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Abstract

As more apps embrace AI, it is becoming increasingly com-
mon that multiple Deep Neural Networks (DNN)-powered
apps may run at the same time on a mobile device. This paper
explores scheduling in such multi-instance DNN scenarios,
on general open mobile systems (e.g., common smartphones
and tablets). Unlike closed systems (e.g., autonomous driving
systems) where the set of co-run apps are known beforehand,
the user of an open mobile system may install or uninstall arbi-
trary apps at any time, and a centralized solution is subject to
adoption barriers. This work proposes the first-known decen-
tralized application-level scheduling mechanism to address
the problem. By leveraging the adaptivity of Deep Reinforce-
ment Learning, the solution is shown to make the scheduling
of co-run apps converge to a Nash equilibrium point, yielding
a good balance of gains among the apps. The solution more-
over automatically adapts to the running environment and the
underlying OS and hardware. Experiments show that the so-
lution consistently produces significant speedups and energy
savings across DNN workloads, hardware configurations, and
running scenarios.

1 Introduction

Deep Neural Networks (DNN) have attained remarkable suc-
cess in various tasks. Recent years have witnessed increasing
adoption of DNNs in mobile devices, thanks to the advance-
ment in DNN compression [11, 18, 19], the increasing con-
cerns on privacy, and the demands for real-time responses.

As more apps start to make use of AI, multiple DNN-
equipped apps may run on a mobile device at the same time.
For example, while a user is using her smartphone to exam-
ine some surveillance videos through a DNN-based object
detection module, she may be speaking to the DNN-powered
personal assistance app on her phone to take notes, while
her social media app may be running some DNN-based rec-
ommendation algorithm in the background. We call such a
co-run scenario multi-instance DNN executions.

Scheduling is important for multi-instance DNN execu-
tions, especially on resource-constrained systems. This paper
particularly focuses on the spatial aspect of scheduling, which
determines the placement of a DNN-based app on heteroge-
neous hardware units during each inference. It is critical for
the computing efficiency of DNNs. On one hand, DNNs are
computationally demanding, and their performance is heavily
influenced by the type, configuration, and availability of the
underlying computing resources. On the other hand, mod-
ern mobile devices (e.g., smartphones, tablets) are commonly
equipped with heterogeneous computing units. On a Samsung
Galaxy S21, for instance, there is one big "primary" CPU
core (ARM Cortex-X1), three medium-sized "performance"
CPU cores (Cortex-A78), four small "efficiency" CPU cores
(Cortex-A55), one Adreno 660 GPU, and other accelerators.
As a result, the speed and power consumption of a DNN run-
ning on the different computing units in a mobile device may
differ as much as several times as illustrated in Figure 1. Multi-
instance DNN executions further complicate the scheduling
of DNNs to the best computing units, due to the contentions
for computing resources by other co-running DNNs.

The objective of this work is to address such spatial schedul-
ing problems on open mobile devices. Here, open mobile
devices refer to mobile devices on which users can install
or uninstall arbitrary apps anytime. In contrast, some de-
vices (e.g., an autonomous driving system) are closed, where
the applications to install and run are predetermined. The
problem of multi-instance DNN scheduling also exists on
closed devices, and has been explored in some previous stud-
ies [4, 9, 14, 28]. But those studies assume that the set of
co-running apps are known beforehand and their schedules
are fully controllable by a central agent (e.g., OS), which is
not the case for open devices. Their solutions hence cannot
apply to the open devices. To the best of our knowledge, no
prior solutions have been proposed for multi-instance DNNs
scheduling on open mobile systems.

This work proposes the first-known decentralized

application-level adaptive spatial scheduler for multi-instance
DNNs on open mobile devices. Being decentralized means
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(a) Power Consumption on Samsung Galaxy Tab S8+
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(c) Power Consumption on Samsung Galaxy S21 FE
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Figure 1: Standalone Profiling of Three DNN Networks. We profile the average power and inference time for different DNNs.
They have their own best option for delegation. Thread = i means the model is executed on the CPU with i threads. NNAPI low

power and fast single answer are two options that consider using GPU and accelerators.

that the spatial scheduling decisions are made by each applica-
tion rather than by a centralized agent (e.g., OS). This distinc-
tive design brings several benefits over centralized schemes:
It is easy to adopt without the need for OS modifications; it re-
quires no OS admin privileges; it preserves privacy and avoids
inter-app communications or app-OS special communications
and the associated overhead.

Specifically, the spatial scheduling considered in this work
includes the decisions on running a DNN on GPU or on CPU
and if on CPU how many CPU threads to use. We intention-
ally leave the temporal aspect of scheduling (i.e., at what time
an app runs or gets evicted) and priority management as they
are, because these tasks are what the OS is already taking care
of. We meanwhile ensure that the spatial scheduling method
can automatically adapt the scheduling decisions to the tem-
poral scheduling by the underlying OS. This design makes
the solution easy to adopt (as no OS modifications are nec-
essary), applicable across systems, and workable regardless
of what the other co-running apps are and what scheduling
policies they follow. It also retains the fairness guarantees and
starvation-avoidance provided by the underlying OS.

Our solution achieves these properties by leveraging the
adaptivity of Deep Reinforcement Learning (DRL) [17,20,25].
We develop a DRL-based scheduling library. It is decentral-
ized, working at the application level. Any app may call the
library to dynamically determine, for the next DNN inference,
whether CPU or accelerators is to be used, what modes (e.g.,
performance or power-efficiency modes) to use, and if CPU,
what is the best number of threads to launch. It requires no
direct knowledge about other apps. It gives recommendations
based on the current state of the executing environment and

the estimated rewards this application is expected to obtain for
each of the possible schedulesÐproduced by a model learned
through the self semi-supervised approach of DRL.

By drawing on previous theoretical results on the Nash
equilibrium of RL, we provide discussions on the convergence
of the scheduling algorithm and the empirical evidences.

In a set of co-run scenarios formed by the subsets of nine
DNNs, the proposed solution improves the average latency
by as much as 4×, and saves the average energy consumption
by as much as 3× compared to Android NNAPI, the official
Android tool that automatically selects the computing units to
use for running a DNN. Experiments on a smartphone (Sam-
sung Galaxy S21) and a tablet (Samsung Tab S8+) show that
the benefits are consistently significant. Further experiments
show that the benefits remain even if those DNNs co-run with
uncontrolled apps (i.e., apps that do not employ the proposed
scheduling algorithm). The scheduling algorithm converges
quickly (within seconds) and adapts to the running environ-
ments automatically, making it an immediately adoptable
solution across mobile systems.

Overall this work makes the following main contributions:

• To our best knowledge, the solution in this work is the
first decentralized application-level adaptive scheduling
for multi-instance DNNs on open mobile devices.

• This work uncovers a set of novel insights: (i) It is pos-
sible for a scheduler to work effectively without direct
knowledge of other apps in multi-instance DNN schedul-
ing; (ii) the DRL-based scheduling is effective in adapt-
ing to the factors in the execution environment (OS, other
apps, priorities, etc.); (iii) the decentralized scheduling
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algorithm is quick in converging to a balance point.

• This work empirically evaluates the efficacy of the
proposed solution, showing that it consistently gives
significant speedups and energy savings across DNN
workloads, hardware configurations, and running sce-
narios (with or without uncontrolled apps, various back-
ground/foreground combinations).

2 Background

Reinforcement Learning and Deep-Q-Network Reinforce-
ment learning (RL) [20] is a machine learning approach in
which an agent learns from environmental feedback and a
series of decisions to maximize the total cumulative rewards
to stimulate better decision-making. Q-learning [27] is a type
of RL algorithm that seeks an offline policy to maximize the
expected total rewards across all steps. "Q" refers to the policy
function Q(S,A) that inputs a state and action pair and out-
puts a Q-value. Two typical Q-learning schemes are Q-table
and Deep-Q-network (DQN) [17]. DQN improves the limited
representation of the Q-table.

Q-table stores the state and action pairs with the estimated
Q-value. The Q-value of each step can be obtained by table
lookup. However, this approach only works when states and
actions are discrete values and the sets are small. In contrast,
DQN replaces the Q-table with a neural network (NN) as a
function approximator. Now, the sets of states and actions
can be large, and the state space can be continuous. In the
training phase, the loss function minimizes the squared error
between the target Q-value and the predicted Q-value given
by the NN. So the loss function of NN can thus be formulated
as follows: L = (Q(S,A)− (R+ γ∗max(Q(S′,A′))))2, where
R is the immediate reward for taking action A in state S, γ is
the discount factor (a value between 0 and 1 that determines
the importance of future rewards), and S′ and A′ are the next
state and the possible actions in that state, respectively.

Nash Equilibrium The Nash equilibrium is a concept in game
theory that describes the optimal behavior of players in a
game. It is a stable, self-enforcing, and Pareto optimal solu-
tion, where each player has chosen an optimal action, given
the other players’ actions. There are several methods for find-
ing the Nash equilibrium of a game, including using best
response functions and mixed strategies. The Nash equilib-
rium is a helpful tool for analyzing strategic interactions and
predicting players’ behavior in a game.

One way to find the Nash equilibrium is to use the best
response function, which maps each player’s action to the
action that maximizes their reward, given the actions of the
other players. The Nash equilibrium is then the set of actions
where each player’s action is the best response to the actions
of the other players. Another approach is to use a mixed
strategy, where players randomly choose their action with a
certain probability. The Nash equilibrium is then the set of

possibilities where each player’s mixed strategy is the best
response to the combined strategies of the other players.

3 Problem Statement and Research Questions

This section first provides a definition of the focused schedul-
ing problem, and then lists the important research questions.

3.1 Problem Definition

Given: A set of apps A that may execute on a device V , and
some of them may run at the same time. A = Ac∪Au, where,
each app in Ac contains some DNNs and employs a policy P

to decide the execution configuration of each of its DNNs,
while the apps in Au do not follow policy P. For each DNN,
there are K possible configurations which affect the usage of
CPUs and GPUs of the DNN differently.

Objective: Finding P such that the following is minimized:

∑
i∈Ac(DNN)

∑
j

Li, j ∗Wi, j

where, Li, j and Wi, j are respectively the latency and power
consumption of the jth inference of DNNi, Ac(DNN) is the
DNNs in the apps in Ac. We use the product of latency and
power to capture the common interest in both speed and
energy usage on mobile devices.

Constraints: (1) The scheduling policy P in an app cannot
access the information of another app (due to the isolation
enforced by mobile systems); (2) each app’s priority and
temporal scheduling are controlled by the underlying OS.

3.2 Design Considerations and Principles

The main aspect of scheduling focused in this work is the
execution configuration that affects the usage of computing
unitsÐwhich is essential for the performance and power con-
sumption of DNN. The relevant factors include some that are
controllable at the application level, and some at the OS level.
For a DNN written in TFLite [3] (a popular development
framework for mobile AI), for instance, the application can
explicitly specify whether the DNN should run on CPU or
accelerators (e.g., GPU), and the number of CPU threads to
use. It may also call APIs in NNAPI [8] (the Android official
library for running DNNs) with either a performance mode or
an efficiency mode; the APIs will automatically determine the
CPUs or accelerators to be used for the DNN. We uniformly
regard such configurations as application-level controllable
configurations, which specifically include the explicit speci-
fication of computing units and CPU thread number and the
calls to other relevant libraries.

When a DNN runs with a certain configuration, the OS may
exert further influence on the usage of the computing units.
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For instance, if the application-level control sets the DNN to
run on a CPU with 2 CPU threads, the OS will ultimately
determine which two CPU cores the threads will run on. If
they are small cores, the speed may be much lower than on
medium cores.

We design our solution with the following principles:
(1) The scheduling should be decentralized, functioning

inside each application. This is because most of the relevant
factors are inside the app, and application-level solutions are
easier to adopt as they do not need changes to the underlying
OS.

(2) The scheduling should be able to adapt to the influence
of the underlying OS and other environmental factors (e.g.,
priorities of apps, background/foreground differences).

(3) The scheduler should work efficiently and adapt to
changes in the system agilely.

3.3 Research Questions

Creating a decentralized application-level scheduler on open
mobile systems has many differences from centralized
scheduling on closed systems and hence raises many new
questions. We summarize them into the following six open
research questions (RQ). They are gradually addressed in the
rest of this paper.

RQ1: How can the scheduler work effectively without

direct knowledge of other apps?

The apps on a smartphone may be developed by many
different authors. For security and privacy, open mobile sys-
tems typically impose strong isolations among apps. One app
cannot access the direct info of another app. How can the
scheduler work well under such a constraint?

RQ2: How can the solution deal with the effects of the

scheduler in the underlying OS?

OS influences the execution of the Apps: Ultimately, it is
the OS that allocates computing units and other resources to
each App and determines when an app runs and its priority
level. The OS schedulers differ from one version of OS to
another. We avoid demanding changes to the underlying OS
for easy adoption of our solution. The user-level scheduling
hence must be made adaptive to OS.

RQ3: Can decentralized scheduling converge to a good

result?

On an open mobile system, apps come and go, and the
workloads on the system may vary continuously. Without
the knowledge of other co-running apps, can decentralized
scheduling converge to good results?

RQ4: How fast can the decentralized scheduling learn

and adapt?

Machine learning-based decision models usually take time
to learn, but the dynamic nature of mobile systems demands
fast responses. Can decentralized scheduling meet the speed
needs?

RQ5: Can the solution work if there are uncontrollable

apps?

In real mobile usage scenarios, not all Apps will adopt the
same scheduling policy. The workload from uncontrollable
apps can be unpredictable. Can the proposed solution still
function well in the presence of such uncontrollable apps?

4 Decentralized DQN Scheduler

Algorithm 1: DQN Algorithm for each Apps
Input: Environment E; Replay Memory M; Exploration

Ratio ε; The parameters of Policy Network θ and
Target Network θ−; Discount Factor γ; Batch Size B;
Update Steps C; Huber loss function L

Output: Q(s,a; θ)
Initialize: Take observation from E and generate current

state s

1 while Inference start do

2 if rand() < ε then

3 Select action a randomly

4 else

5 Select action a← argmaxa Q(s,a; θ)

6 Run inference on a target defined by action a

7 When Inference ends, Calculate reward r

8 Observe from E and generate next state s′

9 Store transition (s, a, s′, r) to M

10 if M.size() > B then

11 Sample a mini-batch N from M

12 for each transition (s j, a j , s′j, r j) in N do

13 y j = r j + γ maxa′Q(s j,a
′ : θ−)

14 Calculate Loss l j = L(y j,Q(s j,a j : θ))

15 Batch Update θ using SGD algorithm by loss vector
l

16 s← s′

17 i← i+1
18 if i mod C == 0 then

19 θ ← θ−

In this section, we introduce the design of the decentralized
scheduler, which also answers RQ1 and RQ2.

The design is based on deep reinforcement learning (DQN).
As Section 2 mentions, DQN is a deep reinforcement-learning
method. As a semi-supervised method, it requires no manual
labels, but actively explores the environment, learns the re-
lations between actions and rewards automatically, and uses
the learned model to predict the next suitable action. This
nature makes it a good fit for the dynamic environment in our
problem. In contrast, a DNN-based approach would require
offline labels of many training cases and be slow in adapting
to dynamic changes.

The DQN-based RL agent is also light-weighted and con-
verges fast. For the storage overhead, the total extra mem-
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Figure 2: The Structure of Decentralized DQN Scheduler. The figure shows three controllable DNN applications that have
their RL agent that selects actions (different code generation of the model). All of them collect system status as their RL agent
input state. Also, we include the co-running uncontrollable apps that do not contain RL agents inside.

ory footprint needed less than 250KB. For the computation
overhead, the inference time of the network only takes less
than 1ms and one training process only takes about 1ms to
2ms when three DQN agents co-running. In general real-time
constraints are 50ms for each inference, and those extra com-
putations overhead in each model can be neglected.

Figure 2 illustrates the role of the scheduler in a multi-
instance scenario. Other than the uncontrolled apps, each
DNN-based app contains a DQN agent for configurations.
They do not have access to other apps but can obtain the state
of the resource utilization of the whole system.

We define the learning procedure of our DQN-based agents
with States, Rewards, and Actions in the multi-DNN execution
environment as follows:
States We use the following variable to capture the static
and variance environment information. For static features, we
use the number of convolution layers, the number of fully-
connected layers, and the MAC operations of DNN models.
For environment variance information, we use the CPU uti-
lization, GPU utilization, and memory usage of co-run apps.
Rewards The reward function R is composed of three impor-
tant metrics: latency, power consumption, and deadline. It is
defined as follows:

R(Ls,a
i ,W a

i ,di) =

{

−1000 , if L
s,a
i > di

−L
s,a
i ×Powera

i , otherwise

where, L
s,a
i represents the latency of the inference of DNNi

with action a on state s, W a
i is the average power of the in-

ference of DNNi with action a, and di is the deadline for the
inference of DNNi.

Because (latency × power) can be regarded as the energy
consumption estimation, we call it Energy Factor in our pa-
per. Also, it is used as one of the metrics in our evaluation
(Section 6). The multiplication of power and latency gives a
linear relationship, with no skew towards either factor. For
instance, if the latency doubles, the entire reward function
doubles, and the same applies to power consumption. The
simple production form of the reward function avoids addi-
tional hyper-parameters. A large negative reward is used when
a deadline is passed to discourage missing deadlines.
Actions The action space involves the configurations that
can affect the usage of computing resources on the hardware.
In our study, we include six configurations as detailed in
Section 6.1.
Neural Networks DQN includes a policy neural network

and a target neural network inside, which learn about the
relations between states, actions and rewards. We want to
make the networks as simple as possible to control the runtime
overhead. So we adopt a model that only maintains two fully-
connected (FC) layers as our policy and target network. The
first FC layer input channel is 8, and the output channel is
100. The second FC layer input channel is 100, and the output
channel is 6. For the input, it is the vector of the state. Its
dimension is 8, which contains four CPU and GPU usage
pairs. The output is a vector that represents the q-values of
six actions.

The DQN agents go through an exploration and learning
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stage until they reach convergence. As listed in Algorithm 1,
at the start of each episode, each agent selects the action with
the maximum q-value generated by the policy network with
parameters θ and current state s but has some exploration
rate ε to select action randomly. Here, one episode is one
inference of the DNN model. After making the inference with
the selected action, the power consumption and latency are
collected to compute the reward r. Then, the agent observes
the environment and generates the updated state s′. One tran-
sition (s,a,s′,r) is then pushed into the replay memory M.
The training process starts when the replay memory M has
enough data. It goes as follows. It first samples a mini-batch
N from M. Then, it calls the target network to generate the
expected q-value y for each transition. After that, it uses the
Huber Loss function [10] to calculate the loss value between
the expected q-value and the current q-value output by the
policy network. The final step of the training process is to
update the parameters θ based on the loss value. In every C

episode, the parameters θ of the policy network are copied
to the target network as its new parameters. In the targeted
co-run scenario, each controllable App is equipped with a
DQN agent that is trained for scheduling its DNN inferences.

5 Convergence Discussion

This section discusses the convergence of the DQN-based
scheduling algorithm (RQ3). Prior works [6] generalize the
multi-agent Q-learning method as a general-sum stochastic
game and prove all reward functions in each agent are guaran-
teed to converge. Specifically, Hu and Wellman [13] present
an algorithm to solve the general-sum stochastic games, and
Bowling [6] strengthens the proof with further assumptions.

Their convergence theorem has four necessary assump-
tions, two of which are about exploration and the decay of
the learning rate, and are similar to those used in the Deep-
Q-Learning algorithm. It is assumed that they have been met.
The remaining two assumptions [6, 13] are as follows:

Assumption .1 A Nash equilibrium (π1
∗(s),π

2
∗(s)) for any

stochastic game (Q1
n,Q

2
n) satisfies one of the following prop-

erties:

1. The equilibrium is a global optimal.

2. The equilibrium receives a higher payoff if the other agent

deviates from the equilibrium strategy.

Assumption .2 The Nash equilibrium of all stochastic games

Qn(s), as well as Q∗(s) must satisfy property 1 in Assumption

1 or the Nash equilibrium of all stochastic games, Qn(s), as

well as Q∗(s) must satisfy property 2 of Assumption 1

Assumption 1 includes a property that states that there
exists a set of strategies for the agents, where each agent
individually obtains the highest possible payoff. This also
guarantees that this set of strategies forms an equilibrium

since no agents would gain from deviating from their chosen
strategy. Assumption 2 includes another property in which
the game’s Nash equilibrium is a "saddle point." This implies
that if an agent deviates from the equilibrium, the agent would
not gain, but other agents would, which makes no agent want
to deviate from the equilibrium.

Finding a globally optimal solution for the multi-agent
problem is known to be NP-hard [7]. However, by reaching
Nash equilibrium during convergence, RL can ensure that
each agent adheres to a strategy that gives a good payoff to
both itself and the other agents. Reflected in our scheduling
context, it means that all controllable Apps may adhere to
a strategy that helps meet their deadlines while minimizing
energy consumption. The achievement of Nash equilibrium
eliminates fairness concerns among controllable Apps, as
they all reach a stable state where each maximizes its benefits
within the given constraints.

Based on prior studies [6,13], it has been demonstrated that
a zero-sum stochastic game converges. Our scheduling prob-
lem for multi-DNN applications in this paper bears a resem-
blance to a zero-sum stochastic game. In our case, each agent
corresponds to our DQN agent for each controllable DNN
application. All DQN agents involved compete for limited
resources, such as CPU and GPU, with a maximum utilization
boundary. While our problem may not strictly adhere to all the
definitions of a stochastic game, we empirically demonstrate
its convergence under our circumstances in Section 6.

6 Evaluation

This section evaluates our decentralized application-level
adaptive scheduler (called DQN for short in this section) by
comparing it with three baseline scheduling methods that are
designed for single DNN execution: two static scheduling
settings used by Android Neural Networks API (NNAPI) [8]
(NNAPI LOWER_POWER that minimizes the power consump-
tion for each DNN and NNAPI FAST_SINGLE_ANSWER that
minimizes the inference latency for each DNN) and an of-
fline profiling-based scheduling method (Best Standalone

that based on offline profiling selects the best setting for each
individual DNN among all delegate settings introduced in
Section 6.1). This evaluation has three objectives as follows:
1) demonstrating that as the first decentralized DNN co-run
scheduling method, DQN outperforms all baseline scheduling
approaches that are designed for single DNN execution in
multiple representative DNN co-run scenarios (Section 6.2);
2) verifying DQN’s convergence and fast converging speed,
and studying the underlying reason why DQN outperforms
baseline scheduling methods by a reward convergence analy-
sis (Section 6.3); 3) proving DQN’s benefits remain even if the
DNNs co-run with uncontrolled apps with both predictable
and unpredictable workloads (Section 6.4).
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6.1 Evaluation Methodology

Benchmarks. Table 1 characterizes the nine DNN models
from various domains used in the evaluation1. All models
are in TensorFlow Lite [3] format. These DNN models form
three groups: Image, Audio & Image, and Video & Image

with three models in each group. Our evaluation runs models
in each group simultaneously to simulate the real-world DNN
co-run scenario. For example, Group 1 (G1) simulates an intel-
ligent camera running varied AI capabilities simultaneously,
pose detection (SinglePose), object detection (YOLO-v5),
and image classification (EfficientNet). Other groups sim-
ulate more complex scenarios with audio and image or video
and image co-processing. In addition, these DNNs have var-
ied model sizes, standalone latency, and power consumption,
representing three different cases: relatively balanced work-
loads, mild imbalanced workloads, and severe imbalanced
workloads, respectively. Therefore, they show different be-
haviors in the evaluation. Please find more discussions in
Section 6.2.

Table 1: Nine DNN Models Used in Our Evaluation. They
form three groups. DNN models in each group are executed
simultaneously.

Group Models Sizes (KB)

G1: Image
SinglePose [1] (SP) 9,154
YOLO-v5 [5] 7,428
EfficientNet [23] (ENet) 6,265

G2: Audio&Image
YamNet [24] 4,031
MobileNetv1 [12] (MNv1) 4,188
WDSR [29] 1,252

G3: Video&Image
Movenet [16] 24,440
Esrgan [26] 4,877
MobileNetv2 [21] (MNv2) 13,666

Table 2: Absolute Latency of DQN. This table reports the
absolute latency of DQN in Figure 3, Figure 6, and Figure 7.

Figure 3 Figure 6 Figure 7
(Uint: ms) Tablet Phone Tablet Phone Tablet Phone

G1: SP 8.5 10.7 35.0 32.5 32.1 34.4
G1: YOLOv5 331.1 397.1 591.9 318.7 542.4 446.6
G1: ENet 5.0 47.2 9.7 337.8 7.0 341.3
G2: YamNet 4.3 3.8 23.4 23.0 20.4 17.1
G2: MNv1 6.2 34.3 10.5 30.8 8.2 32.1
G2: WDSR 6.8 116.9 6.3 114.2 5.0 108.2
G3: Movenet 34.2 33.0 76.2 71.3 78.5 70.1
G3: Esrgan 62.3 61.5 64.6 75.2 94.4 69.8
G3: MNv2 40.2 25.2 80.2 42.5 17.1 35.4

Software settings.

Our evaluation considers two co-run scenarios: control-

lable DNN tasks co-run and uncontrollable tasks co-run. Con-

1These DNNs are collected from Tensorflow Hub [2] and GitHubs [22].

Table 3: Absolute Energy Factor of DQN. This table reports
the absolute energy of DQN in Figure 3, Figure 6, Figure 7.

Figure 3 Figure 6 Figure 7
(Uint: Joule) Tablet Phone Tablet Phone Tablet Phone
G1: SP 18.9 15.9 13.48 18.1 25.2 21.8
G1: YOLOv5 950.3 446.3 1.6k 365.1 1.5k 509.8
G1: ENet 9.8 122.3 16.8 67.9 13.8 69.6
G2: YamNet 7.7 7.0 17.4 39.9 52.5 33.5
G2: MNv1 11.3 58.9 12.5 57.4 19.8 64.9
G2: WDSR 11.0 41.7 10.7 58.2 11.2 35.3
G3: Movenet 48.0 19.3 73.3 26.6 59.3 29.5
G3: Esrgan 33.2 14.5 36.0 20.4 23.4 16.4
G3: MNv2 27.7 32.8 11.8 38.2 60.8 29.6

trollable DNN tasks refer to Apps that incorporate our RL
agents, while uncontrollable tasks refer to Apps that do not
involve our RL agent. Uncontrollable tasks may or may not
use DNNs.
Controllable DNN Tasks Co-Run. We build an Android demo
app with Java that can run each DNN individually. Users
can control this demo app to start and stop DNN infer-
ence. This demo app relies on TensorFlow Lite (TFLite) [3]
to run DNNs. Our evaluation employs multiple delegate
settings in TFLite to run DNNs: using 1, 2, 3, or 4 CPU
threads2, respectively, and using two NNAPI [8] modes,
LOWER_POWER or FAST_SINGLE_ANSWER, respec-
tively. Particularly, NNAPI is designed for accelerating Ten-
sorFlow Lite DNN execution on mobile devices with sup-
ported hardware accelerators including GPU, DSP, and NPU.
It automatically partitions a DNN model, maps each partition
to a processor, and calls corresponding kernel codes for that
processor. Thus, we can treat it as static offline scheduling for
each individual DNN. Our evaluation particularly employs
two NNAPI modes as the baseline, LOWER_POWER which min-
imizes the power usage, and FAST_SINGLE_ANSWER which
minimizes the inference latency. Besides them, our eval-
uation also employs an offline profiling-based scheduling
method as a baseline: Best Standalone that selects the
best setting (i.e., with the best energy factor defined as
power_consumption× latency) for each individual DNN
among all delegate settings (including using 1 to 4 CPU
threads and two NNAPI modes) based on offline profiling
results3.
Uncontrollable Tasks Co-Run. We select two widely used real-
world applications TikTok and Web Browser to experiment
with two popular user behaviors, watching social media video
and browsing web pages. Here we select the default web
browser in Android, Google Chrome as our target.

2The evaluated mobile chip has 8 CPU cores, but the Android OS only
allows background Apps to access the 4 small CPU cores. Thus, we make
it consistent throughout our evaluations: the foregrounds Apps access the 4
cores (prioritize to access the big core, medium core, then small cores), and
the background Apps access the 4 small cores.

3we profile the power values through the Android Developer API
"dumpsys batterystats".
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 3: Overall Comparison between DQN and Three Baselines on Three DNN Groups. Compare (a) normalized average
inference time and (b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21 FE when
each group co-running three DNN apps (* denotes this DNN runs in the foreground and the others run in the background).

Evaluation platforms. DQN is evaluated on two edge
devices: (1) Samsung Galaxy S21 FE 5G mobile phone,
equipped with Android 12 OS, and Qualcomm SM8350 Snap-
dragon 888 5G SoC with Octa-core CPU (1x2.84 GHz Cortex-
X1 & 3x2.42 GHz Cortex-A78 & 4x1.80 GHz Cortex-A55),
Adreno 660 GPU (Version 1), and Hexagon 780 DSP. Its
storage capacity is 128GB with 6GB RAM and its voltage
is 4.3V. (2) Samsung Tab S8+ tablet, equipped with An-
droid 12 OS as well, and Qualcomm SM8450 Snapdragon 8
Gen 1 SoC with Octa-core (1x3.00 GHz Cortex-X2 & 3x2.50
GHz Cortex-A710 & 4x1.80 GHz Cortex-A510), Adreno 730
GPU, and Hexagon DSP. Its storage capacity is 128GB with
8GB RAM and its voltage is 4.1V.

6.2 Overall DQN Scheduling Performance

This section evaluates DQN on the three groups of co-run
DNNs in Table 1 by comparing it with the three schedul-
ing baselines aforementioned: NNAPI LOWER_POWER, NNAPI
FAST_SINGLE_ANSWER, and Best Standalone. Figure 3
shows the comparison results, in which the x-axis shows the
three DNNs in each group and the average performance of
each group. It is worth noting that the star (*) before the DNN

name indicates that this DNN model is executed in the fore-
ground (and two other DNNs in the same group are executed
in the background) for this co-run4. We intentionally use this
setting to simulate the real-world Apps co-run on the Android
system (and bring the OS impact on the user-level scheduling
into account).

Figure 3 employs two metrics to compare our decentral-
ized DQN system with three baselines: average inference

latency (as shown in Figure 3a and Figure 3c) and energy

factor ( as shown in Figure 3b and Figure 3d). The energy
factor is defined as power_consumption× latency for each
inference, which is also used as our reward function in each
DQN agent, the lower the better. To improve the readability,
we normalize the results in Figure 3 by setting DQN perfor-
mance as 1. Table 2 and 3 summarizes the absolute values for
reference.

Figure 3 shows that for the average inference latency,
our decentralized DQN-based scheduler achieves up to 4×
speedup over two baselines of NNAPI (NNAPI LOWER_POWER

and NNAPI FAST_SINGLE_ANSWER), and 2.7× speedup over

4Android OS grants foreground and background Apps different priori-
ties/limitations, e.g., normally, background Apps have lower priority than
foreground ones, and background Apps cannot access the big core of CPUs.
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(a) YamNet at Foreground (b) WDSR at Foreground (c) MNv1 at Foreground

Figure 4: Reward Convergence Trend for the Three Apps Co-Run in G2. It reports DQN’s normalized reward trend to prove
DQN converges in different situations. It uses DNNs in G2 and places each DNN in the foreground.

Thread=1

Thread=2

Thread=3

Thread=4

NNAPI: Lower Power

NNAPI: FAST SINGLE ANSWER

Figure 5: Selected Action Convergence Trend. This figure shows the action selection through runs for co-running results in G1
(all of them are in the background). The action selection will be converged into one or two options.

Table 4: Selection Rates of Actions of Last 100 Runs of Figure 5.

Thread = 1 Thread = 2 Thread = 3 Thread = 4; NNAPI: LOW_POWER NNAPI: FAST_SINGLE_ANSWER
SinglePose 14% 75% 6% 1% 1% 3%
YOLO_v5 0% 1% 1% 0% 98% 0%
EfficientNet 0% 3% 0% 3% 0% 94%

Standalone Best action selection, respectively, for average
results of three co-running DNN groups (gray area). For
the energy factor, our decentralized DQN-based scheduler
achieves up to 3× energy saving over NNAPI LOWER_POWER

and NNAPI FAST_SINGLE_ANSWER, and 2.6× energy saving
over Standalone Best action selection, respectively, for av-
erage results of three co-run DNN groups. Comparing the
DQN performance across three groups, we can see that as
the workload imbalance increases (from G1 to G3), the ben-
efit of DQN over Best Standalone grows while its benefit
over both NNAPI schedulers drops. This is mainly because
Best Standalone partitions each DNN workload into more
processing units than NNAPI schedulers, so it reduces the re-
source competition caused by the workload imbalance. DQN
has a similar effect. Moreover, although the average inference
latency and energy factor vary for different groups (and each
DNN model) under various settings, our decentralized DQN-
based scheduler always performs better than baseline meth-
ods. These results prove that DQN is robust enough to deliver

high-quality scheduling results for various DNN applications
and environment settings (e.g., varied foreground/background
DNN settings, DNN structures/target domains, and executing
devices). The following sections further verify this claim.

6.3 Reward Convergence Analysis

This reward convergence analysis has three objectives: 1) to
verify the rewards of multiple agents converging empirically,
2) to measure the DQN convergence speed5, and 3) to study
why DQN outperforms baseline scheduling by analyzing its
trend of action selection.

We verify the convergence and measure the convergence
speed by taking Group 2 (in Table 1) as an example due to
the space limitation and other groups show similar trends.
Figure 4 shows the convergence trends of DQN training on
co-running three DNNs in Group 1 under three different set-

5Theoretical convergence proof only proves all DQN converges eventually
without showing the convergence speed.
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 6: Co-Run Three DNN Groups with Uncontrollable App TikTok. Compare (a) normalized average inference time and
(b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21 FE when each DNNs group
co-running with uncontrollable app TikTok that plays video posts on the foreground.

tings that place YamNet, WDSR, or MNv1 at the foreground,
respectively. The x-axis is the number of DQN inference
runs (which is equivalent to the number of DNN inference
runs), and the y-axis is the average action selection rewards of
100 times. Regardless of the environment settings, the DQN
agents can reach convergence within 800-1000 inference runs.
The scheduling time overhead for a single execution of the
DNN App includes the forward- and backward-propagation
phases of the DQN agent, which typically take 1.2 ms on
average and only contribute to 0.5-5% of the overall DNN
App execution time (which ranges 20-176ms). Additionally,
the energy overhead amounts to approximately 0.5-2% of the
DNN App execution. This convergence time is trivial com-
pared to the time required to profile and configure each model
manually.

We next study why the DQN agent can outperform the sin-
gle DNN scheduling baselines by analyzing its trend of action
selections. We take Group 1 (in Table 1) with SinglePose,
YOLOv5, and EfficientNet as an example this time. All
models run in the background, and the evaluation results are
shown in Figure 5. In addition, Table 4 shows the percentage
of action selection in the last one hundred runs to give an

insight into action selection after the model is converged.
Figure 5 and Table 4 offer us two key insights in DQN: first,

even though each DNN starts with multiple selections, their
decision is converged into one or two actions, and second, a
precise boundary exists between the actions only using CPU
and those cooperating with GPU. The regular pattern of the ac-
tion selection in the first insight implies that the DQN model
converges at the end, empirically proving that the multi-agent
DQN game converges (in another setting). The second insight
tells us that DQN can effectively avoid computing resource
contention. For example, when YOLOv5 and EfficientNet run
on GPUs, DQN is able to schedule SinglePose on CPUs, thus
preventing competition for the limited resource of accelera-
tors; while other baseline scheduling methods fail to do this,
resulting in GPU contention.

6.4 DQN Performance w/ Uncontrollable Apps

This section evaluates the performance of our decentralized
DQN scheduler under uncontrollable application co-running
situations. More specifically, we aim to 1) compare the perfor-
mance between our decentralized DQN scheduler and those
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 7: Co-Run Three DNN Groups with Uncontrollable App Web Browser (Google Chrome). Compare (a) normalized
average inference time and (b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21
FE when each DNNs group co-running with the uncontrollable app Google Chrome randomly browsing pages on the foreground.

baselines under the popular real-world Apps co-running cir-
cumstance, and 2) illustrate our DQN solution has strong adap-
tivity when co-running with Apps with dynamically changing
workloads.

Specifically, we simulate the real-world environment by si-
multaneously running DNNs and other apps with predictable
workloads (i.e., repeatedly playing a TikTok video post), and
unpredictable workloads (i.e., randomly browsing webpages
in a web browser, Google Chrome). Both TikTok and Google
Chrome run in the foreground, while DNNs (and their demo
applications) run in the background. TikTok and Google
Chrome require CPU and accelerators (e.g., GPUs), thus care-
ful workload scheduling of DNNs is desired if we would
like to achieve optimized system performance. To verify the
predictability of TikTok and the unpredictability of Google
Chrome, respectively, we use GPUWatch to monitor both ap-
plications’ execution and find that the major task, video pro-
cessing in Tiktok requires a stable amount of GPU resources,
while Google Chrome only consumes GPU resources when
users touch or swipe across the screen, resulting in irregular
GPU usage.

Figure 6 and Figure 7 compare DQN with all three

baselines aforementioned, NNAPI LOWER_POWER, NNAPI

FAST_SINGLE_ANSWER, and Best Standalone on two
platforms under two uncontrollable cases (more predictable
TickTok and more unpredictable Google Chrome), respec-
tively. Our decentralized DQN-based approach outperforms
all baselines for both cases in terms of both latency and
energy for all three groups of DNNs. For the Tiktok case,
DQN shows better performance because the DQN agent
has more convincing history data that can predict more
accurate action for the next step. The Google Chrome
case empirically proves that our decentralized DQN-based
approach is robust enough to handle DNNs co-run with an
app that has unpredictable workloads.

Compare with a Heuristic-Based Adaptive Method. To
confirm that simple heuristic-based adaptation is insufficient
for the scheduling problem, we implement a heuristic method
called "trial and set" (T&S). In T&S, each action performs X

(50 in our experiments) inference runs and selects the action
with the minimum observed online energy factor in subse-
quent inferences. We compare it with our DQN results on
G2 in each of three settings: three DNNs in G2 co-run (see

USENIX Association 2023 USENIX Annual Technical Conference    875



Table 5: Comparisons with simple Heuristic-based adaptation. This table reports the average latency and energy factor for G2
in three co-run settings described in Figures 3, 6, and 7

.

Co-run Setting→ No other Apps With Web Browser With TikTok
DNN Apps ↓ Metrics ↓ T&S (X=50) DQN T&S (X=50) DQN T&S (X=50) DQN

YamNet
Time (ms) 3.690 4.250 127.120 20.482 53.400 23.050

Energy Factor 0.461 0.502 15.890 3.392 4.429 2.707

SSD_MNv1
Time (ms) 8.260 6.170 191.740 8.248 60.670 30.860

Energy Factor 1.161 0.734 24.351 1.284 8.037 3.890

WDSR
Time (ms) 126.290 6.750 56.320 5.042 142.000 114.220

Energy Factor 15.701 0.714 8.599 0.729 18.034 3.948

Avg. Energy Factor 5.774 0.65 48.840 5.405 10.166 3.514

Figure 3), G2 co-run with a predictable App (see Figure 6),
and G2 co-run with an unpredictable App (see Figure 7). Each
execution of the DNN-based app conducts 250 inferences in
total. Table 5 shows the results. The result shows that the
simple adaptation by T&S is insufficient for fitting the con-
tinuously changing execution environments. The schedules
it picks cause 3− 10× larger energy factors as well as fre-
quently substantial slowdowns compared to the results by
DQN.

7 Related Work

DNN workload under the stochastic runtime variance has
been addressed in Autoscale [15]. The authors propose a
lightweight scaling engine for DNN inference on a cloud-
edge environment. It applies an offline-trained Q-table that
observes DNN characteristics and runtime variance as states
and selects execution targets as action. It is, however, only for
single DNN execution.

Multi-tenancy DNNs [28] have been an active research
topic in recent years. NestDNN [9] proposes an efficient
scheduler that works with different model pruning ratios. The
scheduling decision is guided by the proposed minimum total
cost and minmax cost. The solution enhances the multi-DNN
inference accuracy and video frame processing rate while
reducing energy consumption. NeuOS [4] proposes a layer-
by-layer multi-DNN scheduler. At each layer boundary, the
system will determine the power configuration for each DNN
based on their deadlines. Band [14] presents a model analyzer
and scheduler to organize a multi-DNN workload on a het-
erogeneous platform. The model analyzer partitions multiple
DNN models into several subgraphs and dynamically desig-
nates them with an eligible execution target. The scheduling
decision is based on subgraph execution latency estimation
using their tensor size and FLOPS.

Those solutions are however all centralized approaches, as-
suming the set of DNNs is fixed and there is a central runtime
scheduler managing all the instances, making them inappli-
cable to the multi-instance DNN scheduling on open mobile
systems.

8 Conclusion

This paper proposes the first-known decentralized application-
level adaptive scheduler for multi-instance DNNs on open
mobile devices. It builds on DQN, a reinforcement learn-
ing algorithm that actively explores and learns the relations
between the states, actions, and rewards in a dynamic envi-
ronment. The exploration uncovers a set of insights. It shows
that it is possible for a decentralized scheduler to work ef-
fectively without direct knowledge of other apps in multi-
instance DNN scheduling. The DQN-based scheduling works
well regardless of the differences among underlying systems,
hardware, and execution settings. The algorithm is shown to
converge quickly and effective in improving co-run efficiency.
As an application-level solution, it is ready to be immediately
adopted across various mobile systems.
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