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Abstract

We study the Mahowald operator M = (g2, hi, —) in the cohomology of the Steenrod algebra.
We show that the operator interacts well with the cohomology of A(2), in both the classical
and C-motivic contexts. This generalizes previous work of Margolis, Priddy, and Tangora.
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1 Introduction

The cohomology of the Steenrod algebra is an algebraic object that serves as the input to the
Adams spectral sequence. Therefore, its computation is of fundamental importance to the study of
the stable homotopy groups of spheres. The goal of this note is to study part of the cohomology
of the Steenrod algebra that displays some regular structure. We work in the C-motivic context.
Our results have immediate classical consequences, most of which are already known [12] or can be
readily deduced from the results of [12]. The ultimate goal of this study is to serve as an aid in a
detailed analysis of the Adams spectral sequence [10].

Let A be the C-motivic Steenrod algebra at the prime 2 [17] [8]. Let My = Fy[7] be the C-
motivic cohomology of a point with Fa-coefficients [18]. We are interested in the algebraic object
Extc = Exta(My, M) because it serves as the Fa-page for the C-motivic Adams spectral sequence.
These Ext groups are of increasingly wild complexity as the dimension increases. The May spectral
sequence [13] can be used to compute them in a range. Machines can compute in an even larger
range [2] [3] [4] [16]. In either case, these methods cannot determine the entire structure because it
is of infinite complexity.

Nevertheless, parts of the computation display regularity. For example, Adams described a
regular vi-periodic pattern near the “top of the Adams chart”, i.e., when the Adams filtration is
large relative to the stem [1]. May extended this vy-periodicity to a larger range [15]. (See also [11]
for results about C-motivic vy-periodicity.)

The goal of this article is similar. We study the Mahowald operator {go, h3, —), which is defined
on all elements x such that hz = 0. We will show that the Mahowald operator behaves regularly
in a certain way.

This article is very much inspired by the work of Margolis, Priddy, and Tangora [12]. We are
extending those results in two senses. First, we are working in the C-motivic, rather than classical,
context. Classical results can easily be deduced from our C-motivic results by inverting 7. Second,
we work with a larger subalgebra of the Steenrod algebra, and therefore can detect more classes.
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TABLE 1. Some values of the map p, : Extc — Extp

(s, f o ps(z)

(53, 10 28) MP  Pegul + PR
(56,10,20) AZhihs  TPgu?
(60,9,32) By agv?
(66,10,35) 7Bs Thgngvg
(90,12,48) M?> dogvs + hSv§

When discussing Ext groups, we grade elements in the form (s, f,w), where s is the stem, f is
the Adams filtration, and w is the motivic weight. See [8] [9] for more details about notation and
for specific computations.

Recall that A(2) is the My-subalgebra of A generated by Sqt, Sq?, and Sq*. We have a complete
understanding of its cohomology, i.e., of Ext 4(2) = Ext 4¢2) (M2, M) [7].

Theorem 1.1. There exists a sub-Hopf algebra B of the C-motivic Steenrod algebra (defined below
in Definition 2.1) such that:

1. Extp = Extp(Mz,My) is isomorphic to Ma[vs] ® Ext 4(2), where v3 has degree (14, 1,7).
M

2. the map p. : Extc — Extp takes Mz to the product (egv? + h3v3)p.(z), whenever Mz is
defined. Also, p, takes the indeterminacy in Mz to zero.

The theorem can also be stated in the classical context, in an essentially identical form.
Theorem 1.1 allows us to extract much information about the global structure of Extc. The
following corollary gives partial information about the structure of Extc in very high dimensions.

Corollary 1.2. Let x be an element of Extc such that h?x =0, and let £ > 0 such that the image
of e’gx in Ext 42y is non-zero. Then M*z is non-zero in Extc.

Proof. By Theorem 1.1, p*(ka) is non-zero in Extg. Therefore, M*z must be non-zero.  q.e.p.

For example, z could be hg, h3, Thi, ha, or hohy with any value of k. There are many other
possibilities as well. Some, but not all, cases of Corollary 1.2 are already covered by [12].

Here is an even more explicit illustration of the kind of information that can be deduced from
Corollary 1.2. Consider the element hgody. We have that hodoe’g is non-zero in Ext 4(9) for all k > 0.
(However, T2hodoel = 0 in Ext 2y when k& > 2). We can conclude that MPFhgdy is non-zero in
Exte for all k£ > 0, even though it may be annihilated by powers of 7.

Theorem 1.1 detects additional phenomena in Ext, that are not captured by Corollary 1.2.
Namely, the theorem can be used to study classes in Ext 4 whose image under p, is non-zero. Some
examples are listed in Table 1. This list is far from exhaustive.

Sometimes, analysis of a particular Adams differential requires knowledge of the algebraic struc-
ture of Extc in much higher dimensions. If the higher dimension is not too large, then one can rely
on explicit machine computations. But if the higher dimension goes beyond the current range of
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machine computations, then results such as Corollary 1.2 can be of great use. See [10] for specific
examples of precisely this situation.

The subalgebra A(2) of the C-motivic Steenrod algebra is of particular importance because there
exists a C-motivic modular forms spectrum mmjf [5] whose cohomology is isomorphic to A//A(2).
This implies that Ext () is the Fz-page of the Adams spectral sequence that converges to the
homotopy groups of mmf.

One might hope that the sub-Hopf algebra B is similarly realizable. We will show in Theorem
6.1 that it is not. In other words, while Extp is useful for studying the algebraic structure of the
C-motivic Adams Es-page Extc, it cannot be used to study Adams differentials.

2 A subalgebra of the C-motivic Steenrod algebra
Recall that the dual C-motivic Steenrod algebra A, [18] [8] takes the form

Ma[ro, 71, . .., &1, &2, - - ]
77 =TEim

i

where My = Fy[7]. The coproduct of A, is given by the formulas
Ti*—>T¢®1+Z§:2—k®Tk &HZ@Q_MX’&C-
k=0 k=0
By convention, we let &, equal 1.

Definition 2.1. Let B, be the quotient

Moo, 71, T2, T3, &1, €2]
Tg + T§17£%7T12 + T£275537_2277_32

of A,. Let B be the dual subobject of A.

Remark 2.2. The classical dual Steenrod algebra AS' takes the form Fy[(y, (o, .. ], which is the
result of inverting 7 in A,, where 7; and &; 1 correspond to (;4+1 and (:34_1 respectively. The classical
analogue of B, is the quotient

Fs[C1, G2, (3, Ca]
8,635,638

Lemma 2.3. The quotient B, is a Hopf algebra that splits as

M [0, 71, 72, €1, €2] M [73]
2 1 2 2 2 2
) +T£17£177—1 +T£2352a7_2 My T3

Proof. To check that B, is a Hopf algebra, one must verify that the coproduct is well-defined. In
other words, if x is an element of A, that maps to zero in B,, then the coproduct of z in A, also
maps to zero in B, ® B,. This follows from direct computation.

The splitting also follows from direct computation. Namely, the coproduct of 73 in A, maps to
1®73+m13®1in B, ® B,. Q.E.D.
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Proposition 2.4. Extp = Extp(Mz, My) is isomorphic to Ma[vz] ® Ext 42y, where v3 has degree
My
(14,1,7).

Proof. This follows immediately from the splitting of Lemma 2.3, together with the observation
that the cohomology of an exterior algebra is a polynomial algebra. Q.E.D.

The projection map p : A, — B, induces a map p, : Extc — Extg. We will use the map p, to
detect some structural phenomena in Extc.

3 Massey products in Extpg

The map p, is induced by a map p: C*(A) — C*(B) of cobar complexes. Note that p is a map of
differential graded algebras. In particular, C*(B) is a right C*(A)-module, and therefore Extp is a
right Extc-module. By definition, p.(x) equals 1 -z, where 1 is the identity element of Extp.

Moreover, the map p makes Extp into a “Toda module” over Extc, in the following sense. For
all z in Extp and all a and b in Extc such that - a and ab are both zero, there is a bracket (x, a, )
in Extg. These brackets satisfy the usual properties. Later in the proof of Proposition 4.2, we will
use the shuffling relation

(x,a,b) -c =z {(a,b,c),

for x in Extg and a, b, and ¢ in Extc.
For later use, we compute one particular bracket. In Extc, there is an element go of degree
(44, 4,24) that is detected by b3, in the May spectral sequence. This element satisfies the relation

Proposition 3.1. The bracket (1, g2, h3) in Extp in degree (45,6,24) equals egvi + hiv3, with no
indeterminacy.

Proof. First, we should verify that the bracket is well-defined. We need that 1 - g equals zero in
Extp in degree (44,4,24). But Extp is zero in that degree, so 1 - go must be zero.

Next, we compute the indeterminacy. By inspection, the only possible indeterminacy is gener-
ated by 1 - hghsdy. But this expression is zero because 1 - hs is zero in Extp for degree reasons.

The map p induces a map of May spectral sequences [13] [8]. The May E;-page that converges
to Extc has generators of the form h,;; with ¢ > 1 and j > 0. On the other hand, the May E;-page
that converges to Extp has generators hg, h1, ha, hog, ho1, h3g, and hyg. The map of May spectral
sequences takes h;; to the element of the same name, or to zero if the element is not present in the
May E;-page for Extp.

We will compute the bracket (1, g2, h3) in Extp using the May Convergence Theorem [14] [8].
Beware that this theorem has a technical hypothesis involving the behavior of higher “crossing”
differentials. In our specific case, this technical hypothesis is satisfied for degree reasons.

The key point is that there is a May differential

dg((ba1bao + b3obz1)ho(1)) = higa.

Therefore, (1, g2, hi) is detected by the image of (ba1b4g +b30bs1)ho(1) in the May spectral sequence
for Extp. By inspection, this image equals h3,b21ho(1).

Finally, we must determine the elements of Extp that are detected by h3,ba1ho(1) in the May
spectral sequence. Note that eg is detected by ba1hg(1) and vs is detected by hyg. However, beware
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that the element h3v3 is detected by hihi, in lower May filtration. Consequently, h3,b21ho(1)
detects both eqv3 and egv3 + h3vs.

We have now shown that (1, g, h3) equals either egv3 or egva+h3v3. Finally, we must distinguish
between these two cases.

Recall from [6, p. 4729] that there is a relation Mh$ = €3 + dg - egg in Extc. Apply p. to obtain
a relation in Extp. We have that

pe(MRS) = 1- (g2, h3, hY) = (1, g, hig)h3.
Here, we are using the well-known Massey product
Mh(lj = <92a hga h1>h§)

(see, for example, [8, Table 16]). So the possible values for p,(Mh) are hfegv3 and hSegvi + hivs.
The possible valuee for p.(eg) are 0, eg, hivs, and eq + hivs, so the possible values of p,(e}) are
0, €3, hjv3, and €} + hiedvs + hiegvs + hivi.
The only possible value for p.(dy) is do. The possible values for p.(eog) are 0, eog, higus,
and egg + h‘;’gvg,. (Recall that egg is an indecomposable element in Extc.) Therefore, the possible
values for p.(do - eog) are 0, e, hiedvs, and ej + hie3vs. Here, we are using the relation e = dog

in EXtA(Q).
By inspection, the only consistent possibilities are that p.(eq) = eg+h3vs, p«(e0g) = eog+h3gvs,
and p, (Mh$) = hSeqv3 + hivi. Q.E.D.

Remark 3.2. The May spectral sequence argument in the proof of Proposition 3.1 is much the
same as the corresponding proof in [12]. However, the complications involving h$v3 are new.

Remark 3.3. The careful reader may wonder about the definitional distinction between ey and
eo + hivz. Cannot ey in Extg be defined to be the value of p.(eg)? The answer lies in the
multiplicative structure of Ext 4(3). There is a relation h2ey = cou in Ext A(2)- From the formula
p«(e0) = eg + hivs, it follows that p.(hfeg) is not divisible by co or u in Extp. This multiplicative
fact is not consistent with the possibility that p.(ep) = ep under a different choice of basis.

4 The Mahowald operator
Definition 4.1. Let = be an element of Extc such that hjz = 0. Define Mz to be the Massey
product (ga, h3, x).

As always, the Massey product Mz can have indeterminacy. In other words, Mx may be a set
of elements, not just a single well-defined element.

If h3z = 0, then the iterated Massey products M*z = M(M*~'z) are defined for all k > 1.
This follows from the computation that

ho{g2, hg, @) = (hg, g2, hg)w =0
because (h3, ga, h3) = 0.

Proposition 4.2. Let x be an element of Extc such that A3z = 0. Then p.(Mz) equals (egv? +
h3v3)p.(x) in Extp.
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In particular, Proposition 4.2 implies that p,(Mz) always consists of a single element, even if
Mz has indeterminacy.

Proof. Consider the shuffling relation
p*(MJZ) =1 <92a hgax> = <17927 hg> * L.
Proposition 3.1 computes the second bracket. Q.E.D.

Remark 4.3. We have stated our results in terms of Massey products of the form (go, h3, x).
However, they also apply to Massey products of the form (hgga, h2,2) and (h3gs, ho, ), using the
shuffling relations

<hgg?, hOa ‘T> - <h’0927 hg’ ‘T> - <925 hga ‘T>

5 hy-periodic Ext
In the spirit of [6], one ought to study the hj-periodic maps

Extc[hy | ——>Extp[h] '] —=Ext 49 [h1"].

Computationally, this diagram is
]FQ[hitl} [04117 V2,03, .. ]LFQ[hzltl} [0%7 V2,3, u}*)IFQ [hitl] [’U%, V2, u]

Both maps take v} to v{. Moreover, the composition takes v, to v2u2n72_1 [6, Conjecture 5.5 and
Proposition 6.4] [5]. In this formula and throughout this section, we suppress all multiples of h
since it is a unit.

For degree reasons, p. takes vy to vo. The computations of p.(eg) and p.(epg) at the end of
the proof of Proposition 3.1 imply that p.(v3) = vz + vou and that p.(vy) = vsu? + vou. We
suspect that p.(vy,) = v3u2"72_2 + v2u2"72_1 in general, although we have not actually computed
this formula.

On the other hand, the map

Extplhi'] = Ext o) [hy']

takes vo and u to the elements of the same name in the target, and it must take vs to 0.

This information can be used to study hi-periodic values of the Mahowald operator. In the
notation of this section, the element egvs + h3vd of Extp maps to (vs 4+ vou)v? in Extplhy?].
Therefore, for z in Extc[hy '], we have that Ma maps to (vs + vou)v3p, () in Extg[hy?].

6 Non-Realizability

The purpose of Theorem 6.1 is that Extp is not the Fs-page of an Adams Es-page. In other words,
while Extp is useful for studying the algebraic structure of the C-motivic Adams Es-page Extc, it
cannot be used to study Adams differentials.
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Theorem 6.1. There does not exist a C-motivic ring spectrum F equipped with ring map f : £ —
mmyf such that the Fo-motivic cohomology of E is A//B, and such that f induces the projection

A//A(2) —» A//B
in cohomology.

Proof. Suppose that E exists. The unit map S%° — E induces a map of Adams spectral sequences.
On FEs-pages, this map is p, : Extc — Extg. By Theorem 1.1, the element Mh; of Extc maps to
hiegvi + hivi in Extp. Since Mh; is a permanent cycle in the Adams spectral sequence for the
C-motivic sphere spectrum [8], it follows by naturality that hiegvs + hiv3 is a permanent cycle in
the Adams spectral sequence for E.

On the other hand, the map f also induces a map of Adams spectral sequences. On Es-pages,
this map takes the form Extp — Ext4(z). The element vz must be a permanent cycle for degree
reasons. Also, da(eg) = hidy in the Adams spectral sequence for mmf. By naturality of f, it follows
that do(hieovi + hivy) = hidyvs.

This contradiction shows that F cannot exist. Q.E.D.

Remark 6.2. One can also pose an analogous question about a classical spectrum whose coho-
mology is A®'//B°. Such a classical spectrum also does not exist, for essentially the same reasons.
However, one must use the non-zero classical differential ds(eg) = Pcy in the Adams spectral
sequence for tmf.
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