i) + V (S i) + V (S i) (triangle inequality)
S i ; A i : : : ; S i + n l = t

t + n 1
max l t I l t + 1 1 + +

S i ; A i : : : ; S t + n l = t
t + n 1

= max (Im a x) l t

l = t

2Imax n if Im a x = 1 1
1 (I m a

x

) o:w:

Proof of Lemma C.8. The proof follows similar to Lemma C.4.

Proof of Theorem 5.1. By Proposition C.2 and Lemmas C.5, C.6, C.7, and C.8, it is clear that the federated off-policy
TD-learning Algorithm 2 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 of the FedSAM Algorithm 4. Furthermore, by
the proof of Theorem B.1, we have w = (1 ’ 2

) t , and the constant c in the sampling distribution qc in Algorithm 1 is

c = (1 ’ 2) 1. In equation (125) we evaluate the exact value of wt.

Furthermore, by choosing step size small enough, we can satisfy the requirements in (21), (23), (32), (35). By choosing K
large enough, we can satisfy K > , and by choosing T large enough we can satisfy T > K + . Hence, the result of Theorem
B.1 holds for this algorithm.

Next, we derive the constants involved in Theorem B.1 step by step. After deriving the constants C1, C2, C3, and C4 in
Theorem B.1, we can directly get the constants Ci T for i = 1; 2; 3; 4.

In this analysis we only consider the terms involving jS j, jAj, 1 , Imax , and min. Since k kc = k k 1 , we choose g() = 1 k
k2, i.e. the p-norm with p = 2 log(jS j). It is known that g() is (p 1) smooth with respect to k kp norm (Beck, 2017), and
hence L = (log(jS j)). Hence, we have lc s = jS j 1=p = 1 = (1) and ucs = 1. Therefore, we

have ’ 1 = 1 + u c s

= 1 +

e

 1 + . By choosing = (2c

c

)2 1 = 1 + 2 3c (1 c) = min(1 n + 1) =

1 + p (c
2 c

) 2

2 c

s

1 + p

uuu 2 c
1 + c 2() 1

p 1 +
2

r
p p

m i n n2 (1)
n + 1

2

2 c

2

‘ 2 O = O :

2
B
@ r

p
e 1 +

2
C
A

2

2

1 o.w.
n 1

B = 1
n

I n
= O ;

2 n 1

1

u c D
p

2

2
c s2 min’ l (1 in(1

p

’ 2 l2
 c s

1
p :

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

1 +

(min(1)), which is = O(1), we have ’ 1 =
1 + p

e
= e p

e + (1 + c) 2 1
= O(1), and

v

’ 2

= 1 c
1 +

= 1
c

t
(1 + c)2

= 1 r 0:5(1 + c)e1=4
= 1

0:5e1=4(2 min(1 n + 1))
e 1 + 2 c

e e 1 + 2c
c e 1 + 2 2m i n (1

+ 1

)

> 1 c
p

1

+

= 1 c

1 + c =
1

2
c = 0:5min(1 n + 1) =

(min(1))

’ 3

=
L (1 + ucs)

= O

log(jS j)(1 + c s

Using ’ 2 , we have
0

) log(jS j)

log(jS j)

1

c min(1)

1 t

wt = 1
’ 2 t

=
B

1 =2 +
0:25e1=4(2 min

(
1

n + 1)) C
: (125)

2 m i n(1 n + 1)
2 2m i n(1 n + 1)

Further, we have
lc m = (1 +

ucm = (1 +

lcs)1=2 = (1)

ucs)1=2 = (1)

Since TV-divergence is upper bounded with 1, we have m = O(1). By Lemma C.7, we have
(

A1 = A2 = 1 + (1 +)
n

 (I m a
x

) n
if Im a x = 1

= O(Imax) 1

I m a x

and A1 = A2 =
(1), (

2Imax n
1 (I m a x) 1

I m a x

if Im a x = 1 max

o:w: 1

and B =
(1). Hence m1 = 2 A

n
m = O(Imax). Also, we have m2 = 0.

We choose the D-norm in Lemma B.9 as the 2-norm k k2. Hence, by primary norm equivalence, we have l c D = p j
S j

, and

uc D = 1, and hence l c D
= jS j.

We can evaluate the rest of the constants as follows

1 = 4 = 6 =
p
’ 2 = 1 0 =

(
p

m i n (1

))

s s ! !
2 =

10

2 L A

 =

min

(
1):

log(jS j)

)
=

m

log(jS j)
)

;

and similarly s

3 =
10

L (A

+

1)

=

!
min(1)

log(jS j)

2 n 1C1 = 3
q

A 2

+ 1 = O

Imax ;

and

C1 =
(1);

n 1

l2

4

2
u 3u2 2

2 22 22 l l l l2 4 2 2 2

= O : :2 2 2+ + +
n 1 n 1 n 1 log(jS j)

= O
2 n 1

2 ;

= O

5
c c

3 4
C = + + + + 1

2 2 4 2

+ +2 3: +
n 1 n 1 2n 2

= O
2
 max

3 ;

6

3u2

3
2 2 2C = + + :

n 1
= O +

n 1

= O
2 n 1

3 ;

m2
 2 c mu L2 2

2 4

C = 2 = O+ ;

n
;

l

m u2 c D

c D

2C 2u2

2

12C = c

c

2 2n 1 2n 3n 1

2 2= O :jSj: = O ;

C = c D 2
2 = 0:

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

C2 = 3 C 1 + 8 = O

Imax ;

C3 =
m 2 L

= 0;
c s

C =

L 2
+

2LA 2 1 + c m

+

L (A 1 + 1)
 c m + 2

+

3m1 L2 c s cs 2

c s 3 c s

log2(jS j) log(jS j)Imax log(jS j) log(jS j)Imax log(jS j) Im a x

min(1)2 min(1) min(1)2 min(1) min(1)2 min(1)

log (jS j) Imax

min(1)2

3u2m 3

L (A 1 + 1) L A 2 L2 u2 m 3A2 L2 22

2 lcs l cs 2lcs
2

2

 2 lcs

log(jS j) log(jS j)Imax log(jS j)Imax log2(jS j) Im a x log(jS j)

min(1)2 min(1) min(1) min(1)3 min(1) log (jS j) I2 n

2

min(1)3

 c m 3

L (A 1 + 1) m1 L log(jS j) log(jS j)Imax Im a x log(jS j)

22 2 lcs 2lcs min(1)2
 min(1) min(1)

log (jS j) Imax

min(1)3

C7 =
21 lcs

2

 = 0;

1 3 L

log(jS j)

 8 2 2 lcs

min(1)

C9 =
8 u c D B

= O
c D

p
j S j I m a x

!

1

C10 =
l

8
(1)

= 0;

C11 =
8 C 1 3 c m = 0;

6

8C4 u2 D B 2 log (jS j)Imax Im a x jS j log (jS j) Imax

l 2D min(1)2 (1)2

min(1)4

14C4u2
 m

2

13 lc D(1 2)

u2

l23 9 2

2
 c D

D

1
3

min

2
 ma max

(1) 2 2
min(1) 4

2 3n 1

2= O ;

2

max= O 0 + I :
2 n 1

+ +
2 22n 2 n 1

2 3 3

= O
I max

2

3 :

1

~
2u2

l2 max

~
2u2

l2 max

~ u2
 c2
2

jS j I 2n
 max

2

2
c m 1

1 B
c

I n
 max n 1 I n

 max

= O I 4n 2

2 11 1 I I4n 2 4n 2
 max ma

2 3

2

2C = 2 = O + 1 +
2

 max
2

= O
2

 max
2

~ 2 24m

3C = = O : :ma max
2

3

= O max
2

4 ;

2 2 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

C14 () = C7 + C11 + 0:5C 2C 2 + C3 C10 + 2C1 C3 C10 + 3A1 C3 + C13 + C8
 c D 2m22 2 = 0; c D

C16 () = C 8
u

lc

B 2
+

2
+ C12

2 = O
jS j log(jS j)I2n

x + 1 +
jS j log (jS j) I3 n 1

2

jS j log (jS j) Imax 2

(1)4
min

C17 =(3A 1 C 3 + 8A1 C4 + C5 + C6)

2n 2 log (jS j)Imax log (jS j)Imax log

(jS j)Imax min(1)2
 min(1)3

min(1)3

3n 3

 log (jS j)

min(1)3

Similar to k k D = k k2, we have lc2 = p j
S

j

and uc2 = 1.

A1 =
2 A 1 c2 = O

I 2 n 2jS j;

c2

A2 =
2 A 2 c2 = O

I 2 n 2jS j;

c2

B

=

lc2
B 2 = O

(1

)

;

M0 =
l 1 C 2 B + (A2 + 1) k0kc +

2C1

2

+ k0 k2

!

= O

max

(1)2

2
!

1

+ (Imax):

1

+ 1

C1 = 16ucmM0

(l
og e

+
’ 2

) = O

(1

)
 :

min(1)
= O

(1

)
x

min

8ucm

C8 + 1 + C12 1

log(jS j) jS j log (jS j) I3 n 1 ’ 2

min(1) min(1) min(1)4

jS j log (jS j) I3 n 1

min(1)4

80B 2 C1 7 u
cm

1 + B (1) 1 jS j2 I4n
x I 3 n 3

 log (jS j)

’ 2

min(1) (1)4
min(1)3

I 7 n 3jS j2
 log (jS j)

min(1)8

C4 =8uc m

C7

+ C11 + 0:5C3 C9 + C3 C10

+ 2C1 C3 C10 + 3A1 C3 + C1 3 = ’2 = 0:

Finally, for the sample complexity result, we simply employ Corollary B.1.1.

a 0

t t

1 N 1 N

t t t
i i

t t

t t t

t

t t t t
i

t t

i
t t t t t

t 0 0

t t t
t

a 0 a 0

 2

i

| {z }i
t| {z }

t

t t a
i i i i i i i

i

i i

ta

66i ii i i

| {z }
i

i
77

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

D. Federated Q-learning
In this section, we verify that the federated Q-learning algorithm 3 satisfies the properties of the FedSAM Algorithm 4. In
the following, Q is the solution to the Bellman optimality equation (126)

Q(s; a) = R(s ; a) + E S 0

P(j s ; a)
 max Q(S0; a0) : (126)

Note that Q is independent of the sampling policy of the agent. Furthermore, k kc = k k 1 .
Proposition D.1. Federated Q-learning algorithm 3 is equivalent to the FedSAM Algorithm 4 with the following parameters.

1. i = Qi Q

2. S t = (S t ; : : : ; St) and A t = (A t ; : : : ; At)

3. y i = (S i ; A i ; S t + 1 ; A t + 1) and Y t = (St ; At ; S t + 1 ; At + 1)

4. i : Stationary distribution of the sampling policy of the i’th agent.

5. G i (i ; y i) (s ; a) = i (s; a)
+ 1 f S i = s ; A i = a g maxa0

i + Q(S i +1 ; a0) i (S i ; A i) maxa0 Q(St+1 ; a0) 6.
b i (y i) (s ; a) = 1 f S i = s ; A i = a g R (S i ; A i) + maxa0 Q(St+1 ; a0) Q(S i ; A i)

where 1A is the indicator function corresponding to set A, such that 1A = 1 is A is true, and 0 otherwise.
Lemma D.1. Consider the federated Q-learning Algorithm 3 as a special case of FedSAM (as specified in Proposition D.1).
Suppose the trajectory fS i ; Ai gt = 0; 1 ; : : : converges geometrically fast to its stationary distribution as follows dT V (P (S i =
; A i = jS i ; A i)jji (;)) m for all i = 1; 2; : : : ; N . The corresponding G i () in Assumption 6.1 for the federated Q-learning
is as follows

h i
G i () (s ; a) =(s; a) + i (s; a) E S 0 P (j s ; a) max (+ Q(S0; a0)) (s; a) max Q(S0; a0) :

Furthermore, we have m1 = 2A2m , where A2 is specified in Lemma D.3, m2 = 0, and = .
Lemma D.2. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). The
corresponding contraction factor c in Assumption 6.2 for this algorithm is c = (1 (1)min), where min = mins;a;i
i (s; a)
Lemma D.3. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). The
constants A1 , A2 , and B in Assumption 6.2 are as follows: A1 = A2 = 2 and B = 1 .
Lemma D.4. Consider the federated Q-learning as a special case of FedSAM (as specified in Proposition D.1). Assumption
6.4 holds for this algorithm.

D.1. Proofs

Proof of Proposition D.1. Items 1-4 are by definition. Furthermore, by the update of the Q-learning, and subtracting Q
from both sides, we have

Qt+1 (s; a) Q(s; a) = Qi (s; a) Q

(s;

a)

t + 1 (s ; a) i (s ; a)

+ 1 f (s ; a) = (S i ; A i) g R (S t ; A t) + max Qt (St+1 ; a) Qt (St ; At)

=t (s; a)
2 3

+ 1 f (s ; a) = (S t ; A t) g R (S t ; A t) + max 4Qt (St+1 ; a) Q(St + 1 ; a) +Q(St + 1 ; a)5
i (S t + 1 ; a)

B
t t t t t| {z }

i i i

t t C

i

t t a a0 0

i i i i i i i

| {z
t t

t

t t a 0t t t t t
| {z

i

i 1 X
j

Qi Q
i

1 X
j)

|
j

t t
i

t

i t t

t t
i i

0 0 t

X t t
i i

0 0 t
c

X t t
i i

0
i

t t 0 0

X
i i i i

t t 0 0
t

s ; a
ii i i i

a 0

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling
0 1

 @Qi (S i ; Ai) Q(S i ; A i) +Q(S i ; A i) A (addition and subtraction)

t (S t ; A t)

=t (s; a)
+ t (s; a) + 1 f S i = s ; A i = a g max

t + Q(St+1 ; a0)

 t (St ; At) max Q(St+1 ; a0)

}
 i (s; a)

G i (i ; y i) (s ; a)

+ 1 f S i = s ; A i = a g R (S i ; A i) + max Q(S i
+1 ; a0) Q(S i ; A i)

}
;

b i (y t) (s ; a)

which proves items 5 and 6. Furthermore, for the synchronization part of Q-learning, we have

Qt

=
)

| t {z

} t

N

N
j = 1

Qt

N

N
j

=
1

(Qt {z
Q

}
;

t

which is equivalent to the synchronization step in FedSAM Algorithm 4. Notice that here we used the fact that all agents
have the same fixed point Q.

Proof of Lemma D.1. G() (s ; a) can be found by simply taking expectation of G i (i ; y i) (s ; a), defined in Proposition D.1,
with respect to the stationary distribution . Furthermore, we have

kG i () E[Gi (; y i)]kc

= E y t
i [G i (; y i)] E [G i (; y i)

c

=

 X

i(s; a; s0; a0) P (S i = s; Ai = a; St +1 = s0 ; At+1 = a0 jS i ; Ai)G i (; y i)
s;a;s0 ;a0

= i(s; a; s0; a0) P (S i = s; Ai = a; St +1 = s0 ; At+1 = a0 jS i ; Ai) : G i (; y i) c (kaxkc = jajkxkc)
s;a;s0 ;a0

i(s; a; s0; a0) P (S i = s; Ai = a; St +1 = s0 ; At+1 = a0jS i ; A0):A2kkc (Assumption D.3)
s;a;s0 ;a0

=
X

i(s; a)P(s0js; a)i(a0js0) P (S i = s; Ai = ajS i ; Ai)P (s0js; a)i(a0js0):A2kkc
s;a;s0 ;a0

(definition of transition probability)
= i (s; a) P (S t = s; At = ajS0; A0):A2kkc

s ; a

=2dT V (i (;) ; P (S i = ; A i = jS i ; A i)):A2kkc

2A2kkcm :

In addition, we have

kE[bi (yt)]kc = max P (S t = s; At = ajS0; A0) R(s; a) + ES 0 P (js;a) [max Q(S 0 ; a0)] Q(s; a)

=0: (Bellman optimality equation (126))

s ; a

s ; a a a0 0

a a0 0

s ; a

a a0 0

s ; a

a a0 0

s ; a

a 0 a 0

s ; a

a a0 0

x x x

s ; a

s ; a
i

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

Proof of Lemma D.2.

kGi (1) Gi (2)kc = max jGi (1)(s ;a) G i (2) (s ; a) j

h i
= max 1(s; a) + i (s; a) E S 0 P (j s ; a) max (1 + Q(S0; a0)) 1(s; a) max Q(S0; a0)

h i
 2(s; a) + i (s; a) E S 0 P (j s ; a) max (2 + Q(S0; a0)) 2(s; a) max Q(S0; a0)

= max (1 i (s; a))(1(s; a) 2(s; a))
h i

+ i (s; a)ES 0 P (j s ; a) max (1 + Q(S0; a0)) max (2 + Q(S0; a0))
" max

(1 i (s; a))(1(s; a) 2(s; a))

h i #

+ i (s; a)ES 0 P (j s ; a) max (1 + Q(S0; a0)) max (2 + Q(S0; a0)) (triangle inequality)
"

max (1 i (s; a)) k1 2 k 1
h i #

+ i (s; a) E S 0 P (j s ; a) max (1 + Q(S0; a0)) max (2 + Q(S0; a0)) "

max (1 i (s; a)) k1 2 k 1
+

i (s; a) ES 0 P (j s ; a) max (1 + Q(S0; a0)) max (2 + Q(S0; a0))

Next, we note that for any functions f () and g(), we have

(max f (x)) (max g(x)) max jf (x) g(x)j :

(definition of k k 1)

(i (s; a) 0)

(Jensen’s inequality)

(127)

The reason is as follows. We have maxx f (x) = maxx f (x) g (x) + g (x) (maxx f (x) g (x)) + (maxx g(x)).
Hence, (maxx f (x)) (maxx g (x)) maxx f (x) g (x) maxx j f (x) g(x)j. Now suppose maxx f (x) maxx
g(x). Then we can apply absolute value to the left hand side of the inequality, and we get the bound.
By a similar argument for the case maxx f (x) maxx g(x), we get the bound in (127). Hence, we have
jmaxa0 (1 + Q(S0; a0)) maxa0 (2 + Q(S0; a0))j maxa0 j1(S0; a0) 2(S0; a0)j k1 2 k 1 . As a result, we have

kGi (1) Gi (2)kc max (1 i (s; a)) k1 2 k 1 + i(s; a) [k1 2 k 1]

= max

1 (1

)i (s; a)k1 2 k 1
1 (1)mink1 2 k 1
(1 (1)min) k1 2 k 1 = (1

(1)min) k1 2kc :

Proof of Lemma D.3. First, for A1 , we have

kGi (1 ; y) Gi (2 ; y)kc

s ; a a a0 0

a 0
s ; a

a 0

a a0 0

s ; a a 0 a 0

s ; a

s ; a

s ; a

a a0 0

a a0 0

s ; a a 0 a 0

s ; a a 0

s ; a a 0

s ; a a 0

s ; a

1 1

2

T2 2

 1 1 2

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

= max 1(s; a) + 1 f S = s ; A = a g max (1 + Q(S0; a0)) 1 (S; A) max Q(S0; a0)
 2(s; a) + 1 f S = s ; A = a g max (2 + Q(S0; a0)) 2 (S; A) max Q(S0; a0)

max (1 1 f S = s ; A = a g) (1 (s; a) 2(s; a))

+ 1 f S = s ; A = a g max (1 + Q(S0; a0)) max (2 + Q(S0; a0)) (triangle inequality)

max k1 2 k 1 + 1 f S = s ; A = a g max (1 + Q(S0; a0)) max (2 + Q(S0; a0)) (definition of k k 1)

max k1 2 k 1 + 1 f S = s ; A = a g k 1 2 k 1 (By (127))

2k1 2 k 1

=2k1 2kc

Second, for A2 , we have

kGi (; y)kc = max (s; a) + 1 f S = s ; A = a g max (+ Q(S0; a0)) (S ; A) max Q(S0; a0) max
h

(1

1f S = s ; A = a g) (a ; s)

+ 1 f S = s ; A = a g max (+ Q(S0; a0)) max Q(S0; a0)

i

h i
(triangle inequality)

max k k 1 + 1 f S = s ; A = a g max (+ Q(S0; a0)) max Q(S0; a0) (definition of k k 1)
h i

max k k 1 + max j(S0; a0)j (By (127))

2 kk1
=2 kkc :

Lastly, for B , we have

kbi (y i)kc = m a x 1 f S = s ; A = a g

h
R (S ; A) + max Q(S0; a0) Q(S ; A)

i

h i
ma x 1 f S = s ; A = a g jR(S; A)j + max jQ(S0; a0)j + jQ(S; A)j (triangle inequality)

max 1 +
1

+
1

=
1

:

Proof of Lemma D.4. The proof follows similar to Lemma C.4.

Proof of Theorem 5.2. By Proposition D.1 and Lemmas D.1, D.2, D.3, and D.4, it is clear that the federated Q Algorithm
3 satisfies all the Assumptions 6.1, 6.2, 6.3, and 6.4 of the FedSAM Algorithm 4. Furthermore, by the proof of Theorem
B.1, we have wt = (1 ’ 2) t , and the constant c in the sampling distribution qc in Algorithm 1 is c = (1 ’ 2) 1. In
equation (128) we evaluate the exact value of wt.

Furthermore, by choosing step size small enough, we can satisfy the requirements in (21), (23), (32), (35). By choosing K
large enough, we can satisfy K > , and by choosing T large enough we can satisfy T > K + . Hence, the result of Theorem
B.1 holds for this algorithm.

Next, we derive the constants involved in Theorem B.1 step by step. In this analysis we only consider the terms involving
jS j, jAj, 1 , Imax , and min. Since k kc = k k 1 , we choose g() = 2 k kp, i.e. the p-norm with p = 2 log(jS j).

p
e

1 + u 2
 c s

2
1 +

e

1 + c c
4 2

c

1 +

e

p (c
2 c

) 2

2 c

1 + p
e

vu
ut

+ c
2 c

c 2() 1
p

e

r
p p

e 1 + e 1 +
2 2

2 2

)2

‘ 2 O = O :

2
r

p
e 1 +

2
B C
@ A

2

2

2 1

1

l c D

p

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling

It is known that g() is (p 1) smooth with respect to k kp norm (Beck, 2017), and hence L = (log(jS j)). Hence, we
have lcs = jS j 1=p = 1 = (1) and ucs = 1. Therefore, we have ’ 1 = 1

+
‘ c s

=
1 + p

 1 + . By

choosing = (2c
c)2 1 = 1 + 2 32

 (1 c) = min(1) =
(min(1)), which is = O(1), we have

1 +

’ 1 =
1 + p

= e p
e + (1 + c) 2 1

= O(1), and

’ 2

= 1 c

s
1

+

= 1 c

u (1

1 +

)
2 = 1 r 0:5(1 + c)e1=4

= 1
0:5e1=4(2 min(1))

1 + 2

c
1 + c 2 m i n (1)
2c 2 2m i n(1)

> 1 c
p

1

+

= 1 c

1 + c =
1

c = 0:5min(1) =

(min(1)) c

’ 3

=
L (1 + ucs = O

log(jS j)(1 + c s

Using ’ 2 , we have
0

) log(jS j)

log(jS j)

1

c min(1)

1 t

wt = 1
’ 2 t

=
B

1 =2 +
0:25e1=4(2 min

(
1

)) C

: (128)

2 m i n(1)
2 2m i n(1)

Further, we have
lc m = (1 +

ucm = (1 +

lcs)1=2 = (1)

ucs)1=2 = (1)

Since TV-divergence is upper bounded with 1, we have m = O(1). By Lemma D.3, we have

A1 = A2 = 2 = O(1)

and A1 = A2 =
(1),

 B =
1

= O
1

:

Hence m1 = 2A2m = O(1). Also, we have m2 = 0.

We choose the D-norm in Lemma B.9 as the 2-norm k k2. Hence, by primary norm equivalence, we have l c D = p j
S j

, and

uc D = 1, and hence u c D = jS j. The rest of the proof is similar to the proof of Theorem 5.1 where Im a x is substituted
with 1. The sample complexity can also be derived using Corollary B.1.1.

