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Abstract— This work investigates traffic control via controlled
connected and automated vehicles (CAVs) using novel controllers
derived from the linear-quadratic regulator (LQR) theory.
CAV-platoons are modeled as moving bottlenecks impacting the
surrounding traffic with their speeds as control inputs. An iterative
controller algorithm based on the LQR theory is proposed along
with a variant that allows for penalizing abrupt changes in platoon
speeds. The controllers use the Lighthill-Whitham-Richards (LWR)
model implemented using an extended cell transmission model
(CTM) which considers the capacity drop phenomenon for a realistic
representation of traffic in congestion. The effectiveness of the
proposed traffic control algorithms is tested using a traffic control
example and compared with existing proportional-integral (PI)- and
model predictive control (MPC)- based controllers from the literature.
A case study using the TransModeler traffic microsimulation software
is conducted to test the usability of the proposed controller in a
realistic setting. It is observed that the proposed controller works
well in both settings to mitigate the impact of the jam caused by a
fixed bottleneck. The computation time required by the controller
is also small making it suitable for real-time control.

Index Terms— Traffic control, Moving bottleneck control,
Connected and autonomous vehicles, Linear-quadratic regulator.

I. INTRODUCTION

The advent of connected and autonomous vehicle (CAV)

technology has led to the opening of unforeseen avenues in the

field of traffic control [1]. Compared to fixed actuators such

as variable speed limit (VSL) signs [2] and boundary flow

controllers [3], control using CAVs offers greater flexibility as

it allows actuators to move in space in a desired manner, therefore,

allowing them to be present at desired locations at desired times.

In addition to that, using CAVs is relatively cheaper than using

fixed actuators which need to be specifically deployed only for

the single purpose of traffic control whereas CAVs can be used for

other applications like sensing. Also, CAV-based control can be

effective in communities with low compliance rates to traditional

fixed actuators as their physical presence ahead of drivers would

make it impossible for them to avoid the control.

Given the advantages mentioned above, it is essential to explore

this potential of traffic control via CAVs by developing new

control methodologies that treat CAVs as moving actuators. In this

work, we consider the problem of maximizing the mean speed
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(MS) of traffic through traffic jam dissipation by controlling the

speed of CAV-platoons that act as rolling roadblocks blocking the

entire flow of traffic at their location. The main focus of this work

is on proposing and investigating a new controller implementation

for this problem in a linear-quadratic regulator (LQR) framework

which has not been explored in the literature and comparing it with

existing approaches from the literature in terms of performance

and computational tractability for real-time control.

Several studies in the past decade have considered the problem

of moving bottleneck control of traffic to improve traffic flow. In

[4], the authors have proposed a proportional-integral (PI)-type

feedback regulator to perform traffic control by controlling the

speed of CAV-platoons. PI-based controllers can produce the

desired improvements in traffic flow when coupled with certain

arbitrary constraints on vehicle speeds but do not generally

guarantee optimal control. In [5], the authors propose a model

predictive control (MPC)-based speed control algorithm to control

the traffic via CAV-platoons subject to the travel time reduction.

Their proposed speed control algorithm is optimal but requires

solving a nonlinear optimization problem at each time-step

which is highly time-consuming, especially for large networks

with several links and junctions, as it requires performing the

simulation several times, and therefore can be infeasible for

real-time control. Note that here we are only interested in studies

that use CAV-platoons as moving bottlenecks for traffic control.

Readers are referred to [1] for an extensive review of other use

cases associated with CAVs in the realm of traffic control.

To overcome the time requirement issue of the MPC-based

control algorithm and make a balance between the quality of the

speed control algorithm and its computational requirements, we

formulate the traffic control problem in the form of an LQR-based

optimization problem which regulates the states around an

equilibrium point while utilizing the structure of the state-space

dynamics of the system. In this work, we utilize the macroscopic

traffic model presented in [5] which incorporates the capacity

drop phenomenon as it allows for realistic control. We also present

a microscopic traffic simulation-based case study that tests the

usability of the proposed controller in the real world. Such a study

is absent in [4], [5] which only consider macroscopic simulation.

Given the main research gap in this area is the absence of

an optimal controller offering fast computation of controls for

real-time moving bottleneck control of traffic and the absence of a

study on the moving bottleneck controllers under realistic settings,

the present study makes the following contributions:

• An LQR-based controller design with macroscopic model

dynamics is proposed to control the speeds of CAV-platoons

allowing for mitigation of the effect of jam-forming



bottlenecks in the traffic stream. Also, the impact of various

parameters of the LQR-based controller is investigated with

respect to its performance in solving the given problem.

• A variant of the LQR-based controller allowing for a

penalty on large changes in control inputs over consecutive

time-steps is developed and shown to reduce the magnitude

of fluctuations in the controlled speeds allowing for safe and

realistic control.

• We present a comparison of the proposed LQR-based

controllers with existing MPC-based [5] and PI-based

[4] controllers in terms of computational tractability and

performance using macroscopic simulation.

• The performance of the proposed LQR-based controller is

further investigated using a microscopic traffic simulation

setup to assess its applicability and utility under realistic

settings of traffic flow.

The remainder of the paper is organized as follows: Section

II describes the traffic dynamics model used in this work. The

problem statement with the LQR-based solution scheme and

algorithms is presented in Section III. Section IV analyzes the

proposed approach in a macroscopic setting, and compares it with

existing approaches from the literature. Section V further analyzes

the proposed approach with the help of a microsimulation-based

case study. The paper is concluded with Section VI which also

proposes directions for future work.

Notations: We denote the vectors and matrices by lowercase

and uppercase bold symbols, respectively. The set of m-

dimensional real-valued vectors and n×p real-valued matrices

are respectively denoted by R
m and R

n×p. The identity matrix of

dimension q is represented by Iq. The set-theoretical minimum and

maximum operators are denoted by min and max, respectively.

II. TRAFFIC DYNAMICS MODEL

We present the state-space formulation for the traffic dynamics

model considered in this work. The flow of traffic across a highway

stretch with no on-ramps or off-ramps is modeled using the first-

order LWR model [6], [7] while accounting for the capacity drop

phenomenon [8]. The model is implemented using a Godunov

scheme [9] which is proposed previously in [5] and is an extension

of the classical Cell Transmission Model (CTM) implementation

[10]. Within this, the highway stretch is divided into NL segments

of equal length L (km) and the time horizon is divided into NT

smaller duration of T (sec) each such that the Courant-Friedrichs-

Lewy (CFL) condition [11]: T≤L/vf is satisfied where vf refers

to the free-flow speed of traffic. Let NCAV be the total number

of controlled CAV-platoons currently on the modeled highway

stretch. The traffic dynamics model is given as follows:

ρi[k+1]=ρi[k]+
T

L
(ϕi−1(ρi−1[k],u[k])−ϕi(ρi[k],u[k]),

∀i∈{1,...,NL}, where ρi[k] represents the traffic density (vehicles

per unit length) in Segment i at time index k, u[k] ∈ R
NCAV

denotes the control input and is given as

u[k]=
[

u1[k] ··· uNCAV
[k]

]T
, (1)

where uj[k],∀j ∈ {1, ... ,NCAV} denotes the control speed of

CAV-platoon j in the traffic stream. ϕi(.,.) is the actual traffic

flow (vehicles per unit time) that leaves Segment i and is given as

Fig. 1. Three segments of the modeled highway stretch along with two
CAV-platoons and the corresponding states written underneath. Arrows indicate
the direction of traffic flow.

ϕi(ρi[k],uj[k])=min{Di(ρi[k],uj[k]),Si+1(ρi+1[k])}, (2)

assuming the CAV-platoon j is in Segment i at time index k.

Figure 1 presents a schematic of the highway stretch with the

two elements- Segments and CAV-platoons along with their

associated states written underneath each label. Here, Di(·,·) and

Si+1(·) denote the traffic demand for Segment i and the supply

for Segment i+1, respectively. Demand refers to the traffic flow

wanting to leave a segment while supply refers to the traffic flow

that can enter a segment. The demand and supply functions are

defined using minimum functions of the state and input variables.

Interested readers are referred to [12] for the exact mathematical

definitions which are omitted from this paper for brevity. In the

sequel, for convenience, we denote the demand, supply, and actual

flow with the function names followed by the time index without

mentioning the inputs required to calculate each. The position

of CAV-platoon j on the highway is denoted by pj[k] where its

evolution over time is given as

pj[k+1]=pj[k]+Tv̄j(ρi[k],ρi+1[k],uj[k]), (3)

where v̄j(ρi[k],ρi+1[k],uj[k]) denotes the speed of CAV-platoon

j during time index k. Note that uj[k] is the control speed of the

CAV-platoon or the speed prescribed to the CAV-platoon by the

controller while v̄j is the realized speed of the CAV-platoon which

depends on the demand and supply conditions besides the control

speed.

The realized speed and the corresponding final position of the

CAV can be calculated according to conditions presented in [4],

[12] which use the demand and supply conditions of the various

segments besides the control speed. Two additional parameters

namely platoon length lj (m) and the minimum supply needed for

the platoon to pass to the next segment Smin are also used in these

calculations. The state-space equation can therefore be written as

x[k+1]=Ax[k]+Gf(x[k],u[k]), (4)

where the state vector x[k]∈R
NL+NCAV is defined as

x[k]=
[

ρ1[k] ··· ρNL
[k] p1[k] ··· pNCAV

[k]
]T

,

and the input vector u[k] is the same as in (1). Let nx :=NL+
NCAV be the number of states and nu :=NCAV be the number

of inputs. The matrix A=Inx
, matrix G∈R

nx×nx is a diagonal

matrix representing the coefficients of the nonlinearities in the

dynamics, and the vector-valued function f :Rnx×R
nu →R

nx

represents the nonlinearities in the evolution of traffic density and

the position of the CAVs with time which consist of differences

of nested minimum functions (2) as well as CAV-platoon speeds

obtained from nested conditional statements. The presence of such

nonlinearity in the state space makes it necessary for control prob-

lems based on the model to utilize nonlinear optimization schemes.



III. PROBLEM STATEMENT

AND LQR-BASED TRAFFIC CONTROL ALGORITHMS

The underlying traffic control problem addressed in this work

is defined as follows:

Problem 1. Given the nonlinear traffic dynamics (4), control

the speed of CAV-platoons entering the highway stretch at known

time-steps to mitigate the adverse effects of a traffic jam formed

in the middle of the stretch.

Problem 1 can be defined in the form of an optimization

problem as follows:

min
u[k]

J(x[k],u[k])

s.t. (4)

u[k]∈U (5)

where the cost function J(x[k],u[k]) is any function whose

minimization ensures an improvement in the traffic conditions

which can be in terms of an increase in the overall speed of traffic

or a decrease in the overall congestion level on the highway in

terms of traffic density. Here, the decision variables u[k] are the

speeds of the CAV-platoons on the highway stretch. The essential

constraints include the state-space dynamics (4) while the speeds

of these platoons can also be constrained to an arbitrary set U .

In the present work, the optimization problem (5) is formulated

in the LQR optimization framework [13]. For linear systems, this

results in a horizon-based optimization problem that aims to regu-

late the states and inputs of the system around the zero point taking

into account the system dynamics over a given number of future

time-steps with the help of a state-feedback law for the control

input in the form u[k]=K[k]x[k] where K[k] is called the gain

matrix and is calculated using existing formulae from the literature.

For nonlinear systems, an LQR-based optimization problem can be

written by linearizing the system around an equilibrium point over

the length of the horizon and regulating the difference between the

actual state/input and the equilibrium state/input around the zero

point which results in the control input trying to bring the system

closer to the equilibrium states. In the context of traffic control,

these equilibrium states and inputs are assigned values that result

in an improvement in the state of traffic. In this case, the control

input is defined by the following state-feedback law which takes

into account the selected equilibrium states and inputs:

u[k]=−K[k]x[k]+u∗[k]+K[k]x∗[k], (6)

whereK[k]∈R
nu×nx and (x∗[k],u∗[k]) denote the time-varying

LQR state-feedback matrix and the time-varying equilibrium

point of the nonlinear system (4) at time index k, respectively.

To obtain the gain matrix K[k] at any time-step for controlling

the nonlinear system within the LQR framework, the Gauss-

Newton LQR (GN-LQR) algorithm [13] can be applied. The

same is presented in the remainder of this section along with

a variant of the GN-LQR algorithm that penalizes changes in

control inputs over consecutive time-steps. Various parameters

of these algorithms are investigated in the ensuing sections in the

context of traffic control using moving bottlenecks.

A. The Gauss-Newton LQR (GN-LQR) algorithm

Here, we present an iterative LQR algorithm called the GN-

LQR algorithm [13] which can be used to solve the LQR optimiza-

tion problem (5) for the given nonlinear system (4). We introduce

the following notation before presenting the GN-LQR algorithm:

N : horizon length.

N-step input and state matrices:

U :=
[

u[0] ··· u[N−1]
]

,

X :=
[

x[0] ··· x[N ]
]

.

Corresponding time-varying equilibrium counterparts:

U∗ :=
[

u∗[0] ··· u∗[N−1]
]

,

X∗ :=
[

x∗[0] ··· x∗[N ]
]

.

Corresponding control input difference matrix:

δU :=
[

δu[0] ··· δu[N−1]
]

,

Linearized state-space matrices:

Â[k]=A+GAf [k], B̂[k]=GBf [k], (7)

where

Af [k] : The derivative matrix of f(x[k],u[k]) w.r.t. x∗[k],
Bf [k] : The derivative matrix of f(x[k],u[k]) w.r.t. u∗[k].
The LQR cost function to be minimized:

J(x[k],u[k]):=Jx(x[k])+Ju(u[k]), (8)

where

Jx(x[k]):=

N−1
∑

k=0

(x∗[k]+δx[k])TQ(x∗[k]+δx[k]),

Q :The LQR state-weight matrix,Q⪰0,

Ju(u[k]):=

N−1
∑

k=0

(u∗[k]+δu[k])TR(x∗[k]+δu[k]),

R :The LQR input-weight matrix,R≻0.

The goal of the algorithm is to minimize the above objective

function given the state-space dynamics (4) along with physical

bounds on the speeds. The GN-LQR algorithm [13] can be

summarized in Algorithm 1. To the standard algorithm, we also

add a step to impose a non-negativity constraint and an upper

bound on the speed equal to the free-flow speed.

B. The Gauss-Newton LQR algorithm with a penalty on variation

in inputs

The controls produced at any time-step using the GN-LQR

controller are independent of the controls in the previous time-

steps. Due to this, the optimal controls can vary significantly over

consecutive time-steps as is observed in Section IV. Since these

controls are executed by CAV-platoons that are traveling within

a traffic stream comprised of both autonomous and human-driven

vehicles, the latter of which can sometimes have high reaction

times, large changes in control inputs over consecutive time-steps

can result in life-threatening collisions due to vehicles not braking

in time. To avoid such circumstances, here we present a variant of

the LQR optimization problem which applies a penalty on changes

in control inputs over consecutive time-steps thus preventing large



Algorithm 1: The GN-LQR Algorithm

1 input: State-space matrices A, G, nonlinear function

f , initial state x[0], horizon length N , LQR weight

matrices Q, R, error tolerance ϵ, maximum number of

iterations M , initial guess for equilibrium control inputs

U∗, and initial guess for initial equilibrium state x∗[0].
2 set: current iterate

i=0, U=U∗, δU=U−U∗, δx[0]=x[0]−x∗[0].
3 repeat

4 for k=0,...,N−1 do

5 compute: Â[k],B̂[k] via (7) around

the time-varying equilibrium point (x∗[k],u∗[k])
of nonlinear dynamics (4) at time index k.

6 set: δx[k+1]=Â[k]δx[k]+B̂[k]δu[k].
7 compute: x∗[k+1] via nonlinear dynamics (4).

8 ▷ Solve the Gauss-Newton optimization

problem for controller gains K[0],...,K[N−1]
9 set: P [N ]=0

10 for l=N,...,1 do

11 set: P [l−1]=Q+Â[l−

1]TP [l]Â[l−1]−Â[l−1]TP [l]B̂[l−1]×(R+
B̂[l−1]TP [l]B̂[l−1])−1B̂[l−1]TP [l]Â[l−1].

12 for k=0,...,N−1 do

13 set: K[k]=(R+

B̂[k]TP [k+1]B̂[k])−1B̂[k]TP [k+1]Â[k].
14 set: δu[k]=−K[k]δx[k].

15 set: δU=
[

δu[0] ··· δu[N−1]
]

16 set: U=min{max{U∗+δU ,0},vf},

U∗=U , i=i+1.
17 until ∥δU∥<ϵ or i>M
18 compute: u[0] via (6) using K[0].
19 output: u[0].

changes in control inputs. The implementation of the optimization

problem is derived based on [14] which prescribes the inclusion

of an additional term in the LQR objective function penalizing

variations in control inputs. This is achieved by modifying the state-

space formulation of the system by defining a new state which

is an augmentation of the original state vector and the original

control input vector and a new control input vector that captures

the change in control input. A new weight matrix R′ is introduced

in the LQR optimization problem that governs the fluctuations in

the control inputs. A larger magnitude of elements in R′ implies

a larger penalty on the change in control inputs over consecutive

time-steps whereasR′=0 implies no penalty is imposed. The GN-

LQR algorithm presented in the previous section can be modified

to obtain the new algorithm which is referred to as GN-LQR-with-

penalty (GN-LQRP) in the remainder of the paper and is omitted

for brevity. More details on the same can be found in [12].

IV. NUMERICAL STUDY AND IMPLEMENTATION

In this section, we investigate the performance of the proposed

control algorithms for moving bottleneck-based traffic control

with the help of a macroscopic simulation and compare it with

existing PI- [4] and MPC-based [5] controllers. This is followed

by a microsimulation-based case study using the Transmodeler

6.1 [15], [16] traffic simulation software to test the near real-world

performance of the controller and to learn the advantages and gaps

in applying the controller in the real world. All macroscopic sim-

ulations applying the CTM model are performed using MATLAB

R2021b running on a 64-bit Windows 10 with a 2.2GHz IntelR

CoreTM i7-8750H CPU and 16GB of RAM while the microscopic

simulations are performed on a 64-bit Windows 10 with a 2.3GHz

IntelR CoreTM i7-11800H CPU and 16GB of RAM.

A. Scenario description and evaluation metrics

The traffic is modeled using the dynamics presented in Section

II. We consider an 8 km long highway stretch with no on-ramps

or off-ramps which is divided into 16 even segments of length

0.5 km each. A total duration of 2 hr is considered for the

example with time divided into steps of the duration of 10 sec each.

The following values of traffic flow parameters are used for the

fundamental diagram considered in this work [12]: critical density

ρc = 60 veh/km, free-flow speed vf = 100 km/hr, congestion

wave speed wc=38 km/hr, maximum density ρm=320 veh/km,

maximum flow qcap=6000 veh/hr, and capacity drop parameter

α=0.83, similar to [5]. We consider a platoon length of 4.5 m

which essentially implies platoons of one CAV per lane, and

Smin = 10. The initial density on all the segments is set to

20 veh/km. The supply available at the downstream end of the

highway is set to qcap while the demand wanting to enter at the

upstream end of the highway starts and ends at 1900 veh/hr with a

value of 5490 veh/hr from 120 to 600 seconds. A reduced flow area

is simulated on the highway by reducing the outflow of Segment 13
to 5400 veh/hr for the first hour after which the flow of the segment

is restored to maximum capacity. The impact of the control is

measured using three metrics, the Total Travel Time (TTT) in

veh·hr, the Total Travel Distance (TTD) in veh·km, and the Mean

Speed (MS) in km/hr which are defined similarly to [5] as follows:

TTT:=TL

NT
∑

k=1

NL
∑

i=1

ρi[k], TTD:=TL

NT
∑

k=1

NL
∑

i=1

ϕi[k], and

MS:=TTD/TTT.

where T, L, NT , and NL are the duration of each time-step, the

length of each segment, the total number of time-steps in the

simulation, and the total number of segments in the considered

highway stretch, respectively. In general, a lower TTT, a higher

TTD, and a higher MS are desirable — The closer the traffic

density is to the critical density, the better the values of these

metrics as the traffic is free-flowing and at the maximum flow

possible. Therefore, at each implementation of the LQR-based

controllers we select such equilibrium states for linearization

which improves the values of these metrics. Besides these metrics,

we also consider the Average Computation Time (ACT) for

each controller which is defined as the average time required to

compute the control inputs at any time-step during the simulation.

We assume that controlled vehicles enter the stretch every 15
time-steps starting from time-step 60 to time-step 600 of the

process horizon. Figure 2 presents the simulated traffic densities

in the presence of the reduced flow and without any control

implementation. The metrics for this case are presented in Table I.



Fig. 2. Density (veh/km) evolution in the uncontrolled case with the reduced
bottleneck flow.

B. A note on proposed controller tuning

Analysis of the tuning is omitted from this paper for brevity and

only important results are presented. Interested readers are referred

to [12] for detailed analysis related to tuning of the proposed

controller parameters. In this work, N=3 is chosen for GN-LQR

while N=50 is chosen for GN-LQRP. Regarding the maximum

number of iterations, it is observed that the best performance of

the GN-LQR controller is achieved at the number of iterations = 1.

For this analysis, the LQR objective weight matrices are defined

as diagonal matrices in the form Q =

[

wQINL
0

0 0NCAV

]

,

R= wRINCAV
, and R′ = wR′INCAV

where wQ,wR,wR′ ∈ R.

It is observed that a larger magnitude of wQ compared with wR

results in a better performance. Also, increasing the magnitude

of wR′ , naturally results in further degradation in the performance

as the reduction in speeds is further restricted. The values

wQ=100, wR=1, and wR′ =30 are found suitable in this study.

Additionally, the equilibrium density is set to 59 veh/km and the

equilibrium speed is set to 99 km/hr. The values are set a little

below ρc and vf to allow for Jacobian calculation which requires

a small perturbation of solutions around the equilibrium solution.

C. Comparison of GN-LQR and GN-LQRP with PI- and

MPC-based controllers

Here, we present the results obtained from using the proposed

algorithms and compare them with those obtained from using the

PI- and MPC-based controllers which are implemented the same

as in [4] and [5], respectively. Table I presents the values of the

evaluation metrics for all controller implementations for the given

scenario. It is observed that the GN-LQR and GN-LQRP algo-

rithms result in a significant improvement over the uncontrolled

scenario. The density evolution plots are presented in Figure 3. The

improvement is achieved by creating smaller controlled reductions

in segment flows (by reducing the CAV-platoon speeds) upstream

of the bottleneck segment (Segment 13). Since the outflow of

segments decreases with an increase in density above ρc, reducing

the flow of traffic in small amounts in the upstream segments

thereby increasing their density in small amounts while preventing

higher densities in the bottleneck segments results in overall higher

flows across all the segments. This is the underlying idea behind

moving bottleneck control which is correctly executed by the LQR-

based controllers. For the PI-based controllers, we obtain optimal

gains for the given scenario by setting up a nonlinear optimization

problem with the objective of maximizing the MS. For the MPC-

based controller the weights and horizon length are set the same as

in [5]. The studies [4], [5] also prescribe a lower bound of 60 km/hr

for the control speed to account for a low reaction time of human

Fig. 3. Density (veh/km) evolution on the highway stretch with [left] GN-LQR
and [right] GN-LQRP controllers.

TABLE I

EVALUATION METRICS WITH DIFFERENT CONTROLLERS.

Scenario TTT TTD MS CT

No Control 1,019.0 78,998 77.5 -

PI (lower bound 60 km/hr) 820.8 78,741 95.9 7.1051

PI (no lower bound) 1,017.5 78,741 77.3 1.5982

MPC (lower bound 60 km/hr) 840.6 78,741 93.6 2.8729

MPC (no lower bound) 848.7 78,741 92.7 3.3722

GN-LQR (N=3) 832.5 78,741 94.5 0.0058

GN-LQRP (R′=30I,N=50) 839.7 78,741 93.7 0.0884

Fig. 4. Density (veh/km) evolution on the highway stretch with PI-based control
with an [left] optimal gains and lower bound of 60 km/hr, and [right] optimal
gains and no lower bound.

Fig. 5. Density (veh/km) evolution on the highway stretch with MPC-based
control with a [left] lower bound of 60 km/hr, and [right] no lower bound.

drivers and prevent accidents due to sudden speed drops. This

is implemented by projecting the controller speed to the bounds.

However, with increased connectivity and autonomy in vehicles,

it is possible to expect no plausible limit to what the speeds can

be dropped to. In this study, we, therefore, also test the controllers

with and without a lower bound on the speed.

Figures 4 and 5 present the density evolution plots for the PI-

and MPC-based controllers with and without a lower bound. The

PI-based controller with a lower bound reduces the impact of the

bottleneck while the controller without a lower bound, results in no

improvement in the MS over the uncontrolled case. In the second

case, the best value of the gains that minimize the controller error,

results in blocking all the vehicles at the upstream end but this

results in a small MS and hence the gains selected in this case are

such that the controller does not affect the traffic conditions at all.

The MPC-based controller results in an improvement in the traffic

condition in both cases. To assess the speed variation using the dif-

ferent controllers we present the speed profile of CAV-platoon 11



Fig. 6. CAV-platoon speed profile for platoon 11 with [left] PI-based controller
with a lower bound, and MPC-based controller with and without lower bound,
and [right] GN-LQR controller and GN-LQRP controller with R

′
=30I.

that enters the highway at time-step 210 in Figure 6. The speed pro-

files for the PI-based and the GN-LQRP controllers are observed to

be the smoothest with a gradual reduction in speeds. The GN-LQR

and the MPC-based controller without a lower bound result in large

abrupt changes in speeds for the platoon within a time-step. The-

oretically, such variations in speed are possible within a time-step

(which is equal to 10 seconds) however, they can be unsafe under

high reaction times. While the MPC-based controller with a lower

bound prevents as high of speed fluctuations as in the GN-LQR

and MPC-based without a bound, we can still observe fluctuations

close to 40 km/hr which is the shift from the maximum speed to

the lower bound value. This shows that the lower fluctuations are

not a property of the controller (as in the case of GN-LQRP) but

an artifact of the lower bound which is arbitrarily imposed.

Table I also presents the computation time (CT) in seconds for

all the controllers which refers to the ACT in the case of MPC- and

LQR-based controllers and to the offline computation time for gain

calculation in the case of PI-based controllers. In the current work,

the PI-based controller only requires offline gain computation and

there is virtually no real-time computation time for the controller.

Although in cases when the offline gains do not work as expected

due to different realization of the traffic conditions than expected,

then real-time computation of gains may be required. The CT

for the LQR-based controllers mostly comprises the time to

compute the derivatives of the state space equation with respect

to the equilibrium states and inputs and is almost two orders of

magnitude smaller than the CT for the MPC-based controllers.

V. MICROSIMULATION CASE STUDY

In this section, we reproduce the traffic control scenario using

a realistic microscopic traffic simulator and use it to test the

performance of the GN-LQR control algorithm under a realistic

setting. The micro-simulation is performed using TransModeler

6.1 [15], [16] while the control algorithm is implemented using

MATLAB R2021b. The GISDK API in TransModeler is used

to interact with the controller.

A. Simulation setup

The setup of the highway stretch and the traffic demands are

consistent with the traffic scenario presented in Section IV. The

highway stretch is designed with three lanes with a maximum

capacity of 2000 veh/hr/lane. A bottleneck is generated by a

work zone (a lane-changing guide signal with a 30% compliance

rate) on Segment 13. The microscopic simulation parameters are

carefully tuned to reproduce the bottleneck and the capacity drop

which are consistent with the scenario described in Section IV.

Fig. 7. Density (veh/km) evolution on the highway stretch in microsimulation
for the different scenarios: [left] no control with bottleneck, [right] with control.

TABLE II

METRICS FOR SCENARIOS TESTED IN THE MICROSIMULATION

Scenarios TTT TTD MS

No bottleneck 949 78,708 82.94

No control with bottleneck 1,059 78,724 74.34

GN-LQR-based control with bottleneck 991 79,333 80.05

The CAV-platoons consist of three vehicles traveling side-by-side

acting as rolling roadblocks trying to block all traffic behind them

and not allowing any vehicles to pass by. These CAV-platoons

enter the network every 150 seconds. Note that there are three

different update frequencies used in the microsimulation namely

the simulation step update frequency which is 10Hz, the state

variables and controller update frequency which is 0.1Hz, and

the controlled CAV-platoon speed update frequency is 1Hz. The

traffic densities across the highway stretch and the position of

the CAV-platoons on the stretch at the current time-step are

obtained from the microsimulation and passed to the GN-LQR

controller (Algorithm 1) which prescribes control speeds to the

CAV-platoons on the stretch. The other inputs to the controller

are obtained from the CTM model described in Section II.

B. Simulation result

Table II presents the values of the evaluation metrics obtained

from the microscopic traffic simulation both in the presence and

absence of a bottleneck on the highway as well as in the case in

which control is implemented using the GN-LQR algorithm to

mitigate the impact of the bottleneck. Figure 7 presents the density

evolution plots with a bottleneck both with and without control. It

is observed that the GN-LQR algorithm results in an improvement

in MS compared to the uncontrolled scenario. In the controlled

scenario, TTD is increased due to the extra CAV-platoons (36

platoons and 108 vehicles in total) sent into the highway stretch.

The TTT is reduced using the LQR-based controller compared to

the uncontrolled scenario. In the controlled case, the size of the

jam created by the bottleneck is reduced in both space and time as

the congestion wave propagates over a smaller duration. Figure 8

presents a space-time diagram of the trajectories of all vehicles over

the simulation duration, with the red lines indicating the trajectories

of the CAV-platoons. Observing the trajectories of the platoons

along with their impact on the surrounding traffic provides further

insights into the performance of the controller. It is seen that the im-

provement is achieved by slowing down the vehicles about to join

the jam thus creating larger gaps behind the jam that allow for the

congestion wave to dissipate (see Figure 8 zoomed-in area for more

details). The jams created by this slowing down of vehicles behind

the existing jam are rather small and dissipate on their own or with

the help of gaps created by the CAV-platoons that follow. This is

similar to the observations made in the case of the macroscopic



Fig. 8. Vehicle trajectory space-time diagram for the controlled scenario (the color of each trajectory point reflects the speed of the vehicle at the time, and the
CAV-platoons trajectories are labeled with red lines): [top] the left lane, [middle] the middle lane, [bottom] the right lane.

simulation-based analysis and provides preliminary confirmation

of the usability of the controller in a realistic setting. Interested

readers are referred to [12] for results related to the implementation

of the other controllers in a microscopic simulation setting.

VI. CONCLUSIONS AND FUTURE DIRECTION

From the above analysis, it is observed that both GN-LQR and

GN-LQRP controllers are able to reduce the negative effects of

fixed bottlenecks on the highway stretch. The performance of the

GN-LQR controller is comparable to the MPC-based controller

(with and without lower bound on control speeds) and the PI-based

controller (with lower bound on control speeds) at small values of

N while the performance of GN-LQRP is comparable to the other

controllers at a larger N=50. The PI-based controller without a

lower bound on the control speed does not improve the condition

of traffic. Both LQR-based controllers outperform the MPC-based

controller in terms of computation time for each controller run.

Based on obtained results, LQR-based controllers are almost two

orders of magnitude faster than the MPC-based controller. The PI-

based controller is the fastest as it only requires the offline computa-

tion of the gains. However, this is contingent upon the existence of

a reliable way to compute the gains offline. The controls obtained

from all the controllers are plausible in terms of maximum

acceleration/deceleration requirements for vehicles to achieve the

prescribed speeds. However, accounting for human reaction times,

the PI-based controller (with a lower bound on the control speed)

and the GN-LQRP controller offer the safest and most realistically

achievable controls. In the microsimulation-based study, the LQR-

based controller is observed to improve the traffic conditions

compared to the uncontrolled scenario resulting in a reduction in

the size of the jam created by the bottleneck on the highway stretch.

Future directions of this work include the extension to

large-scale road networks with the incorporation of junctions.

Other forms of control such as ramp metering and variable

speed limits can also be tested for incorporation into the current

framework by considering the corresponding controls as inputs

to the system thus allowing for integrated control. Also, robust

control with unknown parameters in the realistic setting remains

unsolved for this control problem and can be explored by testing

and evaluating more scenarios in microsimulation.
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