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Abstract

In this paper, we consider federated Q-learning,
which aims to learn an optimal Q-function by pe-
riodically aggregating local Q-estimates trained
on local data alone. Focusing on infinite-horizon
tabular Markov decision processes, we provide
sample complexity guarantees for both the syn-
chronous and asynchronous variants of feder-
ated Q-learning. In both cases, our bounds ex-
hibit a linear speedup with respect to the num-
ber of agents and sharper dependencies on other
salient problem parameters. Moreover, exist-
ing approaches to federated Q-learning adopt an
equally-weighted averaging of local Q-estimates,
which can be highly sub-optimal in the asyn-
chronous setting since the local trajectories can
be highly heterogeneous due to different local
behavior policies. Existing sample complexity
scales inverse proportionally to the minimum en-
try of the stationary state-action occupancy dis-
tributions over all agents, requiring that every
agent covers the entire state-action space. In-
stead, we propose a novel importance averag-
ing algorithm, giving larger weights to more fre-
quently visited state-action pairs. The improved
sample complexity scales inverse proportionally
to the minimum entry of the average stationary
state-action occupancy distribution of all agents,
thus only requiring the agents collectively cover
the entire state-action space, unveiling the bless-
ing of heterogeneity.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) is an
area of machine learning for sequential decision making,
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aiming to learn an optimal policy that maximizes the to-
tal rewards via interactions with an unknown environment.
RL is widely used in many real-world applications, such as
autonomous driving, games, clinical trials, and recommen-
dation systems. However, due to the high dimensionality
of the state-action space, training of RL agents typically
requires a significant amount of computation and data to
achieve desirable performance. Moreover, data collection
can be extremely time-consuming with limited access in
the wild, especially when performed by a single agent. On
the other hand, it is possible to leverage multiple agents to
collect data simultaneously, under the premise that they can
learn a global policy collaboratively with the aid of a cen-
tral server without the need of sharing local data. As a re-
sult, there is a growing need to conduct RL in a distributed
or federated fashion.

Although there have been many studies analyzing federated
learning (Kairouz et al., 2021) in other areas such as super-
vised machine learning (McMahan et al., 2017; Bonawitz
et al., 2019; Wang et al., 2020b), there are only a few re-
cent works focused on federated RL. They consider issues
such as robustness to adversarial attacks (Wu et al., 2021;
Fan et al., 2021), environment heterogeneity (Jin et al.,
2022), as well as sample and communication complexities
(Doan et al., 2021; Khodadadian et al., 2022; Shen et al.,
2022). Encouragingly, some of these prior works offer non-
asymptotic sample complexity analyses of federated RL
algorithms that highlight a linear speedup of the required
sample size in terms of the number of agents. However, the
performance characterization of these federated algorithms
is still far from complete.

1.1. Federated Q-Learning: Prior Art and Limitations

This paper focuses on Q-learning (Watkins & Dayan,
1992), one of the most celebrated model-free RL algo-
rithms, which aims to learn the optimal Q-function directly
without forming an estimate of the model. Two sampling
protocols are typically studied: synchronous sampling and
asynchronous sampling. With synchronous sampling, all
state-action pairs are updated uniformly assuming access to
a generative model or a simulator (Kearns & Singh, 1999).
With asynchronous sampling, only the state-action pair that
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is visited by the behavior policy is updated at each time
(Tsitsiklis, 1994). Despite its long history of theoretical
investigation, the tight sample complexity of Q-learning in
the single-agent setting has only recently been pinned down
in Li et al. (2023). As we shall elucidate, there remains a
large gap in terms of the sample complexity requirement
between the federated setting and the single-agent setting
in terms of dependencies on salient problem parameters.

To harness the power of multiple agents, Khodadadian et al.
(2022) proposed and analyzed a federated variant of Q-
learning with asynchronous sampling that periodically ag-
gregates local Q-estimates trained on local Markovian tra-
jectories collected over K agents. To set the stage, con-
sider an infinite-horizon tabular Markov decision process
(MDP) with state space S, action space A, and a discount
factor v € [0,1). To learn an e-optimal Q-function esti-
mate (in the ¢/, sense), Khodadadian et al. (2022) requires
a per-agent sample size on the order of
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for sufficiently small ¢, where  fimin =
ming <p<x Mings o)esx.A uf(s,a) is the minimum
entry of the stationary state-action occupancy distributions
/ng of the sample trajectories over all agents, and O
hides logarithmic terms. On the other hand, the sample
requirement of single-agent Q-learning (Li et al., 2023) for

learning an e-optimal Q-function is
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for sufficiently small e. Comparing the two sample com-
plexity bounds reveals several drawbacks of existing anal-
yses and raises the following natural questions.

* Near-optimal sample size. Despite the appealing linear
speedup in terms of the number of agents K shown in
Khodadadian et al. (2022), it has unfavorable dependen-
cies on other salient problem parameters. In particular,
since 1/pmin > |S||A|, the sample complexity in (1)
will be better than that of the single-agent case in (2)

only if K is at least above the order of Ialil;‘;!: , which
may not be practically feasible with large state-action
space and long effective horizon. Can we improve the
dependency on the salient problem parameters for fed-

erated Q-learning while maintaining linear speedup?

* Benefits of heterogeneity. Existing analyses in Khodada-
dian et al. (2022) require that each agent has full cover-
age of the state-action space (i.e., ftmin > 0), which is
as stringent as the single-agent setting. However, given
that the insufficient coverage of individual agents can be

complemented by each other when agents have hetero-
geneous local trajectories, it may not be necessary to re-
quire full coverage of the state-action space from every
agent. Can we exploit the heterogeneity in the agents’
local trajectories and relax the coverage requirement on
individual agents?

1.2. Summary of Our Contributions

In this paper, we answer these questions in the affirmative,
by providing a sample complexity analysis of federated Q-
learning under both the synchronous and asynchronous set-
tings. The main contributions are summarized as follows,
with Table 1 providing a comparison with the prior art.

o Sample complexity of federated synchronous Q-learning
with equal averaging. We show that with high probabil-
ity, the sample complexity of federated synchronous Q-
learning (FedSynQ) to learn an e-optimal Q-function
in the ¢, sense is (see Theorem 3.1)

_ /S|l
O<KH—VP¥>’ )

which exhibits a linear speedup with respect to the num-
ber of agents K and nearly matches the tight sam-
ple complexity bound of single-agent synchronous Q-
learning up to a factor of 1/(1 — ) in Li et al. (2023)
for K = 1.

e Sample complexity of federated asynchronous Q-
learning with equal averaging. We provide a sharp-
ened sample complexity analysis of the algorithm de-
veloped in Khodadadian et al. (2022) for federated asyn-
chronous Q-learning with equal averaging (FedAsynQ-
EqAvg). To learn an e-optimal Q-function in the £
sense, FedAsynQ-EqgAvg requires at most (see Theo-

rem 4.2)
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samples per agent for sufficiently small € (ignoring the
burn-in cost that depends on the mixing times of the
Markovian trajectories over all agents), where Cper >
1 captures the heterogeneity of the behavior policies
across agents. This sample complexity greatly sharpens
the dependency on all the salient problem parameters
— including 1/(1 — +), |S], and 1/pmin — by orders
of magnitudes compared to the bound obtained in Kho-
dadadian et al. (2022).

O

e Leveraging heterogeneity in federated asynchronous Q-
learning via importance averaging. Heterogeneous be-
havior policies at agents may induce local trajectories
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. number of sample
sampling reference coverage .
agents complexity
Wainwright (2019); Chen et al. (2020) 1 full AL,
synchronous
(Li etal., 2023) 1 full Al
|SI1A]
FedSynQ (Theorem 3.1) K full RK(1-~)522
Qu & Wierman (2020) 1 full W
Li et al. (2021b) 1 full P e
A 1
asynchronous Li et al. (2023) 1 full e T
FedAsynQ-EqAvg (Khodadadian et al., 2022) K full | S
FedAsynQ-EqgAvg (Theorem 4.2) K full T i
FedAsynQ-ImAvg (Theorem 4.3) K partial W

Table 1. Comparison of sample complexity upper bounds of single-agent and federated Q-learning algorithms under synchronous and
asynchronous sampling protocols to learn an e-optimal Q-function in the ¢, sense, where logarithmic factors and burn-in costs are
hidden. Here, S is the state space, A is the action space, -y is the discount factor, K is the total number of agents, and tmix is the
mixing time of the behavior policy. In addition, pimin = ming ..o uf (s, a) denotes the minimum entry of the stationary state-action
occupancy distributions pff of all agents, Havg = MiNg ¢ % > f:l uk (s, a) denotes the minimum entry of the average stationary state-

action occupancy distribution of all agents, and Cher := maxy, .o Kput(s,a)/ ( Zle ut (s, a)) captures the heterogeneity across the

agents.

covering different parts of the state-action space. How-
ever, equally weighting the local Q-estimates fails to ex-
ploit this diversity, and the convergence is bottlenecked
by the slowest converging agent. To address this is-
sue, we propose a novel importance averaging scheme
in federated Q-learning (FedAsynQ-ImAvg) that aver-
ages the local Q-estimates by assigning larger weights to
more frequently updated local estimates. To learn an e-
optimal Q-function in the £, sense, FedAsynQ-ImAvg
requires at most (see Theorem 4.3)
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samples per agent for sufficiently small € (ignoring
the burn-in cost that depends on the mixing times
of the Markovian trajectories over all agents), where
Havg 18 the minimum entry of the average stationary
state-action occupancy distribution of all agents. Since
Havg > Hmin, the sample complexity of FedAsynQ-
ImAvg improves over that of FedAsynQ-EgAvg. More
importantly, as long as the agents collectively cover the
entire state-action space (i.e., ftavg > 0), FedAsynQ-
ImAvg ensures efficient learning even when individual

agents fail to cover the entire state-action space (i.e.,
tmin = 0), unveiling the blessing of heterogeneity.

1.3. Related Work

Analysis of single-agent Q-learning. There has been
extensive research on the convergence guarantees of Q-
learning, focusing on the single-agent case. Many initial
studies have analyzed the asymptotic convergence of Q-
learning (Tsitsiklis, 1994; Szepesvari, 1998; Jaakkola et al.,
1994; Borkar & Meyn, 2000). Later, Even-Dar & Man-
sour (2003); Beck & Srikant (2012); Wainwright (2019);
Chen et al. (2020); Li et al. (2023) have studied the sam-
ple complexity of Q-learning under synchronous sampling,
and Even-Dar & Mansour (2003); Beck & Srikant (2012);
Qu & Wierman (2020); Li et al. (2023; 2021b); Chen et al.
(2021b) have investigated the finite-time convergence of Q-
learning under asynchronous sampling (also referred to as
Markovian sampling). In addition, Jin et al. (2018); Bai
et al. (2019); Zhang et al. (2020); Li et al. (2021a); Yang
et al. (2021) studied Q-learning with optimism for online
RL, and Shi et al. (2022); Yan et al. (2022) dealt with Q-
learning with pessimism for offline RL.
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Distributed and federated RL. Several recent works
have developed distributed versions of RL algorithms to ac-
celerate training (Mnih et al., 2016; Espeholt et al., 2018;
Assran et al., 2019). Theoretical analyses of convergence
and communication efficiency of these distributed RL al-
gorithms have also been considered in recent works. For
example, a collection of works (Doan et al., 2019; Sun
et al., 2020; Wang et al., 2020a; Wai, 2020; Chen et al.,
2022a; Zeng et al., 2021) have analyzed the convergence of
decentralized temporal difference (TD) learning. Further-
more, Chen et al. (2022b); Shen et al. (2022) have analyzed
the finite-time convergence of distributed actor-critic algo-
rithms and Chen et al. (2021a) proposed a communication-
efficient policy gradient algorithm with provable conver-
gence guarantees.

Notation. Throughout this paper, we denote by A(S) the
probability simplex over a set S, and [K] = {1,--- , K}

for any positive integer K > 0. In addition, f(-) = O(g(-))
or f < g (resp. f(-) = Qg(-)) or f 2 g) means that f(-) is
orderwise no larger than (resp. no smaller than) g(-) mod-
ulo some logarithmic factors. The notation f < g means
f < gand f 2 g hold simultaneously.

2. Model and Background

In this section, we introduce the mathematical model and
background of Markov decision processes.

Infinite-horizon Markov decision process. We consider
an infinite-horizon Markov decision process (MDP), which
is represented by M = (S, A, P,r,7). Here, S and A
denote the state space and the action space, respectively,
P:Sx AxS — [0,1] indicates the transition kernel such
that P(s’ | s, a) denotes the probability that action « in state
sleadstostate s’, 7 : S x A — [0, 1] denotes a determinis-
tic reward function, where (s, a) is the immediate reward
for action a in state s, and v € [0, 1) is the discount factor.

Policy, value function, and Q-function. A policy is an
action-selection rule denoted by the mapping 7 : & —
A(A), such that m(als) is the probability of taking ac-
tion a in state s. For a given policy 7, the value function
V™ . § — R, which measures the expected discounted
cumulative reward from an initial state s, is defined as

VT(s) =E Z’ytr(st, ar)|so=s (6)
t=0

for all s € S, where the expectation is taken with respect to
the randomness of the trajectory {s:, as, 7:}52,, sampled
based on the transition kernel (i.e., sg11 ~ P(:|s¢, ar))
and the policy 7 (i.e., a; ~ 7(:|s)) for any ¢ > 0.
Similarly, the state-action value function (i.e., Q-function)

Q™ : S x A — R, which measures the expected discounted
cumulative reward from an initial state-action pair (s, a), is
defined as

Q"(s,a) == r(s,0) + E | S 2'7(s1,a0) | 50 = 8,00 = a
t=1

for all (s,a) € S x A. Again here, the expectation

is taken with respect to the randomness of the trajectory

{8, at,r:}32, generated similarly as above. Since the re-

wards lie within [0, 1], it follows that for any policy ,

o<V o< @

1—v 1—v
Optimal policy and Bellman’s principle of optimality.
A policy that maximizes the value function uniformly over
all states is called an optimal policy and denoted by 7*.
Note that the existence of such an optimal policy is always
guaranteed (Puterman, 2014), which also maximizes the Q-
function simultaneously. The corresponding optimal value
function and Q-function are denoted by V* := V™ and
Q* := Q™ , respectively. It is well-known that the optimal
Q-function @Q* can be determined as the unique fixed point
of the Bellman operator 7, given by

T(Q)(s,a) :=r(s,a) +v

s'~P(-|s,a)

/ !
3 Q)
Q-learning (Watkins & Dayan, 1992), perhaps the most
widely used model-free RL algorithm, which seeks to learn
the optimal Q-function based on samples collected from the
underlying MDP without estimating the model.

3. Federated Synchronous Q-Learning:
Algorithm and Theory

In this section, we begin with understanding federated syn-
chronous Q-learning, where all the state-action pairs are
updated simultaneously assuming access to a generative
model or simulator at all the agents.

3.1. Problem Setting

In the synchronous setting, each agent k& € [K] has access
to a generative model, and generates a new sample

sy (s,a) ~ P(:|s, a) (8)

for every state-action pair (s,a) € S x A independently
at every iteration t. Our goal is to learn the optimal Q-
function @Q* collaboratively by aggregating the local Q-
learning estimates periodically.

Review: synchronous Q-learning with a single agent.
To facilitate algorithmic development, let us recall the syn-
chronous Q-learning update rule with a single agent. Start-
ing with certain initialization Q)q, at every iteration ¢t > 1,
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the Q-function is updated according to
Qt(sv CL) = (1 - n)Qtfl(Sa a)

+n (r(& a)+~ max Qi-1(st(s, a), a/)) )

where s:(s,a) ~ P(:|s,a) is drawn independently for ev-
ery state-action pair (s,a) € S x A, and 7 denotes the con-
stant learning rate. The sample complexity of synchronous
Q-learning has been recently investigated and sharpened
in a number of works, e.g. Li et al. (2023); Wainwright
(2019); Chen et al. (2020).

3.2. Algorithm Description

We propose a natural federated synchronous Q-learning al-
gorithm called FedSynQ that alternates between local up-
dates at agents and periodic averaging at a central server.
The complete description is summarized in Algorithm 1.
FedSynQ initializes a local Q-function as Qf = Q at
each agent k € [K]. Suppose at the beginning of each iter-
ation ¢ > 1, each agent maintains a local Q-function esti-
mate QF_; and a local value function estimate V;* ;, which
are related via

VseS: VF(s) :== max QF (s, a). (10)

acA
FedSynQ proceeds according to the following steps in the
rest of the ¢-th iteration.

1. Local updates: Each agent first independently updates
all entries of its Q-estimate Q¥ ; to reach some inter-
mediate estimate following the update rule:

Q¥4 (s,0) = (1= QL (5,0)
+n (r(s,a) + 9V (sF(s,a))) (A1)

forall (s,a) € Sx.A, where sf (s, a) is drawn according
to (8), and 7 > 0 is the learning rate.

2. Periodic averaging: These intermediate estimates will
be periodically averaged by the server to form the up-
dated estimate Q¥ at the end of the ¢-th iteration. For-
mally, denoting 7 > 1 as the synchronization period, for
all (s,a) € S x A, it follows

15K ok
Qf(S, a) = { Kkzk:1 Qt—% (s,a)

t'_% (s,a) otherwise

(12)

Denoting the number of total iterations by 7', the algorithm
outputs the final Q-estimate as the average of all local es-
timates, i.e. Qp = % > i Q?. Without loss of generality,
we assume the total number of iterations T is divisible by
7, where Cioung = T'/7 is the rounds of communication.

ift =0 (mod 7)

Algorithm 1 Federated Sync. Q-learning (FedSynQ)

1: inputs: learning rate 7, discount factor -y, number of
agents K, synchronization period 7, number of itera-
tions 7.
initialization: Qf = Q for all k.
fort=1,---,T do

for k € [K] do
Draw s¥(s,a) ~ P(-|s,a) forall (s,a) € S x A.
Compute Qf_% according to (11).

Compute QF according to (12).
end for
end for

return: Qr = % >, Q4.

WO 2N h R
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3.3. Performance Guarantees

We are ready to provide the finite-time convergence analy-
sis of Algorithm 1.

Theorem 3.1 (Sample complexity of FedSynQ). Con-
sider any given § € (0,1) and € € (0, ﬁ] Suppose that
the initialization of Algorithm 1 satisfies 0 < @y < ﬁ
and the synchronization period T obeys

1 1-— 1
7 <1+ —min 77,— .
n 8y " K

’

(13a)

There exist some sufficiently large constant cp > 0 and
sufficiently small constant c,, > 0, such that with prob-
ability at least 1 — 6, the output of Algorithm 1 satisfies
QT — Q*||loo < &, provided that the sample size per agent

T and the learning rate n satisfy

cr log?((1 — 7)) log (|S||A|KT/5)
K(1—7)%e? ’

K (1 —r)te?

= log (ISIIAIKT/5)’

T>

(13b)

(13c)

Theorem 3.1 suggests that to achieve an e-accurate Q-
function estimate in an /., sense, the number of samples
required at each agent is no more than

5 (IS4
K(1—~)%e*)”
given that the agent collects |S||.A| samples at each itera-
tion. A few implications are in order.

Linear speedup. The sample complexity exhibits an ap-
pealing linear speedup with respect to the number of
agents K. In comparison, the sharpest upper bound
known for single-agent Q-learning (Li et al., 2023) is

0 ( IS|IA]

(1—~)* min{e,e?}
dependent lower bound when ¢ € (0,1). Therefore, our

), which matches with its algorithmic-
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federated setting enables faster learning as soon as the num-
ber of agents satisfies

1
K>
~ (1 —v)max{l,¢}

up to logarithmic factors. When K = 1, our bound nearly
matches with the lower bound of single-agent Q-learning
up to a factor of 1/(1 — ~y), indicating its near-optimality.

Communication efficiency. One key feature of our fed-
erated setting is the use of periodic averaging with the hope
to improve communication efficiency. According to (13a),
our theory requires that the synchronization period 7 be in-
versely proportional to the learning rate 7, which suggests
that more frequent communication is needed to compen-
sate the discrepancy of local updates when the learning
rate is large. To provide insights, consider the parameter
regime when K 2 1% and ¢ S ﬁ Plugging the
choice of the learning rate (13c) into the upper bound of 7
in (13a), we can choose the synchronization period as 7 =<
W up to logarithmic factors, leading to a commu-

nication complexity no larger than Cioyng = % < %,

which is almost independent of the final accuracy €.

4. Federated Asynchronous Q-Learning:
Algorithm and Theory

In this section, we study the sample complexity of feder-
ated asynchronous Q-learning, where K agents sample lo-
cal trajectories using different behavior policies. In particu-
lar, we propose a novel aggregation algorithm FedAsynQ-
ImAvg that leverages the heterogeneity of these policies
and dramatically improves the sample complexity.

4.1. Problem Setting

In the asynchronous setting, each agent k € [K] indepen-
dently collects a sample trajectory {s¥, a¥, r¥}2°  from the
same underlying MDP M following some stationary local
behavior policy 7 such that

a? Nﬂll:('|si€)a Tf :T(vaaf)v Sﬁrl NP('lsf’af)

(14)

for all ¢ > 0, where the initial state is initialized as 5’5 for
each agent k. Note that the behavior policies {7 }re(x]
are heterogeneous across agents and can be different from
the optimal policy 7*. Contrary to the generative model
considered in the synchronous setting, the samples col-
lected under the asynchronous setting are no longer inde-
pendent across time but are Markovian, making the analy-
sis significantly more challenging. The sample trajectory at
each agent can be viewed as sampling a time-homogeneous
Markov chain over the set of state-action pairs. Throughout

this paper, we make the following standard uniform ergod-
icity assumption (Paulin, 2015; Li et al., 2021b).

Assumption 4.1 (Uniform ergodicity). For every agent
k € [K], the Markov chain induced by the stationary be-
havior policy 71"bC is uniformly ergodic over the entire state-
action space S x A.

Uniform ergodicity guarantees that the distribution of the
state-action pair (s¢, a;) of a trajectory converges to the
stationary distribution of the Markov chain geometrically
fast regardless of the initial state-action pair, and eventu-
ally, each state-action pair is visited in proportion to the
stationary distribution.

Key parameters. Two important quantities concerning
the resulting Markov chains will govern the performance
guarantees. The first one is the stationary state-action dis-
tribution uf, which is the stationary distribution of the
Markov chain induced by W{f over all state-action pairs; the
second one is ¥, , which is the mixing time of the same

Markov chain given by

max

mix $0,a0)ESXA

drv(Pf (- | s0,a0), puf) < i},

15)
where P} (- | 50, ag) denotes the distribution of (s;, a;) con-
ditioned on (sg, ag) for agent k, and dyv(-,-) is the total
variation distance. Further, let the largest mixing time of
all the Markov chains induced by local behavior policies
be

th. = min {t’ (

max . — max tF. . (16)
ke[K]

In words, t77 approximately indicates the time that the
transition of every agent starts to follow its stationary dis-

tribution regardless of its initial state.

Let us further define a few key parameters that measure the
coverage and heterogeneity of the stationary state-action
distribution u{; across agents. First, define

Hmin = min :url'fnin? :uﬁ\in = min IU/E(&G’) (17)

ke[K] (s,a)eSxA
State-action pairs with small stationary probabilities are
visited less frequently, and therefore can become bottle-
necks in improving the quality of Q-function estimates.
Clearly, fimin < m. In addition, denote

K
. : 1 k
Pavg = (s,agllelng i ; up (s, a). (18)

In words, fi,vg is the minimum entry of the average station-
ary state-action distribution of all agents. The difference
between fayg and tmin stands out when an individual agent
fails to cover the entire state-action space. While fimin = 0
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in such a case, fia.g can still be positive as long as each
state-action pair is explored by at least one of the agents,
i, S, ub(s,a) > 0. Note that jiag is always greater
than or equal to fimj, since

Havg =

1 K
(sAaI)nei'Isle ? Z M];(S7 a)
’ k=1

> mi ,u];(s,a) = Lmin- (19)

= n
(s,a)ES X AkEK]
Last but not least, we measure the heterogeneity of the sta-
tionary state-action distributions across agents by
k
k(s a) 0

Chet '= max max ,

belK] (a)es A L S ik (s,a)

which satisfies 1 < Cher < min{K, 1/ptavg}, and Cher = 1
when pf = p, are all equal.

Review: asynchronous Q-learning with a single agent.
Recall the update rule of asynchronous Q-learning with a
single agent, where at each iteration ¢ > 1, upon receiving
a transition (s;_1, as—1, st), the Q-estimate is updated via

Qi(s,a) (21)

(I =n)Qi-1(s,a) +n(r(s,a) +7Vi-1(s)),
= if (s,a) = (s¢—1,at-1),
Q:(s,a), otherwise,

where 7 denotes the learning rate and V; is defined in (10).
The sample complexity of asynchronous Q-learning has
been recently investigated in Li et al. (2021b; 2023); Qu
& Wierman (2020).

4.2. Algorithm Description

Similar to the synchronous setting, we describe a federated
asynchronous Q-learning algorithm, called FedAsynQ
(see Algorithm 2), that learns the optimal Q-function by
periodically averaging the local Q-estimates with the aid of
a central server. See Figure 1 for an illustration. Inheriting
the notation of Q¥ and V¥ from the synchronous setting
(cf. (10)), FedAsynQ proceeds as follows in the rest of the
t-th iteration.

1. Local updates: Each agent k samples a transition
(sF_,af ,,rk | s¥) from its Markovian trajectory
generated by the behavior policy 7r’bC according to (14)
and updates a single entry of its local Q-estimate QF ;:

Qi3 (s,0) (22)

(1=mQF_1(s,a)+ n(rf, +Vi1(s)),
= if (s,a) = (st_1,a¢_1) ,
fol(sa a)7 otherwise

where 7 denotes the learning rate.

Parameter server

K
Qt(sv a‘) = Z aic(sv a)Q::C—% (S! ”‘)
k=1

1 2
b1 Q: Qt_% Q¢

@ |
Yy &l

Agent 1 Agent 2 Agent k

Qf,% Q1 Qf(_% Qt

al

Agent K

— — — Alocal Markovian trajectory of 7 iterations

Figure 1. Federated asynchronous Q-learning with K agents and
a parameter server. Each agent k performs 7 local updates on its
local Q-table along a Markovian trajectory induced by behavior
policy ¥ and sends the Q-table to the server. The server averages
and synchronizes the local Q-tables every 7 iterations. For impor-
tance averaging, the agents additionally send the number of visits
over all the state-action pairs within each synchronization period,
which is not pictured.

2. Periodic averaging: The intermediate local estimates
will be averaged every 7 iterations, where 7 > 1 is
the synchronization period. Here, we consider a more
general weighted averaging scheme, where the updated
estimate QF is:

Qf (s, a) (23)
S ak(s,a)QF i (s,a), ift=0 (modT)
B Qf_;(s, a), otherwise

for all (s,a) € S x A. Here, af = [af(s,a)]ses.acu €
[0,1]ISII41 is an entry-wise weight assigned to agent k
such that Zszl af(s,a) = 1forall (s,a) € S x A.

After a total of T iterations, FedAsynQ outputs a global
Q-estimate Qr(s,a) = Zszl ak.(s,a)Qk.(s,a) for all
(s,a) € § x A. In the subsections below, we provide two
possible ways (equal and importance weighting) to choose
aF and their corresponding sample complexity analyses.

4.3. Performance Guarantees with Equal Averaging

We begin with the most natural choice, which equally
weights the local Q-estimates, that is,
1
k
= —. 24
oy (s,a) % 24
We call the resulting scheme FedAsynQ-EqAvg, which
is also analyzed in Khodadadian et al. (2022). We have
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Algorithm 2 Federated Async. Q-learning (FedAsynQ)

1: inputs: learning rate {7}, discount factor v, number
of agents K, synchronization period 7, total number of
iterations 7.
initialization: Qf = Q, for all k € [K].
fort=1,---,Tdo
for k € [K] do
Draw action af_; ~ wf(sF_,), observe reward
rF = r(sF_,,a¥ ), and draw next state s¥ ~

P(-| 551,07 1).
Compute QF , according to (22).
2

Compute Q¥ according to (23).
end for
end for
return: Qr(s,a)

(s,a) € S x A.

Ye3d D

= Zszl ak.(s,a)Qk.(s,a), for all

the following improved performance guarantee in the next
theorem.

Theorem 4.2 (Sample complexity of FedAsynQ-EgAvg).
Consider any given § € (0,1) and € € (0, ﬁ] Sup-
pose that the initialization of FedAsynQ-EqAvg satisfies
0< Qo < ﬁ There exist some sufficiently large con-
stant ¢ > 0 and sufficiently small constant c, > 0,
such that with probability at least 1 — 6, the output of
FedAsynQ-EqAvg satisfies ||Qr — Q*||cc < &, provided
that the sample size per agent T, the learning rate 1, and
the synchronization period T satisfy

C(het
r2or sy ) e
Hlog®((1 —7)%) log (TK) log (|S||A|T* K /5),

. K(1—7)*e?
¢y min { — G

1770}

"7 Tog (TK) log (IS[JAIT?K /6)’
(25b)
1 . (1—-~ 1
<r< — P
70_7_477111111{ 1 ’K}’ (25¢)

_ 1 _ pminmin{l—y, K1}
where Ty = ———— = bmn RSN I and
0 Hmin(L—7)0” 10 e ’
_ aazeme "US|AITK
To = ——==log 5, independent of c.

Theorem 4.2 implies that to achieve an e-accurate esti-
mate (in the /., sense), the sample complexity per agent
of FedAsynQ-EqgAvg is no more than

~ Chet
(T 72)

for sufficiently small €, when the burn-in cost 7y — repre-
senting the impact of the mixing times — is amortized over
time. A few implications are in order.

Linear speedup under full coverage. The sample com-
plexity of FedAsynQ-EqgAvg shows linear speedup with
respect to the number of agents, which is especially pro-
nounced when the local behavior policies are similar, i.e.,
Chet =~ 1. Furthermore, it has sharpened dependency on

nearly all problem-dependent parameters compared to the
~ 2
bound O ‘,l#“ obtained in Khodadadian et al.
Kpp,(1=7)%
(2022) by at least a factor of

|S|? S ISPIAP
Chethimin (1 = 7)* (1* v)4

For K = 1, the bound nearly matches with the sharpest
upper bound 9] (m) for the single-agent case (Li
et al., 2023) up to a factor of 1/(1 — ~), when ignoring the
burn-in cost. Moreover, the sample complexity bound is

finite only when fimin > 0, which implies that every agent
should have full coverage of the entire state-action space.

Communication efficiency. To provide further insights
on the communication complexity of FedAsynQ-EgAvg,
consider the regime when ¢ is sufficiently small and the
number of agents is sufficiently large such that K > #
By plugging the choice of the learning rate (25b) mto the
upper bound of 7 in (25c¢), we can select the synchroniza-
tion period as large as 7 < W up to logarith-
mic factors, which ensures the communication complexity

Cround = T'/7 is no more than 6(%)

4.4. Performance Guarantees with Importance
Averaging

In the asynchronous setting, heterogeneous behavior poli-
cies induce local trajectories that cover the state-action
space in a non-uniform manner. As a result, agents may
update the Q-estimate for a state-action pair at different
frequencies, resulting in noisier Q-estimates at agents that
rarely visit a state-action pair. Equally-weighted averaging
of such local Q-estimates is not efficient because the con-
vergence speed to the optimal Q-function for each state-
action pair is bottlenecked with the slowest converging
agent that visits it least frequently.

Our key idea to prevent such inefficiency is to increase
the contribution of frequently updated local Q-estimates,
which are likely to have smaller errors. By assigning a
weight inversely proportional to the error of the corre-
sponding local estimate, we can balance the heterogeneous
training progress of the local estimates and obtain an aver-
age estimate with much lower error. Combining this idea
with the property that the local error decreases exponen-
tially with the number of local visits, we propose an impor-
tance averaging scheme FedAsynQ-ImAvg with weights
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given by
(1 — ) Nre(sa)

K —N¥ s,a
D=1 (1—=n) Neri(.a)

for all (s,a) € S x Aand k € [K]|, where Nf* _ (s, a)
represents the number of iterations between [t — T,t) when
the agent k visits (s,a). The weights in (26) can be
calculated at the server based on the number of visits
to each state-action pair by the agents in one synchro-
nization period. Therefore, each agent needs to send its
NF__,(s,a) for each (s, a) along with its local Q-estimate,
and FedAsynQ-ImAvg incurs twice the communication
cost of FedAsynQ-EgAv( per iteration.

af(s,a) =

(26)

We have the following theorem on the sample complexity
of FedAsynQ-ImAvg.

Theorem 4.3 (Sample complexity of FedAsynQ-ImAvg).
Consider any given § € (0,1) and € € (0, ﬁ] Sup-
pose that the initialization of FedAsynQ-ImAvg satisfies
0< @y < ﬁ There exist some sufficiently large con-
stant ¢ > 0 and sufficiently small constant c, > 0,
such that with probability at least 1 — 6, the output of
FedAsynQ-ImAvg satisfies |Qr — Q* || < &, provided
that the sample size per agent T, the learning rate 1, and
the synchronization period T satisfy

T > cr (I(ﬂ(l—’y)5€2 + Tv()) (273)
avg

log?((1 — 7)%) log (T ) log (|S||A|IT* K /6),
_ ¢ymin {K(1—7)%e?,m0}
77 log (TK) log (ISI[AIT?K /)’

(27b)

(27¢)

T _ 1 S s 1 1
where TO = m(lnd'no = mln{@,lf’y,?},
independent of €.

Theorem 4.2 implies that to achieve an e-accurate esti-
mate (in the /., sense), the sample complexity per agent
of FedAsynQ-ImAvg is no more than

~ 1
© <Kuavg(1 = ww)

for sufficiently small €, when the burn-in cost fo — repre-
senting the impact of the mixing times — is amortized over
time. A few implications are in order.

Linear speedup under partial coverage. The sample
complexity not only shows linear speedup with respect to
the number of agents but also guarantees that FedAsynQ-
ImAvg achieves better sample efficiency than FedAsynQ-
EgAvg because fiayg > ftmin. Notably, the guarantees

hold even when some agent has insufficient coverage of
the state-action space (umin = 0), as long as agents col-
lectively cover the entire state-action space (ftavg > 0).
In FedAsynQ-EqAvg, insufficient local exploration of a
state-action pair can significantly slow down the conver-
gence to the optimal Q-function, bottlenecked by the slow-
est converging agent. On the other end, FedAsynQ-ImAvg
enables agents to overcome their insufficient local coverage
and exploit the heterogeneity of their behavior policies to
achieve faster convergence to the optimal Q)-function.

Communication efficiency. To provide further insights
on the communication complexity of FedAsynQ-ImAvg,
consider again the regime when ¢ is sufficiently small and
K = ﬁ To minimize the communication frequency
while preserving the sample efficiency, we again plug the
choice of the learning rate (27b) into (27c) and select the
synchronization period as large as 7 =< m up to
logarithmic factors. Then, this ensures the communication
complexity Cround = T'/7 is no more than 5(%),

which is also better than FedAsynQ-EqAvg.

5. Discussions

We presented a sample complexity analysis of federated Q-
learning in both synchronous and asynchronous settings.
Our sample complexity not only leads to linear speedup
with respect to the number of agents, but also significantly
improves the dependencies on other salient problem pa-
rameters over the prior art. For federated asynchronous
Q-learning, we proposed a novel importance averaging
scheme that weighs the agents’ local Q-estimates accord-
ing to the number of visits to each state-action pair. This
allows agents to leverage the blessing of heterogeneity of
their local behavior policies and collaboratively learn the
optimal Q-function that otherwise would not be possible,
without requiring each individual agent to cover the entire
state-action space.
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A. Numerical Experiments

In this section, we conduct numerical experiments to demonstrate the performance of the asynchronous Q-learning algo-

rithms (FedAsynQ-EqgAvg and FedAsynQ-ImAvg).

Experimental setup. Consider an MDP M = (S, A, P,r,v) described in Figure 2, where S = {0,1} and A =
{1,2,--- ,m}. The reward function r is set as (s = 1,a) = 1 and r(s = 0,a) = 0 for any action a € A, and the
discount factor is set as v = 0.9. We now describe the transition kernel P. Here, we set the self-transitioning probabilities
pa = P(0]0,a) and ¢, := P(1]|1,a) uniformly at random from [0.4, 0.6] for each a € A, and set the probability of
transitioning to the other state as P(1 — s|s,a) =1 — P(s|s,a) foreach s € S.

We evaluate the proposed federated asynchronous Q-learning algorithms on the above MDP with K agents selecting their
behavior policies from IT = {7y, 72, -+, 7 }, where the i-th policy always chooses action ¢ for any state, i.e., m;(i|s) = 1
for all s € S. Here, we assign 7; to agent k € [K] if ¢ = k (mod m). Note that if an agent has a behavior policy 7;, it
can visit only two state-action pairs, (s = 0,a = ¢) and (s = 1,a = i), as described in Figure 2. Thus, each agent covers
a subset of the state-action space, and at least K = m agents are required to obtain local trajectories collectively covering
the entire state-action space. Under this setting with m = 20, we run the algorithms for 100 simulations using samples
randomly generated from the MDP and policies assigned to the agents. The Q-function is initialized with entries uniformly
at random from (0, ﬁ} for each state-action pair.

a=1 a=1i a=m
P pi = P(0]0,1) Pm
1-p; 1—p; 1—pn

1_ql l_qi 1_qm
am

(el q: = P(1LD)

The state-action coverage of m;
{s=0,a=10),(s=1a=10)}

Figure 2. An illustration of the constructed synthetic MDP M. The red arrows represent transitioning paths when action a = 7 is taken
ins = 0and s = 1. A trajectory induced by 7;, which executes only action ¢ for any state, can cover only two state-action pairs,
(s=0,a=1d)and (s =1,a =1).

Faster convergence of FedAsynQ-ImAvg. Figure 3 shows the normalized Q-estimate error (1 — v)||Qr — Q* || With
respect to the sample size T, with K = 20 and 7 = 50. Given the trajectories of agents collectively cover the entire
state-action space, the global Q-estimates of both FedAsynQ-EqAvg and FedAsynQ-ImAvg converge to the optimal Q-
function, yet at different speeds. It is interesting to observe that FedAsynQ-EqAvg still converges even when imin = 0,
indicating room for refinement of its analysis. Although FedAsynQ-EqAvg converges in the end, we can see that it
converges much slower compared to FedAsynQ-ImAvg, because each entry of the Q-function is trained by only one agent
while the other m — 1 agents never contribute useful information. However, the vacuous values of the m — 1 agents
significantly slow down the global convergence under equal averaging.

Convergence speedup. Figure 4 demonstrates the impact of the number of agents on the convergence speed of
FedAsynQ-EgAvg and FedAsynQ-ImAvg. It can be observed that there is indeed a speedup in terms of the number
of agents K with respect to the squared £, error ||Qr — Q*||=2, which is poised to scale linearly with respect to the num-
ber of agents. In particular, the speedup is more rapid with FedAsynQ-ImAvg as K increases, while it increases much
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0.200 4 —@— FedAsynQ-EgAvg (K =20, n =0.2)
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Figure 3. The normalized ¢ error of the Q-estimates (1—7)||Qr —Q* ||« with respect to the number of samples 7" for both FedAsynQ-
EgAvg and FedAsynQ-ImAvg, with K = 20 and 7 = 50. Here, the learning rates of FedAsynQ-ImAvg and FedAsynQ-EqAvg are
set as 7 = 0.05 and np = 0.2, where each algorithm converges to the same error floor at the fastest speed, respectively.

slower with FedAsynQ-EqgAvg. This shows that FedAsynQ-ImAvg achieves much better convergence speedup in terms
of the number of agents.

—8— FedAsynQ-EqAvg (T=300)
3.0 FedAsynQ-ImpAvg (T=300)

o
L

)

o0
o
o

!

2

(lQr — |

The inverse squared /. error
=

0s] ././’/'—’—‘

2‘0 ’;O -£0 -':O (‘»‘0 7‘0 8'0 Qb 1(‘)0
Number of agents (K)

Figure 4. The inverse squared /o, error | QT —Q*|| 5 with respect to the number of agents K = 20, 40, 60, 80, 100 for both FedAsynQ-
EgAvg and FedAsynQ-ImAvg, with 7' = 300 and 7 = 50.

Communication efficiency. Figure 5 demonstrates the impact of the synchronization period 7 on the convergence of
FedAsynQ-ImAvg and FedAsynQ-EqAvg. With frequent averaging (7 = 1), FedAsynQ-ImAvg slightly outperforms
FedAsynQ-EqgAvg, but there is no significant difference because the heterogeneity between local Q-functions after just
one local update is very small. The performance of FedAsynQ-EqgAvg degrades as we increase 7 since FedAsynQ-EqAvg
cannot cope with the increased heterogeneity between local Q-estimates as we increase the number of local steps. On the
other end, the performance of FedAsynQ-ImAvg improves first (i.e., 7 = 10, 25, 50) as it balances the heterogeneity
much better than FedAsynQ-EgAvg, but drops later if 7 is too large (i.e., 7 = 75, 100) due to the high variance of the
averaged Q-estimates.

B. Preliminaries

We record a few useful inequalities that will be used throughout our analysis. To start with, our analysis leverages Freed-
man’s inequality (Freedman, 1975), which we record a user-friendly version as follows.
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Figure 5. The normalized ¢ error of the Q-estimates (1 — 7)||Qr — Q|| with respect to the synchronization period 7 =
1,10, 25, 50, 75, 100 for both FedAsynQ-EgAvg and FedAsynQ-ImAvg, with K = 20 and 7" = 300.

Theorem B.1 (Theorem 6 in (Li et al., 2023)). Suppose that Y,, = >, _, Xi, € R, where {X},} is a real-valued scalar
sequence obeying

X)) <R  and E [Xk | {Xj}j:jd} =0 forall k > 1.
Define
Wy = Ep_y [X7],
k=1
where we write By, for the expectation conditional on {X; }j:j <1 Then for any given 02 >0, one has
P{|Y,| > T and W, < 0} < 2exp T2 (28)
= "= - o2+ R7/3)

In addition, suppose that W,, < o2 holds deterministically. For any positive integer m > 1, with probability at least 1 — §
one has

2 2m 2
Yn|<\/8max{Wn,;n}lg6+ ZRlog ;n (29)

Another useful relation concerns the concentration of empirical distributions of uniformly ergodic Markov chains, which
is rephrased from Li et al. (2021b).

Lemma B.2 (Lemma 8 in (Li et al., 2021b)). Consider any time homogeneous and uniformly ergodic Markov chain
(Xo, X1, Xo, . ..) with transition kernel P, finite state space X, and stationary distribution pi. Let tmix be the mixing time of

the Markov chain and iy, be the minimum entry of the stationary distribution . Forany 0 < § < 1, ift > 443%'* log 4|X‘
then

S, = 1) — ()| >

=1

Vye X: Px,= y{EIzEX

imw}g&

C. Analysis Outline

Let the matrix P € RISIMIXIAl represent the transition kernel of the underlying MDP, where P(s,a) = P(-|s,a) is the
probability vector corresponding to the state transition at the state-action pair (s, a). For any vector V' € RISI, we define
the variance parameter Var, , (V") with respect to the probability vector P(s, a) as

Varg (V) = Egp(|s,0) [V(s') — P(s, CL)V}2 = P(s,a)(VoV)—[P(s,a)V]o[P(s,a)V]. (30)

Here, o denotes the Hadamard product such that @ o b = [a;b;]}_, for any vector a = [a;]P_,,b = [b;]7_, € R"™. With
slight abuse of notation, we shall also assume V* € RISI, VF € RISI, @* € RISIIAIL QF ¢ R'SHA‘ Qk , € RISIMI and

r € RISIMI represent the corresponding functions in the matrix/vector form.

14
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C.1. Basic Facts

We first state a few basic facts that hold both for the synchronous and the asynchronous settings. It is easy to establish, by
induction, that all iterates satisfy for all 1 < k < K and ¢ > O that

1 1
0<QF < —— 0<Vk< —— 31
<Qf<i—, SVisi— (31)
aslongas 0 < Qo = Q(’ﬁ < ﬁ; see a similar argument, e.g., in Li et al. (2023, Lemma 4). In addition, observe that
IVE =Vl < 1QF — Qs (32)

since

IVE =Vl = mate | max Q¥ (s, @) — max @*(s,0)| < _max [QF(s.0) = @"(s,0)] < QF = Q.

Letting Q); be the average of the local Q-estimates at the end of the ¢-th iteration, i.e., Q; = % Ele QF, it follows from
(12) and (23) that for all £ > 0 that

1 & 1 &
_ k _ k
Qt_?ZQt_?ZQt_%' (33)
k=1 k=1
Denote the error between @; and Q* by
At = Q* - Qta
which is the quantity we aim to control. From (31), it holds immediately that for all ¢ > 0,
[Atfloo < L (34)
tlloo = 1_ v .

Next, we also introduce the following functions pertaining to periodic averaging. For any ¢,

* define «(t) := 7| L | as the most recent synchronization step until ¢;

T

* define ¢(t) := [ L] as the number of synchronization steps until ¢.

C.2. Proof Outline of Theorem 3.1

Define the local empirical transition matrix at the ¢-th iteration PF € {0, 1}ISIAIXISI a5

1, ifs =sF
P((s,a), ) = b T =stlma) (35)
0, otherwise
then the local update rule (11) can be rewritten as
Qf 1 =01 =mQiy+n(r+vPVE). (36)

The proof of Theorem 3.1 consists of the following steps.

Step 1: error decomposition. To analyze the error A;, we first decompose the error into three terms, each of which can
be bounded in a simple form. From (33), it follows that

K 1 K

K
k=

1

A= (Q-Q,) 0
k=1

(L= (@ = QF_) +n(Q* —r —yPFVEY)

@ (1—=n)A_1+7

==
M=

(PV* = PFVE))

>
Il

1

15
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K

=1 =)l 1+77%ZP Pkth‘i‘ﬂ*ZP -VEy),
k=1 k=1

where (i) follows from (36), and (ii) follows from Bellman’s optimality equation Q* = r 4+ vPV™*. By recursion over the
above relation, we obtain

t K K
_ t v k\y/k * k
Ay =(1-1n) A0+n?;(1— ;P PRV H]Kzl (1-n ;P(V —VF). (37)
=:E} =:E? =B}

Step 2: bounding the error terms. Now, we obtain a bound of each of the error terms in (37) separately.

* Bounding || E} | o. Using the fact that all agents start with the same initial Q-values, i.e., Qf = Qo, the first error
term is bounded as follows:

c=n)

IE oo = (1=m)" Aol < p— (38)

where the last inequality follows from (34).

* Bounding || E?|| . Exploiting conditional independence across transitions in different iterations and applying Freed-
man’s inequality (Freedman, 1975), the second error term is bounded using Lemma C.1 below, whose proof is pro-
vided in Appendix D.1.

Lemma C.1. For any given 6 € (0, 1), the following holds

H 2 8y Ql IS|[A|IT

tHoo_l*")/ K 0og 5 (39)

for all 0 < t < T with probability at least 1 — 0, as long as 1 satisfies 1 < (log “SHA‘T)

* Bounding ||E}| . For E}, we obtain the following recursive relation using Lemma C.2 below, whose proof is
provided in Appendix D.2.

Lemma C.2. Let 3 be any integer that satisfies 0 < < ¢(T'). For any given 6 € (0, 1), the following holds

2 16 T—1 2|S||A|IKT
1B < 22—+ 2T g PIEL g1

(1—7) 0 L(t)—Br<i<t

Sorall BT <t < T with probability at least 1 — 0, as long as 7 satisfies T < 1/2.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, for any 57 < ¢ < T,
the total error bound can be written in a simple recursive form as follows:

1+7
Al < L+4n(r—1 Ailloo < Ao 40
8 < CHaanr = 1) A < ¢+ (F52) a1 0)

where in the first inequality we introduce the short-hand notation

— n\B7T —
= 4(1—mn) N & In 7 Jog |S||AIT N 16yny/T —1 log 2|S||.A|KT7 @)
1—« 1-yVEK ) (1—7) )

and the second inequality follows from the assumption 7 — 1 < 877'7’.

16
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By invoking the recursive relation in (40) L times, where the choices of 5 and L will be made momentarily, it follows that
forany LT <t < T,

-1
IT+y
Al < Z ( ) ( ) max [ Al
i—0 (t)—LBT<i<t
L
2 1+
§<+< ”) < ) (42)
1—7 2 11—

where the second line uses the crude bound in (34).

Setting 3 = L a 23) J and L = [ % , which ensures LA < T, and plugging their choices into (41) and (42) at
t = T, we obtain that

8(1—n)" 16y [n. [S[AT  32myT—1 2ASI[AIKT  [1+4\Y [ 1
ISl = T VK™ s T a—ar VT s T 1—7y
32 VAT n . [S|AT o ISIAIKT
==y (eXp< 2 >+7 Kl Ty 5

. (exp< LB ) \/ |S|A|KT>7 )

where the second line follows from

(1—n)P7 < exp(—npr) < exp (—(1_27)77T) 7

() = (157 o (520 o (52E),

and the third line follows from the choice of the synchronization period such that

1 1-— 1
T—lgmin{ry,}. (44)
n 8y 'K
Thus, for any given ¢ € (0, =), we can guarantee that [|Ar[|o < € if
| S| AIKT
T>cr—7—=(l 1 —7)%))?%log ————
> en s (1 = 2% log LKL
1
n= CnK(l — 7)462W (45)
og ZIEES

for some sufficiently large c7 and sufficiently small c,,.

C.3. Proof Outline of Theorem 4.2

For simplicity, we introduce the following notation. Let UY, ,, (s, a) represent a set of iteration indices between [v1, v2)

for some 0 < v; < vy < T where agent k visits (s, a), i.e.,
Uffl v, (8,0) = {u € [v1,02) : (sk, ak) = (s,a)},
and N}, (s,a) denotes the number of visits of agent & on (s, a) during iterations between [v1, v2), i.e.,
k
Nvl UZ( | V1, ’U2< )‘

17
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Define the local empirical transition matrix at the ¢-th iteration P} € {0, 1}ISIIAIXISI a5
Ptk((s,a),s/) — L if (s,a,'s’) = (Sf—lvaf—lvsf) (46)
0 otherwise

Then the local update rule (22) can be rewritten as

(s {(1 — Qi (s,a) £ n(rfy +yPE(s,a)VEy) f (s,0) = (sty,af ) @

otherwise

Qr 1
3 Qf—l (57 a)7
The proof of Theorem 4.2 consists of the following steps.

Consider any 0 < t < T such that ¢ = 0 (mod 7), i.e., ¢ is a synchronization step. To

Step 1: error decomposition.
analyze A;, we first decompose the error for each (s,a) € S x A as follows

Z Q. (s.a)
K
Z 1—1n NE L (s, a)> Ar_r(s,a)

K
7 k s,a
te . 2 =N (P(sa) = Pl (s, 0)Vy
k=lueuf . (s,a)
v = k
L — ) NVug1,e(s,0) * _yk
I Y MO P(s g (v - v, 48)
k=1 uEZ/ltk_T’t(s,a)
where we invoke the following recursive relation of the local error at iteration u such that (s,—1, ay—1) = (s, a):
Q*(s.0) — Q% (5, 9
(1 - 77)(@*(37 CL) - (Sv a)) + U(Q*(Sa a) - Tﬁfl - ’fo(s, a)Vukfl)
= (1 =)(Q"(s,0) = Qu_1(s,0)) + n(yP(s,)V* = 7P (s,a)V,\ 1)
(1= m)(Q(s,0) = Qu1(s,0)) +0(P(s,0) = Py(s,0))Vyiy +vP(s,a)(V* = V,Ey). (49)
Here, the second equality follows from Bellman’s optimality equation. Denoting
1 & k
>\’U1,’U2 (S (l) = ? Z(l - n)NUl’W‘)(Sya) (50)
k=1

for any integer 0 < v; < vy < T, we apply recursion to the relation (48) over the synchronization periods, and obtain

A(s,a)
#(t)—1

= | II Mrirny-(s.a) | Ao(s,a)
h=0

P(t)—1 P(t)—1 K
+ Z H Atz (14+1)7 (8, @) %Z Z
k=1 ueuhT (hi1)-(5:@)
K
>

(1 —m)Nisroan- (59 (P(s a) — PE (s,a))VEF

h=0 \I=(h+1)
o(t)—1 [ ¢(t)—1 ~ k
+ Z II Mearne(sia) K ) (1 —np)Nern eSO P(s a) (VF - Vi)
=0 I=(h+1) k=lueuy (ht1)7(5:0)
18
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K
=wo(s,0)Bo(s,0) +7) Y wiy(s.a)(P(s,a) = Py (s,a) Vi
kzluel/{é"yt(s@)

=:E}(s,a) =:E}(s,a)

K

+yY. > whi(sa)P(s,a)(VF = VE). (51)
k=1 uelxlé‘:t(s,a)
=:E}(s,a)
Here, we define
#(t)—
wo,4 (s, a) H Anr (4 1)7 (55 @), (52a)
X #(t)—
NY s,a

wﬁ,t(sva) = ?77(1 — ) Nerr@ern- (s )l }(—[H Air,(141)7 (8, @). (52b)

We record the following useful lemma whose proof is provided in Appendix E.1.

Lemma C.3. Consider integers vi and v such that 0 < vy < vy < t < T, where t = 0 (mod 7), and a state-action pair
(s,a) € S x A. The parameters defined in (52) satisfy

Aor o (8, @) < (1 — p)™inwers Ny oy (5:0) (53a)

K
wo(s,a) + Z Z wﬁ’t(s,a) =1, (53b)

k=

K k P(t)—1 . NE .

Y wh(sia) < (1—p)Tile ke Moo (50 w0 < B < g(1),  (530)
k=

(]~
g
£
\'CIJ
s
S~—"
S~—
[ V)
|
3

<= (53d)

Step 2: bounding the error terms. Here, we derive the bound of the error terms in (51) separately for all the state-action
pairs (s,a) € S x A. Denote

th 4|S||A|ITK
Tih = 443 (max y ) lo | H?' .

(54)
ke[K] tin

* Bounding |E} (s, a)|. Using the initialization condition that Q¢ (s, a) = Q& (s, a) for every agent k € [K], we bound
the first term for any (s,a) € S x A as follows:

(i) QOJ()yt(S, a) (2) 2 1 )m%

B¢ (5, 0)] < woe(s,0) ([ Qollse +11Q7[|0) < = — S 1o 7( -, (55)
where (i) holds because [|Qo o0, [|Q*[loc < 2= ~ (cf. (31)) and (ii) follows from the fact that
wo,t(s, a) < (1 B ) <7>(=) ming e[z N;’ff,(h,+1)-r(5xa) < (1 B 77) fltzmm ’ (56)

where the first inequality holds according to (53a) of Lemma C.3, and the last inequality follows from the fact that
NfF (hH)T(s a) > e forall (s, a, k, h) € S x Ax[K]x [T atleast with probability 1 —§ according to Lemma B.2
and the union bound, as long as 7 > Tip.
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* Bounding |E?(s, a)|. By carefully treating the statistical dependency via a decoupling argument and applying Freed-
man’s inequality, we can obtain the following bound, whose proof is provided in Appendix E.2.

Lemma C.4. For any given § € (0,1), the following holds for any (s,a) € S x Aand1 <t < T:

730 C 4|S||AIT?K
with probability at least 1 — 36, as long as 3/T < n < min {ﬁ, ﬁ, RO (T;)l TTSTATTR }
het log og == G —

 Bounding |E}(s,a)|. For E, we can obtain the following recursive relation, whose proof is provided in Ap-
pendix E.3.

Lemma C.5. Let 8 be any integer that satisfies 0 < 8 < ¢(T). For any given 6 € (0, 1), the following holds

Pmin BT
|E3(5 o) < 2v(1—mn) 2 877;\/7 - 2|SHA|TK N 1+~ e HAhTHOO (58)
t 9 9
1—7v 1—7v 1) 2 p(t)—B<h<p(t)—

Sor all 87 <t < T with probability at least 1 — 0, as long as T > Ty, and n < min{}l;—:, %}

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, forany 7 <t < T,
the total error bound can be written in a simple recursive form as follows:

+
18l <O+ =57 max Al (59)
@(t)—B<h<p(t)—1
where we define
4 Fomin 730 C 4|S||A|T?2K 8 -1 2|S||A|TK
o 1y T V g (77 tog WOLATE | S0/ o ISTATE g
-7 -7

Then, by invoking the recursive relation for L times, where the choices of $ and L will be made momentarily, it follows
that forany LT <t < T,

L—1 l L
147 L+ 2 L+
Ao < 1) o+ (—— Airlloo < 77— {0 ! ol
e = 3 (552) 0 (7)1 = 52 (00 (55 0

=0

where the last inequality follows from (34).

Setting 3 = P WJ and L = B ‘(‘Tff; , which ensures L37 < T, and plugging the choices into (60) and (61)

att = T, we obtain

AT [|oo
_ Hmigﬁ >
80 -n) 14607 \/Cheml K)log 4|S||A|IT2K
(1—=9)? 5
n 16ynvr —1 /, 2|S||A|TK N 2 /1 +7 L
(1- 7) S =
16 (1 = ) pmintT 14607 \/Ohetn 4IS||AIT? K
ST Toe - log 1
T (1) eXp( 4 TK)log =5
16yny/T — 2|S||AITK
log
(1- 7) é
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1476 (1 = ) ttminnT \/Chetn 4|S||A|T*K
[ — - s - -
Saooe pr< 1 +\ ¢ log (TK)log —— )

where the second line follows from

HminPT i 1_ min T
(1= )™ < oxp (_umnﬁf) o <_<Wﬂ>

2 4

L L
L+ 1—vy 1—~ (1 —9)pminnT
1) = 1) <« -7 < _ M- rminge
( 5 ) (1 5 ) exp( 5 L)exp( 1 ,

and the third line follows from the choice of the synchronization period such that

oo floy 1
Tth_T_477HllIl 4 ,K .

Thus, for any given ¢ € (0, ﬁ] we can guarantee that ||Ar||e < ¢ if

4|S||A|IT?*K 1 Chet gmax
T > ep(log((1 = ~)%e))? log (TK) 1 E mix
> er(log((1 = 7)) log (TK) log === max { oy g B
4 2 -1 1 — ~)4e2 Cmindl — -1
n:cnoqﬂTK)bg|S”§HVK> mm{Bx(%V)g,”“”mmgmva( }}
et mix

for some sufficiently large cr and sufficiently small c,,.

C.4. Proof Outline of Theorem 4.3

The proof of Theorem 4.3 consists of the following steps.

(62)

(63)

b

Step 1: error decomposition. Consider any 0 < ¢ < T such that ¢t = 0 (mod 7), i.e., ¢ is a synchronization step. To
analyze Ay, similarly to the proof of Theorem 4.2, invoking the recursive relation of the local error (cf. (49)), we first

decompose the error for each (s,a) € S x A as follows:

k=1
K
= [ Y al(s,a)(1 —p)Ne-rals a)> Ai_r(s,a)

k=1
K k

+yY af(s,a) Yl =Nt (P(s,a) — PE(s,0))VE
k=1 uGZ/{,’/“_T,t(s,a)
K

Yok Y n )N P(sa) (V- V)
k=1 uelUf__ (s,a)

K
_< I — (Sa)>At_T(s,a)
S (-

K _\—NE (s,0)
1 t—T,u+1
Sy Y nl—mn) (P(s,a) — PF  (s,a))V}F

K -N}¥ ,
k=1 11,61/{f7nt(s,n,) Zk’:l(l - 77) tora(5:9)

K —NF (s,a)
1— t—T,u4+1
B DD D Pls,a)(V* ~ VD),

K _ k!
k=1 uecuk (s,a) Zk’:l(l — 77) t—r,t(sva)

t—7,t

21
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where the last line uses the definition of (s, a) in (26). Denoting

- K
vy s (8, 0) = T
ez Zle(l—n) 51 o (8:0)

for any integer 0 < v; < vy < T, we apply recursion to the relation (64) over the synchronization period, and obtain

(65)

A(s,a)

o(t)—1

= I Mrsvr(s.0) | Aols.a)
h=0

d(t)—-1 [ ¢(H)—1

k
11— )N )
+ Z H )\zT l+1)T s,a) WZ Z o7 (P(s,a) —P1If+1(57a))vuk

K —-NF (s,a)
=(h+1) k=1 yuey® (s.a) 2opr—1 (1 —m) hmsnr

d(t)=1 [ o(t)—1

— 7N}Ifru 1(s,a)
+ Z H Air (1417 (5, @) ’YZ Z nl =) . SG)P(&G)(V* -V

rht1yr (S
h=0 \I=(h+1) k=1 yuecy* (s,a) Zk’ (I=n)" Nir

hr,(h+1)T

hr,(h+1)T

K
:&O,t(sﬂa)AO(&a)‘i”YZ Z a}ﬁ,t(sva)(P(Saa) - Pf+1(57a))‘/f

k=lueuf ,(s,a)

::E%(s,a) :tEf(s,a)
K
£33 Fls PV —VE). (©6)
kzlueué,t(sva)
=:E}(s,a)
Here, we define
#(t)—1
wo,t(s, a) H )\;,T (h+1)r(8,0), (67a)
h=0
~ 1 — ) Nowruri(s) s)-1
wﬁ,t(&a) = n( n) )\IT)(ZH)T(S’G) | -

2521(1 — 77)’N$<u>7,<¢<u>+1)7(53a) I=p(u)+1

We record the following useful lemma — mimicking Lemma C.3 — whose proof is provided in Appendix E.4.

Lemma C.6. Consider any integers 0 < vy < vy <t < T where t = 0 (mod T) and any state-action pair (s,a) € S x A.
Suppose that nT < 1, then the parameters defined in (67) satisfy

1 3
3 Sai(s,0) < 4 (682)
Do.4(5,0) < (1 — )& Tica Nou(s0), (68b)

~

L‘V)Oyt(sa CL) + E E wﬁ,t(sa a) =1, (68c)
k=L uellf (s,)
K

SY @l < @ -pF I N w0 < <o), (68)

k=14 GZ/{(’)“ ,_(s,a)
K

YooY @hisa)’<

k=1 uelf ,(s,a)

(68¢)

=) g
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Step 2: bounding the error terms. Here, we derive the bound of each error term in (66) separately for all the state-action
pairs (s,a) € S x A. Denote

2176tm2 log 8K log ASIAIT* 2176tmx og 8K log HSIAIT*
tn(s,a) = mix 08 o8 0 and ty, = mix 08 o8 0 . (69)
Havg (s, @) Havg

K i
Here, [tavg(s,a) = & > 1, pl(s, a).

* Bounding |E} (s, a)|. Using the initialization condition that Qo (s, a) = QE (s, a) for every client k € [K], we bound
the first term for any (s,a) € S x A as follows:

) %o, () 2 | L G2 .
B (s,a)] <w0t(||Qo||oo+||Q*lloo) <1 =L < 1My(l—n)fl‘zkle‘“( @) < ﬁ(l—n)i“avgt, (70)

where (i) holds because ||Qol|oo, [|Q*||co < 17 (cf. (31)), (ii) follows from (68b) of Lemma C.6, and (iii) holds for
all (s,a,t) € S x A x [T] with probability at 1east 1 — § according to Lemma C.7 below, as long as ¢t > ty,. The
proof of Lemma C.7 is provided in Appendix E.5.

Lemma C.7. Consider any § € (0, 1). Under the asynchronous sampling, for any (s,a) € Sx Aand0 <u <v <T
such that v — u > tw (s, a), the following holds :

K

1

4(v—u)Kuavg s,a) < E (s,a) <2(v — u)K ptayg(s, @) (71)
k=1

with probability at least 1 — W.

* Bounding |E?(s,a)|. By carefully treating the statistical dependency via a decoupling argument and applying Freed-
man’s inequality, we can obtain the following bound, whose proof is provided in Appendix E.6.

Lemma C.8. For any given 6 € (0, 1), the following holds for any (s,a) € S X Aand 1 <t <T:

|EZ (s (72)

2
2064y \/nlog( 10g4|8|\f;|TK

with probability at least 1 — 26, as long as

—<n< min{ }
r 167" 256 log (T K ) log SIAT K" 348161max Jog (8K ) log HSIAIT™

* Bounding |E} (s, a)|. For E}, similarly to Lemma C.5, we can obtain the following recursive relation, whose proof
is provided in Appendix E.7.

Lemma C.9. Let 3 be any integer that satisfies 7" < B < ¢(T). For any given § € (0,1), the following holds

2(1—mn) rgs 8777\/7 - 2|S||A|TK N 1+7y

|E§(s,a)\ < max
I—vy -y 4 2 p(t)-B<h<H(t)-1

||Ah7'Hoo» (73)
Sor all B <t < T with probability at least 1 — 0, as long as 7 < min{ 4ﬂ/;y, 5
Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, forany 7 <t < T,

the total error bound can be written in a simple recursive form as follows:

1+~

Ao < 0+ —— max
2 g(t)-B<h<o(t)—1

||Ah‘r||oca (74)
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where we define

~ 4 Havg BT 2064
f=—(1-n)~F + 2y
11—~ (I-7) VK

4|S||A|T?K n 8ynvT — 1 Io 2|S||AITK

1 1
og (T'K) log 5 T &=

(75)

Then, by invoking the recursive relation for L times, where the choices of 5 and L will be made momentarily, it follows
that forany LT <t < T,

L—1 l
1+9\ » 147 2 L+
A oo< 5 9 5 AiT oogi 9 5 ’ 76
([ Al _ZE_()( 5 ) + ( 5 ) ¢(t)73Lm§ai);¢(t)71” | 1=~ + ( 5 ) (76)

where the last inequality follows from (34).

Setting L = E ’ﬁf’f{ and 8 = H, / %J, which ensures L7 < T, and plugging the choices into (75) and (76)

att =T, we obtain

Havg BT

8(1—n) 4 4128~ \/n 4|S||A|IT2K
L og (TK) log =212 72
T2 TV g les TR les =75

16yny/T — 1 log ASIAITK 2 1+ Ve

(
1 1- ave T’ 41 4 T°K
< ﬁ exp <_ (1 — y)Havgn ) i . 75;;2 % log (TK) log 4S[JAT K

[A7 [l <

(1=9)? 6 1—y" 2
2
4 5

16yny/7 — 1 2|S||AITK
+ log
(1— )2 5

4144 (1 - V)UavgnT \/77 4|SHA|T2K

where the second line follows from

HavgBT v 1- av T
(1) < oxp <_Wa4gﬁf) < oxp <_<V>Mw>

L L
L+7 l—vy 1—vy (1 — ) pavgnT
TNy = (1 =—/—1) < ') < _NVA - DPavellm
< > > (1 5 > exp( 5 L) <exp 1 ,

1 1-— 1
T§4min{7 } (78)

(77)

Thus, for any given ¢ € (0, ﬁ), optimizing 1 and 7" to make (77) bounded by ¢ and recalling 57 > t,, we can guarantee
that ||Ap|leo < eif

4S||AIT?K 1 { 1 tmax 1 }
T > er(log((1 — 7)2%e))2log (TK)log —2= >~ max , —mix _ : ’
= T( g(( ’7) )) g( ) g 5 Havg K(l—’}/)5€2 (1_,}/) (1—’}/)111111{1—')/,[(_1}
1 1 1
n=c,min< K(1—~)t? —, ,
! { ) log (TK) log USIATZE pig gt gmaxlog (T ) log ASIAITZE

AlS|[AT2K\ " 1
=cy <log(TK)log|S|J§|> min{K(l—7)452,W,min{1—7,K_1}}

mix

for some sufficiently large c7 and sufficiently small c,,.
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D. Proofs for Federated Synchronous Q-Learning (Section 3)

Define the following actions

a*(s) = argmax Q*(s,a), af(s) =argmaxQ¥(s,a), a;(s)=argmax — Z Q¥ (s,a) (79)

acA acA acA

for any state s € S, which will be useful throughout the proof.

D.1. Proof of Lemma C.1

For notation simplicity, let 2¥ (s, a) = n(1 — n)*~(P(s,a) — PF(s,a))V;* ,, then the entries of E? = [E?(s,a)] can be
written as

t K K
B —i B
E}(s,a —TIEZ (1 =n)'""> (P(s,a) = Pf(s,a)V}, = EZZZ?(S,G), (80)
i=1 k=1 i=1 k=1

which we plan to bound by invoking Freedman’s inequality (cf. Theorem B.1) using the fact ¥ (s, a) is independent of the
transition events of other agents k' # k at ¢ and has zero mean conditioned on the events before iteration i, i.e.,

E[zF(s,a)|VE,,... . VE,, . VE, . V] =0, Vke[K], 1<i<t. (81)

Before applying Freedman’s inequality, we first derive the following properties of the variable 2 (s, a).

¢ First, we can bound

2n
e k < k k < —)
Bus,a)i=, _max |l <  max  n(IPG o)l + 1PEs ) [VE o < 775, 62

where the first inequality uses (1 —7)!~% < 1, and the last inequality follows from || P(s,a)||; < 1, ||PF(s,a)|l; <1,
and ||[V}F || < = (cf (31)).

¢ Next, we have

E[(2F(s,a)) VR, .. Viby, o VLV

% 71

Var(2F(s,a) |V, Vb g, VW)

: 2K
< 201 _ )2t < — 52
S ;zl n (1 —n) SH—az =% (83)

where we recall the definition of Var, , in (30). Here, the first inequality holds since

2
Vargo(Vi€1) < [1P(s, @)l (1ViE4 lloe)? + (1P (s, @) 11V [l0)? < =92
and the last inequality follows from
t 2 2t
i 1-(1=n%)
2 1— 2(t—1) < n ( < n. 84
> o —p*tY < g S (84)
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By substituting the above bounds (cf. (82) and (83)) and m = 1 into Freedman’s inequality (see Theorem B.1), it follows
that forany s € S,a € Aand t € [T,

: 2
2m|S||AIT 4 2m|S||A|T
Z ZZk(S,GJ) S \/SmaX{Wt(S,a)72gm}logWL|6||+3Bt(s,a)log7n|6|||
i=1 k=1
< 3277K2 log |S||A|T n 67 log |S||A|T
(1—=7) 1) 1—7v 5}
8y |S||A|T
< 1
ST VE 5 (85)
with probability at least 1 — $||(.SA\T7 where the last inequality holds under the assumption 7 < £ (log IS HA|T) L Applying

the union bound over all s € S, a € A and ¢ € [T'] then completes the proof.

D.2. Proof of Lemma C.2

For any 87 <t < T and (s,a) € S x A, we can decompose the entries of E} = [E}(s,a)] as

t—1 K
3 m yi—i-t k
|E (s, a) fzz P(s,a)(V* = Vi)
1=0 k=1
oy O K _ o & '
<|% D=0 TP a)(V = VE) e Y0 Y (A=) T T P a)(VI - V) (86)
i=0 k=1 i=u(t)— BT k=1
=:E$%(s,a) =:E3%(s,a)

We shall bound these two terms separately.

Step 1: bounding E}%(s,a). First, the bound of E3® is obtained as follows:

K uo(t)—pr—1
E}*(s,a) < Z Z ) NP (s, )11V oo + 11Vi¥lloo)
< 27777 L(t)_zﬁf_l(l _ n)t—i—l < 277(1 _ 77)67 87)
1=y i=0 S = 7

where the second inequality holds due to the fact that || P(s,a)||1 < 1 and ||[V*||s < ﬁ, V¥ lloo < ﬁ, and the last
inequality follows from

(t)—Br—1

—i— T r _ 1—n)s" 1—n)P7
DD N e T g |
i=0 —(1=mn) n

Step 2: decomposing the bound on E3*(s,a). Next, E3*(s,a) can be bounded as follows

t—1 K
: m —i— *
E(s.0) = | (1 - ) P (s )V - V)
i=u(t)—pT k=1
t—1 1 K
t—i—1 * k
<7 (1 —m)' =t Y O P(s,a) (V= V)
i=u(t)—BT k=1
t—1 1 K
t—i—1 k
<1 (=)= Y (V= VE) (88)
i=u(t)— BT k=1 00
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where the second inequality holds since || P(s,a)||s < 1. To continue, denoting
Ay (s:0) = Qi (s,0) = Qy(s,0), (89)

we claim the following bound for any 0 < ¢ < T', which will be shown in Appendix D.2.1:

K

ZV’“

< Ailloo + Qmax Hd

o0

(90)

o(2),3 |oo

In view of (90), it boils down to control maxy, ||df(i) i”oo‘ For any (s,a) € S x A, k € [K],and 0 < ¢ < T, by the
definition (89), it follows that

i—1

i—1 i—1
|dia(sa) =] D0 df (@) <20 Y7 Al +am| D (Pfii(s,a) = P(s,a))V*|, o1

J=u(?) J=u(?) J=u(?)

=B =By
where
AY=Q* - Qb (92)
The inequality (91) holds by the local update rule:
5 j41(s,a) = Qi (s,a) — Qf(s,a)
=1(r(s,a) + 7P (s, )V = Q(s,a))
D (r(s,a) + 7Py (5, 0) V= r(s.0) = vP(s,0)V" + Q*(s.0) — Q5 (s.a)
= (VP (s, @)V —vP(s,a)V* + Q" (s,a) — Q5 (s, a))
=Py (s,a) (VI = V*) + (Pl (s,a) = P(s,a))V* +nAf(s, a)
< 2| Af e + (P (s,a) = P(s, ) V7, (93)
where (i) follows from Bellman’s optimality equation, and the last inequality follows from || P; k1 (s,a)|l1 <1and ||ij -
Voo < A7 lloo (ef. (32)).
Next, we bound each term in (91) separately.
* Bounding B;. The local error ||A;“||oo is bounded as stated in the following lemma, whose proof is provided in
Appendix D.2.2.
Lemma D.1. Assume T < &. For any given § € (0,1), the following bound holds for any 1 < i < T and k € [K]:

. 2 S||A|IKT
188 < 1o o+ 108 21 ©04)

with at least probability 1 — 0, where 1(3) is the most recent synchronization step until i.
Using the fact that ¢ — ¢(¢) < 7 — 1, we can claim that

i—1
dn(r —1 S||AIKT
21 Y 188 < 2007 = DA oo + T2 10 EIEEL ©5)

j=u(3)
* Bounding B,. Using the fact that the empirical transitions are independent and centered on the true transition

probability, by invoking Hoeffding’s inequality and the union bound, we can claim that the following holds for all
(s,a,k,t) € S x Ax [K] x [T],

i—1

: . \SIIA\KT n ISI|AIKT
m Z(:‘)(Pfﬂ(s, a) — P(s,a))V Z)l <1 (T = 1log == (96)
J=tr j u(s

with probability at least 1 — 6 for any given ¢ € (0, 1), where 7 is the synchronization period.
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By substituting the bound of B; and Bs into (91), and applying the union bound, we obtain that: for any given ¢ € (0,1),
the following holds for any 0 < i < T and k € [K]:

dn((7 —1)y/m+ 71 —1) 2|S||A|KT
1 lloe < 2007 — D Augeloo + S log 215

gy —1 [ 2SJAKT
1-y) V%5

with at least probability 1 — &, where () is the most recent synchronization step until . Here, the second line uses the fact
nT < 1.

<2n(t = DAyl +

o7)

By combining (97) and (90) and substituting it into (88) and using the fact that Z
obtain the bound E?*(s, a) as follows:

i= L(t) gr n(l — ﬁ)tiifl < 1, we can

f 1690y — 1 2|S||AIKT .
s, ) < VT L g HSIAIRT S ot ) (A 0l — DA )
(1 ’Y) i=u(t)— BT
1697 — 1 2|S||AIKT
< ————4/log ———— 1+4 —1 A .
STy Ve tat+dn(r—1))  max (A (98)

Step 3: putting all together. Now, we have the bounds of E3® and E?" separately derived above. By combining the
bounds in (86), we can finally claim the advertised bound and this completes the proof.

D.2.1. PROOF OF (90)

On one end, it follows that for any s € S,

1 & 1 &
22 (V7(5) = Vi) = Q7 (5,07(5) = 12 D_ Qi (5,07(5))
k=1 1 5;1
< Q' (5,0%(s) — 1 D_ QF(5,a()) = Ai(s.a*(s)), ©9)
k=1

where we use the definitions in (79). On the other end, it follows that

1 & 1 & 1 & 1 &
2 2 (Vi(s) = V() = Q*(s,07(s)) = 4 > Qs a,(s) + % > QF(s,a,3)(s)) — e > Qi (s,af(s))
k=1 k=1 k=1 k=1
1 & 1 & 1 &
2 Q%(s,a,)(5) — 5 D QF(s,auw(s)) + o > QF (s aum)(s)) — o > QF (s af(s))
k=1 k=1 k=1
K
= A (5, a,0)( Z QF (s, a,0( 11{ > Qf(s,af(s)), (100)
k=1

where the inequality follows from the fact that a*(s) is the optimal action for state s. Notice that the latter terms can be
further lower bounded as

1 & 1 &
e Z Q7 (s, a,3)(s)) — I Z Q5 (s,akf(s))
=1 =1
1 & 1 &
= ? ZQ§(87CLL(’L)(S)) - ? ZQL(Z)(S ab( + = ZQL( ) S, aL ( ))
=1 =1
1 & 1 &
—§ZQL(1)(3aat(5))+§ZQL()( KZQk
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K
Z L(’L 7 S Ay (i) ( )) _df(z),z(svaf(s)))7 (101)

k:

where the inequality follows from the definition (89) and the fact that
Qi (8, (i) (5)) — Qi (5,05 (5)) = 0.

The above holds, since Qf(i) = Q,(; forall k € [K] agents after periodic averaging at ¢(i), and a,(;)(s) is the optimal
action at state s at time +(4) for every agent.

Combining (99), (100) and (101), we obtain

K
(s, a5 (5 }jcuzl 0 (5)) = o (5,ab () < 2 30 (V2 () = VH(s) < Aalsa*(5),

k=1
which immediately implies (90).
D.2.2. PROOF OF LEMMA D.1

By applying the decomposition in (37) to the local error for agent k, we decompose A¥ as follows:

%

A§<s7a) = (1 - n)i_L(i)Af(i)(Sa a) +7 Z 77(1 - U)i_j(P(Sv a) - ng(&a))V*

j=u(i)+1
=D =D>
+ Z (1 —n) I PF(s,a)(V* —VE ). (102)
j=u(i)+1

::Dg

We shall bound each term separately.
¢ Bounding D;. Since Af(i) = A,(; for every agent £ at the synchronization step +(i),
D1l < (1= )" IA |- (103)

« Bounding D,. In a similar manner to (96), by invoking Hoeffding inequality and using the fact that 3" iy (M1 —
n)i=7)2 < 1 (cf. (84)), we can claim that the following holds for all (s, a, k,t) € S x A x [K] x [T],

K2

4 y |S||A| KT v |S||A|KT
D] < 1—n)i=9)2[|[V*]2,1 < log ——— 104
Daf v, D2 1=V o R < Ty Fnog (104)

J=e(D)+1

with probability at least 1 — § for any given 0 € (0, 1).

* Bounding D;. By bounding |V* — Vj’il |lo With the local error ||A;?71||OO (cf. (32)) and using HPJ‘-'“(S7 a)llr €1, we
have
D5l <5 > n(@=0) T IPHs, @)LV = Ville <7 D0 a1 =) AY oo (105)
J=u(i)+1 j=u(i)+1

By combining the bounds obtained above in (102), we obtain the following recursive relation

1AFloo < (1= A0 lloo + \/ Z =) A [l (106)

JL( )+1

29



The Blessing of Heterogeneity in Federated Q-Learning

By invoking the recursive relation with some algebraic calculations, we obtain the following bound

1AF ]l < (1= n) "D Ayp) lloo +p

i Ji—1
v Y =) A=) T A lee H oty YL (=) T A s
Gi=u(d)+1 Jo=u(i)+1

= | Q=)@ 44 Z n(1=n)" O Al + [ 14y D nd—n)" | p
Ji=u(i)+1 Ji=u(i)+1
Ji—1

E: R ) K] VA [

Ji=t(i)+1 ja=e(3)+1

<[ @= ™D 4y T 0= O A e+ [Ty D n(l—n) | p
J1=u(i)+1 Ji=u(i)+1
Ji—1
Z Z . 7, 1—j2 ((1 _ n)jzflfb(i)”Ab(i)Hoo +p+- )
J1=u(i)+1 j2= L(1)+1
i Ji—1—1
< @=-m)™0 44 Z T R AD DI S ¢ ) Kt I FAWHY
J1=(i)+1 =@+l Gi=e(i)+1
i Ji—1—1
1+~ Z z j1+ oy l Z Z nl<1_n)i—l+1—jl p
Ji=u(i)+1 Ji=u(@)+1  ji=e(i)+1
i Ji—1 ] )
LRALED DI DENE A (R il (R C )
Ji=t(H)+1  Gipr=e(i)+1
@' i) T i)
< sz( , )nl(l— ) O A e+ D 71( ; )’llﬂ
1=0 1=0
< (001 + 04200
< HAL( )||oo+2l’7 (107)

where (i) follows from A’?'i

Y -1 = Af(i) since j; <i—1+1,

Jji—1 Ji—1—1

i—l—u(i i — (1 i—l—u(i
Z Yoo > A= ()—< l”)nl(l—n) ),
ji=u(i)+1 jo=c(i)+1 Ji=u(i)+1

i Ji—1—1 i Ji—1—1

S D ATt Y Y n<<_L(i))nl,

Ji=e()+1  Gi=e(i)+1 i=e(i)+1 gi=e(i)+1

and (ii) follows from (1 4 vn)*~*() < (1 +n)7 < e™ < 2since i — 1(i) < 7 and 71 < 1. This completes the proof.

E. Proofs for Federated Asynchronous Q-Learning (Section 4)
E.1. Proof of Lemma C.3

First, (53a) is derived as follows:
1 K k : k
)‘Uhvz (57a) = ? Z(l _ n)NUI,UQ(Sya) < (1 _ n)lnmke[x] NUIWZ(S’G'). (108)
k=1
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Next, we obtain (53b) through the following derivation:

K K ¢(t)—1
>, 2 wilsa) =) D, wi(sa)
k=lueuf ,(s,a) k=1 h=0 ueuhr (h+1)r (8:0)
#(t)—1 [ o(t)—1 K 1 %
_ = o\ Va1, -(s,a)
= Z H Alr( l+1).,. s, a) ZK Z (77(1 n) ettt )
h=0 =(h+1) k=1"" welf ., (s.0)
#(t)—=1 [ o(t)—1
)

k
H Ao (11)+ (5, @) (1—(1- n)Nm,<h+1>r(S~,a))
h=0 \I=(h+1)
(1)1

)
Z H Al‘r,(l-‘,—l)r(sa a) (1 - Ah‘r,(h—i—l)'r(57 a))

h=0 \I=(h+1)

M=
= =

>
Il
—

(iii)

= 1= XorAr 27 Apt)—1)rt = 1 —wot(8,a), (109)
where (i) follows from the geometric sum
Z n(1 — n)foH,(hH)f(s’“) =n+nl—n)+-+nl1- n)N;’fT,<h+1>T(S7a)—1
ueu}]fT,(}L+1)T(S’a)
=1 (1 — n)N;?T,(hH)T(Saa), (110)

(ii) follows from the definition (50), and (iii) follows by cancellation.

Similarly, (53c) can be obtained with some algebraic calculations as follows:

K K k-1
Y. D walsa=) > Y wilso)
k=1 uEL{;h’,T(s,a) k=1 h=0 weldf_ ., .., (s,a)
h/—l o(t)—
O Z H Nir,41)7 (85 0) | (1= Nor hg1) (85 @)
h=0 \I=(h+1)

(i)
< Ay (hi41)7 " AG(t)=1)mt = A0, 7 AT2r ** A(g(t)—1)rt
(iii) ¢(t)—1 . &
S Mrwne Mow-nra < [ (1= g)mimesa Minoen- ) )
h=h’
where (i) follows from similar derivations as above, (ii) follows by cancellation, and (iii) follows from (53a).

Finally, (53d) is derived as follows:

K K ¢(t)-1
> > (widsa)t= > @hise)?
k=lueuf ,(s,a) k=1 h=0 ueu”f‘r,(h+1)7-(s a)
1 P(t)—1 o(t)—1 K 1 . )
K H Air 141)7 (5, @) Z DI (BT RCE)
h=0 =(h+1) k=1 eu’w (}L+1)T(S a)
(i) 217 o(t)—1 o(t)—1 K 1 .
N} s,a
< K H )\177(l+1)7 s, a Z ( 77)( (1) )))
h=0 \i=(ht1) =1
} S(t)—1
= f H Air,41)r(8,@) | (1= Apry(hs1)r (s, a))
h=0 \i=(h+1)
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(ii)
=
- K
where (i) holds since
2
S (= mMeeer )T g2 21— (1 )N () D)

ueui’fr,(h,-#l)f(s’a)

< n (1 — (1 — 77)2N1’f+1,(h+1)7_(8,a))

<2 (1= (1= )N () (112)
and (ii) follows from the proof of (53c) (cf. (111)).

E.2. Proof of Lemma C.4

Without loss of generality, we prove the claim for some fixed 1 < ¢ < T and (s,a) € S x .A. For notation simplicity, let

yﬁ t(S,GJ) _ w'ﬁ,t(s?a)(P(Saa’) - P1]f+1(57a))vuk if (SZ,GZ) = (S,CL) , (113)
’ 0 otherwise

where

=|=

é(t)—1 K
. 1 ,/
Wﬁ,t(sa a) — (1 _ n)Nﬁ+1,(¢(u)+1)T(sva) H (K Z (1 _ n)N}];T,(h+l)-r(s7a)> , (114)

h=g(u)+1 k=1

then E2(s,a) = v o0 S0t ys (s, a). However, due to the dependency between Py, (s, a) and w} (s, a) arising
from the Markovian sampling, it is difficult to track the sum of y := {y& ,(s,a)} directly. To address this issue, we
will first analyze the sum using a collection of approximate random variables J = {gF (s, a)} drawn from a carefully

constructed set ), which is closely coupled with the target {yk .(s,a)}o<uct. €.,

D(y,y) = (115)

SN (wk u(s,a) — 3 (s, )

k=1u=0

K t—1 |

is sufficiently small. In addition, 3 shall exhibit some useful statistical independence and thus easier to control its sum; we
shall control this over the entire set ). Finally, leveraging the proximity above, we can obtain the desired bound on y via
triangle inequality. We now provide details on executing this proof outline, where the crust is in designing the set ) with a
controlled size.

Before describing our construction, let’s introduce the following useful event:

K
B, = ﬂ m {Q,ulg(s,a)r < N§T7(h+1)T(s,a) < 2//;(5,(1)7'} (116)
Since T > 7q (cf. (25¢)), B holds with probability at least 1 — m according to Lemma B.2.

Step 1: constructing Y. To decouple dependency between P +1(s,a) and wq’j’t(s, a), we will introduce approximates

of wﬁ’t(s, a) that only depend on history until u by replacing a factor dependent on future with some constant. To gain

k

insight, we first decompose w,, ;

(s, a) as follows:

—_ NE u)T u T(S’a) ¢(t)71 K N
Wk (s,0) = ﬂ(l _ )*Ni'(u)f,uﬂ(&a) (1 — n)Nowr @y 1 (1- )N;:T_(,l+1)7(s,a)
Wi K g K NE! (s,a) K g
Zk’:l(l —n) s e+ h=e () v
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N B(t)—1 1 K "
(]. — ’f]) Bu)yr,ut1(5:a) H ? Z (1 _ 77) b (ht1)r (5:@)

h=g(u) k=1

N\d

::Ezﬁ_’t(s,a)

N¥ 1. (s,a) P(t)—1 K ,
L) N (se) [ (Lo m) e ey _ 1 sy (5,)
(1 —n) Newmut . 1 H i Z(l n) Vet )

+ k
25:1(1 — p)Ner sty (5:9) h=o(u) B—1

==

:Xif‘z(s»a)

Considering that xﬁ’t(s, a) can be small enough, which will be shown in the following step, we analyze the dominant
factor (Dfit (s, a) in detail as follows:

é(u)—1 | XK K -1
‘Dﬁ,t(s7 a) = H <K Z (1- 77 Nhr (1) (85 a)) (K Z 1— N;w J(h41)7 (S fl))

h=ho(u,t) k'=1

1 C e (1 E Y
NG ru s,a - N Ny 1. (s.a
K(]. 777) ¢(u)T,ut1 H <K Z(]_ 77) hr,(h+1) )

h=¢(u) k=1
n . P(u)—1 1 K N -1
1 = ) Noyrur(s:0) — — )\ Vhr, -(s,a)
K(l )~ Ne(wrus H (K Z(l n)Nr. e )
h=ho(u,t) k'=1

dependent on history until w

B(t)—1 1 XK »
(250 o)

h=ho(u,t) k'=1

X

dependent on history and future until ¢

] - - (s,a) (ul)l E 1 -,-/ (s,a)
] Ngwyru s 1 o Ny ha1yr(s,a
P,( T]) ¢(u)T,ut1 ( ( T]) h7,(h+1) )

h:ho(u,t) k'=1

=zk (s,a)

(u,t) St —(I—1)M—1 | K .
% H H <K Z (1- n)N;LT.(Hl)T(S*a)) , 117)

=1 h=max{0,¢(t)—IM} k'=1

=z(s,a)

where we denote ho(u,t) = max{0, ¢(t) — I(u,t)M}, with M = M (s,a) := |
that M > since nT < 1/16.

| and I(u, t) = [£=%7. Note

Snuvgsa'r Mt

lﬁnuavg(s a)T
Motivated by the above decomposition, we will construct JA? by approximating future-dependent parameter z;(s,a) for
1 <1 < L, where L := min{[ ], [64log (K/n)]}. Using the fact that 1 — # < exp(z) < 1 — % holds for any
0<z<1,and nNhT (h+1)7(s7a) <nr<i,

K
Z N;n (h+1)7— s, a)
k'=1

eXP( 2 Z Nitr ey (8 a)) <1

k’l

(1 _ n)N})f:',(}L+1)T(‘gva)

IA
= —
M= w\s

X
Il
—

ex p(_nN}]fT,(h-l-l)T(sa Cl))

IA
==
Mw

X
Il
-
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11 &
k/
sl-o% ’;_lnNhr,(h+1)‘r(Sva’)

K
< exp (2’;( N}]f;,(,l+1)T(s,a)> . (118)
k'=1

Therefore, for 1 < I < L, under B, the range of z;(s, a) is bounded as follows:

1
zi(s,a) € [exp(—4nuavg(s,a)M7), exp(—4nuavg(s,a)M7)] .

Using this property, we construct a set of values that can cover possible realizations of z;(s, a) in a fine-grained manner as
follows:
1 .
Z = {exp (—4Wavg(s,a)MT - g) ‘z €Z: 0<i< 4Kuavg(s,a)MT} . (119)

Note that the distance of adjacent elements of Z is bounded by 1/ Ke~/41ae(s:a)M7 "and the size of the set is bounded
by 4K ptavg (s, a) M. For [ = L, because the number of iterations involved in z7,(s, a) can be less than M7, it follows that
z1,(s,a) € [exp(—4npavg(s, a) M), 1]. Hence, we construct the set

e fm(-2)

In sum, we can always find (Z1,--- , 2, -+ ,21) € ZX71 x Z, where its entry-wise distance to (2;(s, a))ie(r—1) (resp.
21 (s, a)) is at most 1)/ K e~ 1/4ntas(5:0)MT (resp 1/ K).

ieZ: 0<i <4Kuavg(5,a)M7}. (120)

Moreover, we approximate z¥ (s, a) by clipping it when the accumulated number of visits of all agents is not too large as
follows:

Eﬁ(s, a) =

o K
{xﬁ(s,a) if Yo, N,’fo(u’t)T’d)(u)T(s,a) < 2K pavg (s, a) Mt - (121

0 otherwise

Note that the clipping never occurs and 7% (s, a) = z¥(s, a) for all u as long as B, holds. To provide useful properties of

7% (s, a) that will be useful later, we record the following lemma whose proof is provided in Appendix E.2.1.
Lemma E.1. For any state-action pair (s,a) € S x A, consider any integers 1 <t < T and1 <1 < [ﬁ} where

= Lmj Suppose that 4nt < 1, then 7% (s, a) defined in (121) satisfy

9n

Yu € [ho,d(t) — (1 —1)M) : ZF(s,a) < e (122a)
B(t)—(1-1)M -1 K

Z Z Z:?ﬁ(s,a) < 16npavg(s, a) M, (122b)
h=ho uEZ/{,’fT,(,Hrl)T(s,a) k=1

$(H)—(1-1)M—1

K 2
> S D @is,a)? 640 “avgff’ QM7 (122¢)

IN

h=ho “euﬁn(h+1)f(s7a) k=1
where hy = max{0, ¢(t) — IM}.
Finally, for each z = (Z1,---,2) € Z57! x 2o, setting G (s,a;2) = Zh(s,a) Hﬁ(:ul’t) Z1, an approximate random

sequence Jz = {J& (s, a; z) Jo<u<t can be constructed as follows:

o (saiz) = {@( @2)(Pls.0) - Plp(s )V if(shal) = (o) andi(w ) <L
’ 0 otherwise

Ift > LM, forany u < t — LM, ie., l(u,t) > L, we set § ,(s,a; z) = 0 since the magnitude of w} (s, a) becomes

negligible when the time difference between u and ¢ is large enough, and the fine-grained approximation using Z is no

longer needed, as shall be seen momentarily. Finally, denote a collection of the approximates induced by Z%~! x Zj as

V={j.: zez2Zl'xz).
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Step 2: bounding the approximation error D(y,7.). We now show that under B3, there exists /. := ¥,(,) € Y such
that

106 C(hetn

~ 4|S|].A|T?
D(y,yz) < T—~ log (T'K) logL

0

(124)
with at least probability 1 — §. To this end, we first decompose the approximation error as follows:

min D(y, =)

K t—1
_ . )~ " .
i [ 3 Gt i )|
K t—LM7—1
<  max Z ko (s,a) —7F ,(s,a; 2 HllIl Z Z s, a s,a;z
Rl P W (500) = B2, 052) ZESLTIXE0 || Tyt L]WTyut( )~ Bl :
K t—LMT—1
< ma; Z k o(s,a) —3° ,(s,a;2
_ZEZL*E(XZO Pt ~ yu,t( ’ ) yu,t( » Wy )
=:Dq
k . P _ p* Vk
min — Wy 4(8,a;2))(P(s,a) — Py(s,a)V,
ZEZL "X 20 1T et LMT

=:Do

K t—
+13 S L (s.a)(P(s.a) — PEy, (s, a)VE

k=lu=t—LMTt

)

::D3

and will bound each term separately.

* Bounding D;. This term appears only when ¢ > LM. Since @’j’t(s, a;z) = 0forall u < t — LM regardless of z
by construction,

K t—LMt1-1

DY vedlsa) =T (sa;2)
k=1 u=0

K
<M > wy(s,0)[|[P(s,a) = Py (s,a)[[1[[ViFlloo
k=

1 ueu(])c,thMr(S,a)

=

k
1 _ "Y p Z wu,t(57a)

=1 ueuf’it*Ll\/[T(s7a)

2 $(6) -1 1 K &’
< = 1 — ) Vir (- (5:0)
<2 T (g a-wesen)

h=¢(t)— LM k=1
() 2 NN
< T~ exp <_2K kz:_l NtkaM'r,t(sv a)
(2) 2 1 M
=15 €xp aniavg(S, (l) T
(iv)
S 27773

(1-7K

where (i) holds since || P(s,a)[|1, [[Pf(s.a)li < 1and [V ] < 125 (cf. 31)), (ii) follows from (118), (iii)

holds due to B, and (iv) holds because L > 64 log % > m log % given that nptag (s, a) M1 > 1/16.
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* Bounding D. Since 7% (s,a) = 2% (s, a) when B, holds, in view of (123), we have

min S0 @h(s,0) — B4 05,02)) (P(s, @) — Py (s5,0) Vi

ZL-Tx 2z,
=€ XE0 T umt— LM T

S L Z > |t (5, @) — Dy o (5,03 2) [ || P(s,a) — Py (s, @) [V [loo
* k= Lueuf_ L7, (5:0)
L #(t)— M-1 K l l
~k ~
SERS TN D>l SIS R v L)) R )
=1 h=¢()—IM  wellf_ ., (s.a) k=1 r=1 V=1
where the last inequality holds since || P(s, a)|[1, [P (s, a)[l1 < Land [V [ < 125 (cf. 31).
Note that for any given {z(s, a)}er], under B;, there exists 2* = (217 ey 2fy ., 2)) € 2871 % Z, such that
1ZF — 2i(s,a)| < 75 exp( 1/477Mavg(5 a)Mr) forl < Land |z} — z1(s,a)| < % Also, recall that (s, a), 2z} <
exp(—1/4npayvg (s, a) M) for I < L and zp,(s,a), z; < 1. Then, for any ! < L it follows that:

r=1 =1 =1 =2 =1 =1
!
< exp ( — —(I = D)npavg(s a)MT) Z %
=1
1 L
< exp ( - Z(Z - 1)nuavg(s7a)M7) ?77

Then, applying the above bound and (122b) in Lemma E.1,

—(-1)M-1 l
D2<7E E g g:csa Hzl/sa HE;
T e b(t)— WU 1), (5,0) B=1 =1 r=1

$(t)—(1-1)M 1

K
< T E 5 ? Z ( — D)nttavg (s, a)MT) Z Z Zfﬁ(s a

h=¢(t)—IM  weUf .. (s,a)k=1

2 ILn 1
= 160 tave (5, @) M
“1-9K1 fexp(fl/élnuavg(s,a)MT)( Mhavg (s, @) MT)
0 2 Ly 8 256.Ln

< 16nuavg(57a)MT <

1-NK’

where (i) holds since 1/4ntavg(s,a)M7 <1 ande * <1— zforany0 <z < 1.

1- ’Y?nﬂavg(sv Q)MT

* Bounding D3;. Applying Freedman’s inequality, we can obtain the following bound, whose proof is provided in
Appendix E.2.2.

Lemma E.2. For any given § € (0, 1), under B, the following holds for any (s,a) € S x Aand 1 <t <T:

72 C 4|S||A|T?
Dy < “het16g (TEK) log % (125)
. .rs . 1 1 1
with probability at least 1 — 6, as long as n < min{ 4, 51K o Tog (TK) Iog TSIATT? Y M(s,a) < TG and

L < 64log (TK) .

By combining the bounds obtained above and using the fact that n < b AT and L < 64log (TK), we

— 64log (TK)log
can conclude that

2n 256Ln \/chem log (TK) log HSIAIT

min D(yv:‘/jz) < 5

+
G=€Y 1-mK (1-
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106 [ Chetn

4]S||A|T?

0

log (TK) log

Step 3: concentration bound over ). We now show that for all elements in ) = {9 z € ZE71 x 2y} satisty

K t—1 2
ZZgjﬁyt(s,a;z) < 624 \/77 log (TK) logw (126)
k=1u=0

with probability at least 1 — W. It suffices to establish (126) for a fixed 2 € ZX~! x Z, with probability at least

1— where

6
STATTT

V] = 12571 x 20| < (4K pravg(5, @) MT)" < (K/m)* < (TK)*. (127
For any fixed z = (21,---,21) € 257! x Zq, since &} ,(s,a;z) = Th(s,a) 1D 2 only depends on the events

happened until u, which is independent to a transition at v 4+ 1. Thus, we can apply Freedman s inequality to bound the
sum of g ,(s, a; z) since

E[gF (s, a;2)|Vu] = 0, (128)

where ), denotes the history of visited state-action pairs and updated values of all agents until u, ie., YV, =
{(sk,ak), VF}reik),v<u- Before applying Freedman’s inequality, we need to calculate the following quantities. First,

1(u,t)

Bulsia) = a1 o(ovai2) < BhGs.0) TT 2P0, = Pl )Vl <

187
—_— (129)
(I-7K
where the last inequality follows from || P(s, )1, [|[P¥(s,a)|: <
Lemma E.1. Next, we can bound the variance as

E e < T (ef. (31)), £ < 1, and (122a) in

t

K
)= > El@h.(s,0:2))° | V]

=0 k=1
L o®)-(-1)M-1

l
Z Z Z (fC\ﬁ(S, (Z) H %\l’)2varP(s,a)(Vuk)

1 h=max{0,¢(t)—IM} k=1 yciy*

~

hr (h+1)7(s’a)

l pH)—-(-1)M-1 K
ngmz;) > Y @)

h=maxz{0,p(t)—IM} k=1 yclf*

@ 2 L o) 6472 ttaug (5, @) M T
< (1—7)2 Z < Zl’) K
I'=1

h, (h+1)f(5!“)

(iii) 128 v
S nKMa g ) ZEXP 1/2 l— ]-) Navg(saa)MT)
128772,Uavg(37 Q)MT 1
T K(1—9)?2 1 —exp(—1/2npag(s,a) M)
(iv) 128172
< 1281 pravg (s, a) M 4 = o121 =: g2 (130)

- K(1=9)?  npag(s,a)MT  K(1—7)? ’

where (i) holds due to the fact that [|[Varp(V)|loo < [|Pl1([|[V]ls0)? + (IP1]|V]|e0)? < W because ||V]|oo < 1i7
(cf. (31)) and ||P||; < 1, (ii) follows from (122¢) in Lemma E.1, (iii) holds due to the range of Z and Z; is bounded
by exp(—1/4npavg(s,a)MT) and 1, respectively, and (iv) holds since e™® < 1 — 1z forany 0 < z < 1 and

1/2npavg (s, a)MT < 1.
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Now, by substituting the above bounds of W; and B, into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that forany s € S,a € A, t € [T]and g, € Y,

K
k=1

=1 u=

t—1

. o2 4m|S .AT)/)\ 4m|S ATAV
@\Z,t(saa; ) | || | ‘ | | || | ‘ |
0

4
< \/8max {We(s,a), ﬁ}logf + gBt(s,a) log 5

%0% g USIATIR 200, ASIAT

<

- K(1—7)2 1 K1 —7) §

i) 624 4 T2K

O 6 \/ 1 Jog (TK) log HSIAT2K ”“g' , (131)
with at least probability 1 — m, where (i) holds because | Y| < (TK) given that Nitavg(s,a)MT < 1/4, L <

641og (TK) and 2L log USUAITEE. < 2560 166 (7 [ Jog USIAITK < 1 Therefore, it follows that (126) holds.

Step 4: putting things together. We now putting all the results obtained in the previous steps together to achieve
the claimed bound. Under B;, there exists ¥, := ¥,y € J such that (124) holds. Hence, setting ¢ =

4|S||A|T2 K
(30_63) \/% log (TK) log ASIAIT2 K 6‘ ,

K t—1 K t—1
Zzyutsa’ Zzyutsaz) +D(y Z/z)
k=1u=0 k=1u=0
24 ASTAITPK | 1 . A|S[JA|T?
6 \/” log (TK)log ‘5”“2‘ 06 \/Ch alg (TK)log7|SH(;4|
2
730 \/Chetnl TK) log 4ISIIv;lIT K7

where the second line holds due to (126) and (124), and the last line holds due to L < 64log (TK). By taking a union
bound over all (s,a) € S x Aand ¢ € [T], we complete the proof.

E.2.1. PROOF OF LEMMA E.1

For notational simplicity, let & be the largest integer among h € (hg, ¢(t) — (I — 1) M) such that

K
S ONE 1) (5,0) < 2K prag(s, a) M. (132)
k=1
Then, the following holds:
K K
k
Z hoT, ET Z (h 1)7,h7 S’a) + ZN}LQT7(E—1)T(S7G)
=1 k=1
< KT+2K,ua\,g(s,a)MT. (133)
Also, for the following proofs, we provide an useful bound as follows:
o/ k!
i (1 fn)*Néf,mmr(s’a) - 2521 eMNVnr (nt1)r (5:0) <1+2m Zk’ 1 h‘r (h+1)7(3 a)
K - K - K
k=1
._ NV s,a
< exp < Lo h}’{h“”( )> . (134)

which holds since 1 + 2 < e® < 14 2z for any z € [0, 1] and nN}’f/

T,(h,+1)7(87a) S nt g L.

According to (121), for any integer u € [h7,t — (I — 1)M7), T%(s,a) is clipped to zero. Now, we prove the bounds in
Lemma E.1 respectively.
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Proof of (122a). For u € [hoT, hT),

$(u)—1 K -t
: k 1 N
@\Z(s’ a) = %(1 _ n)_N¢(u)T1/u+1(s7a) | I (K E (1 _ ,'7) ;LT,(,L+1)T(S,G)>

h:ho(u,t) k'=1
, d(u)—1 K -1
(i) 377 1 Nk/ (s,a)
< ? H (K Z (1 _ 77) hr,(h+1)7
h*ho(’u t) k'=1
(ii 2n
— e p( Z hoT,( h—1)T S a)>
k'=1
(iii) 37«’ (1V) 9/,7

< ?exp (Antavg(s,a)MT) < X’

where (i) holds since (1+7)* < €"* and 77N (u)rut1(5:@) < T < 1, (ii) holds due to (118) and the fact that ¢(u) < h
(iii) follows from the condition of 4 in (132), and (iv) holds because ANptavg (s, a)MT < 1.

Proof of (122b). By the definition of A, it follows that

d(t)—(1-1)M-1 K h—1 K
~k k
> > Y Filsa)= S Y s
h=hgo ueu}’ft(h_*_l)ﬂ_(s,a) k=1 h=ho ueu} (i) (s,a) k=1

Using the following relation for each h:

K
Z Zxﬁ(s,a)

uezj{;f‘r,(h-}—l)T(S’a) k=1

K
1 S
- K Z Z n(l—mn)" Nfayr s (s:0)
k=lueuf .4, (s,a) ’—ho k/ .
K

K _ —1
= Z 1 — NhT (}L+1)T(5 a) _ ) H ( T, (h' +1)T(S=a)>
k: = =
K - K
( Z (1-— -Ng (ht1yr(8,0) _ ) H ( Z 1 _ N, (h41yr (59 a)>
k=1 k=1

h’'=hg

—1
(]_ _ n)N}}f/lr,(h/+l)T(s’a)>

IA
|-

where the last inequality follows from Jensen’s inequality, and applying (134), we can complete the proof as follows:

h-1 K h—1 1 X .
) > Y oaisa) < ] <K > - n)_Nh’*«h/“h(s’a)) 1
k=1

h=ho ’U.GZ/{h_r (thl)T(s,a) k=1 h'=hg

< 277 Zk’ 1 h Th.,_(saa) 1
= exp -
K

®
< exp (4nuavg(57 CL)MT + 2777—) -1

(i)
< 1677:”'avg(5a a)MT,
where (i) follows from (133), and (ii) holds because e* < 1 + 2z for any x € [0, 1] and 217 < 4npavg(s, a)MT < 1/2.
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Proof of (122c). Similarly,

() —(-1)M—-1 K h—1 K
> Yo D @(sa)= Yo D @hsa)
h=ho w€US gy, (s,0) k=1 h=ho weldy_ ., . ), (s,0) k=1

Using the following relation for each h:

K
> > (ah(s,a))?

ueu”ff’(Hl)ﬂ_(s,a) k=1

1 K . hlo /) K y —2
_ el Z Z 772(1 _ n>—2N¢(u>T,u+1(S’G) H <K Z (1 _ 77>N;/T,(m+1)7(51a)>

E=Lu€Uf, 10y, (5:0) W=ho \7" K'=1

| X helo K y —2
% <K Z(l — n)*2N§r,(h+1)T(Sﬂ) _ 1) H <K Z (1— n)Nhf/r,(h'“)T(S’a))
k=1

<
— h'=hg k=1
n 1 K . h—1 1 K . (5.0)
M o\ 2Ny (e (850) - ) 2N gy (Sa
(oo ) I (Gge-w )
= =ho =

where the last inequality follows from Jensen’s inequality, and applying (134) under the condition 2n7 < 1, we can
complete the proof as follows:

- 1 E ‘
Z Z(xﬁ(s,a))Q < % H (K Z(l — 77)2Nh’7—‘(h’+1)7-(3’0«)> 1

(s,a) k=1 h'=hgo

>
—

= k
h=ho wCUy . (hi1)r

K ’7
k=1 N}Ifo‘rﬁ‘r(s’ CL)

IN

-1

—

i)
< T (exp (Smptae(s, ) M7+ ) — 1)
(2) 641> f1avg (s, a) M T
— K b
where (i) follows from (133), and (ii) holds because e < 1 + 4x for any = € [0, 2] and 4n7 < 8npavg(s,a)MT < 1.

E.2.2. PROOF OF LEMMA E.2

Recall that
k s,a ¢(t)71 K
n Nk ca (1 — p)Notwr s+ (5:0) 1 o e
X5 ) = g (L)~ Heomnn (o) ( K N ) I (& 2wt
Zk’:l(l — 7)) e (e h=g(u) =1

k
(1 — p)Notwrs+nr(5:0)

- _
(Zg_l (1— U)Nm“)rw(uwl)r(s’a)

We can observe that Xﬁ)t(s,a) and w,’it(s,a) are solely determined by the number of visits of agents during lo-
cal steps, i.e., (N;]ffy(hﬂ)f(saa))ke[K],he[¢(t)—LM,¢(t)—1]- It thus suffice to consider {Xﬁvt(s,a;N)}oqu’kE[K] and
{wﬁ’t(s, a; N)}o<u<t,ke[x) constructed with each of the possible combinations of number of visits for all £ € [K] and

h € [p(t) — LM,¢(t) — 1] ,ie, N € [0,7]5LM_ Then, setting X = 72\/1((6&2)2 log 4|S“(;4|T2, by taking an union

bound,
p [ . X]

- 1> wfj,t(s, a).

K -1
Yo Y xiulsa)(P(s,a) = Py (s,a)Vi

k=1lu=t—LMrt
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S Y (s a)(Plsa) - Py (s, a)VE

k=1lu=t—LMT

> X, Xu4(s,@) = X 4(s, 0, N)

]
> X

é
< .
- ] = [STTAT (T + r)FE

v

Ne[0,7]KLM

gZPl

Nelo,r]KLM

K —1
Z Z Xﬁ,t(samN)(P(S’a) _P1]f+1<s>a))vf

k=1lu=t—LMT

and it suffices to show that

gl

S S s N)(P(s,a) — Phy(s,a)VE

k=1lu=t—LMTt

Since x¥ ,(s,a; N) is a constant, which does not depend on P}, (s, a),

E[xy (s, a; N)(P(s,a) = Pyyq(5,0) V| V] = 0, (135)
where ), denotes the history of visited state-action pairs and updated values of all agents until w, ie., )V, =
{(s%,ak), VF} e (k) 0<u- and thus, we can apply Freedman’s inequality to bound the sum.

Before applying Freedman’s inequality, we need to calculate the following quantities. First,

. k . k k
Bt<5aa) — kG[K] tmLZ\)fl‘r<u<t ‘th(sa a; N)(P(s,a) - Pu+l(8’ a))Vu |

+ ZK (1-— )Ng(,u)f,w(u)ﬂ)f(sva)
1 - K 4k=1 n A NP i e
ke[K],ngﬁrguq (1- n)N;f(“)T,(W)H)T(S,a) wh (s,a; N)||[P(s,a) = PF, (s, a) 11| ViF|

i 2 + 2571(1 - n)N§<u>r,<¢(u>+1>r(sv’l) .
< max 1- = - wy (s,a; N)
1 — v ke[K],t—LMr<u<t (1— 77)Nqb(u)r,(wuwnr(sva) '

(i) (iii) {2
< 8Nitmax(8, a)T ax wﬁt(s,a; 2 87 ,umax(s,a)T7
1—7 ke[K],t—LMr<u<t 1-7K

where (i) holds because [ P(s,a)|l1, | P;(s,a)li < 1, [Vy_illeo < 125 (cf. (31)), (ii) follows from the fact that (which
will be shown at the end of the proof)

+ 25:1(1 _ n)Nizuw,w(u)ﬂ)r(sva)

1 B .
(]. — n)Ng(u)r,(¢(u)+l)T(s’a)

S 477Hmax(57 CL)T, (136)

With fimax(s, @) := maxy, puf (s, a), and (iii) holds due to the fact that w} (s, a; N) <

Next, we can bound the variance as

W= 3 SB[ NP0 - P (sa)vE) ]

u=max{0,t—LM7} k=1

() ¢(t)*1 K

é (477/’Lmax(87a)7-)2 Z Z Z (OJ \S a3 N )2varP(s,a) (V'f)

h= max{(] (f)(t) LM} ueZ/[hT (h+1)7(s a,)

2 o(t)—1

(ii) 2(47],Umax(saa)7.)
= (1—7)? 2 > Z< o )

h=max{0,¢(t)— LM} wed* (s,a) k=1

ht,(h+1)7T

(g) 2(477MmaX(57a)T)2 6n =02

ST a-r K7
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where (i) follows from (136), (ii) holds due to the fact that [|[Varp(V) |l < [|Pll1(IV]lo0)? + (I1P]I1]|V || s0)?
because ||V || < 7= 5 (cf. 31) and || P[]y < 1, (iii) follows from (53d) in Lemma C.3.

2
S

Now, by substituting the above bounds of W; and B; into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that forany s € S, a € A, t € [T] and N = (NhT (h+1)‘r(s a))ke[K],helé(t)—LM,é(t)—1] € [0, 7]KLM,

K t—1
Z Z Xﬁ)t(&CL;N)(P(S,a) _P5+1(S’a))vf

k=1u=t—LMT
2 AmlISIIAIT(1 KLM
S\/8maX{Wt(s,a),;l}log m|S||Al ((54‘7')

< o6 (Anptmax (s, a)T)2n log 4S||AIT (1 + 7)ELM 1202000 (s, a)T log 41S||A|T(1 + 7)KEM
K(1—~)2 ) K(l1—-%) )

4 T(1 KLM 4
ISTATOS AT 4y g

S \/384<4mf<><umax<s MLy AS|IAT(L+7) | 12Ln(mss (s, M7 | AIS|AT(L 4 7)

K(1—7v)? 5 (1—7) 6
(i) CheeLn) ASI|AIT(1+7) | 2Chetln . 4S|JAIT(1+ 7)
< /48 lo + log
\/ K({1—7)? ® 5 (1—) 5
(2) 79 _ Chen log (TK)lo 4s|lAIT? (137)
< R0 7 % 58—

with at least probability 1 — W, where we invoke the definition of Che: (cf. (20)). Here, (i) holds
because nTK < 1/4 and pmax(s,a)nM7 < Chetplavg(s, a)nMT < Che and (ii) follows from assumptions that
1

KChot L 1 g14ISI\AIT2 and L < 64log (TK).
et L 10g =5

n < L <
64K Chet log (TK) log 2SIAITZ

Proof of (136). Using the fact that for 0 < n < 1,
I-n™T<em<14+2m if n>0and nn <1, and (1—-n)">1—nn if n<0orn >1,
we can obtain the bounds as follows:

(1-n) Nfuyr (o) +1)- (5:0)

K
k/
Nk 5,a) < — n)Nowr - (90) < K e X
K k/zl ¢(U)T7(¢(u)+1)7— - K z:: (1 _ 77) ¢<u)7—(¢(u)+1)7—(5"1)

< (1 — ) Nér - (5a)

<1+ 277N£(u)7—,(¢(u)+1)7—(87 a).

Thus, under B;, and recalling fimax(s, @) == maxy, uf (s, a),

k/
LS (1 = ) Nowreern-(sa)

1-—
(1 — n)NSIZ(U)T,(¢(u)+1)T(87G)

k
< 277 max {N¢(u)T( (u)+1)'r S, a‘ Z Nd)(u )7, ( u)+1)‘r(s a)}
k:’ 1

< 4N pimax (57 a)T-

E.3. Proof of Lemma C.5

For any ¢ > (37, the error term can be decomposed as follows:

K
=73 S W (s,a)P(s.a)(VF - VE)

k=1uelf ,(s,a)
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— ,YZ Z wﬁ)t(s, a)P(s,a)(V* = VF)

k=L u€lUy 41)_p)-(s:0)

=:E}%(s,a)

K
+v> > Wk ,(s,a)P(s,a)(V* — VF). (138)

k=1 u€Up, ) gy, .(s:0)

=:E3%(s,a)
We shall these two terms separately.

* Bounding E}%(s, a). First, the bound on E}?(s, a) is derived as follows:

K
B (s,a) <) > wit(s, )| P(s,a) [ (V= Vi)l

k=1 u€US (4(1)—p)- (5:)

(i) 2 K &
< T4 Z Z wy (s, a)
k=1 u€Us (41— p).(5:2)

(i) 2'}/ (1 - n)zf(:i?tl)*ﬁ ming e[k N,lfv(h_*_l)T(s,a)

=14

(i) 2 Pmin BT

LU (139)

where (i) holds because ||V, oo, [|[V*]|0o < ﬁ (cf. 3D)and || P(s,a)||1 < 1, (ii) holds due to (53c) in Lemma C.3,

and (iii) follows from the fact that N”:T (h+1)7(57 a) > TMQmin according to Lemma B.2 as long as 7 > Ty,.

* Bounding E’(s, a). Next, we bound E°(s, a) as follows:

K
B (s,a)] <) > wii(s,0) [V = ViF|l

— k
k=L u€Ufy ) _pyr i (s:)

K ¢t)-1

DD > Wit (5, @) ([ Anrlloe + 11Q% — Q- o)

k=1h=¢(t)=Buclf_ ., (s.a)

INZ

Giy K P(t)—1

< ). D > w1 (s,0) (14 207) [ Apr oo + Tlocal) (140)

k=1 h:¢(t)—B uEL{L"T'(}rFl)T(s’a)

where (i) follows from the following bound, which will be shown in Appendix E.3.1,
V> = Viilloo < 1A% oo + 1% = Qi 1o (141)
and (ii) holds due to the following lemma.

Lemma E.3. Assume nt < 3. For any given § € (0,1), the following holds for any k € [K] and 0 < u < T

ynvT —1 log 2|S||AITK (142)
L=y

with probability at least 1 — 0.
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Here, for notation simplicity, we denote ojocal == 8”’” A — log 2"8"?‘”{.

Then, with some algebraic calculations, we can obtain the bound on E3(s, a) as follows:

#(t)—1 K
B2 (s, a)l < Tocal +7 Y, (1+27)[Anrlloe Y > wy (s, a)
h=¢(t)-8 k=1 ueu;, (1) (8:0)
. (t)—1
(ii) 1+ K
< Olocal + T’y max h‘r”oo Z Z Z wi’j,t(s’ a)
(t)—5§h<¢(f) el he
o)=L uelf, . 1), (s,0)
(iii) 1+
< Olocal + —5 187 oo, (143)
P(t)— 5<h<<¢>(t

where (i) holds according to (53b) of Lemma C.3, (ii) holds when 7 is small enough that n < ==X, and (iii) follows
from (53b) of Lemma C.3.

Now we have the bounds of E?%(s,a) and E*(s,a) separately obtained above. By combining the bounds in (138), we
can claim the advertised bound, which completes the proof.

E.3.1. PROOF OF (141)
We prove the claim by showing
Al (5,80, (8) = diy W (5,07 (8)) < VH(s) = Vii(s) < Al (5,07 (s)) = diy (5, 0% (s)) (144)
for any s € S. The upper bound is derived as follows:
V*(s) = Vii'(s) = Q*(s,a*(s)) — Quls, ag(s)
< Q*(s,a*(s)) — Ql(s,a*(s)
= Q" (5,a"()) — Qi) (5.a™(5)) — (Qii(5,a%(5)) — Qi) (5, 0" (5))) (145)
¥y (5,07 (5))

using the fact that Q% (s, a® (s)) > Q¥ (s, a*(s)). Similarly, the lower bound is obtained as follows:
V*(s) = Vi (s) = Q*(s,a*(s)) — Qy(s,ai(s))
s,a*(s)) — QL(u)( L(u)(s)) + Qf(u)( L(u)(s)) ( (5))
) — QL(u (S»GL(u () + Qf:(u)(s7aL(u (s)) = Quy(s;a n(s)) — df(u) (s,a4(s))

) — QL(u)( L(u)( s)) +Qf(u)(57 L(u)( s)) — QL(u)( ( ) — db(u) u(8 aﬁ(s))

) — Qk ) (s, a5 u)( s)) — dL(u) (5,05 (s)) (146)
using the fact that Q*(s,af(u)(s)) < Q*(s,a*(s)) and Q) (s, a)y,)(5)) = QL (s, a5 (s))-
E.3.2. PROOF OF LEMMA E.3

Forany 0 < u < T,k € [K],and (s,a) € § x A, we can write the bound as

Qi(s,0) = Qi (ssa) <2n Y Aot |yn D (Phalsia) = Pls,a)V*|. (147)

veuf(u),u(&a) EL{L"'(H),M(S,a)

::Bl I:Bg

The inequality holds by the local update rule:
Qii1(s,a) = Qy(s,a) = (1 =m)Qy(s,a) +1(r(s,a) + VP (s, 0)V)\) — Qy(s,a)
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=n(r(s,a) + yPy 1 (s,a) V) — Q5(s,a))

= n(YPyy1 (5, a)Vf —vP(s,a)V* + Q*(s,a) — Q(s,a))

= Py (5,0) (Ve = V*) + (P (s,a) — P(s,a))V* + 1A% (s, a), (148)
and

Qi(s,0) = Qi ()l < D0 Qb4 (s.a) — Qi(s, a)]

vEL{L’“(u))u(s,a)

< Y (A @)+l Pl (s, a) (Ve = V7))
vEl/{Lk(wr“(s,a)

+lm D (Pha(s,a) = P(s,a)V*
vGZ/{Z“(U))u(s,a)

< Y At Y. (Pha(sia) = P(s,a)VE, (149)
UGZ/{ZC(“%“(S,a) UGUZC(U)_’“ (s,a)
where the last inequality holds since || P¥, (s, a)||; < Land [|[VF — V*| o < [|QF — Q%] (cf. (32)).

Now, we shall bound each term separately.

* Bounding B;. The local error || A¥|| . is bounded as follows.

Lemma E4. Assume nt < % For any given § € (0, 1), the following holds for any k € [K] and 0 < u < T':

% SIATE
' nlog RS D

1=~ 5 (150)

1A% loo < 1A% lloo +

t(u
with probability at least 1 — 0.

Then, combining the fact that the number of local updates before the periodic averaging is at most 7 — 1, we can
conclude that

2n Z [A% ]l < 20[Uf ) (5, 0)| M}gnax( )||A§HOO
veulc(u),u(sﬁa) v v(u),u $,a

2 S||A|ITK
<2(r—1) (nAf(u)nm N 1_7\/77log'”5'> | (151)

* Bounding B>. Exploiting the independence of the transitions and applying the Hoeffding inequality and using the
fact that [U” | (s,a)] <7 — 1, By is bounded as follows:

t(u),u

S||AITK
Bo<an| Y (Pha(s.a)— P(s apviiog TIATE
veuﬁu)m,(s,a)
271 \/ |S|IAITK
< — — bl bl bnlinlelt
< 1o\ (- Dlog = (152)

for any k € [K], (s,a) € S x A, and 0 < u < T with probability at least 1 — §, where the last inequality follows

from ||V*||oo < ﬁ PF_((s,a)||1, and ||P(s,a)|; < 1.

By substituting the bound on B; and By into (147) and using the condition that 77 < 1, we can claim the stated bound
holds and this completes the proof.
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E.3.3. PROOF OF LEMMA E.4

For each state-action (s,a) € S x A and agent k, by invoking the recursive relation (49) derived from the local Q-learning
update in (22), A¥ is decomposed as follows:

K sa k s,a
Al(s,a) = (1 =N DAR (s,0)+y Y p(l = n)NerraO(P(s, a) — PE(s,0))V*

veuiu)yu(s,a)

=:D1
=:Do
> N CORE (s a) (V- V). (153)
veuf(u)yu(s,u)
=:Dj3
Now, we obtain the bound on the three decomposed terms separately.
* Bounding D;. The term D; can be bounded by
k S,a
D1 < (1= )N AR . (154)
* Bounding D,. By applying the Hoeffding bound using the independence of transitions, the second term is bounded
as follows:
k sa S||AITK
Dol <y | 3D 1) (v ) og SATE

”Euf(u),u (s,a)

TK
< /nlog|8||A| - (155)
1—7v )

with probability at least 1 — 0, where the last inequality holds due to the fact that ||[V*||o < ﬁ and

k S,a
E (77(1 - T])N“+1=u( ’ ))2 < 772(1 + (1 - 77)2 + (1 — 77)4 + - ) <n.
velk. (s,a)
v(u),u

See (Li et al., 2021b)[Lemma 1] for the detailed explanation of the bound.

* Bounding Ds. Lastly, we bound the third term as follows:
k *
Ds| <y > @ —p)NereED|PE (s, 0) 1|V = Vil
vEZx[:"(“)_’u(s,a)
<v 3 g MG ak),, (156)
vEMf(u)gu(s,a)

where the last inequality follows from the fact that | P¥,, (s, a)||; = 1 and

Qu(s,a™(s)) — Q*(s,a"(s)) < Vif(s) = V*(5) < Qi(s, ag(s)) — Q" (s, ay(s))

k

for any s € S, where we denote a*(s) = arg max, Q*(s, a), af(s) = arg max, Q% (s, a).

By combining the bounds of the above three terms, we obtain the following recursive relation:

k s,a k s,a
Ak (s,a)] < (1= )N CDNAR Jlo +p+y D pl =y NGO AR . (157)

veU*

L(’u.),‘u.(s7a)
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Using the recursive relation, we will prove that the following claim holds for any 0 < m < 7 by induction:

HAL(u)—i-mHOO < ”AL(u)”OO + 2107 (158)

which completes the proof of Lemma E.4. First, if m = 0, the claim is obviously true. Suppose the claim holds for
t(u), e(u) +1,--- ,t(u) + m — 1. Then, for u = ¢(u) + m, by invoking the recursive relation (157), we can show that the
claim (158) holds for m as follows:

|Ai€(u)+m(saa’)|
k s,a k s,a
<@=—mNinCBDNAE e+ oty D ml =N (AR o +2p)

UEL{l(u) (s,a)
k S,a S,a k s,a
= (=MD 4y 3T M)A e+ (42 DD =) ety
vGUZC(u)Y“(s a) UGZ/[ZC(U)YU (s,a)
k s,a S,a k S,a
= (1 =m0 (1= (1= VD AR e + (L4291 = (1= )N
< AR lloo + 20, (159)
where the last inequality holds since
(1= )Mo > (1) > (7 >
4 2
provided that nT < %
E.4. Proof of Lemma C.6
First, using the fact that
1<(1- n)*NﬁT,t(SM) <l <3
given that nT < 1, by the definition of af (cf. (26)), we derive (68a) as follows:
1 1 1— ) Neri(sa) 1— ) Neri(sa)
= < o S l(sa) = 0 —m) ( )g( ”)K s%
Kmaxyeg)(1—n)” Tt Yoy (=) Nl
Moving onto (68b), it follows that
(t)—1
Wo,.(s,a) H Nor (ht1)r(8,a)
h=0
o(t)-1 K
H Za (h+1)r(8:0)(1 — ) Vi e (5:)
=0 k=1
¢>(t)—1

—~
=

H K

h=0 Ek 1(1 - ) hT (h+1).r(é a)
(ii) ¢(t) 1
< 1

h=0 (1 — n)ff D1 Nh‘l',(h+1)7.(s,a)

P(H) =1 1 Kk s.a L SK NE (s.a
— (1 _n)zh:() K 2uk=1 h'r,(h+1)7( a) (1 _fr/)K w1 No i (s, )7

where (i) follows from the definition of ozf (cf. (26)), (ii) follows from Jensen’s inequality.

Next, we obtain (68c) through the following derivation:

K K #(t)—

~k ~k
YD Gllsa) =) Z Y. @llsa)
k=1 ueld} ,(s,0) k=1 h=0 weuf_ .. (s.a)
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K ¢(t)—1 #(t)—1

= Z a?h+1)r(s7 a) Z n(l— U)Nllf“'(h“”(s’a) H Xh,(l+1)r(«97 a)
k=1 h=0 WEUE, iy (5,0) I=h+1

o K ¢(t)—1 . v o #(t)—1

= Z Alhi1)-(8,0) (1 — (1 —n)Nernane (s ) H /\lT,(H-l s, a)

k=1 h=0 I=h+1
p(t)—1 (o)1

(i) k s,a
- Z H Alr7<l+1 5, ) Z%LH)T s,a (1 — (1= p)Nirnan (s ))

=0 \l=h+1

; ¢(t) 1 [o(t)— K
H Air. 141y (5, @) (1 — > afuy(s,0)(1 —n)N’?*““”(S’“))
I=h+1 k=1

¢(t -1 [o(t)—

= H )\ZT7(l+1)T(S CL) (1 - XhT,(h+1)T(S? Cl))

hO I=h+1

Wy 3 (8,00 X027 (5,0) - Np()—1)re (8, @) = 1 — B (s, a), (160)

where (i) follows from (110), (ii) follows by reordering the summation, (iii) follows by Zszl ak(s,a) = 1, and (iv) holds
by cancellation.

In a similar manner, (68d) is derived as follows:

K
Z Z Qﬁ_’t(s a) =

k=1 ueu(’; i (8:@)

h'—

=

M=

Z a)];,t(sa a)

s,a)

x>
Il

1 h=0 “GZ’{LCT.(h+1)T(

R'—1 [o(t)—1

= Z H 3‘/l‘r,(lJrl)‘r(& a’) (1 - XhT,(thl)T(S? a))
h=

I=h+1
B
< H /\lT,(H-l)‘r(S? a’)

I=h
<(1- 77)% S le/”(sva),

where the last inequality follows from

¢(t)— ¢(H)—1 K $(1)—1 )
)\7- -(s,a <
lll ey - hgy S (1— )N o7 (59) hlz_!u (1 — )~ Zk=r Nir ey (2:0)
due to Jensen’s inequality.
Finally, with basic algebraic calculations, (68e) is derived as follows:
K K ¢(t)—-1
YooY @sa)=> ) Y. @h(s,0)?
k=1 ueug)t(s,a) k=1 h=0 uEZ/l}’:T’(h’Jrl)T(s,a)
K ¢(t)—1 ot)-1 ? & 2
= Z Z a(h-‘rl)T (s,a))? H Air 141y (8, @) Z (77(1 — n)Nu+1,(h+1)T(s,a))
k=1 h=0 l=h+1 uel/{”§t<h+1>r(s,a)
6 K -1 (1)1 _ ’ )
<2 Z h+1 S a))Q H /\177(l+1)r(s’ a) n (1 N (1 - n)NhT,(h+1)T(S,a))
k=1 h=0 I=h+1
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@ p PO (601 ’ Kk )

< K Z H Air(i41)7 (8, @) Za?h_‘_lh(s,a) (17(1717)Nhr,(h+1)r(5,a))
= l=h+1 k=1

(iii)

vy

- K

where (i) holds due to (112), (ii) follows from (68a), and (iii) follows from the same reasoning of (160).

E.5. Proof of Lemma C.7

To describe the joint probabilistic transitions of K agents formally, we first introduce the following Markov chain X; =
(X}, ..., X[E),t=0,1,..., where X} € S x A is the state-action pair visited by agent k at time ¢. The joint transition
kernel P of K agents is given by

Pl
P2
P = , (161)
PK
where PF is the transition kernel of agent k, k = 1, ..., K. Since the agents are independent, the stationary distribution of
the joint Markov chain is u, given by

K
= Huﬁ(mk), Vo = (z, 2%, 2%) € (S x A)F, (162)

k=1

where /ﬂg denotes the stationary distribution of agent &, which are induced by its behavior policy 7r§. Next, we define the
mixing time of the joint Markov chain as follows:

1
tmix(e) = min< ¢ sup dTV(Pt('kEO)v /~L) <e and fmix = tmix <) ) (163)
zo€(SX .A)K 4
where
K
Pi(|z0) = [ [ B (|6 (164)
k=1
denotes the distribution of the joint state-action pairs of all agents after ¢ transitions starting from z¢ = (zJ, ..., zL). The

mixing time of the joint Markov chain can be connected to those of the individual chains via the following relation

K),  tmx < 4log8K the 165
¢/K) og 8K max (165)

mIX(

tmix(€) < mgxt

which will be proven at the end of the proof.

We now turn to the proof of Lemma C.7. Define the event

K K
1

Bu.v { (s,a) — (v —u) g i ( §(U—U)E ,u{f(s,a)}. (166)

k=1 k=1

We first establish that
1

P< Bu.w Cag)e, = < 167
LBl (b = o) < g (167

for any (s,a) € S x Aand 1 < u < v < T provided that u > th(s,a)/2 and v — u > (s, a)/2. To this end, we
decompose the probability into two terms as follows:

P Bl (55, )M = 0 f = P{Bu(s.0) (55 ab s ~ 0

::Gl
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+ {8 (e (eh L = a0~ P{ B s, (660 ~ .

=:Go

and show each of the terms is bounded by W for any ¢ € (S x A)¥. We shall derive the bounds of these two terms
separately.

Step 1: bounding GG;. This is for the case that the distribution of the initial state follows the joint stationary distribution.
Since the total number of visits can be written as

K
Zfo’v( ZZsta ZZsa
k=1 k=1i=u+1 i=u+1

where

1, if Fo.ak
Zsa) = 41 T EbiLa) 2 sz (s, a)
0, otherwise

and
K
Vuw($,a) =B o) pivre k) [ > Zis a] =(@—u)>_ pisa),
i=u+1 k=1

we can invoke Bernstein’s inequality for Markov chains (Paulin, 2015, Theorem 3.11) and obtain

Gy = P{(SO ak) [ Z Zi(s,a) — Vu(s,a) 2% uv(s,a)l
i=u+1
_ (Vu,v(sv a)/2)27ps
< 2exp ( 8((v —u) + 1))V} + 200 (v (s, 0)/2) ) ° (168)

Here, 7, is the pseudo spectral gap satisfying

Vps = (169a)

T 2lmix

for uniformly ergodic Markov chains according to Paulin (2015, Proposition 3.4). The parameters C' and V; are defined
and bounded as follows

C = max |Zi(s,a) — E[Z;(s,a)]| < K, (169b)
B K K

Vi = Var(Zi(s,a) = > (1= p(s,0))uk (s,0) < ki (s,0). (169c)
k=1 k=1

Plugging (169) into (168), we have

Gy < 2exp (— (Vu,w(8,0))? >

8tmix (24(v — u) (X, ufi(s,a)) + 10K vy (s, a))
< 2exp (_(v - u><z£‘_1u's<s,a>>> .9 .

S8tmix(24 + 10K) = 2[S||A|T?’
where the last inequality holds since (v — ) is large enough to satisfy the following condition:

tn(s, a) 1088(maxkE[K] th. )log 8K log M - 272t mix log M
= = K
2 24 Zk | HE (s, a) % e fE (s, 0)
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Step 2: bounding G2. By the same argument of Li et al. (2021b, Section A.1), using the fact that the difference caused
by the initial state becomes very small after sufficiently long time, we have

G = P{ B, ) (55, ) = 0 = B{ B (0] (. )V ~ ]
)

< drv(Py(: < — 171
< drv(Pu(-[70), 1) < SIS[AT (171)
where the last inequality holds due to
ten(s,a) 4]S||AIT? K K )
> ——" >4log ———— t tF ————— | 2 tnix | == | - 172
vE Ty e T e e = i e \ e ) = e st ) (17

Here, the second inequality follows from the fact that tfﬁ]i (e) < 2tﬁ|x log, % (Paulin, 2015), and the last inequality follows
from (165).

Step 3: summing things up. By combining the above bound, we complete the proof of (167), provided that v >
tin(s,a)/2 and v — u > (s, a). Then, we can obtain the following bound for any (s,a) € S x Aand0 < u < v < T

1 K K K
P{4v—ukz_:l,ulgsa<§_: uvsa<2v—ukz_lu }

<r{ls
k=1

K
k (s,0)— (v—u _tthsa
u+t"h(;’a),v ’ M
= max P {Bqut,th(Qs,a) 70(8,(1)

k=1
on(SX.A)K

;<v_u_tth<j@)§u’;<s,a>}
)

{(sh,af)H, = x} < s a7

Proof of (165). Notice that by the definition of dty and (164), we have

drv(Pi(-|zo), <ZdTv (|25), 1)

€

for any zo € (S x A)¥X. Hence, setting t = maxye(x) th;, (). we have

K
max  dry(P(-|x €,
zoE(SXA)K v ( K ‘ O ;

which immediately implies

tmiX( ) < m]?Xtﬁlx(G/K)'

The proof is complete by using the fact that tmix(€) < 2tmix log, % (Paulin, 2015), which leads to

1
tix < th < 4log8K th
= etk ™ (4K> OBEN fet

E.6. Proof of Lemma C.8

The proof follows similar arguments as Appendix E.2. Without loss of generality, we prove the claim for some fixed
1<t¢t<Tand(s,a) €S x A. For notation simplicity, let

5 (sia) = {wﬁ,xs,a)(P(s,a)—P5+1<s,a>>vuk i (55, ) = (s.0) 174
0 otherwise
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where

ok (1 =) N 200 .
e K/ > (175)
. h=¢(u) Zk’ 1(1 — n)_NhT,(thl)T(a,a)

then E?(s,a) = VZk 1 Zu _oUs +(s,a). However, due to the dependency between P}, | (s,a) and &f (s, a) arising
from the Markovian sampling, it is difficult to track the sum of y := {ﬂfj’t(s, a)} directly. To address this issue, we
will first analyze the sum using a collection of approximate random variables j = {7 ,(s,a)} drawn from a carefully

constructed set ), which is closely coupled with the target {Uk 1(s,a)}o<uct. €.,

K t-1

D= (T (s,0) - ﬂ’z,t(sm)‘ (176)

k=1u=0

is sufficiently small. In addition, 7 s}gll exhibit some useful statistical independence and thus easier to control its sum; we
shall control this over the entire set ). Finally, leveraging the proximity above, we can obtain the desired bound on y via
triangle inequality. We now provide details on executing this proof outline, where the crust is in designing the set ) with a
controlled size.

Before describing our construction, let’s introduce the following useful event:

t—MTt
By = () {4uavg(s a) KMt < Z b it (8,0) < 2ptavg (s, a)KMT} (177
u=0 k=1

where M = M(s,a) := | gor—ray7 ] Note that M > g~ since 7j7 < 1/16. Combining this with the assumption
n < W (see (69) for the definition of (s, a)), it follows that M7 > t4,(s, a) always holds. Then, 5, holds
with probability at least 1 — TSTATT AIT according to Lemma C.7. The rest of the proof shall be carried out under the event

B]\/[.

Step 1: constructing )A) To decouple dependency between P +1( a) and &57,5(5, a), we will introduce approximates
of &ﬁﬁt(s, a) that only depend on history until u by replacing a factor dependent on future with some constant. To gain
insight, we factorize (Dfit (s, a) into two components as follows:

B(u)—1 .
x K Z —(1—m)~ N (h1ye
wﬁ,t(sv a’) H k'=1 I
h() u, t Zk}’ 1(1 — ) h'r (h+1)7(37a)

% T](l — n)7N¢(u)T.u+1(S1a) ¢(t)71 K
_ Nk s.a
" ho(w) ey (1= 1)~ Nhr o (5)
- ¢(ﬁ1 25:1(1 — n)_Nﬁ;’(’L+1)T(S7a) 77(1 - n)iNf;(u)T,uﬁ—l(Sva)
h=ho(u.t)

dependent on history until
B(t)—1

K
<| 11 e

K s,a
h=ho(u,t) D gr—1(1 =) ey (9:9)

dependent on history and future until ¢

¢(f_)[1 (Zf’_l(l _ n)—N;’f;,(hﬂ)T(Saa)) n(1 — n)*Nz(u)nuH(Saa)
)

K K
h=hg (u,t

=zk (s,a)
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Wu,t) [ o)—(I—1)M—1

il I1

K —NK ,
=1 h=max{0,6(t)—LM} Zk’:l(l — 77) ;w,(h+1)7(s a)

K

(178)

=z(s,a)

where we denote [(u, t) == ((t]\;:)] and ho(u, t) = max{0, ¢(t) — I(u,t)M}.

Motivated by the above decomposition, we will construct 37 by approximating future-dependent parameter z;(s,a) for
1 <1 < L, where L := min{[ 3], [641log (K/n)]}. Using the fact that 1 + 2 < exp(z) < 1+ 2z holds for any

K K’
Zk’:l le,(h+1)7(sva)
K

0<z<l1,andn

K ’
exp _7721«:1 Ni]fT,(hH)T(S’a) S K S K
K o 25:1(1 _ n)*N;’f;,(thl)f(s’a) o 25:1 enN})f;,(h+1)T(S’a)
1

< n7 <1, and applying Jensen’s inequality,

> - N
k=1 hr,(ht1)T
1+2n> 0, e

K ’
D=1 N}’;',(thl)T(S’ a) >

s,a)

> exp <—2n K

Therefore, for 1 <[ < L, under By, the range of z;(s, a) is bounded as follows:

1
Zl(’S?a) € |:eXp(4n/Lan(57a)MT)a eXp(47]/Lavg(saa)M7):| .

Using this property, we construct a set of values that can cover possible realizations of z;(s, a) in a fine-grained manner as
follows:
1 mn . .
Z =< exp —anavg(s,a)MT ~% ‘z €Z: 0<i<4Kpag(s,a)Mrt ;. (179)
Note that the distance of adjacent elements of Z is bounded by 7/ Ke~1/41Has(5:0)MT "and the size of the set is bounded

by 4K ftavg (s, a) M. For | = L, because the number of iterations involved in zr,(s, a) can be less than M7, it follows that
zr(s,a) € [exp(—4npavg (s, a)MT),1]. Hence, we construct the set

Zy = {exp (-?) ‘z €Z: 0<i< 4Kuavg(s,a)MT} . (180)
In sum, we can always find (Z1,--- ,2;,---,21) € 25X~ x Z, where its entry-wise distance to (2;(s, a))ier—1) (resp.

21 (s,a)) is at most 1)/ K e~ 1/4ntas(:0)MT (resp 1/ K).

Moreover, we approximate ¥ (s, a) by clipping it when the accumulated number of visits of all agents is not too large as
follows:

o K
*(s,a) = {xﬁ(s,a) if >0, N,’fo(u’t)T,d)(u)T(&a) < 2K flavg (s, a) M7 . (181)

o otherwise
Note that the clipping never occurs and % (s, a) = 2% (s, a) for all u as long as B, holds. To provide useful properties of

z% (s, a) that will be useful later, we record the following lemma whose proof is provided in Appendix E.6.1.

u

Lemma E.5. For any state-action pair (s,a) € S x A, consider any integers 1 < t < T and 1 < | < [, where

M = Lmj Suppose that 4nt < 1, then % (s, a) defined in (181) satisfy
N 9
Yu € [ho, d(t) — (1 — 1)M) : 7¥(s,a) < ?’7 (182a)
() —(I-1)M-1 K
Z Z Z:?ﬁ(s,a) < 16npavg(s, a) M, (182b)
h=ho uEZ/{,’fT,(Hl)T(s,a) k=1
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Bt)—(1—1)M—1

K 2
> > S (@h(s,0)? < 047 ““glés’a)MT, (182¢)

h=ho uGZ/{Lffy(h_*_l)T(s,a) k=1
where hyg = max{0, ¢(t) — IM}.
Finally, for each z = (Z1,--- ,2) € Z57! x 2o, setting ©F (s,a;2) = Zk(s,a) 1w 2, an approximate random

sequence Jz = {J% ,(s, a; z) Jo<u<: can be constructed as follows:

@&(s,a; z)(P(s,a) — Pfﬂ(s,a))Vf 1f( sy, u) = (s,a) and l(u,t) < L

(183)
0 otherwise

ut(s,a;2) = {
Ift > LM, forany u < t — LM, ie., l(u,t) > L, we set J& ,(s,a; z) = 0 since the magnitude of &} , (s, a) becomes
negligible when the time difference between u and ¢ is large enough, and the fine-grained approximation using Z is no
longer needed, as shall be seen momentarily. Finally, denote a collection of the approximates induced by ZL~1 x Z as

V={j.: zezZl'xz)}

Step 2: bounding the approximation error D(y,%.). We now show that under 3, there always exists ¥/, := (3 €

37 such that

129 /Ly
D(7,7.) < —— /21 184
(y,y)<1_,y % (184)

To this end, we first decompose the approximation error as follows:

min D(y, Jz)

Y= €Y

K t—1

. ~k ~k

— i [ 3 o) )|

k=1u=0

K t—LMr—1
< max Z Z 7° (s,a) —FF (s, a2z min Z Z 75 (s,a) —TGF (s,a; 2

zEZL 1y 2, — yu,t(a ) yu,t( s @ ) 2eZL-1x 2, i LMTyu,t(v ) yu,t(, ’ )
=:D1 =:Do

* Bounding D;. This term appears only when ¢ > LM 7. Since ﬂfj’t(s, a;z) = 0forall u < t — LM regardless of z
by construction,

K t—LMt—-1 K
DY Tidsia)=Phsa2)| <Y > Gy a(s:a)llP(s,a) = Py (s.a) LIV floo
k=1 u=0

k= 1uEZ/{(’J”,f - (8:0)

K
i

2 ~
ST~ Z @y (s, a)

v k=1 uGZ/{é“,tiLMT(s,a)

—~
=

(%) L(]_ — 77)% Zszl Ntk—L]\l‘r,t(S!a)

,_.
|
2

_ 2 e Nikag(s,a)LMT

where (i) holds since [|P(s,a)ll1, [[Pi(s.a)li < 1and [Vl < 325 (cf. (1), (ii) follows from (68d)
in Lemma C.6, (iii) holds due to Bj;, and (iv) holds because L > 64log % >
Nitavg (s, a) M7 > 1/16.

4 K
W log ? given that
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* Bounding D. Since 7% (s, a) = x%(s,a) when By, holds, in view of (183), we have

t—1
. ~k —
Lo S0> 0 B (s,0) =Tk (5,05 2)

k=1lu=t—LMTt

~k ~k k
< min Z > @14 (s5,@) = By 4 (s, a5 2)| |1 P(s,a) = Py (s, )1V [l
ZGZ 1xZ,
k= 1u€Z/lt7LMTyt(s,a)
9 ¢(t)—(1-1)M—-1 l l
s (XY Y Ses| [Tt - TT4
— 7Y 2€2 X Zo =1 h=¢(t)— WEUE 1), (5,0) B=1 =1 r=1

where the last inequality holds since || P(s, a)|[1, [Py (s, a)[l1 < Land [V [ < 125 (cf. 31).

Note that for any given {z(s,a)}e(r), under By, there exists 2* = (2},...,%,...,2;) € 27! x Z; such that
1ZF — 2i(s,a)] < 7% exp(—1/4npavg(s, a)MT) for I < L and |2] — z1(s,a)| < 4. Also, recall that z (s, a), 2 <
exp(—1/4npavg(s,a) M) for I < L and z1,(s,a), zj, < 1. Then, for any [ < L it follows that:

l
[ =(s0) - T] %) <

'=1 '=1 '=1 =2 '=1 '=1
1 l n
< exp ( Z(l - 1)nﬂavg S, a ) Z: E
1 U
<exp ( 7(l — D)nptavg(s, a) M )f

Then, applying the above bound and (182b) in Lemma E.5,

Z Z yu t(S Cl) yu t(s a; Z)

k=lu=t—LMrt
L ¢(t)—(I-1)M—1

Iy Y S S

mln
zeZLl-1x 2,

l

l
IECEEIE:

l 1 h=¢(t)—IM ueu}ff,(}L+1)7(S>a‘) k=1 I'=1 I'=1
9 L’I] L 1 ¢(t)—(1-1)M—-1 K .
<o o (= g Dmpagls, M) Y DORED BEACR)
=1 h=¢(t)—IM welf ... (s.a)k=1
2 L 1
11— 7?77 1 — exp(—1/4npavg(s, a) M) (16mttavg(s, @) M)
O 2 Iy 8 256.L1)

160 ftavg (s, a) MT <

1=~ K Nptavg(s,a) Mt (1—-y)K’

where (i) holds since 1/4ntavg(s,a)M7 <1 ande * <1— lzforany0 <z < 1.

By combining the bounds obtained above and using the fact that % < 1land L < 64log (TK), we can conclude that

. ~ 2n 256Ln 129 [Ln
min D(y,yz) < + < —.
P PGB S TR Yok STV E

Step 3: concentration bound over ). We now show that for all elements in ) = {9 : z € ZE71 x 2y} satisty

K t—1

24 4 T°K
ZZ@tﬂs,a;z) < 0 \/nlog(TK)log|S|“§| (185)
k=1u=0
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with probability at least 1 — W. It suffices to establish (185) for a fixed z € Z¥~! x Z, with probability at least

1— -9 wher
ISTTATY]> Where

V| = |25 % Zo| < (4K pravg (s, a) MT)" < (K/n)* < (TK)*. (186)

For any fixed z = (Z1,---,21) € 257! x Zq, since &} ,(s,a;z) = Th(s,a) 1D 2 only depends on the events
happened until u, which is independent to a transition at u + 1. Thus, we can apply Freedman s inequality to bound the
sum of g7 (s, a; z) since

E[75 (s, a;2)|Vu] = 0, (187)

where ), denotes the history of visited state-action pairs and updated values of all agents until w, ie., ), =
{(s%,ak), VF} e (k) 0<u- Before applying Freedman’s inequality, we need to calculate the following quantities. First,

vy v

1(u,t)

Bi(s,a) = ke[ﬁggudm,t(saa;ﬂ\ < Ty(s,a) 11:[1 ZllP(s,a) = P (s, a) [1l|Viflloo <

- K (188)

where the last inequality follows from [[P(s, )1, [[P;(s,a)[1 < 1, [V q[lee < 325 (cf. B1)), 2 < 1, and (182a) in
Lemma E.5. Next, we can bound the variance as

t—1 K
Wis,a)i= S SOEIGE (s,a:2))2 0]
u=t—LMT k=1
L o(t)—(1—1)M—1

l
- Z Z Z Z (5’;(8, a) H 2'\l’)2V3|’p(s,a)(‘/;f)

=1 h=max{0,¢(t)—IM} k=1 ueu}” (h+1)'r(s a) =1

¢(t)—(1-1)M—-1 K
2 YT S ey

h=maz{0,p(t)—IM} k=1 yclf*

I/\@

Y

l

(l’ 1
(ii) L 647 tavg (s, a) M T
: 22( )
=1

L

—

hrs(h 1) (8:@)

K
1=1
(iii) 12877 Lav
< i avg ( ) Zexp —1/2(1 — 1)nptavg(s, a) M)
1281 ttavg (s, ) M T 1
T K(1=7)? 1 —exp(=1/2npag(s, a) M)
() 1280 ptavg (s, ) M7 4 _os2m (189)

B K(1—7)? Navg (s, a) M7 K(1—7)? ’
1

where (i) holds due to the fact that [|[Varp(V)|so < [|[Pli(|V]le)?® + (I1P][1]|V ]|eo)? < = V)Q because ||Vl < =
(cf. (31)) and ||P||y < 1, (ii) follows from (182c) in Lemma E.5, (iii) holds due to the range of Z and Z; is bounded
by exp(—1/4npavg(s,a)M7) and 1, respectively, and (iv) holds since e™* < 1 — 1z forany 0 < 2 < 1 and
1/2npavg (s, a)MT < 1.

Now, by substituting the above bounds of W; and B; into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that forany s € S, a € A, t € [T] and 5, € ),

Kol 2 4 T|Y| 4 4 T|Y
ZZ@\SJ(S’G; z)| < \/Smax {We(s,a), %}Ing + gBt(s,a) Ing
k=1u=0
n ASIIATY] 24 4AS|AITIY)
< 1/4 1 1
\/096}{(1—7)2 og 5 +K(1—7) og 5
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Q) 2
0 1 [, ASIAIT K
(1-7)V K o

(190)

with at least probability 1 — where (i) holds because || < (TK)Y given that Nitavg (s, a)MT < 1/4, and

5
ISIAITIV]?

L < 1. Therefore, it follows that (185) holds.

4|S||A|T? K
log \ H(sl

Step 4: putting things together. We now putting all the results obtained in the previous steps together to achieve

the claimed bound. Under Bj;, there always exists 7, := gz@ € Y such that (184) holds. Hence, setting
g= (2106;1) 1 " Jog (TK)log 4\8\\A|T2K
K t-1 K t-1
ZZyﬁtsa Zzyutsaz + D(Y,Yz)
k=1u=0 k=1 u=0
< 78 nL o 4)S||A|IT?K 129 @
—(1- K J 1—-vV K
2064 48 T2°K
¢ SIATTZE. o)

where the second line holds due to (185) and (184), and the last line holds due to L < 64log (TK). By taking a union
bound over all (s,a) € S x Aand ¢ € [T], we complete the proof.

E.6.1. PROOF OF LEMMA E.5
For notational simplicity, let & be the largest integer among h € (hg, ¢(t) — (I — 1) M) such that

K

S ONE 1) (8,0) < 2K prag(s, a) M. (192)
k=1

Then, the following holds:

K

Z hm‘hr ZNh ITET s, a +Z hot,(h—1)T S a)

< KT+2Kuavg(s,a)MT. (193)

Also, for the following proofs, we provide an useful bound as follows:

<142
K s+ K

K _NF K Nk’ . K 5
Z hT, (h+1)7(5 a < Zk/:l el hT,(h+1)-r(‘5 a) Zk/_l Nhr (h+1)'r(s’ a)

K k'
1 N s, a
Zk =1""hrt (h+1)‘r( )> 7 (194)

<exp <277 e

which holds since 1 + z < ¢* < 1+ 2z for any = € [0, 1] and N}, (s,a) <nT < 1.

7,(h+1)7

According to (181), for any integer u € [h7,t — (I — 1)MT), 7% (s, a) is clipped to zero. Now, we prove the bounds in
Lemma E.5 respectively.

Proof of (182a). Foru € [hoT, h7),

gy O (S ) o 0\ 1 )N (o)
"L‘u(s7a’)7 H K K

h=hg
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)¢(ﬁ 1 Zk/ 1( ) N}Ij-/r,(h#»l)T(S’a) 3l
< K K

h=hg
(i) n 377
= exp ( Z hgT,(h 1) S a>> f
k'=1
(iit) 3 (1v) 9
< exp(4npavg (s, a)MT)]?(7 < ?77 (195)

where (i) holds since (1+7)* < e"* and 77N (u)m, up1(8,@) < <1, (ii) holds due to (194) and the fact that ¢(u) < h—
(iii) follows from the definition of % in (192), and (iv) holds because 47piayg (s, a) M7 < 1.

Proof of (182b). By the definition of A, it follows that

(t)—(1-1)M—-1 K h—1 K
~k k
E E E Zy(s,a) = E E xy(s,a).
h=ho ueul’fﬂ(h+l)_’_(s,a) k=1 h=ho uetf (ha1)r(8:0) k=1

Using the following relation for each hA:

Z Z 2k (s, a)

“EUL"TMH)T(S’G) k=1
—NF s,a
Zk' 1 (1—n)" h’T (1) (5:0) K Zueuﬁr‘(h_,_lh(&a) n(l—mn) Nir uta(s:a)
(I 7 > -
h'=ho k=1
Zk' 1 1 — ) h’T (1) (5:0) K (1 . n)—N,’fﬂ(Hl),(s,a) 1
(I 7 > -
h'=ho k=1
Zk' 1 1 — ) h’ﬂ' w1y (8:0) Zk’ 1 1 _ ) h/, (h/ 11y~ (5:@)
-(11 7 )| - |
h'=hg h—ho
and applying (194), we can complete the proof as follows:
h—1 K h—1 2772 ¢ , (s,a)
Z Z Zxﬁ(s,a)g H exp( w=1 K (W41 _q
h=ho uEL{hT (h+1)7(51a) k=1 h'=ho

2n Zk/ 1 h n (s,a)
< T,hT 1
< exp %

(i)
< exp (4nptavg (s, a) Mt + 2n71) — 1

(i)
< 167 ptavg (s, a) M,

where (i) follows from (193), and (ii) holds because e* < 1 + 2z for any x € [0, 1] and 217 < 4npavg(s, a)MT < 1/2.

Proof of (182c). Similarly,

() —(I—1)M—1

K K
> > Y (@h(s.a) = > > (zh(s,a))?
k=1

h=ho ue?/l}’ft(h_*_l)ﬂ_(s,a) = h=ho ueuk s,a) k=1

‘3 |
-

hT, (h+1)7—(
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Using the following relation for each h:

Sy

ueUy (ht1)r(8:0) k=1

— _ N~ s.a 2 2 —2NF_ 1 (s,a)
- hl_[l 25:1(1 — ) Nyrr (wr1y- (5:0) i Zueu}” (oinys (51 o)l (1—mn) hrutl

2
=ho K k=1 K
, 2

B fi:[l Z§=1(1 _ n)—Nﬁlf‘(h’+1)T(S7a) i 77((1 . n)_QN;fT,(h+1)T(Sva) . 1)
= 2

"=hg K k=1 K

K ! 2 K !
< H oxp [ 2 2 k=1 NII'LC’T,(h/+1)T(S7 a) oxp [ 4 w1 Nir (ht1)r (5, @) 1
K b\ <n K b | 4n K
h'=hqg
/R 25:1 Nf]f(l)‘r,hf(s’ a) oxo [ 4 Zk’ 1 h-r (h+1)7—(3 a) 1
K p | an K PN K
K k' K K
_n pIyva Nyor, (h+1)7—(3 a) B D k=1 Ny, nr(5,0)
=% (exp <477 % exp | 4n % , (196)
where the inequality is derived similarly to (194) under the condition 297 < 1, we can complete the proof as follows:
h—1 K K’
SED DS IT e [ priC R T
K K
h=ho uEZ/{hT(h+1)T(s a) k=1

< % (exp (8npavg (s, a) M T + 4nT) — 1)
(2) 641 ftavg (s, a) M T
—_ K b)

where (i) follows from (193), and (ii) holds because e < 1 + 4« for any x € [0,2] and 417 < 8nptavg(s, a)MT < 1.

—~
=

(197)

E.7. Proof of Lemma C.9

The proof follows a similar structure to that of Lemma C.5. We omit common parts of the proofs and refer to Appendix E.3
to check the detailed derivations. First, we decompose the error term as follows:

K
Ef(s,a)=7) > Dha(s,0)P(s,a)(V* = V)

F=1u€US 41y gy~ (5:0)

=:E}%(s,a)

K
+9) > @k (s,a)P(s,a)(V* = V). (198)

k=L u€lUy ) gy, .(5:0)

=:E3%(s,a)
We shall bound these two terms separately.

* Bounding E3%(s, a). First, the bound of E?%(s,a) is derived as follows:

K
B (s,a)| <) > G e(s,0) | P(s, @)1V = Vil

k=Lu€ls 44y p),(5:0)
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(2 72 (1 — 77)% Shea N(kd)(t)—ﬁ)f,t(s1a)
=1,
(2) 2 tavg BT

< 0= (199)

where (i) holds due to Lemma C.6 (cf. (68d)), and (ii) follows fromapplying Lemma C.7 that with probability at least
1-4,

K
K BT ptavg
ZN¢(75 B)Ttsa)> 4
k=1
holds for all (s,a) € S x Aand 0 < u < v < T aslong as 57 > ti.

* Bounding £}’(s, a). Combining (141) and Lemma E.3 to bound |V* — V.¥|| ., we bound E}®(s, a) as follows:

K
EP (s, a)l <7 > Ge(s,a) [[VF = ViFll

k= 1“€”<¢<t> )72 (5:@)

K ot

<7y Z > Di1(5,a) (1 +207) [ Apr oo + Tlocal)
k=1h=9¢(t)—8 uEZ/l}’fT,(thl)T(s,a)
1+~

< Olocal + —— max ||Ah7'Hoo (200)
2 ¢(t)-B<h<¢(t

where we denote ojgcal ‘= 8'”11 2_1 log 2"5"?‘”{ for notational simplicity, and the last inequality follows from

Lemma C.6 (cf. (68c)) and the assumption that n < Z—Z.

Now we have the bounds of E??(s,a) and E3*(s,a) separately obtained above. By combining the bounds in (198), we
can claim the advertised bound, which completes the proof.
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