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Abstract

Transformer models using segment-based process-
ing have been an effective architecture for simulta-
neous speech translation. However, such models
create a context mismatch between training and
inference environments, hindering potential trans-
lation accuracy. We solve this issue by proposing
Shiftable Context, a simple yet effective scheme to
ensure that consistent segment and context sizes
are maintained throughout training and inference,
even with the presence of partially filled segments
due to the streaming nature of simultaneous trans-
lation. Shiftable Context is also broadly applica-
ble to segment-based transformers for streaming
tasks. Our experiments on the English-German,
English-French, and English-Spanish language
pairs from the MUST-C dataset demonstrate that
when applied to the Augmented Memory Trans-
former, a state-of-the-art model for simultaneous
speech translation, the proposed scheme achieves
an average increase of 2.09, 1.83, and 1.95 BLEU
scores across each wait-k value for the three lan-
guage pairs, respectively, with a minimal impact
on computation-aware Average Lagging.

1. Introduction

Simultaneous speech-to-text translation (SimulST) aims to
produce an output text translation concurrently with an on-
coming speech input. Performing accurate simultaneous
translation over long periods for humans is extremely diffi-
cult due to the immense strain placed on the brain. Machine
learning is promising to help fill the role but also faces
significant challenges, primarily because translation must
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be generated with partial input sentences, and computation
must be done in a real-time fashion during inference. Given
the broad potential applications of automated simultane-
ous translation, there is a pressing need to develop highly
accurate and highly efficient SimulST models.

While earlier transformer-based SimulST models take the
received speech directly as the input, recent models based on
segments have demonstrated better performance with less
computation (Dong et al., 2019; Dai et al., 2019; Ma et al.,
2021; Wu et al., 2020; Shi et al., 2021). These segment-
based transformers break an input sequence into segments
and sequentially process each segment individually before
concatenating them together in the encoder. To retain some
of the information in prior segments, additional left context
or summarization tokens can be provided to the current seg-
ment that is being processed. As self-attention is calculated
only within the segment (including the additional context),
complexity is greatly reduced. The latest work along this
line is the Augmented Memory Transformer (AMT) (Wu
et al., 2020; Ma et al., 2021), where each segment overlaps
with previous and subsequent segments with a left and a
right context, respectively, which also alleviates the issue of
word boundaries.

Even though Augmented Memory Transformer has state-of-
the-art performance for SimulST, we found that it suffers
from a context mismatch issue between its training and in-
ference environments. Specifically, during inference, each
of the left, center, and right contexts of a segment can be par-
tially filled under different scenarios, which deviates from
the fixed segment size assumed in training. This mismatch
issue occurs frequently and exists in other segment-based
transformers (such as Transformer-XL (Dai et al., 2019),
Emformer (Shi et al., 2021), and Implicit Memory Trans-
former (Raffel & Chen, 2023)) for streaming tasks in gen-
eral.

To address this issue, we propose Shiftable Context, which
includes multiple techniques to produce consistent segment
sizes for better alignment of training and inference in stream-
ing tasks for segment-based transformers. This is achieved
by proposing a shiftable left, center, and right context. In
the case of the shiftable center and right context, when a
segment does not reach the assumed size of tokens, they are
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instead mapped to the left context, increasing its size. Simi-
larly, for the shiftable left context, when a segment does not
have prior information from the input sequence, the tokens
normally associated with the left context are remapped to
create a larger right context.

We trained and evaluated our models on the English-
German, English-French, and English-Spanish language
pairs from the MUST-C data set (Cattoni et al., 2021). The
evaluation metrics utilized to determine the efficacy of any
changes made were computation-aware Average Lagging,
a latency metric (Ma et al., 2020b), and BLEU score, a
translation accuracy metric (Papineni et al., 2002), using
SimulEval (Ma et al., 2020a). Our evaluation results on
English-German translation demonstrated that, when ap-
plied individually to the tst-COMMON test set, the pro-
posed technique of shiftable left, center, and right context
improved the BLEU score of Augmented Memory Trans-
former by 0.42, 0.66, and 1.10 on average. When combined
together, the proposed shiftable context approach achieved
an average of 2.09 BLEU increase across all wait-k val-
ues with a minor increase in computation-aware Average
Lagging. Equally impressive results were found in English-
French and English-Spanish translations yielding average
BLEU score increases of 1.83 and 1.96 BLEU, respectively.

The main contributions of this paper are:

1. Identified a mismatch between training and inference
for segment-based transformers for SimulST.

2. Proposed a novel and broadly applicable approach
to any segment-based transformer, which eliminates
the training-inference context mismatch for streaming
tasks like SimulST by employing a shiftable left, center,
and right context.

3. Demonstrated the efficacy of the proposed techniques
by conducting extensive experiments that evaluated
techniques individually and collectively with multiple
language pairs and many wait-k values.

2. Background and Related Work

2.1. Simultaneous Translation

Wait-k Policy: The wait-k policy was first introduced for
simultaneous text translation (SimulMT). The policy is sim-
ple yet effective where the decoder will wait for k encoder
output tokens associated with the first k words in a sen-
tence before beginning the translation (Ma et al., 2018). The
model performing the translation then alternates between
producing a target word and reading a new source word.

Fixed Pre-decision Module: The fixed pre-decision mod-
ule bridges the gap between SimulMT and SimulST. Prior to
its inception, simultaneous policies such as the wait-k policy
were inapplicable to SimulST, as the granularity of input

tokens for speech was too fine-grained (Ma et al., 2020b).
The fixed pre-decision module solves this issue by grouping
encoder states into chunks before providing them to the
decoder. The size of these chunks is determined by a hy-
perparameter called the pre-decision ratio, which specifies
the exact number of encoder output tokens to provide to the
decoder at each time step.

Simultaneous Decoder: A simultaneous decoder is a slight
modification to the decoder introduced in (Vaswani et al.,
2017) that allows it to perform SimulST by making use
of the wait-k policy and a fixed pre-decision module (Ma
et al., 2021). In the simultaneous decoder, the pre-decision
module separates the incremental speech tokens into chunks
of a fixed size. Each fixed-sized chunk is treated akin to a
word in SimulMT. Therefore, by applying a pre-decision
module to the decoder, the wait-k policy is applicable for
SimulST tasks. As such, the simultaneous decoder will wait
for k fixed-size chunks before beginning translation. Once
translation begins, the simultaneous decoder will alternate
between reading and writing new inputs and outputs at the
per-chunk granularity.

2.2. Augmented Memory Transformer

The encoder in the Augmented Memory Transformer breaks
a speech input sequence X = [S1,S2, ...Sn, ...] into seg-
ments Sn 2 Rs⇥d, where s is the size of the segment, and
passes the results sequentially to subsampling convolution
layers. Each segment consists of a concatenation of a left
context Ln 2 Rl⇥d, a center context Cn 2 Rc⇥d, and a
right context Rn 2 Rr⇥d of sizes l, c, and r, respectively.
Each segment can be represented by the following equation:

Sn = [Ln,Cn,Rn] (1)

Equation 1 uses [.] as a concatenation notation to concate-
nate the left, center, and right context together. As such,
s = l + c + r. The n subscript denotes the position of
the segment in the entire sequence. Figure 1 represents the
architecture of the Augmented Memory Transformer, which
processes each segment sequentially. A segment overlaps
with the previous and subsequent segments using the left
and right context. As a result, the model is able to reduce
disrupting word boundaries. Since each segment is passed
through the encoder sequentially, the self-attention calcula-
tion is at the segment level. For self-attention, the queries
are created from Equation 1 (after subsampling) concate-
nated with a summarization query, �n. The attention output
associated with this summarization query creates a single
memory bank, mn, that summarizes the current segment.
The keys and the values are augmented with N additional
memory banks, Mn 2 RN⇥d, that summarize the N pre-
vious segments. After each segment passes through the
encoder, the auxiliary left and right contexts are stripped off,
and only the center contexts are concatenated and passed
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to the simultaneous decoder. During simultaneous transla-
tion, the simultaneous decoder alternates between reading
encoder states and writing the translation after adhering to
the wait-k policy.

…

Read

CNN Layers

Decoder

12x

Encoder

…

Write

…

…

Self-Attention

Figure 1. An example of the Augmented Memory Transformer
encoder breaking an input sequence, X , into segments, Sn, indi-
vidually processing them, concatenating the outputs, and passing
the concatenated output to the simultaneous decoder.

3. Training-Inference Context Mismatch

In this section, we describe the context mismatch issue that
we have identified for segment-based transformers when
performing simultaneous translation tasks.

Based on the previous section, except for starting and ter-
minating segments, each segment contains a fixed number
of chunks. For example, in Figure 1, if the left, center, and
right context of a segment has 8, 16, and 8 tokens, respec-
tively, and a chunk has 4 tokens, then a segment Sn consists
of 32 tokens or 8 chunks. As simultaneous translation is
real-time, the encoder self-attention is triggered after each
new chunk (e.g., a word, conceptually) is received, so a new
encoder hidden state can be provided to the simultaneous
decoder to generate an output word. Therefore, each new
chunk arrival triggers a self-attention calculation among all
the chunks that have been received in the current center
context, along with the left context (and right context if

applicable). For instance, the arrival of the first chunk of
a segment Sn triggers the attention calculation among 12
tokens (8 tokens from the left context + 4 tokens from the
chunk) to generate an intermediate hidden state Hn of the
segment for the decoder, the arrival of the second chunk of
the segment triggers the attention calculation among 16 to-
kens (8 tokens from the left context + 8 tokens from first two
chunks), and so on. The hidden state Hn of the segment is
continuously recomputed and provided to the decoder until
it has processed a complete 32 tokens.

In practice, recomputing the same segment after each new
chunk arrival is very costly. Since the entire input sequence
is available during training, a more practical and efficient im-
plementation such as the one used by Augmented Memory
Transformer is to simply break the entire input sequence into
complete segments and calculate the self-attention of each
complete segment once, as if all the chunks of a segment
arrive at the same time. This removes the need to reprocess
the same segment multiple times, leading to a substantial
saving in training time. Furthermore, such an implemen-
tation is more parallelizable as there are fewer sequential
computations. As a result of the parallelized training, the
encoder provides the decoder with a single collection of
hidden states created to represent the entire sequence. To
still correctly model simultaneous translation, the encoder-
decoder attention calculation only attends to a portion of the
encoder’s hidden states for each prediction.

While such a training implementation is faster and less com-
putationally expensive, the model is trained to perform best
when generating hidden states under a fixed segment size
(e.g., the complete 32 tokens) and a fixed center context
size (e.g., 16 tokens). However, during inference for simul-
taneous translation, the number of available tokens used
to generate hidden states varies depending on the actual
number of chunks that have been received. This creates
a training-inference context mismatch which can be prob-
lematic as the decoder is not trained to handle intermediate
hidden states well. It is worth noting that this mismatch
occurs very frequently during inference, except for those
chunks that happen to arrive at segment boundaries. To
address this important issue, we need a new way to align the
context used for hidden state generation without influencing
the already efficient training process.

4. Methods: Shiftable Context

In this work, we propose Shiftable Context, a simple yet
effective scheme to remove the training-inference context
mismatch for segment-based transformers. As a context
mismatch may occur in the left, center, or right context of a
segment, the proposed scheme consists of three techniques,
namely shiftable center, right, and left context, to ensure that
the inference of simultaneous translation retains consistently
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sized segments. In what follows, we first present each of
these techniques individually before finally combining them
into the complete scheme.

4.1. Shiftable Center Context

Our first technique, shiftable center context, targets the mis-
match that occurs in the center context of a segment. During
simultaneous translation inference, the transformer encoder
continuously receives partial inputs. If the partial input
sequence is not divisible by the size of the center context,
then the center context is only partially filled. Figure 2
depicts such an example where X denotes the partial in-
put sequence. The complete center context would normally
have 16 tokens, but in our example, it is currently filled with
12 tokens (equivalently 3 chunks). Since the third chunk has
recently arrived, the self-attention needs to be calculated for
it using the partial center context (to generate an intermedi-
ate hidden state as discussed in Section 2). This creates a
mismatch as training assumed a fixed center context contra-
dicting the partial center context seen in inference.

…Input Sequence

Shiftable Center Context

Default Segment

Figure 2. An example demonstrating the default method of cre-
ating a segment from the input sequence, X , where there is an
insufficient number of tokens to fill the center context, Cn, along-
side the proposed segment formation employing a shiftable center
context, C+

n , to maintain consistently sized center context.

To address this mismatch, the proposed shiftable center
context utilizes additional tokens from previous segments to
ensure that the size of the center context remains constant.
This is demonstrated in the bottom segment of Figure 2. In
the example, the shiftable center context, C+

n , is composed
of the last 4 tokens of the left context in the default segment.
As a result, the new left context is instead created from the
first 4 tokens of the default segment’s left context plus 4
additional tokens from the input sequence. Essentially, the
left context is shifted left to make space for a larger center
context. If generalized, the partially filled segment can be
represented by Equation 2:

Sn = [Ln,C
+
n ,Cn] (2)

In Equation 2, C+
n refers to the shiftable center context.

The subscript n indicates the segment position in the entire
sequence. Each instance of C+

n can vary in size between 0
and c � 1 to ensure that the combined new center context
reaches the fixed center context size each time a new chunk
is received. Note that no right context is included in the

equation. This is because if there are not sufficient tokens
to completely fill the center context, the right context must
be empty. The next subsection discusses how mismatches
are handled if the center context is completely filled, but the
right context is not.

4.2. Shiftable Right Context

Our second technique, shiftable right context, targets the
mismatch that is caused by a partially filled right context
during inference. Figure 3 illustrates an example where
the partial input sequence X is 4 tokens short of filling up
the right context. Consequently, the entire segment is only
partially filled, which does not match the fixed segment size
the model was trained to use to generate encoder hidden
states accurately.

…

Shiftable Right Context

Default Segment

Input Sequence

Figure 3. An example demonstrating the default method of cre-
ating a segment from the input sequence, X , where there is an
insufficient number of tokens to fill the right context, Rn, along-
side the proposed shiftable right context to remap tokens from the
right context to the left context to keep consistently sized segments.

This is addressed by the proposed shiftable right context,
which remaps the space of unfilled tokens in the right con-
text to the left context. We demonstrate this solution in the
bottom segment of Figure 3. In the example, the 4 unfilled
token spaces in the right context are repurposed as an ad-
ditional left context L+

n , using tokens in X that are prior
to the left context in the default segment. As such, the size
of the entire segment maintains at 32 tokens rather than 28
tokens.

In general, we can represent each partially filled segment
with the inclusion of a shiftable right context with Equation
3:

Sn = [L+
n ,Ln,Cn] (3)

In Equation 3, L+
n represents the additional left context en-

abled by shifting the position of the right context, ultimately
including more information from the previous segment. The
size of L+

n is at most r. By doing so, the number of tokens
in the entire segment reaches its fixed length of l + c + r,
as long as additional tokens are available from the partial
input sequence and the center context is complete.

4.3. Shiftable Left Context

Whenever the transformer begins simultaneous translation,
there is no prior contextual information. Therefore, the first
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segment will never have a left context. Since an overwhelm-
ing majority of the segments that the Augmented Memory
Transformer is trained on are composed of a completed seg-
ment of size l+c+r, it is not suited to interpret segments of
size c+ r. This issue is shown in Figure 4, whereby the first
tokens of input X are directly used as the center context
since there are no prior tokens to use as the left context. As
a result, there are 8 left context tokens missing that are nor-
mally available. Even though such an issue occurs once per
sentence, the representation of the first segment is critical to
the translation since the first couple of predicted outputs for
the decoder are heavily influenced by its hidden state. This
is due to the lack of hidden states generated at the beginning
of sentence translation and the decoder reusing its predicted
output for its own self-attention calculation. As such, if
the first prediction for the decoder is incorrect/inaccurate,
it will steer the decoder to create wrong predictions during
translation continuously (our ablation study in Section 6.2
confirms that improving the translation of the first segment
results in a sizable impact on the overall BLEU score).

…Input Sequence

Default Segment

Shiftable Left Context

Figure 4. An example demonstrating the default method of creating
a segment from the input sequence, X , where there are no tokens
to fill the left context, Ln, alongside the proposed shiftable left
context to remap tokens from the left context to the right context
to keep consistently sized segments.

Our solution is to adopt a shiftable left context which remaps
the position of the unfilled left context tokens to create a
greater right context. As a result, the right context has a
size of l+ r, and the entire segment reaches its fixed size of
l + c + r. This technique is illustrated in Figure 4, where
the 8 tokens that would normally be used as left context are
instead used to create an extended right context of 16 tokens.
The equation representation of a segment using a shiftable
left context is as follows:

Sn = [Cn,Rn,R
+
n ] (4)

In Equation 4, R+
n represents the additional right context

enabled by shifting the position of the left context. The
maximum size of the shiftable left context is l, and it is
only applicable if there is an available right context since,
without additional right context from the input sequence,
there are no tokens to remap the left context. Such an issue
is partially solved by the wait-k policy, which naturally
includes a brief waiting period, allowing a greater number

of input tokens to arrive and be utilized as the extended
right context. Even without a sufficiently large waiting
period, the shiftable left context still becomes useable early
in the translation period. Given the importance of the first
segment to SimulST, the shiftable left context provides the
opportunity to improve low-latency scenarios by providing
a more accurate beginning to a translated sentence.

4.4. Putting It Together: Shiftable Context

The proposed shiftable center, right, and left context tech-
niques complement each other. By combining the tech-
niques, we are able to ensure that a fixed segment size and
a fixed center context size are used when creating the hid-
den states for the simultaneous decoder, even when partial
chunks are received at each time step.

If we were to include the shiftable center, right and left
contexts in the representation of a segment, it could be
represented with the following equation:

Sn = [L+
n ,Ln,C

+
n ,Cn,Rn,R

+
n ] (5)

None of the terms in Equation 5 share tokens, and the total
size of such a segment is l + c + r whenever possible,
which is the normal size of each segment during training.
Note that, not all techniques are activated concurrently. For
instance, since the shiftable center and right context require
tokens from previous segments when activated, it is not
activated if the shiftable left context is in use (implying
no left context available). In general, (1) the shiftable left
context is activated when processing the first segment; (2)
the shiftable center context is activated when the center
context is partially filled; and (3) the shiftable right context
is activated when the center or right context is partially filled,
as an incomplete center context automatically implies an
empty right context which can be remapped as the additional
left context.

When all these techniques are applied, the computational
cost of training the Augmented Memory Transformer re-
mains constant. During inference, the computational cost
of shiftable context may increase slightly, as additional to-
kens may be added to form complete segments. However,
such an impact is minimal, as presented in the evaluation
in Section 6, along with many other results. We provide
token-level simultaneous translation examples comparing
an Augmented Memory Transformer with and without our
shiftable context technique in Appendix A.

5. Experimental Setup

5.1. Data Set

We conducted experiments on the English-German (en-de),
English-French (en-fr), and English-Spanish (en-es) lan-
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guage pairs from the MUST-C dataset (Cattoni et al., 2021).
The data preparation scripts for the MUST-C dataset are
provided in Fairseq1 (Ott et al., 2019; Wang et al., 2020),
whereby Kaldi is used for 80-dimensional log-mel filter
bank features, and text is tokenized with a SentencePiece
10k unigram vocabulary. The training was conducted on
the train set. After each epoch, each model was validated
against the dev set.

5.2. Model Hyperparameters

Our Augmented Memory Transformer has 33.1 M param-
eters. Its encoder begins with 2 convolution layers with
a combined subsampling factor of 4, followed by a feed-
forward neural network. Similarly, the encoders of each
consisted of 12 layers, and their decoders consisted of 6
layers. Each of these layers had a hidden size of 256 with 4
attention heads. Layer normalization was performed prior
to each layer. Additionally, we trained each Augmented
Memory Transformer with a wait-1, wait-3, wait-5, and
wait-7 policy using a pre-decision ratio of 8 (Ma et al.,
2018; 2020b). Such an approach allowed us to analyze how
each of our proposed schemes scaled with latency while also
providing more certainty about our results. The segment of
each Augmented Memory Transformer was composed of
a left context of 32 tokens, a center context of 64 tokens,
and a right context of 32 tokens. The encoder self-attention
calculation used 3 memory banks. The clipping distance of
the relative positional encodings was 16 tokens (Shaw et al.,
2018).

5.3. Training Hyperparameters

All training was performed on a single V100-32GB GPU.
The training process consisted of ASR pretraining followed
by SimulST training. For the ASR pretraining, the model
was trained with label-smoothed cross-entropy loss, the
Adam optimizer (Kingma & Ba, 2014), and an inverse
square root scheduler. Each model was trained with a
warmup period of 4000 updates, where the learning rate
was 0.0001, followed by a learning rate of 0.0007. The
only regularization for the ASR pretraining was a dropout
of 0.1. Each ASR pretrained model used early stopping with
a patience of 5. As a result, pre-training would stop, and
SimulST training would begin if the model did not improve
against the validation dev set after 5 epochs.

For the SimulST training, the model was also trained with
label-smoothed cross-entropy loss, the Adam optimizer, and
an inverse square root scheduler. There was a warmup
period of 7500 updates where the learning rate of 0.0001,
followed by a learning rate of 0.00035. To regularize the
model weights, we used a weight decay value of 0.0001, a

1
https://github.com/facebookresearch/

fairseq

dropout of 0.1, an activation dropout of 0.2, and an attention
dropout of 0.2. All models were trained with early stopping
using a patience of 10. After the training was complete, the
final 10 checkpoints were averaged. Doing so acted as a
regularizer and reduced the odds of randomness interfering
with the evaluation results.

5.4. Evaluation Method

The translation quality and latency were determined by
detokenized BLEU with SacreBLEU (Post, 2018), and
computation-aware Average Lagging (Ma et al., 2018;
2020b), respectively. Computation-aware Average Lagging
measures how far the target translation is lagging behind
the source inputs in milliseconds and takes into account
computational time. Equation 6 provides a mathematical
representation of computation-aware Average Lagging.

AL =
1

⌧(||X||)

⌧(||X||)X

i=1

d(yi)�
||X||
||Y ⇤|| · T · (i� 1) (6)

In Equation 6, the input sequence is denoted as X , where
each token represents T milliseconds of information, and
the reference translation is denoted as Y ⇤. Finally, ⌧(||X||)
represents the index of the first target token generated after
the entire source input is read, and d(yi) represents the com-
putational time needed to generate token yi. The evaluations
were all performed on a single V100-32GB GPU. The two
evaluation sets used to determine the performance of the
model were tst-COMMON and tst-HE. We opted to evaluate
using different test sets to provide a more robust confirma-
tion of the efficacy of our schemes. Both the BLEU score
and computation-aware Average Lagging were obtained us-
ing the SimulEval toolkit2, which simulates simultaneous
speech translation (Ma et al., 2020a).

6. Results

6.1. Main Results

We tested the combined effect of the shiftable left, center,
and right context on an Augmented Memory Transformer
by plotting its BLEU score and computation-aware Average
Lagging across different wait-k values. We also plot the
same configuration for an Augmented Memory Transformer,
not using our techniques for comparison. The results for
the English-German, English-French, and English-Spanish
evaluations are shown in Figures 5, 6, and 7 respectively.

From Figure 5, we can see the shiftable left, center, and
right context together provided an increase over the baseline
Augmented Memory Transformer across all wait-k values.
The increase was, on average, 2.09 BLEU across each wait-

2
https://github.com/facebookresearch/

SimulEval
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Figure 5. A plot comparing an Augmented Memory Transformer
with and without the proposed shiftable context across four wait-k
values on the en-de language pair.

k value for the tst-COMMON test set and 2.72 BLEU for
the tst-HE test set. Furthermore, the computational increase
required for completing partial sequence inputs had a min-
imal impact on the latency of the model, as seen by the
computation-aware Average Lagging being inline for both
models at each wait-k value. When measured, the increase
in computation-aware Average Lagging was only 0.052 sec-
onds for the tst-COMMON test set and 0.098 seconds for
the tst-HE test set when averaged across all wait-k values,
which are minor compared with the 2-3 seconds base delay.
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Figure 6. A plot comparing an Augmented Memory Transformer
with and without the proposed shiftable context across four wait-k
values on the en-fr language pair.

Similar impressive results are visible in both Figure 6 and 7.
In the case of the English-French models shown in Figure 6,
our contributions provided an average 1.83 BLEU increase
on the tst-COMMON test set and a 3.19 BLEU increase
on the tst-HE test set across all wait-k values. Similarly,
the BLEU score for the English-Spanish models shown in
Figure 7 increased by 1.96 BLEU on the tst-COMMON
test set and 3.28 BLEU on the tst-HE test set with our
contributions. In both cases, the additional computational
overhead had a minimal impact on the computation-aware
Average Lagging.
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Figure 7. A plot comparing an Augmented Memory Transformer
with and without the proposed shiftable context across four wait-k
values on the en-es language pair.

Another observation from the models trained on each dataset
was that the accuracy improvement of the shiftable context
is larger for smaller wait-k values. As explained in Sec-
tion 4.3, this is due to models with a lower wait-k value
experiencing the influence of the training-inference context
mismatch for initial segments in a sentence to a greater de-
gree. Such a result is caused by models with larger wait-k
values having multiple complete segments by the time the si-
multaneous decoder begins translating, whereas lower wait-
k value models will need to overcome incomplete initial
segments, which our shiftable context scheme overcomes.
As such, our contributions work especially well for low-
latency scenarios achieving additional translation accuracy
with minimal computational overhead.

6.2. Ablation Study

We performed an ablation study to identify the influence of
the shiftable left, right, and center contexts individually. All
tests were performed on the English-German language pair
of the MUST-C dataset.

k=1

k=3

k=5 k=7

k=1

k=3

k=5
k=7

k=1

k=3

k=5

k=7

k=1

k=3

k=5

k=7

2

4

6

8

10

12

14

16

18

20

1100 1600 2100 2600 3100 3600

B
LE

U

Computation-aware Average Lagging

Shiftable Center AMT (tst-COMMON)
AMT (tst-COMMON)
Shiftable Center AMT (tst-HE)
AMT (tst-HE)

en-de

Figure 8. A comparison of an Augmented Memory Transformer
with and without a shiftable center context on the en-de language
pair using computation-aware Average Lagging and BLEU score.
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We show the results for the influence of the shiftable center
context in Figure 8. On average, across all wait-k values, the
performance increased by 1.10 BLEU for the tst-COMMON
test set and 1.17 BLEU for the tst-HE test set. Additionally,
Figure 8 demonstrates the shiftable center context had a
minimal effect on the computation-aware Average Lagging
for each wait-k value.

k=1

k=3

k=5
k=7

k=1

k=3

k=5
k=7

k=1

k=3

k=5

k=7

k=1

k=3

k=5

k=7

2

4

6

8

10

12

14

16

18

20

1100 1600 2100 2600 3100 3600

B
LE

U

Computation-aware Average Lagging

Shiftable Right AMT (tst-COMMON)
AMT (tst-COMMON)
Shiftable Right AMT (tst-HE)
AMT (tst-HE)

en-de

Figure 9. A comparison of an Augmented Memory Transformer
with and without a shiftable right context on the en-de language
pair using computation-aware Average Lagging and BLEU score.

The results for the shiftable right context are shown in Figure
9. In this case, the increase in BLEU score from the shiftable
right context was 0.66 BLEU on the tst-COMMON test
set and 0.67 BLEU on the tst-HE test set when averaged
across all wait-k values. As with the shiftable center context,
the shiftable right context had a minimal influence on the
computation-aware Average Lagging for each wait-k value.
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Figure 10. A comparison of an Augmented Memory Transformer
with and without a shiftable left context on the en-de language
pair using computation-aware Average Lagging and BLEU score.

Similar trends are also seen with the shiftable left con-
text provided in Figure 10. The results in Figure 10 show
the Augmented Memory Transformer using the shiftable
left context outperformed the baseline by 0.42 BLEU on
the tst-COMMON test set and 0.23 BLEU on the tst-HE
test set when averaged across all wait-k values. As previ-

ously seen with the shiftable center and right context, the
shiftable left context did not have a significant influence on
the computation-aware Average Lagging. The results also
confirm that improving the translation of the first segment
alone leads to a sizable improvement in the overall BLEU
score.

Provided the above improvement of the BLEU score for the
shiftable left, center, and right context when isolated, each
is a necessary component for solving the training-inference
context mismatch. Moreover, since each technique is effec-
tive, it presents the opportunity to improve the performance
of alternative segment-based transformers whose segment
composition may prevent them from using a combination
of our techniques (i.e. a lack of right context).

7. Conclusion

With the ever-increasing connectivity of the world, the dif-
ficult task of SimulST is becoming a necessity. Even with
the solid performance of the state-of-the-art Augmented
Memory Transformer, it still suffers from a mismatch be-
tween its training and inference environments, whereby
the new chunk of tokens it receives by a given timestep,
along with the previous partial input, is unable to com-
pletely fill the space allotted for each segment. As such,
we propose shiftable context, a scheme applicable to all
segment-based transformers but demonstrated on the Aug-
mented Memory Transformer to keep the size of segments
constant during SimulST. This scheme is composed of three
techniques consisting of a shiftable left, center, and right
context. With these techniques combined, we are able to
ensure that each segment reaches its normal size as long
as there are available tokens not yet used from the input
sequence. By applying the proposed shiftable context to an
Augmented Memory Transformer, we observed a 2.09, 1.83,
and 1.95 BLEU increase for the English-German, English-
French, and English-Spanish language pairs, respectively,
on the tst-COMMON test set from the MUST-C dataset
when averaged across wait-k values, with a minimal impact
on computation-aware Average Lagging. In our ablation
study isolating the contribution of each technique, sizable
improvements were observed for every technique.

Limitations: From the promising performance of our
shiftable center, right, and left context on the Augmented
Memory Transformer, there is a need to adapt such ideas to
other segment-based transformers such as the Transformer-
XL, Emformer, or Implicit Memory Transformer (Dai et al.,
2019; Shi et al., 2021; Raffel & Chen, 2023). Furthermore,
we were limited to applying our modified Augmented Mem-
ory Transformer strictly to SimulST when it is applicable to
other streaming tasks, such as automatic speech recognition.
The contributions from this paper move towards eliminat-
ing the need for human simultaneous interpreting, raising
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ethical concerns related to job security for this sector.

Software and Data

Our publicly available implementation of the shiftable con-
text for the Augmented Memory Transformer is provided
in the following GitHub repository: https://github.
com/OSU-STARLAB/ShiftableContext.
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A. Examples

We provide examples showcasing the efficacy of our shiftable context scheme on the English-Spanish language pair of the
tst-COMMON MuST-C test set. Each example in Section A.1, A.2, A.3, and A.4 contains the source speech transcript of the
English audio and the respective target translation. The audio file associated with the example is located in our GitHub
repository. Additionally, each example includes the predicted tokens, complete output, and BLEU score for both the baseline
Augmented Memory Transformer and our Augmented Memory Transformer modified with shiftable context. Each example
uses a wait-5 policy with a pre-decision ratio of 8 (a chunk size of 32 tokens). The segment size in each example contains a
left context of 32 tokens, a center context of 32 tokens, and a right context of 32 tokens. The number of memory banks is 3.
We provide a guided explanation for Section A.1.

A.1. Example 1

Suppose we want to translate the English speech for the below example to Spanish text. From the wait-5 policy, the model
will wait for 5 chunks of 32 tokens or 160 tokens before beginning translation. Each token provides 10 milliseconds of
new information. Therefore translation will begin after a delay of 1.6 seconds. We will first begin by walking through the
translation generation process using a baseline Augmented Memory Transformer followed by the same process with the
shiftable context Augmented Memory Transformer to show the importance of shiftable context in practice.

In the baseline, we have a regular Augmented Memory Transformer with segments consisting of a left context of 32 tokens,
a center context of 64 tokens, and a right context of 32 tokens (32+64+32). Such a segment contains 1.28 seconds of
audio information. After receiving 1.6 seconds of audio or 160 tokens, the first, second, and third segments will have a
representation of 0+64+32, 32+64+32, and 32+32+0. Once each segment is processed, the hidden states created from
the center context are provided to the decoder. The decoder then produces the first output prediction vocab token “ No”,
which is correct for the target translation. When the next chunk of 32 tokens is received, the three segments created are
0+64+32, 32+64+32, and 0+64+32. The subsequent predicted vocab token is “ sorprende”, which deviates from the accurate
translation vocab token “ es”. This deviation occurs because the hidden states associated with segments 0+64+32 and
32+64+0 have insufficient representations for the decoder to generate an accurate translation. Similarly, once the next chunk
is received, the new segments created are 0+64+32, 32+64+32, 32+64+32, and 32+32+0. The respective token predicted
is “esta”, which once again deviates from the target of “de”. In this case, the difference is due to the context mismatch;
however, it also results from the autoregressive decoder misprediction in the previous time step. The compounding influence
of the misprediction will continue for the subsequent predicted vocab tokens.

In contrast, the same Augmented Memory Transformer using shiftable context, after receiving the first 160 tokens, will create
the segments 0+64+64, 32+64+32, and 96+32+0. The respective decoder token produced is “ No”. When the next chunk is
received, the segments created are 0+64+64, 32+64+32, and 64+64+0. This allows for the correct decoder prediction of
“ es”, which differs from the baseline Augmented Memory Transformer without shiftable context. Following this, when
another new chunk is received, the subsequent segments created are 0+64+64, 32+64+32, 32+64+32, and 96+32+0. From
the hidden states of these segments and the previous predictions, the decoder predicts the next vocab token as “ de”, which
is correct once again. Clearly, the shiftable context method reduces the deviation from the reference translation, contributing
to an increased number of correct predictions.

Source speech transcript: “Not surprisingly, this destruction also endangers bonobo survival.”

Target translation: “No es de (it is not) extrañar (surprising) que (that) esta (this) destrucción (destruction) también (also)
ponga (puts) en (in) peligro (danger) la (the) supervivencia (survival) del (of the) bonobo.”

Predicted baseline tokens: “ No”, “ sorprende”, “ esta”, “ destrucción”, “.”, “</s>”

Predicted baseline output: “No sorprende (No surprise) esta (this) destrucción (destruction). </s>”

BLEU score: 5.21

Predicted shiftable context tokens: “ No”, “ es”, “ de”, “ extraña”, ”r”, “ que”, “ esta”, “ destrucción”, “ también”,
“ sea”, “ de”, “ sobreviviente”, “s”, “ de”, “ Bo”, “n”, “na”, “va”, “.”, “</s>”

Predicted shiftable context output: “No es de (it is not) extrañar (surprising) que (that) esta (this) destrucción (destruction)
también (also) sea de (from) sobrevivientes (survivors) de (of) Bonnava. </s>”

BLEU score: 40.05
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A.2. Example 2

Source speech transcript: “I also believe that in many parts of this country, and certainly in many parts of this globe, that
the opposite of poverty is not wealth. I don’t believe that. I actually think, in too many places, the opposite of poverty is
justice.”

Target translation: “También (Also) creo (I believe) que (that) en (in) muchas (many) partes (parts) de (of) este (this) paı́s
(country) y (and), sin duda (certainly), en (in) muchas (many) partes (parts) del (of the) mundo (globe), lo (the) opuesto
(oposite) a (of) la (the) pobreza (poverty) no es (is not) la (the) riqueza (wealth). Ası́ no es (It is not like that). En verdad
(Actually) pienso (I think) que (that) en (in) muchas (many) partes (parts) lo (the) opuesto (opposite) a (of) la pobreza
(poverty) es (is) la justicia (justice).”

Predicted baseline tokens: “ También”, “ creo”, “ que”, “ en”, “ muchas”, “ partes”, “ de”, “ este”, “ paı́s”, “ en”,
“ muchos”, “ aspectos”, “ de”, “ este”, “ mundo”, “.”, “</s>”

Predicted baseline output: “También (Also) creo (I believe) que en (that) muchas (many) partes (parts) de (of) este (this)
paı́s (country), en (in) muchos (many) aspectos (aspects) de (of) este (this) mundo (globe). </s>”

BLEU score: 10.81

Predicted shiftable context tokens: “ También”, “ creo”, “ que”, “ en”, “ muchas”, “ partes”, “ de”, “ este”, “ paı́s”, ”,”,
“ y”, “ ciertamente”, “ en”, “ muchas”, “ partes”, “ de”, “ este”, “ mundo”, ”,”, “ que”, “ lo”, “ contrario”, “ de”, “ la”,
“ pobreza”, “ no”, “ es”, “ riqueza”, ”,”, “ no”, “ lo”, “ creo”, ”.”, “ De”, “ hecho”, ”,” “ creo”, “ que”, “ en”, “ muchos”,
“ lugares”, ”,”, “ lo”, “ opuesto”, “ a”, “ la”, “ pobreza”, “ la”, “ justicia”, “.”, “</s>”

Predicted shiftable context output: “También (Also) creo (I believe) que (that) en (in) muchas (many) partes (parts) de
(of) este (this) paı́s (country), y (and) ciertamente (certainly) en (in) muchas (many) partes (parts) de (of) este (this) mundo
(globe), que lo contrario (the opposite) de (of) la pobreza (poverty) no es (is not) riqueza (wealth), no lo creo (I don’t believe
that). De (In) hecho (fact), creo (I think) que (that) en (in) muchos (many) lugares (places), lo (the) opuesto (opposite) a (of)
la pobreza (poverty) es (is) la justicia (justice). </s>”

BLEU score: 40.38

A.3. Example 3

Source speech transcript: “A second possibility is that there will be evolution of the traditional kind, natural, imposed by
the forces of nature.”

Target translation: “Una (A) segunda (second) posibilidad (possibility) es (is) que (that) se produzca (produces) una (an)
evolución (evolution) del (of the) tipo tradicional (traditional kind), natural (natural), impuesta (imposed) por (by) las (the)
fuerzas de la Naturaleza (forces of nature).”

Predicted baseline tokens: “ La”, “ segunda”, “ posibilidad”, ” es”, “ que”, “ habrá”, “ una”, “ evolución”, “ del”,
“ tipo”, “ tradicional”, “.”, “</s>” Predicted baseline output: “La (The) segunda (second) posibilidad (possibility) es (is)
que (that) habrá (there will be) una (an) evolución (evolution) del (of) tipo tradicional (traditional kind). </s>”

BLEU score: 25.42

Predicted shiftable context tokens: “ La”, “ segunda”, “ posibilidad”, “ es”, “ que”, “ habrá”, “ una”, “ evolución”,
“ del”, “ tipo”, “ tradicional”, “,”, “ natural”, “,”, “ imp”, “on”, “s”, “able”, “ por”, “ las” , “ fuerzas”, “ de”, “ la”,
“ naturaleza”, “.”, “</s>”

Predicted shiftable context output: “La (The) segunda (second) posibilidad (possibility) es (is) que (that) habrá (there will
be) una (an) evolución (evolution) del (of the) tipo tradicional (traditional kind), natural (natural), imponsable (imposed) por
(by) las (the) fuerzas de la naturaleza (forces of nature). </s>”

BLEU score: 49.86

A.4. Example 4

Source speech transcript: “We see the same thing with the disability rights movement.
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Target translation: “Vemos (We see) lo (the) mismo (same) con (with) el (the) Movimiento de la Discapacidad (Disability
Movement).”

Predicted baseline tokens: “ Vemos”, “ lo”, “ mismo”, “ con”, “ la”, “ mujer”, “ de”, “ derechos”, “ civiles”, “.”, “</s>”

Predicted baseline output: “Vemos (We see) lo (the) mismo (same) con (with) la (the) mujer (woman) de (of) derechos
civiles (civil rights). </s>”

BLEU score: 20.45

Predicted shiftable context tokens: “ Vemos”, “ lo”, “ mismo”, “ con”, “ el”, “ movimiento”, “ de”, “ derechos”,
“ civiles”, “.”, “</s>”

Predicted shiftable context output: “Vemos (We see) lo (the) mismo (same) con (with) el (the) movimiento (movement)
de (of) derechos civiles (civil rights). </s>”

BLEU score: 28.92
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