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Abstract

We study the Mahowald operator M = 〈g2, h
3

0,−〉 in the cohomology of the Steenrod algebra.
We show that the operator interacts well with the cohomology of A(2), in both the classical
and C-motivic contexts. This generalizes previous work of Margolis, Priddy, and Tangora.
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1 Introduction

The cohomology of the Steenrod algebra is an algebraic object that serves as the input to the
Adams spectral sequence. Therefore, its computation is of fundamental importance to the study of
the stable homotopy groups of spheres. The goal of this note is to study part of the cohomology
of the Steenrod algebra that displays some regular structure. We work in the C-motivic context.
Our results have immediate classical consequences, most of which are already known [12] or can be
readily deduced from the results of [12]. The ultimate goal of this study is to serve as an aid in a
detailed analysis of the Adams spectral sequence [10].

Let A be the C-motivic Steenrod algebra at the prime 2 [17] [8]. Let M2 = F2[τ ] be the C-
motivic cohomology of a point with F2-coefficients [18]. We are interested in the algebraic object
ExtC = ExtA(M2,M2) because it serves as the E2-page for the C-motivic Adams spectral sequence.
These Ext groups are of increasingly wild complexity as the dimension increases. The May spectral
sequence [13] can be used to compute them in a range. Machines can compute in an even larger
range [2] [3] [4] [16]. In either case, these methods cannot determine the entire structure because it
is of infinite complexity.

Nevertheless, parts of the computation display regularity. For example, Adams described a
regular v1-periodic pattern near the “top of the Adams chart”, i.e., when the Adams filtration is
large relative to the stem [1]. May extended this v1-periodicity to a larger range [15]. (See also [11]
for results about C-motivic v1-periodicity.)

The goal of this article is similar. We study the Mahowald operator 〈g2, h
3
0,−〉, which is defined

on all elements x such that h3
0x = 0. We will show that the Mahowald operator behaves regularly

in a certain way.
This article is very much inspired by the work of Margolis, Priddy, and Tangora [12]. We are

extending those results in two senses. First, we are working in the C-motivic, rather than classical,
context. Classical results can easily be deduced from our C-motivic results by inverting τ . Second,
we work with a larger subalgebra of the Steenrod algebra, and therefore can detect more classes.
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Table 1. Some values of the map p∗ : ExtC → ExtB

(s, f, w) x p∗(x)
(53, 10, 28) MP Pe0v

2
3 + Ph3

1v
3
3

(56, 10, 29) ∆2h1h3 τPgv23
(60, 9, 32) B4 agv23
(66, 10, 35) τB5 τh2ngv

2
3

(90, 12, 48) M2 d0gv
4
3 + h6

1v
6
3

When discussing Ext groups, we grade elements in the form (s, f, w), where s is the stem, f is
the Adams filtration, and w is the motivic weight. See [8] [9] for more details about notation and
for specific computations.

Recall that A(2) is the M2-subalgebra of A generated by Sq1, Sq2, and Sq4. We have a complete
understanding of its cohomology, i.e., of ExtA(2) = ExtA(2)(M2,M2) [7].

Theorem 1.1. There exists a sub-Hopf algebra B of the C-motivic Steenrod algebra (defined below
in Definition 2.1) such that:

1. ExtB = ExtB(M2,M2) is isomorphic to M2[v3] ⊗
M2

ExtA(2), where v3 has degree (14, 1, 7).

2. the map p∗ : ExtC → ExtB takes Mx to the product (e0v
2
3 + h3

1v
3
3)p∗(x), whenever Mx is

defined. Also, p∗ takes the indeterminacy in Mx to zero.

The theorem can also be stated in the classical context, in an essentially identical form.
Theorem 1.1 allows us to extract much information about the global structure of ExtC. The

following corollary gives partial information about the structure of ExtC in very high dimensions.

Corollary 1.2. Let x be an element of ExtC such that h3
1x = 0, and let k ≥ 0 such that the image

of ek0x in ExtA(2) is non-zero. Then Mkx is non-zero in ExtC.

Proof. By Theorem 1.1, p∗(M
kx) is non-zero in ExtB . Therefore, M

kx must be non-zero. q.e.d.

For example, x could be h0, h
2
0, τh1, h2, or h0h2 with any value of k. There are many other

possibilities as well. Some, but not all, cases of Corollary 1.2 are already covered by [12].
Here is an even more explicit illustration of the kind of information that can be deduced from

Corollary 1.2. Consider the element h0d0. We have that h0d0e
k
0 is non-zero in ExtA(2) for all k ≥ 0.

(However, τ2h0d0e
k
0 = 0 in ExtA(2) when k ≥ 2). We can conclude that Mkh0d0 is non-zero in

ExtC for all k ≥ 0, even though it may be annihilated by powers of τ .
Theorem 1.1 detects additional phenomena in ExtA that are not captured by Corollary 1.2.

Namely, the theorem can be used to study classes in ExtA whose image under p∗ is non-zero. Some
examples are listed in Table 1. This list is far from exhaustive.

Sometimes, analysis of a particular Adams differential requires knowledge of the algebraic struc-
ture of ExtC in much higher dimensions. If the higher dimension is not too large, then one can rely
on explicit machine computations. But if the higher dimension goes beyond the current range of
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machine computations, then results such as Corollary 1.2 can be of great use. See [10] for specific
examples of precisely this situation.

The subalgebra A(2) of the C-motivic Steenrod algebra is of particular importance because there
exists a C-motivic modular forms spectrum mmf [5] whose cohomology is isomorphic to A//A(2).
This implies that ExtA(2) is the E2-page of the Adams spectral sequence that converges to the
homotopy groups of mmf .

One might hope that the sub-Hopf algebra B is similarly realizable. We will show in Theorem
6.1 that it is not. In other words, while ExtB is useful for studying the algebraic structure of the
C-motivic Adams E2-page ExtC, it cannot be used to study Adams differentials.

2 A subalgebra of the C-motivic Steenrod algebra

Recall that the dual C-motivic Steenrod algebra A∗ [18] [8] takes the form

M2[τ0, τ1, . . . , ξ1, ξ2, . . .]

τ2i = τξi+1
,

where M2 = F2[τ ]. The coproduct of A∗ is given by the formulas

τi 7→ τi ⊗ 1 +
i∑

k=0

ξ2
k

i−k ⊗ τk ξi 7→
i∑

k=0

ξ2
k

i−k ⊗ ξk.

By convention, we let ξ0 equal 1.

Definition 2.1. Let B∗ be the quotient

M2[τ0, τ1, τ2, τ3, ξ1, ξ2]

τ20 + τξ1, ξ41 , τ
2
1 + τξ2, ξ22 , τ

2
2 , τ

2
3

of A∗. Let B be the dual subobject of A.

Remark 2.2. The classical dual Steenrod algebra Acl
∗ takes the form F2[ζ1, ζ2, . . .], which is the

result of inverting τ in A∗, where τi and ξi+1 correspond to ζi+1 and ζ2i+1 respectively. The classical
analogue of B∗ is the quotient

F2[ζ1, ζ2, ζ3, ζ4]

ζ81 , ζ
4
2 , ζ

2
3 , ζ

2
4

.

Lemma 2.3. The quotient B∗ is a Hopf algebra that splits as

M2[τ0, τ1, τ2, ξ1, ξ2]

τ20 + τξ1, ξ41 , τ
2
1 + τξ2, ξ22 , τ

2
2

⊗
M2

M2[τ3]

τ23
.

Proof. To check that B∗ is a Hopf algebra, one must verify that the coproduct is well-defined. In
other words, if x is an element of A∗ that maps to zero in B∗, then the coproduct of x in A∗ also
maps to zero in B∗ ⊗B∗. This follows from direct computation.

The splitting also follows from direct computation. Namely, the coproduct of τ3 in A∗ maps to
1⊗ τ3 + τ3 ⊗ 1 in B∗ ⊗B∗. q.e.d.
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Proposition 2.4. ExtB = ExtB(M2,M2) is isomorphic to M2[v3] ⊗
M2

ExtA(2), where v3 has degree

(14, 1, 7).

Proof. This follows immediately from the splitting of Lemma 2.3, together with the observation
that the cohomology of an exterior algebra is a polynomial algebra. q.e.d.

The projection map p : A∗ → B∗ induces a map p∗ : ExtC → ExtB . We will use the map p∗ to
detect some structural phenomena in ExtC.

3 Massey products in ExtB

The map p∗ is induced by a map p̃ : C∗(A) → C∗(B) of cobar complexes. Note that p̃ is a map of
differential graded algebras. In particular, C∗(B) is a right C∗(A)-module, and therefore ExtB is a
right ExtC-module. By definition, p∗(x) equals 1 · x, where 1 is the identity element of ExtB .

Moreover, the map p̃ makes ExtB into a “Toda module” over ExtC, in the following sense. For
all x in ExtB and all a and b in ExtC such that x ·a and ab are both zero, there is a bracket 〈x, a, b〉
in ExtB . These brackets satisfy the usual properties. Later in the proof of Proposition 4.2, we will
use the shuffling relation

〈x, a, b〉 · c = x · 〈a, b, c〉,

for x in ExtB and a, b, and c in ExtC.
For later use, we compute one particular bracket. In ExtC, there is an element g2 of degree

(44, 4, 24) that is detected by b222 in the May spectral sequence. This element satisfies the relation
h3
0g2 = 0.

Proposition 3.1. The bracket 〈1, g2, h
3
0〉 in ExtB in degree (45, 6, 24) equals e0v

2
3 + h3

1v
3
3 , with no

indeterminacy.

Proof. First, we should verify that the bracket is well-defined. We need that 1 · g2 equals zero in
ExtB in degree (44, 4, 24). But ExtB is zero in that degree, so 1 · g2 must be zero.

Next, we compute the indeterminacy. By inspection, the only possible indeterminacy is gener-
ated by 1 · h0h5d0. But this expression is zero because 1 · h5 is zero in ExtB for degree reasons.

The map p̃ induces a map of May spectral sequences [13] [8]. The May E1-page that converges
to ExtC has generators of the form hij with i ≥ 1 and j ≥ 0. On the other hand, the May E1-page
that converges to ExtB has generators h0, h1, h2, h20, h21, h30, and h40. The map of May spectral
sequences takes hij to the element of the same name, or to zero if the element is not present in the
May E1-page for ExtB .

We will compute the bracket 〈1, g2, h
3
0〉 in ExtB using the May Convergence Theorem [14] [8].

Beware that this theorem has a technical hypothesis involving the behavior of higher “crossing”
differentials. In our specific case, this technical hypothesis is satisfied for degree reasons.

The key point is that there is a May differential

d6((b21b40 + b30b31)h0(1)) = h3
0g2.

Therefore, 〈1, g2, h
3
0〉 is detected by the image of (b21b40+b30b31)h0(1) in the May spectral sequence

for ExtB . By inspection, this image equals h2
40b21h0(1).

Finally, we must determine the elements of ExtB that are detected by h2
40b21h0(1) in the May

spectral sequence. Note that e0 is detected by b21h0(1) and v3 is detected by h40. However, beware



The Mahowald operator 187

that the element h3
1v

3
3 is detected by h3

1h
3
40 in lower May filtration. Consequently, h2

40b21h0(1)
detects both e0v

2
3 and e0v

2
3 + h3

1v
3
3 .

We have now shown that 〈1, g2, h
3
0〉 equals either e0v

2
3 or e0v

2
3+h3

1v
3
3 . Finally, we must distinguish

between these two cases.
Recall from [6, p. 4729] that there is a relation Mh6

1 = e30 + d0 · e0g in ExtC. Apply p∗ to obtain
a relation in ExtB . We have that

p∗(Mh6
1) = 1 · 〈g2, h

3
0, h

6
1〉 = 〈1, g2, h

3
0〉h

6
1.

Here, we are using the well-known Massey product

Mh6
1 = 〈g2, h

3
0, h1〉h

5
1

(see, for example, [8, Table 16]). So the possible values for p∗(Mh6
1) are h6

1e0v
2
3 and h6

1e0v
2
3 + h9

1v
3
3 .

The possible values for p∗(e0) are 0, e0, h
3
1v3, and e0 +h3

1v3, so the possible values of p∗(e
3
0) are

0, e30, h
9
1v

3
3 , and e30 + h3

1e
2
0v3 + h6

1e0v
2
3 + h9

1v
3
3 .

The only possible value for p∗(d0) is d0. The possible values for p∗(e0g) are 0, e0g, h3
1gv3,

and e0g + h3
1gv3. (Recall that e0g is an indecomposable element in ExtC.) Therefore, the possible

values for p∗(d0 · e0g) are 0, e30, h
3
1e

2
0v3, and e30 + h3

1e
2
0v3. Here, we are using the relation e20 = d0g

in ExtA(2).
By inspection, the only consistent possibilities are that p∗(e0) = e0+h3

1v3, p∗(e0g) = e0g+h3
1gv3,

and p∗(Mh6
1) = h6

1e0v
2
3 + h9

1v
3
3 . q.e.d.

Remark 3.2. The May spectral sequence argument in the proof of Proposition 3.1 is much the
same as the corresponding proof in [12]. However, the complications involving h3

1v
3
3 are new.

Remark 3.3. The careful reader may wonder about the definitional distinction between e0 and
e0 + h3

1v3. Cannot e0 in ExtB be defined to be the value of p∗(e0)? The answer lies in the
multiplicative structure of ExtA(2). There is a relation h2

1e0 = c0u in ExtA(2). From the formula
p∗(e0) = e0 + h3

1v3, it follows that p∗(h
2
1e0) is not divisible by c0 or u in ExtB . This multiplicative

fact is not consistent with the possibility that p∗(e0) = e0 under a different choice of basis.

4 The Mahowald operator

Definition 4.1. Let x be an element of ExtC such that h3
0x = 0. Define Mx to be the Massey

product 〈g2, h
3
0, x〉.

As always, the Massey product Mx can have indeterminacy. In other words, Mx may be a set
of elements, not just a single well-defined element.

If h3
0x = 0, then the iterated Massey products Mkx = M(Mk−1x) are defined for all k ≥ 1.

This follows from the computation that

h3
0〈g2, h

3
0, x〉 = 〈h3

0, g2, h
3
0〉x = 0

because 〈h3
0, g2, h

3
0〉 = 0.

Proposition 4.2. Let x be an element of ExtC such that h3
0x = 0. Then p∗(Mx) equals (e0v

2
3 +

h3
1v

3
3)p∗(x) in ExtB .
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In particular, Proposition 4.2 implies that p∗(Mx) always consists of a single element, even if
Mx has indeterminacy.

Proof. Consider the shuffling relation

p∗(Mx) = 1 · 〈g2, h
3
0, x〉 = 〈1, g2, h

3
0〉 · x.

Proposition 3.1 computes the second bracket. q.e.d.

Remark 4.3. We have stated our results in terms of Massey products of the form 〈g2, h
3
0, x〉.

However, they also apply to Massey products of the form 〈h0g2, h
2
0, x〉 and 〈h2

0g2, h0, x〉, using the
shuffling relations

〈h2
0g2, h0, x〉 ⊆ 〈h0g2, h

2
0, x〉 ⊆ 〈g2, h

3
0, x〉.

5 h1-periodic Ext

In the spirit of [6], one ought to study the h1-periodic maps

ExtC[h
−1
1 ]

p∗

//ExtB [h
−1
1 ] //ExtA(2)[h

−1
1 ].

Computationally, this diagram is

F2[h
±1
1 ][v41 , v2, v3, . . .]

p∗

//F2[h
±1
1 ][v41 , v2, v3, u] //F2[h

±1
1 ][v41 , v2, u].

Both maps take v41 to v41 . Moreover, the composition takes vn to v2u
2n−2

−1 [6, Conjecture 5.5 and
Proposition 6.4] [5]. In this formula and throughout this section, we suppress all multiples of h1

since it is a unit.
For degree reasons, p∗ takes v2 to v2. The computations of p∗(e0) and p∗(e0g) at the end of

the proof of Proposition 3.1 imply that p∗(v3) = v3 + v2u and that p∗(v4) = v3u
2 + v2u

3. We

suspect that p∗(vn) = v3u
2n−2

−2 + v2u
2n−2

−1 in general, although we have not actually computed
this formula.

On the other hand, the map

ExtB [h
−1
1 ] → ExtA(2)[h

−1
1 ]

takes v2 and u to the elements of the same name in the target, and it must take v3 to 0.
This information can be used to study h1-periodic values of the Mahowald operator. In the

notation of this section, the element e0v
2
3 + h3

1v
3
3 of ExtB maps to (v3 + v2u)v

2
3 in ExtB [h

−1
1 ].

Therefore, for x in ExtC[h
−1
1 ], we have that Mx maps to (v3 + v2u)v

2
3p∗(x) in ExtB [h

−1
1 ].

6 Non-Realizability

The purpose of Theorem 6.1 is that ExtB is not the E2-page of an Adams E2-page. In other words,
while ExtB is useful for studying the algebraic structure of the C-motivic Adams E2-page ExtC, it
cannot be used to study Adams differentials.
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Theorem 6.1. There does not exist a C-motivic ring spectrum E equipped with ring map f : E →
mmf such that the F2-motivic cohomology of E is A//B, and such that f induces the projection

A//A(2) → A//B

in cohomology.

Proof. Suppose that E exists. The unit map S0,0 → E induces a map of Adams spectral sequences.
On E2-pages, this map is p∗ : ExtC → ExtB . By Theorem 1.1, the element Mh1 of ExtC maps to
h1e0v

3
3 + h4

1v
3
3 in ExtB . Since Mh1 is a permanent cycle in the Adams spectral sequence for the

C-motivic sphere spectrum [8], it follows by naturality that h1e0v
3
3 + h4

1v
3
3 is a permanent cycle in

the Adams spectral sequence for E.
On the other hand, the map f also induces a map of Adams spectral sequences. On E2-pages,

this map takes the form ExtB → ExtA(2). The element v3 must be a permanent cycle for degree
reasons. Also, d2(e0) = h2

1d0 in the Adams spectral sequence for mmf . By naturality of f , it follows
that d2(h1e0v

3
3 + h4

1v
3
3) = h3

1d0v
3
3 .

This contradiction shows that E cannot exist. q.e.d.

Remark 6.2. One can also pose an analogous question about a classical spectrum whose coho-
mology is Acl//Bcl. Such a classical spectrum also does not exist, for essentially the same reasons.
However, one must use the non-zero classical differential d3(e0) = Pc0 in the Adams spectral
sequence for tmf .
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