
COLA: Orchestrating Error COding and LeArning for

Robust Neural Network Inference Against Hardware Defects

Anlan Yu 1 Ning Lyu 1 Jieming Yin 2 Zhiyuan Yan 1 Wujie Wen 1

Abstract

Error correcting output codes (ECOCs) have been

proposed to improve the robustness of deep neu-

ral networks (DNNs) against hardware defects of

DNN hardware accelerators. Unfortunately, ex-

isting efforts suffer from drawbacks that would

greatly impact their practicality: 1) robust accu-

racy (with defects) improvement at the cost of

degraded clean accuracy (without defects); 2) no

guarantee on better robust or clean accuracy using

stronger ECOCs. In this paper, we first shed light

on the connection between these drawbacks and

error correlation, and then propose a novel com-

prehensive error decorrelation framework, namely

COLA. Specifically, we propose to reduce inner

layer feature error correlation by 1) adopting a

separated architecture, where the last portions of

the paths to all output nodes are separated, and 2)

orthogonalizing weights in common DNN layers

so that the intermediate features are orthogonal

with each other. We also propose a regulariza-

tion technique based on total correlation to miti-

gate overall error correlation at the outputs. The

effectiveness of COLA is first analyzed theoreti-

cally, and then evaluated experimentally, e.g., up

to 6.7% clean accuracy improvement compared

with the original DNNs and up to 40% robust

accuracy improvement compared to the state-of-

the-art ECOC-enhanced DNNs.

1. Introduction

Due to the growing computational complexities of deep

neural networks (DNNs), hardware acceleration becomes

1Department of Electrical and Computer Engineering, Lehigh
University, Bethlehem, USA 2School of Computer Science, Nan-
jing University of Posts and Telecommunications, Nanjing, China.
Correspondence to: Zhiyuan Yan <zhy6@lehigh.edu>, Wujie
Wen <wuw219@lehigh.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

critical to their practical use (Chen et al., 2019; Hao et al.,

2019; Ye et al., 2020; Zhang et al., 2020). However, DNN

hardware accelerators often suffer from hardware defects,

which result in DNN parameter deviations and hence per-

formance degradation (Li et al., 2017; Zhang et al., 2018;

Long et al., 2019; Mittal, 2020; Ibrahim et al., 2020; Dash

et al., 2021). Therefore, it is essential to alleviate perfor-

mance degradation due to hardware defects by improving

the robustness of DNNs against parameter deviations.

Inspired by error correction codes (ECCs) widely used in

digital communication and storage systems, recent works

have adopted error correcting output codes (ECOCs) to in-

crease the robustness of DNNs (Dietterich & Bakiri, 2018;

Liu et al., 2019; Liu & Wen, 2019; Verma & Swami, 2019;

Song et al., 2021). Instead of mapping sample labels to

one-hot labels in the original DNNs, DNNs with ECOCs en-

code sample labels to codewords of a binary error correction

code such as Hadamard code. The Hamming distances be-

tween codewords translate into greater inter-class distances.

Additionally, DNNs with ECOCs utilize sigmoid output

layer activation, which improves DNNs’ fault tolerance ca-

pability (Verma & Swami, 2019). Consequently, DNNs

with ECOCs can correct errors without the knowledge of

the error model, thanks to their inherent error correction

capability.

Just like ECCs for digital communications, we envision

that an ideal ECOC solution dedicated to the state-of-the-

art DNNs should satisfy the following requirements: 1)

keeping model accuracy as high as possible regardless

of whether the hardware (e.g., memory to store weights)

is defect-free (clean accuracy) or not (robust accuracy);

2) improving robust accuracy more prominently when

adopting stronger ECOCs with increased minimum Ham-

ming distances (dmin). Unfortunately, there is no systematic

study on designing ECOCs for DNNs to satisfy these two

requirements. Furthermore, current solutions are far from

satisfactory in terms of both aspects (Verma & Swami, 2019;

Song et al., 2021). Without loss of generality, we experi-

mentally compare the accuracy of models with and without

ECOCs under different levels of weight variations using an

example image classification task±AlexNet-CIFAR10 and

error model (detailed settings are presented in Section 4.1).

1

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

72.46 70.58

46.34

19.63

68.55 68.06

58.35

35.74

67.87 67.22

57.42

34.29

0

10

20

30

40

50

60

70

80

0 0.1 0.4 0.7

A
cc

u
ra

cy

Variation level

Conventional DNN ECOC with one-hot coding ECOC with Hadamard-16

Figure 1. Performance in the presence of hardware defects of

AlexNet/CIFAR10 with three network configurations: 1) using

one-hot labels and softmax output layer activation; 2) using one-

hot labels and sigmoid output layer activation; 3) using Hadamard-

16 labels and sigmoid output layer activation. The experimental

settings are described in Section 4.1.

Figure 1 shows that when the weights suffer from zero

(or very limited) variations, models protected by different

strengths of ECOCs (e.g., one-hot or Hadamard-16 coded la-

bel) unexpectedly deliver lower accuracy than their counter-

parts without ECOC. Among ECOC-protected models, the

one with a stronger ECOC (Hadamard-16, dmin = 8) per-

forms even worse than a weaker ECOC (one-hot, dmin = 2).

Figure 1 also shows that while ECOCs improve the model’s

robust accuracy under high variation levels, their impact is

still limited. Again, a stronger ECOC surprisingly offers

lower robust accuracy than a weaker one.

In this work, we identify the root cause that fundamentally

limits the performance of ECOCs in modern DNNs. At a

high level, our key observation is that errors in DNNs are

intrinsically correlated due to the layer-wise convolution-

based feature extraction or fully-connected based decision

making. Error correlation significantly diminishes the ef-

fectiveness of error correction codings for DNNs. In our

work, error broadly refers to the difference between the

target and the actual DNN outputs originating from both

the model approximation error (without hardware defects)

and parameter deviation incurred model error (with hard-

ware defects). In other words, with or without parameter

deviations, in DNNs with ECOCs, the error of each binary

classifier is correlated with those of the other classifiers. An

in-depth discussion is presented in Section 3.1. Inspired

by this, we rethink the design of error coding for DNNs

and propose a comprehensive error decorrelation framework

that orchestrates the error coding and learning architecture,

namely COLA, for much improved clean accuracy and ro-

bust accuracy when considering weight parameter errors

incurred by hardware device defects for both analog and

digital DNN hardware accelerators.

Our major contributions are three-fold: 1) We propose

an amplitude-adaptive weight orthogonalization (AAWO)

method to orthogonalize feature errors on the early layers

to prevent error correlation propagation and accumulation.

Theoretical analysis shows that the feature errors are approx-

imately independently identically distributed with weight

orthogonalized. 2) We propose a regularization technique

based on total correlation (TC) to reduce output error cor-

relation rigorously. Theoretical results show that regulariz-

ing total correlation potentially lowers classification error

probability. 3) We propose a holistic framework for error

decorrelation tailored for DNNs, namely COLA, by integrat-

ing AAWO, separation architecture, and TC regularization

across inner and output layers, so as to facilitate the adop-

tion of stronger ECOCs and maximize their error correction

capability of improving clean accuracy and robust accuracy.

The evaluations of COLA are performed on the MNIST,

CIFAR10, CIFAR100, and Tiny ImageNet datasets using

Lenet-5, AlexNet, and VGG-16. Experimental results show

that COLA results in not only clean accuracy improvement

compared with the original DNNs but also robust accuracy

improvement compared to previous DNNs with ECOCs.

2. Background

2.1. Error Correcting Output Codes (ECOCs)

Let x ∈ R
d and C ∈ C be an input to a DNN and its cor-

responding label, respectively, where C is the label sample

space. The output of the DNN, parameterized by θ, is given

by f(x; θ) = [f1(x; θ), f2(x; θ), ..., fN (x; θ)], where N is

the number of outputs. For training purposes, each label C
is encoded into a target through a mapping T (C) : C → T ,

e.g., one-hot encoding, and supervised training of the DNN

is formulated as

min
θ

L(θ) ≜ Ex [l (f(x; θ), T (C))] , (1)

where L(θ) is the training loss and l(·, ·) is the sample loss.

x, modeled as a random variable, is drawn from a true

distribution (infinite dataset) or empirical distribution (finite

dataset).

In a classification task with DNN using ECOCs, the code-

book consists of |C| binary codewords with code length N .

With sigmoid as the output activation function, each element

of f(x; θ) ranges from 0 to 1. A binary cross entropy (BCE)

is used as the loss function. By noticing that T (C) is a

binary vector,

LBCE(θ) = Ex

[N
∑

n=1

− log(1− Un)

]

, (2)

where Tn(C) is the n-th entry of the target T (C) and Un ≜

|fn(x; θ)− Tn(C)|. During inference, the decision is made

through the decoding process D(f(x; θ)) : [0, 1]N → C.

2

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

The decoding process is given by

D(f(x; θ)) = argmin
c∈C

d(f(x; θ), T (c)), (3)

where d(·, ·) is a decoding metric, such as the l1 or l2 norm.

We highlight several differences between DNNs with

ECOCs and the original DNNs. 1) T (C) maps a label to

a designed binary codeword for the former, whereas T (C)
is the one-hot encoding for the latter. 2) While the former

uses sigmoid fn(x; θ) =
1

1+e−zn
as output activation func-

tion, the latter uses softmax fn(x; θ) = ezn∑
N
i=1 ezi

, where

zn = zn(x; θ) is the output logit (input to activation func-

tion). 3) While DNNs with ECOCs use BCE defined in

Equation (2) as the loss function, the latter uses categorical

cross entropy (CCE)

LCCE(θ) = Ex

[N
∑

n=1

−Tn(C) log fn(x; θ)

]

. (4)

2.2. Hardware Defects in DNN Accelerators

The state-of-the-art DNN accelerators are classified as digi-

tal and analog, depending on how weights are stored, and

multiply-accumulate operations are implemented in cir-

cuitry. Both digital and analog DNN accelerators suffer

from hardware defects (Ni et al., 2017; Kim et al., 2018).

State error in analog accelerators. Memristive DNN accel-

erator is one of the most popular analog DNN accelerators

because of its low latency and low data movement (Shafiee

et al., 2016; Ni et al., 2017). It accelerates matrix-vector

multiplication by mapping operands to analog voltages, cur-

rents, and conductances on a crossbar structure. Due to the

analog nature of the computation in memristive DNN accel-

erators, the operands, especially weights W that are stored

as conductances on the crossbar, often deviate from their

accurate values for various reasons, such as device variation,

stuck-at-faults, and electrical noise (He et al., 2019; Liu

et al., 2015; Chen et al., 2017). In this paper, we simulate

such state error, where the perturbed weights W̃ follow log-

normal distribution: W̃ = W⊙eV, where ⊙ represents the

Hadamard product. V has the same dimensions as W, and

the elements in V follow Gaussian distribution N (0, γ2).

Bit-flip error in digital accelerators. Typical digital DNN

accelerators like GPUs have dedicated hardware memory,

such as DRAM, to store model parameters. To improve

energy efficiency, recently DNN accelerators also decrease

the memory supply voltage (Reagen et al., 2016; Kim et al.,

2018; Chandramoorthy et al., 2019; Stutz et al., 2021). How-

ever, bit error probability increases exponentially as memory

supply voltage scales down. In this work, we assume bit

error happens independently and randomly on each bit posi-

tion with a bit flip rate α.

3. Our Approach-COLA

3.1. Design Motivation and Overview of COLA

To further understand why existing ECOCs achieve both

undesirable clean accuracy and robust accuracy for DNNs

with or without hardware-incurred weight errors, we ob-

serve that error correlation is intrinsically rooted in DNNs

for two reasons. First, with or without ECOCs, a convo-

lutional or fully-connected layer of a DNN leverages the

shared information (e.g., the same input features or neurons)

to compute each output feature map or neuron. If there exist

errors in the shared information, the errors appearing across

different outputs are structurally correlated. When such cor-

related errors are not decoupled at earlier layers, these errors

will propagate and accumulate layer by layer and eventu-

ally translate into incorrect decisions at the output layer.

Second, from the perspective of learning, modern DNNs

need to collaboratively train output classifiers via softmax

activation to achieve high accuracy (see Equation (4)), while

ECOC-enhanced DNNs require the independence of output

classifier learning (see Equation (2)) to maximize the er-

ror toleration capability with increased minimum Hamming

distance. For models with zero or very limited weight vari-

ations, the correlated intrinsic model approximation error

dominates. While original DNNs penalize such an error

by softmax-based collaborative classifier learning, DNNs

with ECOCs cannot. Hence, original DNNs without ECOC

outperform DNNs with ECOCs in clean accuracy. With

more hardware defects, the correlated errors, which are now

dominated by errors due to parameter deviation, also in-

crease significantly and quickly exceed the toleration limit

of original DNNs. In this case, DNNs with ECOCs with

a larger error tolerance margin due to larger dmin and the

usage of sigmoid output (Verma & Swami, 2019), perform

better. However, the improvement is still limited even with

stronger ECOCs, since the inflated output error correlation

is not explicitly handled in learning.

To reduce error correlation in DNNs, one intuitive way is to

physically separate the path from an intermediate layer to

the output nodes as proposed in (Verma & Swami, 2019).

However, as we shall show in Sec. 4.2, its effectiveness is

limited due to the high error correlation on the common

layers. Therefore, we believe effectively decorrelating er-

rors before and after the structurally separated intermediate

layer is essential. Inspired by this, we propose a compre-

hensive error decorrelation framework COLA. The driving

vision of COLA is to mitigate the feature error correlation

due to model approximation error or model parameter de-

viations from the inner layers to the output layer through

a fine-grained manner so as to improve the clean accuracy

and robust accuracy of ECOC-based DNN inference simul-

taneously. Figure 2 depicts an overview of COLA, which

mainly consists of inner feature error decorrelation and out-

3

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

…

… …

…
…

…
… …

Input image

Inner Feature Error Decorrelation:

Amplitude-Adaptive Weight

Orthogonalization (AAWO)

Decoder

Classifier 1

Classifier 2

Classifier N - 1

Classifier N

Output Error Decorrelation:

Trained with TC regularizer

Inner Feature Error Decorrelation:

Separation architecture

Reshape

𝑾𝑾𝑻

𝑾
Before AAWO After AAWO

𝐶𝑜𝑣(𝑼): covariance matrix

of output absolute error

Before TC Reg After TC Reg

1 0 1 1 1 0 0 0 1 1 0 1 1 0 1

Decode

1 1 1 1 0 0 0 0 1 1 1 1 1 0 1

1 0 1 1 1 1 0 1 1 1 0 1 1 0 1

Decode

1 0 1 1 1 1 0 1 1 1 1 1 1 0 1

With COLA

(Error bits 3)

Without COLA

(Error bits 6)

✓



0.1 0.2 0.3 -0.2 0.1 0.1

-0.8 0.1 0.5 0.5 -0.6 -0.7

0.7 -0.4 0.2 0.1 0.9 1.2

0.1 0.1 -0.3 -0.4 -1.5 0.3

0.2 -0.14 0.24 -0.1

-0.14 2.00 -1.83 0.27

0.24 -1.83 2.95 -1.06

-0.1 0.27 -1.06 2.61

2.50 -0.14 0.24 -0.1

-0.14 2.00 0.14 0.27

0.24 0.14 2.95 0.01

-0.1 0.27 0.01 2.61

Figure 2. An overview of our proposed COLA, including inner feature error decorrelation and output error decorrelation. Inner feature

error decorrelation further includes the adoption of separation architecture and our proposed amplitude-adaptive weight orthogonalization

(AAWO). By using AAWO, WW
T becomes a diagonal matrix. The proposed TC regularizer results in diagonal dominant Cov(U).

put error decorrelation. To decorrelate inner feature errors,

we adopt separation architecture to reduce error correlation

on the latter layers and propose amplitude-adaptive weight

orthogonalization (AAWO) to reduce error correlation on

the common layers. Moreover, we propose a regularization

technique based on total correlation (TC) to reduce output

error correlation. Detailed designs and theoretical analysis

are presented below.

3.2. Inner Layer Feature Error Decorrelation

Feature error decorrelation in the early shared layers is vi-

tal to the performance of separation architectures. In this

subsection, we first analyze how the existing weight orthog-

onalization (WO), originally proposed to speed up DNN

convergence (Huang et al., 2018; 2020), helps decorrelate

inner feature errors. We then propose an amplitude-adaptive

weight orthogonalization (AAWO) to better suit the needs

of ECOCs for separation architectures.

For a shared fully connected layer, indexed m, in a separa-

tion architecture, its input-output relation can be

o
m = σ(Wm

o
m−1 + b

m), (5)

where om, σ, Wm, om−1, and b
m are the output, activation

function, weight matrix, input, and bias of the layer m, re-

spectively. With parameter deviation ∆W
m and layer input

error ∆o
m−1, the corrupted layer output õm is expressed as

õ
m = σ((Wm +∆W

m)(om−1 +∆o
m−1) + b

m)

= σ(Wm
o
m−1 +W

m∆o
m−1 +∆W

m
o
m−1

+∆W
m∆o

m−1 + b
m).

(6)

In general, the entries of the error term (Wm∆o
m−1 +

∆W
m
o
m−1 + ∆W

m∆o
m−1) can be highly correlated.

We assume ∆W
m∆o

m−1 is negligible and focus on

W
m∆o

m−1 and ∆W
m
o
m−1. Assume ∆W

m consists

of i.i.d. Gaussian entries, then ∆W
m
o
m−1 consists of

i.i.d. Gaussian entries. If the entries of ∆o
m−1 are

i.i.d. Gaussian, and WO is applied, i.e., Wm(Wm)T =
AwI with constant Aw, then W

m∆o
m−1 consists of i.i.d.

Gaussian entries. Compared with the desired output,

the error term can be viewed as small value, so the ac-

tivation function can be approximated as linear locally

at (Wm
o
m−1 + b

m), which finally makes the whole

(Wm∆o
m−1 + ∆W

m
o
m−1 + ∆W

m∆o
m−1) approxi-

mately independent Gaussian. Though the entries of the

error term are not identically distributed for a single DNN

input across the whole DNN input space, the error can be

viewed as i.i.d. Gaussian approximately.

Note that both the correlation and the variance of the entries

of final output error ∆o contribute to the accuracy drop

of DNNs with ECOCs. Though WO reduces correlations,

the strong constraint Wm(Wm)T = AwI makes DNN

converge to a point with larger gradient ∇WmL (as it needs

to satisfy ∇WmL + µ
T
W

m = 0 instead of ∇WmL = 0,

where µ is the Lagrangian multiplier). This results in larger

absolute value of ∂L
∂Wm , larger variance of the loss variation

∆L ≈ ∂L
∂Wm∆W

m and therefore larger variance of the

entries of ∆o. To balance the correlation and variance, we

relax WO and propose AAWO as follows

min
θ

L(θ), s.t. W
m(Wm)T = Dm (7)

where Dm is a diagonal matrix with trainable diagonal

elements. At the price of a little weaker feature error decor-

relation, we reduce the variance of the error entries to obtain

better robustness as we will show in Section 4.2.3.

For a convolutional layer, indexed mc, in the shared layers

4

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

of the separation architecture, we have

õ
mc = σ(Wmc ⊛ o

mc−1 +W
mc ⊛∆o

mc−1

+∆W
mc ⊛ o

mc−1 +∆W
mc ⊛∆o

mc−1 + b
mc),

(8)

where ⊛ is the convolution operation. As a linear operation,

convolution can be represented by matrix multiplication

V ec(õmc) = σ(CWmcV ec(omc−1)+

CWmcV ec(∆o
mc−1) +Comc−1V ec(∆W

mc)+

C∆WmcV ec(∆o
m−1) + b

mc),

(9)

where CWmc and Comc−1 are the corresponding circular

shift matrices so that their matrix multiplications are equiv-

alent to the convolutions, and V ec(·) is vectorization op-

eration. Notice that large random or orthogonal circular

shift matrices have good isometric properties (Wright & Ma,

2022), i.e., Comc−1C
T
omc−1 and CWmcC

T
Wmc are close to

multiple of identity matrices. The remaining arguments

for i.i.d. error on convolutional layers are the same with

fully connected layers. AAWO for convolutional layers can

be obtained by first converting W into a two-dimensional

matrix and then optimizing Equation (7).

3.3. Output Error Decorrelation

In this subsection, a regularization technique is proposed

to directly penalize output error correlation. We first intro-

duce the concept of total correlation as a measure of error

correlation.

Definition 3.1. Let Z1, Z2, . . . , ZK be random variables,

their total correlation TC(Z1, Z2, . . . , ZK) is defined as

TC(Z1, Z2, . . . , ZK)=

[K
∑

i=1

H(Zi)

]

−H(Z1, Z2, . . . , ZK),

(10)

where H(Zi) is the entropy of the random variable Zi and

H(Z1, Z2, . . . , ZK) is their joint entropy.

As the distribution of U1, U2, . . . , UN are intractable in

DNNs with ECOCs, we made approximations of their total

correlation by viewing them as Gaussian.

Lemma 3.2. Let Z1, Z2, . . . , ZK be Gaussian distributed

random variables with covariance matrix Σ, then their total

correlation

TCG(Z1, Z2, . . . , ZK) =
1

2
Tr(logΣ)− 1

2
log |Σ|. (11)

By using TCG as a proxy of output error total correlation,

DNNs with ECOCs are trained to minimize

L(θ) = LBCE(θ) + λTCG(U1, U2, . . . , UN). (12)

To show how the total correlation influences the perfor-

mance of DNN with ECOC, we derive the following theo-

rem.

Theorem 3.3. Let ϵ be the upper bound of the total cor-

relation, i.e., TC(U1, U2, . . . , UN) < ϵ. Let dmin be the

minimum Hamming distance of the code, and denote the set

A =

{

(u1, u2, . . . , uN) :

N
∑

n=1

un > dmin/2

}

. (13)

Let PU = PU1,U2,...,UN
and P̄U = PU1PU2 . . . PUN

, the

classification error probability Pe is then upper bounded as

Pe ≤ P̄U (A) +
√
1− e−ϵ. (14)

In Theorem 3.3, P̄U is a constructed distribution, such that

U1, U2, ..., UN are independent and the marginal distribu-

tion for each Un is the same as that for PU . Theorem

3.3 suggests that the difference between classification error

probability under correlated and independent output errors

is smaller than a quantity
√
1− e−ϵ determined by output

error total correlation. According to Equation (14), as the

code length of ECOC goes to infinity, P̄U (A) vanishes, and

the term
√
1− e−ϵ dominates. This explains why merely

increasing the code length results in limited improvement

in classification accuracy, and why error decorrelation is

important for ECOCs. Without any further assumption, the

influence of code length and Hamming distance on classifi-

cation performance is described in the following corollary:

Corollary 3.4. Let β be a constant such that the BCE

loss LBCE ≤ Nβ. Suppose β < dmin

2N , then P̄U (A) ≤
exp

(

− 2
N

(

dmin

2 −Nβ
)2
)

, and

Pe ≤ exp

(

− 2

N

(

dmin

2
−Nβ

)2
)

+
√
1− e−ϵ. (15)

Apparently, the bound in Equation (15) becomes smaller

when dmin increases. However, a larger dmin is usually ac-

companied by larger code length N which tends to increase

the value of the bound. To analyze the effects of dmin and

N together, we define ν = infN
dmin(N)

N for any family of

codes, then Equation (15) can be written as

Pe ≤ exp
(

−2N (ν/2− β)
2
)

+
√
1− e−ϵ. (16)

When β, ν, and ϵ are fixed, increasing N leads to a smaller

upper bound for Pe and potentially higher accuracy. Simi-

larly, when N and ϵ are fixed, increasing ν (i.e., increasing

minimum Hamming distance dmin) or decreasing β (i.e.,

smaller loss) also results in higher accuracy. Moreover, us-

ing the proposed TC regularization leads to smaller ϵ and

smaller upper bound for Pe, which further proves the effec-

tiveness of the proposed output error decorrelation method.

For the proofs of the results in this subsection, please refer

to Appendix A.

5

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Table 1. Accuracy (% in the format of average ± standard deviation) with state error in analog accelerators. γ defines the variation level as

introduced in Section 2.2. Original, ECOC and ECOC+Sep (Verma & Swami, 2019) are the benchmarks. ECOC+Sep+orth, ECOC+TC

and ECOC+TC+Sep+orth are different combinations of techniques in COLA.

γ Original ECOC ECOC+Sep
COLA (Ours)

ECOC+Sep+orth ECOC+TC ECOC+TC+Sep+orth

LeNet-5

MNIST

0 98.87 ± 0.08 98.82 ± 0.04 98.86 ± 0.05 98.75 ± 0.08 98.92 ± 0.09 98.79 ± 0.09

0.1 98.43 ± 0.15 98.59 ± 0.07 98.66 ± 0.04 98.60 ± 0.08 98.68 ± 0.08 98.71 ± 0.08

0.4 70.10 ± 2.41 81.09 ± 1.92 82.85 ± 0.93 91.54 ± 0.56 85.98 ± 1.41 93.12 ± 0.47

0.7 23.63 ± 1.58 36.10 ± 1.94 36.94 ± 2.19 45.80 ± 1.26 40.90 ± 1.50 49.50 ± 1.69

AlexNet

CIFAR10

0 72.33 ± 0.19 68.04 ± 0.50 71.67 ± 0.71 77.08 ± 0.38 69.74 ± 0.39 79.04 ± 0.20

0.1 70.65 ± 0.11 67.45 ± 0.35 71.07 ± 0.63 76.89 ± 0.37 69.41 ± 0.36 78.88 ± 0.15

0.3 57.84 ± 0.43 62.61 ± 0.58 65.67 ± 0.33 75.04 ± 0.19 65.69 ± 0.23 76.53 ± 0.17

0.5 36.11 ± 0.77 51.99 ± 0.61 54.48 ± 0.83 68.49 ± 0.69 56.34 ± 0.54 68.55 ± 0.20

VGG-16

CIFAR100

0 68.16 ± 0.52 49.06 ± 0.55 68.84 ± 0.41 68.82 ± 0.12 71.19 ± 0.15 71.30 ± 0.29

0.1 64.74 ± 0.95 48.07 ± 0.49 66.92 ± 0.45 67.74 ± 0.37 68.89 ± 0.39 70.16 ± 0.35

0.2 51.38 ± 1.56 44.00 ± 0.42 60.44 ± 0.34 66.12 ± 0.31 61.19 ± 0.58 68.60 ± 0.37

0.3 25.11 ± 1.18 33.06 ± 0.79 43.29 ± 0.89 62.93 ± 0.23 39.52 ± 0.55 64.25 ± 0.13

4. Evaluation

4.1. Experimental Settings

We use Tensorflow as our implementation framework. All

simulations are conducted in a workstation with one AMD

Ryzen Thread ripper 2990WX 32-core processor and four

NVIDIA GeForce RTX 2080Ti GPUs.

Datasets We evaluate and compare the performance of

COLA with various baselines on four datasets: MNIST (Le-

Cun, 1998), CIFAR10/CIFAR100 (Krizhevsky et al., 2009),

and Tiny ImageNet (Russakovsky et al., 2015).

Models We apply COLA across different DNN models.

Specifically, LeNet-5 and AlexNet are used to evaluate

MNIST and CIFAR10, respectively. To evaluate the scala-

bility and sensitivity of COLA in complex tasks which often

suffer from more prominent learning errors and error cor-

relations at a reasonable fault injection simulation cost, we

also extend our evaluation to CIFAR100 and TinyImageNet

using VGG-16. Following the separation architectures used

in (Verma & Swami, 2019) and (Song et al., 2021), detailed

architectures of COLA used in the experiment for LeNet-

5, AlexNet, and VGG-16 are shown in Figure 5. The code

lengths and the number of parameters used for different mod-

els and datasets are given in Table 2. For a fair comparison,

schemes with ECOCs are designed without significantly

increasing the complexity of the original model, measured

by the total number of trainable parameters. Model com-

plexities for different configurations are listed in Table 2.

To verify the scalability of our proposed COLA, we also

extend our evaluation to large models such as ResNet-34

and ResNet-50. These additional experimental results can

be found in Appendix C.

Codebook selection Besides using one-hot code, we select

the codebook T from Hadamard codes, of which the code

length is 2x and the minimum Hamming distance is 2x−1.

We exclude all-zero columns from the code generator matrix.

Table 2. Network Complexity

Network Dataset Models #Parameters

LeNet-5 MNIST

Original 44, 426
ECOC-Had15 44, 851

Sep-Had15 51, 727

AlexNet CIFAR10

Original 2, 472, 266
ECOC-Had15 2, 473, 551
ECOC-Had63 2, 485, 887

Sep-Had15 876, 703
Sep-Had63 2, 623, 951

Sep-orth-Had15 876, 959
Sep-orth-Had63 2, 624, 207

VGG-16 CIFAR100

Original 34, 040, 228
ECOC-Had127 34, 150, 847

Sep-Had127 32, 994, 311
Sep-orth-Had127 32, 997, 447

VGG-16
Tiny

ImageNet

Original 40, 741, 384
ECOC-Had255 40, 966, 719

Sep-Had255 41, 284, 989
Sep-orth-Had255 41, 288, 125

The code length N is 15, 63, 127 and 255 for MNIST,

CIFAR10, CIFAR100 and Tiny ImageNet, respectively.

Error models We evaluate the performance of COLA under

two scenarios: 1) state errors in analog DNN accelerators,

and 2) bit flip errors in digital DNN accelerators as described

in Section 2.2. The errors are injected into the models dur-

ing inference. The variation levels in analog DNN accel-

erators align with (Liu & Wen, 2019) and the bit-flip rates

are chosen according to (Stutz et al., 2021; 2022). Model

parameters are uniformly quantized into 8 bits±a common

setting in most DNN accelerators (Stutz et al., 2021). Mean

accuracy over 100 fault injection simulations is reported.

Evaluation benchmarks We compare the inference accu-

racy with and without hardware defects between the baseline

schemes and COLA. The baseline schemes are: 1) the origi-

nal model with one-hot labels and softmax output activation

(referred to as Original henceforth for brevity), 2) DNNs

with the conventional ECOCs (ECOC), and 3) A recent

ECOC solution built upon the same separation architecture

6

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Table 3. Performance of VGG-16/Tiny ImageNet with different

levels of state errors (γ) and bit-flip rates (α).

Type Level Original ECOC ECOC+Sep ECOC+TC+Sep+orth

γ

0 51.73 ± 0.67 50.53 ± 1.03 52.04 ± 0.78 54.72 ± 0.19

0.1 28.09 ± 1.07 45.42 ± 0.82 47.43 ± 0.92 52.37 ± 1.01

0.2 08.19 ± 1.78 29.76 ± 2.49 30.86 ± 1.98 46.82 ± 1.87

0.3 02.94 ± 1.10 08.75 ± 1.07 10.23 ± 1.46 34.85 ± 1.66

α

0 50.35 ± 1.32 48.73 ± 1.78 51.21 ± 1.01 54.59 ± 0.35

0.001 45.01 ± 1.52 48.09 ± 1.76 50.17 ± 0.88 53.74 ± 0.49

0.01 02.33 ± 0.68 28.65 ± 2.57 30.64 ± 2.65 42.54 ± 2.35

0.1 00.50 ± 0.00 00.52 ± 0.02 00.51 ± 0.01 04.57 ± 0.94

of COLA for a fair comparison ± (ECOC+Sep) (Verma &

Swami, 2019). For COLA, three different settings are 1)

the proposed intermediate layer feature error decorrelation

scheme in addition to Sep (ECOC+Sep+orth), 2) the pro-

posed output error decorrelation method in combination

with ECOCs (ECOC+TC), and 3) the combination of these

two methods (ECOC+TC+Sep+orth).

4.2. Results and Analysis

4.2.1. PERFORMANCE WITH HARDWARE DEFECTS

In this subsection, we evaluate the performance of COLA in

the presence of analog state errors (γ) and bit-flip errors (α)

that occur in weight parameters. The results are summarized

in Table 1, Table 3 and Table 4.

Baseline comparison (Original, ECOC, and ECOC+Sep).

According to the tables, we observe that standard ECOC

degrades the clean accuracy (i.e., γ = 0 or α = 0) compared

with Original. This can be explained with Theorem 3.3 by

arguing that the output error here originates from inaccurate

model approximation and the loss residual. The magnitude

of accuracy drop varies among different datasets. In general,

for simple tasks like MNIST, the accuracy drop is trivial.

For difficult tasks like Tiny ImageNet (see Table 3), the

accuracy drop is also not significant due to the inherent

high model approximation error. On the other hand, for

CIFAR10 and CIFAR100, we observe a large accuracy drop

after using ECOC because the impact of error correlation

is more pronounced. Considering hardware defects (i.e.,

γ > 0 and α > 0), ECOC improves the accuracy only

slightly in most cases. The effectiveness of ECOC has

been limited primarily because of error correlation. After

introducing ECOC+Sep (Verma & Swami, 2019) to reduce

error correlation, both clean accuracy and robust accuracy

improve but the performance is still not prominent since the

error decorrelation by separation only is not comprehensive.

Ablation study and comparison with the state-of-the-art.

We observe that all the techniques in COLA outperform

ECOC with no doubts. Specifically, ECOC+TC achieves

better accuracy than ECOC, which can also be supported by

the conclusion made in Theorem 3.3. ECOC+Sep+orth can

6
8
.5
3

6
7
.9
6

6
2
.6
7

5
0
.4
3

7
6
.1
1

7
5
.7
3

7
2
.4 6
2
.9
5

6
7
.3
4

6
6
.8
3

6
2
.0
1

4
9
.8
9

7
7
.1
3

7
6
.8
7

7
4
.5
9 6
6
.1
8

6
8
.0
4

6
7
.4
5

6
2
.6
1 5
1
.9
9

7
9
.0
4

7
8
.8
8

7
6
.5
3 6
8
.5
5

40

50

60

70

80

90

0 0.1 0.3 0.5

A
cc

u
ra

cy

Variation level

ECOC-10 ECOC+TC+Sep+orth-10 ECOC-15

ECOC+TC+Sep+orth-15 ECOC-63 ECOC+TC+Sep+orth-63

Figure 3. Influence of code length and dmin: AlexNet-CIFAR10

under state errors for 6 network configurations: with and without

COLA when the codebook is one-hot code, Hadamard-15 (Had15),

and Hadamard-63 (Had63).

achieve similar or better accuracy than ECOC+Sep (Verma

& Swami, 2019), because using the additional amplitude-

adaptive weight orthogonalization (AAWO) technique re-

sults in feature error independence on the early layers,

which further leads to error decorrelation. Combining

the inner layer feature error decorrelation and output er-

ror decorrelation, ECOC+TC+Sep+orth achieves the best

performance among all, e.g., up to 6.7% improvement on

clean accuracy for AlexNet-CIFAR10 and up to 53% im-

provement on robust accuracy (α = 0.01) for VGG-16-

CIFAR100 compared with Original. Compared with ECOC,

ECOC+TC+Sep+orth achieves up to 40% improvement on

robust accuracy (α = 0.05) for VGG-16-CIFAR100.

Among different model-dataset combinations, COLA works

better for more complex datasets. The reason is that com-

plex datasets usually have more output nodes and hence

larger error correlation. With the help of COLA, error cor-

relation is reduced significantly and the advantage of using

ECOCs with a larger code length is further enhanced. In

summary, COLA can simultaneously improve clean accu-

racy and robust accuracy for different tasks.

4.2.2. THE INFLUENCE OF CODE LENGTH AND dmin

We use AlexNet-CIFAR10 as an example to demonstrate

the influence of code length N and dmin on model accuracy.

Figure 3 compares the performance of AlexNet under one-

hot code, Hadamard-15 (Had15), and Hadamard-63 (Had63)

before and after applying COLA. As Figure 3 shows, ECOC-

15 (with N = 15 and dmin = 8) performs worse than

ECOC-10 (with N = 10 and dmin = 2) at all variation

levels. This is counter-intuitive since the code with larger

N and dmin are expected to provide a larger error margin

and better robustness. As illustrated in Equation (16), the

accuracy is determined by N , ν, and the error correlation ϵ
if the average output error 1

N

∑

n Un is fixed as β. ECOC-

15 performs worse than ECOC-10 because ECOC-15 has

a stronger error correlation. To further verify this, we then

7

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Table 4. Accuracy (% in the format of average ± standard deviation) with bit-flip error in digital accelerators. α defines the bit-flip rate as

introduced in Section 2.2. Original, ECOC and ECOC+Sep (Verma & Swami, 2019) are the benchmarks. ECOC+Sep+orth, ECOC+TC

and ECOC+TC+Sep+orth are different combinations of techniques in COLA.

α Original ECOC ECOC+Sep
COLA (Ours)

ECOC+Sep+orth ECOC+TC ECOC+TC+Sep+orth

LeNet-5

MNIST

0 98.82 ± 0.08 98.80 ± 0.10 98.73 ± 0.08 98.61 ± 0.05 98.86 ± 0.10 98.69 ± 0.10

0.01 86.45 ± 2.13 89.68 ± 1.83 93.96 ± 0.58 97.29 ± 0.19 95.29 ± 1.51 97.58 ± 0.25

0.05 26.48 ± 1.96 33.20 ± 2.40 48.60 ± 2.24 72.31 ± 1.58 57.62 ± 2.42 73.54 ± 1.00

0.10 13.95 ± 0.51 14.55 ± 0.68 31.02 ± 1.38 35.05 ± 0.99 26.58 ± 0.78 38.53 ± 1.17

AlexNet

CIFAR10

0 71.69 ± 0.47 67.25 ± 0.39 71.04 ± 0.76 76.91 ± 0.52 69.51 ± 0.51 78.35 ± 0.45

0.01 58.56 ± 0.50 60.83 ± 0.67 62.59 ± 0.33 74.53 ± 0.15 64.54 ± 0.37 76.02 ± 0.26

0.05 25.64 ± 0.13 31.58 ± 1.31 33.51 ± 1.26 59.02 ± 0.92 38.74 ± 1.66 62.12 ± 0.58

0.10 13.72 ± 0.25 15.68 ± 1.52 16.35 ± 1.49 37.66 ± 0.73 16.78 ± 1.17 41.50 ± 0.79

VGG-16

CIFAR100

0 66.12 ± 0.56 47.97 ± 1.08 68.55 ± 0.48 68.68 ± 0.28 70.55 ± 0.32 71.13 ± 0.21

0.001 59.01 ± 0.93 46.15 ± 1.19 68.13 ± 0.63 68.19 ± 0.35 70.32 ± 0.35 70.57 ± 0.54

0.010 09.67 ± 1.83 31.62 ± 1.70 60.29 ± 1.45 61.85 ± 1.52 57.99 ± 1.75 63.24 ± 1.21

0.050 01.03 ± 0.05 01.47 ± 0.16 04.96 ± 0.25 34.67 ± 1.70 02.58 ± 0.46 41.51 ± 1.58

68.82 67.74 66.12
62.93

68.8 67.23

60.51

45.69

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3

A
cc

u
ra

cy

Variation level

AAWO WO

Figure 4. Performance comparison between the proposed

amplitude-adaptive weight orthogonalization (AAWO) and

original weight orthogonalization (WO) for VGG-16-CIFAR100

under state error in analog accelerators.

apply COLA to both ECOC-10 and ECOC-15 to mitigate

error correlation. As expected, ECOC+TC+Sep+orth-15

outperforms ECOC+TC+Sep+orth-10 because reducing er-

ror correlation via COLA enables the DNN to truly take

advantage of the enhanced error correcting capability of a

stronger ECOC. We also observe that ECOC-63 performs

slightly better than ECOC-15. This is because the posi-

tive effect of stronger code slightly out-weights the neg-

ative aspect of error correlation. After applying COLA,

we minimize the negative effect of error correlation, and

hence ECOC+TC+Sep+orth-63 achieves a larger gain over

ECOC+TC+Sep+orth-15.

4.2.3. COMPARISON OF AAWO WITH SOTA WEIGHT

ORTHOGONALIZATION

We use VGG-16-CIFAR100 as an example to compare the

performance of our proposed amplitude-adaptive weight

orthogonalization (AAWO) and the state-of-the-art (SOTA)

weight orthogonalization (WO) techniques (Huang et al.,

2018; 2020), i.e., encouraging the rows of the weight matrix

to be orthonormal. Note that, though both weight orthog-

onalization techniques are simulated based on the method

proposed in (Huang et al., 2020), any method that solves

Equation (7) can be used in our scheme. As shown in Fig-

ure 4, by relaxing the constraint in Equation (7), the robust-

ness greatly improves, which is consistent with our analysis

in Section 3.2. The results demonstrate that a strong con-

straint could increase error magnitude even though it helps

reduce error correlation, which would potentially lead to

lower classification accuracy.

4.2.4. EFFECTIVENESS OF COLA ON ORIGINAL DNNS

While the overall goal of our proposed COLA is to reduce

error correlation, its applicability is not limited to the ECOC

framework. In essence, it can be also generalized to improve

the performance of original clean DNNs. To verify this, we

conduct experiments based on an example setting±the orig-

inal AlexNet CIFAR10 and then further apply COLA and

comparable designs to it±the original DNN, the original

DNN with COLA, and ECOC with COLA. Accuracy is eval-

uated under state errors (γ) in analog accelerators, where γ
is chosen as 0 (clean accuracy), 0.1, 0.3 and 0.5 (robust ac-

curacy). Note that the differences between Original-COLA

and ECOC-COLA are: 1) Original-COLA uses one-hot code-

words while ECOC-COLA uses Hadamard codes; 2) the

output activation for Original-COLA is softmax activation,

while ECOC-COLA uses sigmoid activation; 3) Original-

COLA is trained with categorical cross entropy with total

correlation regularizer while ECOC-COLA is trained with

binary cross entropy with total correlation regularizer. We

report the corresponding results in Table 5 and make the

following observations: 1) After applying COLA to original

DNNs, clean accuracy (γ = 0) is improved. This suggests

that even though the softmax activation function penalizes

error correlation to some extent, original DNNs still suffer

from residual error correlation that can be reduced by ap-

plying COLA; 2) Applying COLA to original DNNs also

improves robust accuracy (γ = 0.1, 0.3, 0.5) since COLA

8

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Table 5. Performance Comparison of ECOC and the original

DNNs on AlexNet/CIFAR10 with COLA.

γ Original Original-COLA ECOC-COLA

0 72.33 76.68 79.04

0.1 70.65 76.29 78.88

0.3 57.84 73.37 76.53

0.5 36.11 66.74 68.55

reduces not only residual error correlation but also state

error correlation; 3) In comparison, ECOC-COLA outper-

forms Original-COLA, which can be attributed to the larger

inter-class distance in ECOC coding. This enlarged distance

between codewords in ECOC coding enhances the fault

tolerance capability of the network, resulting in improved

performance over the original DNNs.

5. Related Works

5.1. Applications of ECOCs

ECOCs have been applied to DNNs to increase fault-

tolerance and robustness (Deng et al., 2010; Liu & Wen,

2019; Liu et al., 2019; Verma & Swami, 2019; Song et al.,

2021). Deng et al. apply ECOC on CNN to achieve a better

trade-off between high reliability and low false rejection

rate (2010). Liu et al. propose a framework with ECOC to

increase the reliability of memristive DNN accelerators with

specially designed codewords (2019). All of these works

fail to satisfy the two aforementioned requirements, that

is, keeping model accuracy and improving robust accuracy

more prominently. Recent work uses ECOCs against adver-

sarial attacks. Verma et al. show that the error margin is

enlarged by using sigmoid output layer activation and pro-

pose an ensemble-based separation architecture to mitigate

the error (2019). Though they use separation architecture

to alleviate errors, the achievable effectiveness is limited

due to incapable of comprehensively decorrelating feature

errors in DNNs.

5.2. Reliable DNN Hardware Accelerators

Analog DNN accelerators like memristive accelerators suf-

fer from state error, stuck-at-faults, and electrical noise.

Geng et al. propose an on-chip training scheme to compen-

sate for the weight disturbance (2021). An early de-noising

scheme is proposed to compensate for the influence of errors

at the early layers and prevent error propagation (Yu et al.,

2022). A digital offset technique and a method to optimize

the digital offset are proposed to reduce the area of the ac-

celerator and compensate for the errors (Meng et al., 2021).

These works increase the fault-tolerance by assuming the

knowledge of the error model or the application instead of

increasing the inherent error correction capability of DNN.

Differently, our work focuses on adapting ECOC on DNN

so that DNN is inherently fault-tolerant without knowing

the error types ahead of time.

For digital DNN accelerators like GPU, errors could occur

in weight memory or buffers. Chandramoorthy et al. study

the impact of bit-flip errors in different layers of DNN and

show the accuracy degradation (2019). To reduce the in-

fluence of such errors, Srinivasan et al. propose storing

important bits in the robust cells (2016). Stutz et al. propose

a comprehensive scheme that combines random bit error

training, robust fix point quantization, and weight clipping

to improve the inherent robustness of DNN against bit-flip

error (2021). Nevertheless, such protections are only effec-

tive on bit-flip errors, while our proposed methods are able

to protect DNN against different kinds of errors, including

bit-flip errors.

6. Conclusion

In this paper, we identify a fundamental limitation of apply-

ing ECOCs to DNNs: error correlation. Inspired by this, we

rethink the design of error coding for DNNs, and propose

a comprehensive error decorrelation framework COLA to

improve both clean accuracy and robust accuracy. First,

we propose amplitude-adaptive weight orthogonalization

(AAWO) on the early layers to reduce error correlation prop-

agation and accumulation. Second, we propose a regulariza-

tion technique based on total correlation to mitigate output

error correlation. Third, we propose a holistic framework for

error decorrelation in DNNs, including AAWO, separation

architecture and total correlation regularization across inner

and output layers, so as to facilitate the adoption of stronger

ECOCs and maximize their impact on both clean accuracy

and robust accuracy. Experimental results based on different

models show that our proposed techniques achieve up to

53% accuracy improvement.

Acknowledgements

This work is partially supported by the National Sci-

ence Foundation (NSF) under Grant No. 2011236, Grant

No. 2006748, Grant No. 2238873 and Grant No. 1835278,

as well as by Lehigh University under an Accelerator Grant.

References

Bretagnolle, J. and Huber, C. Estimation des densitÂes: risque

minimax. SÂeminaire de probabilitÂes de Strasbourg, 12:

342±363, 1978.

Chandramoorthy, N., Swaminathan, K., Cochet, M., Paidi-

marri, A., Eldridge, S., Joshi, R. V., Ziegler, M. M.,

Buyuktosunoglu, A., and Bose, P. Resilient low volt-

age accelerators for high energy efficiency. In 2019 IEEE

9

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

International Symposium on High Performance Computer

Architecture (HPCA), pp. 147±158. IEEE, 2019.

Chen, K.-C., Ebrahimi, M., Wang, T.-Y., and Yang, Y.-C.

Noc-based dnn accelerator: A future design paradigm. In

Proceedings of the 13th IEEE/ACM International Sympo-

sium on Networks-on-Chip, pp. 1±8, 2019.

Chen, L. et al. Accelerator-friendly neural-network training:

Learning variations and defects in RRAM crossbar. In

Design, Automation Test in Europe Conference Exhibition

(DATE), pp. 19±24, 2017.

Dash, S., Luo, Y., Lu, A., Yu, S., and Mukhopadhyay, S.

Robust processing-in-memory with multibit reram us-

ing hessian-driven mixed-precision computation. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 41(4):1006±1019, 2021.

Deng, H., Stathopoulos, G., and Suen, C. Y. Applying

error-correcting output coding to enhance convolutional

neural network for target detection and pattern recogni-

tion. In 2010 20th International Conference on Pattern

Recognition, pp. 4291±4294. IEEE, 2010.

Dietterich, T. G. and Bakiri, G. Error-correcting output

codes: A general method for improving multiclass induc-

tive learning programs. In The Mathematics of General-

ization, pp. 395±407. CRC Press, 2018.

Geng, Y., Gao, B., Zhang, Q., Zhang, W., Yao, P., Xi, Y.,

Lin, Y., Chen, J., Tang, J., Wu, H., et al. An on-chip

layer-wise training method for rram based computing-in-

memory chips. In 2021 Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 248±251.

IEEE, 2021.

Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K.,

Hwu, W.-m., and Chen, D. Fpga/dnn co-design: An effi-

cient design methodology for 1ot intelligence on the edge.

In 2019 56th ACM/IEEE Design Automation Conference

(DAC), pp. 1±6. IEEE, 2019.

He, Z., Lin, J., Ewetz, R., Yuan, J.-S., and Fan, D. Noise in-

jection adaption: End-to-end ReRAM crossbar non-ideal

effect adaption for neural network mapping. In Proceed-

ings of the 56th Annual Design Automation Conference,

pp. 1±6, 2019.

Hoeffding, W. Probability inequalities for sums of bounded

random variables. In The collected works of Wassily

Hoeffding, pp. 409±426. Springer, 1994.

Huang, L., Liu, X., Lang, B., Yu, A., Wang, Y., and Li, B.

Orthogonal weight normalization: Solution to optimiza-

tion over multiple dependent stiefel manifolds in deep

neural networks. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 32, 2018.

Huang, L., Liu, L., Zhu, F., Wan, D., Yuan, Z., Li, B., and

Shao, L. Controllable orthogonalization in training dnns.

In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 6429±6438,

2020.

Ibrahim, Y., Wang, H., Liu, J., Wei, J., Chen, L., Rech, P.,

Adam, K., and Guo, G. Soft errors in dnn accelerators: A

comprehensive review. Microelectronics Reliability, 115:

113969, 2020.

Kim, S., Howe, P., Moreau, T., Alaghi, A., Ceze, L., and

Sathe, V. Matic: Learning around errors for efficient

low-voltage neural network accelerators. In 2018 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), pp. 1±6. IEEE, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. 2009.

Langley, P. Crafting papers on machine learning. In Langley,

P. (ed.), Proceedings of the 17th International Conference

on Machine Learning (ICML 2000), pp. 1207±1216, Stan-

ford, CA, 2000. Morgan Kaufmann.

LeCun, Y. The mnist database of handwritten digits.

http://yann. lecun. com/exdb/mnist/, 1998.

Li, G., Hari, S. K. S., Sullivan, M., Tsai, T., Pattabira-

man, K., Emer, J., and Keckler, S. W. Understanding

error propagation in deep learning neural network (dnn)

accelerators and applications. In Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1±12, 2017.

Liu, B. et al. Vortex: Variation-aware training for mem-

ristor X-bar. In Proceedings of the 52nd Annual Design

Automation Conference, pp. 1±6, 2015.

Liu, T. and Wen, W. Making the fault-tolerance of emerging

neural network accelerators scalable. In 2019 IEEE/ACM

International Conference on Computer-Aided Design (IC-

CAD), pp. 1±5. IEEE, 2019.

Liu, T., Wen, W., Jiang, L., Wang, Y., Yang, C., and Quan,

G. A fault-tolerant neural network architecture. In 2019

56th ACM/IEEE Design Automation Conference (DAC),

pp. 1±6. IEEE, 2019.

Long, Y., She, X., and Mukhopadhyay, S. Design of reliable

dnn accelerator with un-reliable reram. In 2019 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), pp. 1769±1774. IEEE, 2019.

Meng, Z., Oian, W., Zhao, Y., Sun, Y., Yang, R., and Jiang,

L. Digital offset for rram-based neuromorphic computing:

A novel solution to conquer cycle-to-cycle variation. In

2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 1078±1083. IEEE, 2021.

10

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Mittal, S. A survey on modeling and improving reliability

of dnn algorithms and accelerators. Journal of Systems

Architecture, 104:101689, 2020.

Ni, L., Liu, Z., Yu, H., and Joshi, R. V. An energy-efficient

digital ReRAM-crossbar-based CNN with bitwise paral-

lelism. IEEE Journal on Exploratory solid-state compu-

tational devices and circuits, 3:37±46, 2017.

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee,

H., Lee, S. K., HernÂandez-Lobato, J. M., Wei, G.-Y.,

and Brooks, D. Minerva: Enabling low-power, highly-

accurate deep neural network accelerators. In 2016

ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), pp. 267±278. IEEE, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., et al. Imagenet large scale visual recognition chal-

lenge. International journal of computer vision, 115(3):

211±252, 2015.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian,

R., Strachan, J. P., Hu, M., Williams, R. S., and Srikumar,

V. Isaac: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars. ACM SIGARCH

Computer Architecture News, 44(3):14±26, 2016.

Song, Y., Kang, Q., Tay, W. P., and Tay, Y. Error-correcting

output codes with ensemble diversity for robust learning

in neural networks. In AAAI, pp. 9722±9729, 2021.

Srinivasan, G., Wijesinghe, P., Sarwar, S. S., Jaiswal, A., and

Roy, K. Significance driven hybrid 8t-6t sram for energy-

efficient synaptic storage in artificial neural networks. In

2016 Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 151±156. IEEE, 2016.

Stutz, D., Chandramoorthy, N., Hein, M., and Schiele, B.

Bit error robustness for energy-efficient dnn accelerators.

Proceedings of Machine Learning and Systems, 3:569±

598, 2021.

Stutz, D., Chandramoorthy, N., Hein, M., and Schiele, B.

Random and adversarial bit error robustness: Energy-

efficient and secure dnn accelerators. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2022.

Verma, G. and Swami, A. Error correcting output codes

improve probability estimation and adversarial robustness

of deep neural networks. Advances in Neural Information

Processing Systems, 32, 2019.

Wright, J. and Ma, Y. High-Dimensional Data Analysis

with Low-Dimensional Models: Principles, Computation,

and Applications. Cambridge University Press, 2022.

Ye, H., Zhang, X., Huang, Z., Chen, G., and Chen, D.

Hybriddnn: A framework for high-performance hybrid

dnn accelerator design and implementation. In 2020 57th

ACM/IEEE Design Automation Conference (DAC), pp.

1±6. IEEE, 2020.

Yu, A., Lyu, N., Wen, W., and Yan, Z. Reliable memristive

neural network accelerators based on early denoising and

sparsity induction. In 2022 27th Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 598±603.

IEEE, 2022.

Zhang, X., Wang, J., Zhu, C., Lin, Y., Xiong, J., Hwu, W.-

m., and Chen, D. Dnnbuilder: An automated tool for

building high-performance dnn hardware accelerators for

fpgas. In 2018 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 1±8. IEEE, 2018.

Zhang, X., Ye, H., Wang, J., Lin, Y., Xiong, J., Hwu, W.-m.,

and Chen, D. Dnnexplorer: a framework for modeling

and exploring a novel paradigm of fpga-based dnn acceler-

ator. In Proceedings of the 39th International Conference

on Computer-Aided Design, pp. 1±9, 2020.

11

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

A. Proofs for Section 3

A.1. Proof of Lemma 3.2

Proof. According to the definition of entropy

K
∑

i=1

H(Zi) =

K
∑

i=1

−
∫

log p(zi) dp(zi)

= −
K
∑

i=1

EZi

[

log

(

1
√

2πσ2
i

e
−

(Zi−µi)
2

2σ2
i

)]

=
K

2
(1 + log(2π)) +

1

2
Tr(logΣ)

(17)

where Zi ∈ N (µi, σ
2
i).

Define Z = [Z1, Z2, . . . , ZK] and µ = [µ1, µ2, . . . , µK], then

H(Z) = −
∫

log p(z) dp(z)

= −EZ

[

log

(

(2π)−K/2|Σ|− 1
2 e−

1
2 (Z−µ)Σ−1(Z−µ)T

)]

=
K

2
(1 + log(2π)) +

1

2
log |Σ|

(18)

Accordingly,

TCG(Z1, Z2, . . . , ZK) =

[K
∑

i=1

H(Zi)

]

−H(Z)

=
1

2
Tr(logΣ)− 1

2
log |Σ|

(19)

A.2. Proof of Theorem 3.3

Proof. As TC(U1, U2, . . . , UN) ≤ ϵ, we have

TC(U1, U2, . . . , UN) = DKL(PU ||P̄U) ≤ ϵ, (20)

where DKL is referred to as Kullback-Leibler (KL) divergence. By the Bretagnolle±Huber inequality (Bretagnolle & Huber,

1978), we have

sup
S⊂[0,1]N

|PU (S)− P̄U (S)| ≤
√

1− e−DKL(PU ||P̄U)

≤
√
1− e−ϵ.

(21)

Since the set that leads to decoding error is a subset of A, we have

Pe ≤ PU (A) ≤ P̄U (A) +
√
1− e−ϵ. (22)

A.3. Proof of Corollary 3.4

Proof. By Hoeffding’s inequality (Hoeffding, 1994), we have

P̄U (A) ≤ exp

(

− 2

N

(

dmin

2
− E

[N
∑

n=1

Un

])2)

≤ exp

(

− 2

N

(

dmin

2
−Nβ

)2)

.

(23)

12

COLA: Orchestrating Error Coding and Learning for Robust Neural Network Inference

Orth-Conv2D(6, (5,5))

Maxpooling

Orth-Conv2D(16, (5,5))

Maxpooling

Orth-Linear(120)

Linear(10)

Linear(1)

Linear(10)

Linear(1)

…

N = 15

LeNet-5

Flatten

(a) LeNet-5/MNIST

Orth-Conv2D(64, (11,11))

Maxpooling

Orth-Conv2D(192, (5,5))

Maxpooling

Linear(1)

…

N = 63

Conv2D(20, (3,3))

Conv2D(10, (3,3))

Flatten

Linear(1)

Conv2D(20, (3,3))

Conv2D(10, (3,3))

Flatten

AlexNet

(b) AlexNet/CIFAR10

Orth-Conv2D(64, (5,5))

Conv2D(64, (3,3))

Maxpooling

Conv2D(128, (3,3)) x 2

Maxpooling

Conv2D(256, (3,3)) x 3

Maxpooling

Conv2D(512, (3,3))

Maxpooling

Conv2D(512, (3,3))

Maxpooling

x 3

x 3

Flatten

Linear(200)

Linear(200)

Linear(1)

Linear(200)

Linear(200)

Linear(1)

N = 127 for CIFAR100

N = 255 for Tiny ImageNet

VGG-16

(c) VGG-16/CIFAR100 and Tiny ImageNet

Figure 5. Detailed architecture for our proposed techniques.

Together with Equation (22) the results can be obtained.

B. Detailed Architecture for COLA

Figure 5 shows the detailed architecture we used in the experiments. In general, the architecture is designed according

to (Verma & Swami, 2019), where classifiers are separated after a certain intermediate layer. Amplitude-adaptive weight

orthogonalization is used on the first few layers. In order to make a fair comparison, for the same task, the models with

different configurations are designed such that the number of parameters used are similar. Model complexity, i.e., total

number of parameters, is listed in Table 2. Code is available at https://github.com/anlanyu66/COLA.

C. Additional Experimental Results

Additionally, we compare COLA and ECOC on ResNet-34 and ResNet-50 to verify the scalability of COLA on large-sized

modern networks. Tiny ImageNet is used as the dataset. Results are given in Table 6 and Table 7 under state errors and

bit-flip errors, respectively. These results demonstrate the same trends as the simulation results presented in Section 4.

Note that separation architecture (Verma & Swami, 2019) is applied on neither ResNet-34 nor ResNet-50, since it worsens

both clean accuracy and robust accuracy. Further investigation on the failure of separation architecture on ResNets will be

conducted in our future work.

γ 0 0.1 0.2 0.3

ResNet-34
ECOC 55.08 43.68 16.98 0.98

COLA 59.32 53.42 31.64 4.26

ResNet-50
ECOC 56.35 45.24 18.22 1.56

COLA 60.30 54.12 33.53 5.67

Table 6. Performance of ResNet-34, ResNet-50 evaluated on Tiny ImageNet with different levels of state errors (γ).

α 0 0.001 0.01 0.1

ResNet-34
ECOC 54.99 54.12 36.03 0.5

COLA 58.89 58.09 49.83 2.20

ResNet-50
ECOC 56.12 55.28 38.54 0.5

COLA 59.98 59.12 50.34 3.01

Table 7. Performance of ResNet-34, ResNet-50 evaluated on Tiny ImageNet with different levels of bit flip errors (α).

13

