HIGH-PERFORMANCE DOMAIN-SPECIFIC LIBRARY
FOR
HYDROLOGIC DATA PROCESSING

by

Kalyan Bhetwal

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Boise State University

May 2023

©) 2023
Kalyan Bhetwal
ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Kalyan Bhetwal

Thesis Title: High-Performance Domain-Specific Library for Hydrologic Data Pro-
cessing

Date of Final Oral Examination: 05 May 2023

The following individuals read and discussed the thesis submitted by student Kalyan
Bhetwal, and they evaluated the presentation and response to questions during the
final oral e xamination. They found that the student passed the final oral examination.

Catherine Olschanowsky, Ph.D. Chair, Supervisory Committee
Jim Buffenbarger, Ph.D. Member, Supervisory Committee
Alejandro N. Flores, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Catherine Olschanowsky,
Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

Dedicated to my family

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Dr. Catherine
Olschanowsky, for her guidance, support, and encouragement throughout my research.
Her extensive knowledge, experience, and feedback have been invaluable to the suc-
cessful completion of this thesis.

I would also like to thank the members of my thesis committee, Dr. Jim Buffen-
barger and Dr. Alejandro N. Flores, for their insightful comments and suggestions,
which have greatly contributed to the improvement of this work.

Finally, T would like to express my deepest gratitude to my family, for their
unwavering love, support, and encouragement, without which this thesis would not

have been possible.

ABSTRACT

Hydrologists must process many gigabytes of data for hydrologic simulations,
which takes time and resources degrading performance. The performance issues
are caused mainly by domain scientists’ preference for using Python, which trades
performance for productivity. In my thesis, I demonstrate that using the static
compilation technique to compile Python to generate C code along with several
optimizations reduces time and resources for hydrologic data processing. I developed
a Domain Specific Library (DSL) which is a subset of Python and compiles to
Sparse Polyhedral Framework - Intermediate Representation (SPF-IR), which allows
opportunities for optimizations like read reduction fusion which are not available in
Python. We fused the file I/O to perform computation on small chunks of data
(stream computation) in order to reduce the memory footprint.

The C code we generated from SPF-IR shows an average speed-up of 2.58x over
the existing hand-optimized implementations and can totally eliminate the tempo-
rary storage required. DSL users can still enjoy the ease of use of Python but get

performance better than the C code.

vi

TABLE OF CONTENTS

AB S T R A C T . .t e e e e e e e e e e e e e vi
LIST OF TABLES . ..ttt it e e ettt e ettt e et e et X
LIST OF FIGURES . . .t ittt it e e e e et e e et e et e e i xi
LIST OF ABBREVIATIONS ..ottt ittt ittt et te et xii
LIST OF SYMBOLS ...ttt et e e e e e e e et e e et xiii
1 IntroducCtion. . ..o i ittt ittt ettt ettt ettt ittt 1

1.1 Introduction 1

1.2 Research Overview 4

1.3 Contribution 1: Designed a pipeline in Python that reflects the current
PFtools API. This pipeline included I/O. 5t
1.4 Contribution 2: Implemented a collection of common hydrological data
processing procedures in the pipeline. 6
1.5 Contribution 3: Transformed and evaluated the performance of the

optimized pipelines. This included an evaluation of the overhead of

delayed execution. 6
2 Background i e 7
2.1 PFtools. ... 7

vii

2.2 Polyhedral Model 8

2.2.1 Tteration Domain. 10

2.2.2 Scheduling 11

2.3 Computation APT. 11
2.3.1 Code Generation 11

2.4 Polyhedral Dataflow Graphs. 12

3 PFTools API Pipeline. 15
3.1 Reading PFB from Disk 16
3.2 Computations 16
321 AVErage 16

3.3 Writing PFB to Disk 18
3.4 Chapter Summary 18

4 The Library/Languagecotuuuiiiinteeinnnnnn.. 19
4.1 The Library from End User Perspective 20
4.2 Computation API Representation 20
4.3 Functions 22
4.4 Append Computations 22
4.5 Optimization Recipes 23
4.5.1 Loop Transformation............... 23

4.5.2 Tiling 25

4.5.3 Producer-Consumer Loop fusion 27

4.6 Code Generation. 27

5 Results i e 29

viil

5.1 Experimental Setup 29

5.2 Performance Evaluation 29
5.2.1 Execution Time. 29

5.2.2 Memory Utilization 30

6 CoONCIUSIONS . v vttt ittt ettt ettt ettt e ettt et e 32
6.1 What have we done so far 32
6.2 Future direCtions 32
6.2.1 Supporting more hydrologic data processing tools 32

7 Related Work i ittt it ittt 34
7.1 Python Libraries. 34
7.2 Domain Specific Languages/Compilers. 35
REFERENCES . . .ottt ittt ittt ettt e ettt ettt e e 36

X

LIST OF TABLES

5.1 Comparison of execution times of our approach over existing approach

and speedup

1.1
1.2
1.3
1.4

1.5

2.1
2.2
2.3

24

2.5

3.1
3.2

4.1

5.1

LIST OF FIGURES

CPU-memory performance gap [11]
Existing Hydrologic system’s data flow and memory footprint........

Proposed system’s data flow and memory footprint

Qualitative graph comparing runtime performance and programmers’

productivity for different programming languages

Flow chart of the proposed system

A workflow for Water Balance Calculation.

Polyhedral Framework

Sparse matrix-vector multiplication representation in the Computation

PDFG for MTTKRP s

MTTKRP multiplication representation in the Computation API.

A PFTools API Pipeline for Computing Mean

Organization of data in the grid pattern

Block of size m_nx tiled intosize of nx

Comparions of execution times of our implementation vs existing im-

plementation

x1

14

LIST OF ABBREVIATIONS

HPC - High Performance Computing

DSL - Domain Specific Language or Library
SPF — Sparse Polyhedral Framework

IR — Intermediate Representation

API - Application Programming Interface
GB - Giga Bytes

I/0O — Input/Output

HUCSs - Hydrologic Unit Code

CONUS - Continent of United States

PDFG - Polyhedral Data Flow Graphs

xii

LIST OF SYMBOLS

V2 square root of 2

A lambda symbol, normally used in lambda calculus but it sometimes gets used
for wavelength as well

xiil

CHAPTER 1

INTRODUCTION

1.1 Introduction

We use Computational hydrology to understand hydrologic systems better and pro-
vide input to various areas including but not limited to agricultural decisions, policy
making, and environmental impact studies [1, 2]. Computational hydrology uses
large volumes of multidimensional pressure, forcing, and other data collected over
a period of time. Pre-processing and post-processing of hydrologic data files using
current approaches are too slow. It takes significant time (hours) to complete such
processing. The processing is primarily slow due to the software itself. The software
for hydrologic data processing is written in Python and developed for convenience
and productivity. We propose a solution that minimally changes the development
environment while achieving optimized C code performance.

There are several reasons for the considerable time and resources required to
process hydrologic data. These programs load large chunks of data into memory for
processing, creating a bottleneck in memory utilization and degrading the system’s
performance. Figure 1.2 shows the existing implementation of hydrologic software.
For example, if the file size is 1 GB, we need 1 GB of memory to load that file from
the disk for processing. It creates a huge memory footprint. There is a huge gap

between memory and CPU speed as shown in figure 1.1. In these computations,

1000 TTmTTTTmmm T mmmm e mmm s mm s mm s mmmmnmmnm) T) crU

L Bl e e e e e i ; i e
Processor-Memory
Performance Gap
10 e e e | —
DRAM

1
O~ N T WD O~ —ANMSTWLWO~OMOoO
00D MMM MWMOOWMMDVMWWMODOIEDDDODDOIDDDDHO OO
(o) 3> > We > W > o> We > I > We > Mo) W'e) Ws > Mo) W) Wi e > Qo) e) Mo) le M o) W'e|
o R B ol i ol R N I R e i T i S o Y |

Figure 1.1: CPU-memory performance gap [11]

which process large files, there is a high probability of cache misses, which further

degrades the performance.

FILE 110 Arcilion! FILE 110
Multiplication

MEMORY OPERATIONS MEMORY

Figure 1.2: Existing Hydrologic system’s data flow and memory footprint

Python trades programming performance for productivity. Domain scientists often
write data processing software in Python due to its high-level easy-to-use interface.
However, this comes at the cost of run-time performance. Although it saves much
time for writing codes, it takes significant time for execution. Grosse-Kunstleve, Ralf
W., et al. [5] on their work as shown in figure 1.4 demonstrated that the run time

performance of Python is worse than compiled languages such as C. The performance

-
.—'/ Adcition/ \\————"/
Multiplications
FILE 11O
FILE IVO 1
. _____./
Storage

Storage

Figure 1.3: Proposed system’s data flow and memory footprint

of these programs is crucial because it will save both time and cost in getting those

results.

@ Python

Fortran

@ Assembly

Programmer Productivity

@ Machine code

e

Runtime Performance

Figure 1.4: Qualitative graph comparing runtime performance and programmers’
productivity for different programming languages

Compilation techniques that would improve the performance of these programs
exist but can not be used by Python directly. A deeper code analysis shows that
we could do optimization, including read reduction fusion and more. These opti-

mizations aren’t directly possible in Python. Computer scientists use polyhedral

compilation for performance optimization in high-performance computing [6]. The
sparse polyhedral framework (SPF) extends the polyhedral framework to support
non-affine loop bounds. IEGenLib is an open-source C++ library to implement the
algorithm that manipulates sets and relations with uninterpreted function symbols
to enable the Sparse Polyhedral Framework [16]. The Computation API provides an

object-oriented interface that wraps SPF Intermediate Representation (IR) [12].

In this work, we present a Domain-Specific Library (DSL) designed to optimize
the performance of hydrologic data processing. The DSL is a subset of Python that
compiles to the SPF-IR and provides all the necessary functions commonly used
in hydrologic data processing. Figure 1.2 shows the data flow for the proposed
system. We fuse file I/O with the calculations, which reduces the memory footprint.
This allows us to load data from disk to memory optimally, immediately perform
computations on them and store the data back to the disk. The Python interface
provided to users maintains the same productivity while enjoying the performance of

the C programming language.

1.2 Research Overview

This thesis explores creating a library for improving the performance of hydrologic
data processing while minimizing the impact on the programmers’ productivity. Fig-
ure 1.3 shows the high-level research overview of the project. The library builds
an SPF-IR representation of the desired computation rather than computing it right
away. When a command indicates that the calculation must be complete, such as data
being output to a file, we apply different optimization in the SPF-IR and generate
the C code.

waterbalance

SPFIR

PYTHON (IEGENLIB)

v

Optimizations

h

Figure 1.5: Flow chart of the proposed system

h

Code Generation
(C Code)

Our research contributions can be summarized into three points below:

Contribution 1: Designed a pipeline in Python that reflects the current PFtools

API. This pipeline included 1/0.

Contribution 2: Implemented a collection of common hydrological data processing

procedures in the pipeline.

Contribution 3: Transformed and evaluated the performance of the optimized pipelines.

This included an evaluation of the overhead of delayed execution.

1.3 Contribution 1: Designed a pipeline in Python that re-

flects the current PFtools API. This pipeline included

1/0.

A pipeline in our library is a collection of computations that an end user will perform

for a particular task. The pipeline starts with file input and exits when we write the

file back to the disk.

1.4 Contribution 2: Implemented a collection of common
hydrological data processing procedures in the pipeline.

We implemented common data processing procedures like average and sum. The

procedures are exposed through the Python library.

1.5 Contribution 3: Transformed and evaluated the perfor-
mance of the optimized pipelines. This included an eval-
uation of the overhead of delayed execution.

We generated the C code from the Python library. The C code has file input fused

with the computations. The generated C code is compiled and executed.

CHAPTER 2

BACKGROUND

In this section, we discuss various topics needed to understand this work. We are
taking PFtools as the running example throughout this thesis to test our hypothe-
sis. For optimizations, we represent the PFtools codebase in the sparse polyhedral

framework using the Computation API.

2.1 PFtools

PFtools are a collection of tools for pre-processing and post-processing of data for
ParFlow [9] simulations. Domain scientists use Python in PFtools for convenience,
which comes at a performance cost. PFTools read parflow binary (PFB) files as
input and write back the PFB file after the simulations are completed. Figure
4 shows a hydrologic workflow showing different steps. PFB files store pressure,
temperature, humidity, and more information for the whole continent of the United
States (CONUS). We have an area of interest called hydrologic Units (HUCs) for
running the simulation. We do subsetting to extract data for a particular area of
interest. The Parflow Simulation Software uses the result of subsetting. The Parflow is
massively parallel and highly efficient which is typically run in supercomputers. But,

the PFtools applications are written in Python and are not optimized. This thesis

revolves around improving the performance of the software for pre and post-processing

data surrounding the Parflow simulation.

= USGS

s

NHDPlus High Resolution Availability

v Wy il Ao g ISR o g ol A P e

Dy Gk Exparimustal Witers husd

Subsetting
for List of
HUCs

Input Forcing, Domain Data for CONUS Forcing, Domain Data
for Particular HUCs

ParFlow Simulation Waterbalance
Output Files

Figure 2.1: A workflow for Water Balance Calculation

2.2 Polyhedral Model

Scientific computations involve iterating over large data spaces using nested loops
for computations. These simulations can largely benefit from parallelism and data
locality. A polyhedral framework is a mathematical representation of loops for various
automatic loop transformations and optimizations.

Consider an example below, which has affine loop bounds.

1 for(int i=0;i<M ;i++){

2 for(int j=0; j<N;j++){
3 S0: s(i,j) = x(i)+j;
| }

5 }

The Polyhedral representation of the computation is given as:

S0 :s(i,j) = x(i) + J;
DO:T={[i,j]:0<i<M A 0<j<N} EO:{[ij]—[0,i,0,4,0]}
RO = {[i,j] — [i]}

WO :A{[i, j] = [i,4]}

The execution of loops of the above program can be represented in the Polyhedral

model as a set of all the valid combinations of tuple [i, j].

I={[i,jl:0<i<M A 0<j<N}

The iteration space combined with data dependence provides partial order of
the execution of the given computations. To change the execution order, we apply
relations to the iteration space. We can express a relation for loop interchange for

the above example as:

R={li,j] = [,]}

I' = R(I)

10

The code synthesis after the above transformation yields the following program.

1 for(int j=0;i<M ;i++){

2 for(int i=0; j<N;j++){
3 S0: s(i,j) = x(i) +j;
4 }

5

The polyhedral framework makes it simpler to go from the code to the mathemat-
ical representation and back to the code again after applying transformations. The
polyhedral framework is limited to affine data access. However, sparse data accesses
are non-affine in nature. The sparse polyhedral framework overcomes the limitations
of the polyhedral framework by supporting non-affine constraints in iteration space

as uninterpreted functions.

Affine
Transformation

i i

i O B ©® 3e —E—O®
for(i=0:i<3i++) 2 ORANORNO, 2 OO0 for(j=0j<3:i++)

for(j=0;j<3;++) for{i=0;i<3;j++)
s(i) =x(i)+] s(i0) = x{j)+1

1 © @ @ 1 O—®—0

source code Code generation
1 2 3 1 2 3

Figure 2.2: Polyhedral Framework

2.2.1 Iteration Domain

The polyhedral framework represents each point in these nested loops as a lattice

point in polyhedra. Figure 2.2 shows the polyhedral representation of a code. Each

11

point in the lattice is represented as a set. A relation is applied to the set for the

transformations.

2.2.2 Scheduling

A schedule provides lexicographical ordering of a statement. It is represented as a
relation. The dimension of the schedule gives the number of loop nests. We can
do affine transformation without violating the data dependence relationship after
the polyhedral representation. The transformations can help in parallelism and data

locality by finding the best schedules for those loops.

2.3 Computation API

The Computation API is an object-oriented interface to SPF IR [12]. The API
provides functionality to interact with the SPF and generates the polyhedral data
flow graphs (PDFGs). The computation API integrates CHILL [4], CodeGen+ [3],
Omega [8], and IEGenLib [16]. The API provides a computation class to express
a computation or series of computations. This work creates a computation object
containing data spaces, statements, data dependencies, and execution schedules for
one specific computation. Figure 5 shows the implementation of Sparse vector mul-

tiplication in the Computation API.

2.3.1 Code Generation

Code generation is another vital functionality available in the computation APIL.
It is the final and most crucial stage where actual code is generated for the given

computation specification using CodeGen+. The Codegen+ uses omega for polyhe-

12

Sparse matrix-vector multiplication

1 /*Sparse vector multiply
2 for (i = 0; i < N; i++) {

3 for (j=rowptr([il]; j<rowptr[i+1];j++) {

4 k = coll[j];

5 y[i] += A[j] * x[k];

6 +}*/

7 Computation* sparseComp = new Computation();

s sparseComp->addDataSpace("y", "intx");

9 sparseComp->addDataSpace("A", "intx");

10 sparseComp->addDataSpace("x", "int*");

11 Stmt* sparseSO = new Stmt(

12 "y(i) += A(k) * x(k)", // Source code

13 // iteration domain

14 "{[i,]j,k]: 0<=i<N && rowptr(i)<=j<rowptr(i+l) && k=col(j)}",
5 "{[i,j,k]->[0,1,0,7,0,k,0]1}", // Scheduling Function
w6 L {"y", "{[i,j,k]->[11}"},

17 {"A", "{[i,j,k]1->[31}"},

18 {"x", "{[i,j,k]1->[k]1}"}}, // Data reads

o L {"y", "{[i,j,kI1->[11}"} } // Data writes

20);

21 sparseComp->addStmt (sparseSO0) ;

Figure 2.3: Sparse matrix-vector multiplication representation in the Computation
APL

dra scanning. Omega has certain limitations where it cannot handle uninterpreted
functions. Codegen+ overcomes this limitation by altering the uninterpreted function

in IEGenLib to be Omega Compliant.

2.4 Polyhedral Dataflow Graphs

A Polyhedral Dataflow Graph (PDFQG) is a visual representation in the form of a graph
for data dependencies between a series of computations [15]. PDFG helps performance
engineers to make various optimization decisions like dead code elimination as it

provides a comprehensive view of data flow.

13

In this thesis, we use PDFG to analyze the dataflow patterns in the PFTools
API to make optimization decisions. Figure 2.4 shows the Matricized Tensor Times
Khatri-Rao Product (MTTKRP). We can generate the PDFG for the computation
(shown in Figure 2.5) which enables us the view the dataflow and make optimization

decisions on them.

—)) B () N])

Figure 2.4: PDFG for MTTKRP

14

Sparse matrix-vector multiplication

1 /*MTTKRP

2 for (i = 0; i < I; i++)

3 for (j = 0; j < J; j++)

4 for (k = 0; k < K; k++)

5 for (r = 0; r < R; r++)

6 Ali,r] += X[i,j,k1*B[j,r]1*Cl[k,r];

7 */

s Computation* sparseComp = new Computation();

o sparseComp->addDataSpace("y", "intx");

10 sparseComp->addDataSpace("A", "intx");

11 sparseComp->addDataSpace("x", "int*");

12 Stmt* sparseSO = new Stmt(

13 "y(@i) += Ak) * x(k)", // Source code

14 // iteration domain

15 "{[i,j,k]: 0<=i<N && rowptr(i)<=j<rowptr(i+1) && k=col(j)}",
w6 "{[1,j,k]1->[0,1,0,7,0,k,0]1}", // Scheduling Function
v L ALy, {01, 5,k] >[4},

18 {mar, "{[i,3,k1->[31}"},

19 {"x", "{[i,j,k]1->[k]}"}}, // Data reads
20 { {"y", "{[i,j,k]1->[i1}"} } // Data writes
21)3

22 sparseComp->addStmt (sparseS0) ;

Figure 2.5: MTTKRP multiplication representation in the Computation API.

15

CHAPTER 3

PFTOOLS API PIPELINE

PFtools follow common patterns for processing data files. They take the PFB file of
large sizes (> 2.6 GB) as input. Parflow binary files store crucial pieces of information
about pressure, temperature, and humidity. The file is in binary format. It contains
3-dimensional data organized in a rectangular block-like structure. The start of each
block in the pfb file contains information about the starting x,y, and z coordinates
and dimensions of the block. Figure 3.2 shows the data access pattern. The data is
read one block at a time. Each block dimension is nx * ny * nz given by the block
header information available in the file. The data is continuous along the x-axis in
memory so any computations that use this data would benefit from cache locality if

the computation reads continuously along the x-axis.

The input file is fully read and loaded into the memory. The computations like
sum and average calculations are performed. We store the results back to disk to
be further used in other calculations. Fig 3.1 illustrates the complete structure of
a pipeline for average calculation. We can break down a pipeline into three specific

parts: read, compute, and store.

16

Load PFB > Average » Store PFB
Computation

Figure 3.1: A PFTools API Pipeline for Computing Mean

3.1 Reading PFB from Disk

The first computation in the pipeline is reading data from the disk. Listing 3.1 shows
the snippet of the code for loading data into memory. The outer loop goes through
each block of the data. The inner 3 loops read data from those grids and store the

data in the “m_data” array.

I for (nsg = O;nsg<m_numSubgrids; nsg++){

2 for (k=0; k<nz; k++){

3 for(i=0;i<ny;i++){

4 for(j=0; j<nx; j++){

5 m_datal[index+ j] = tmp;

6 }

Listing 3.1: Loops to read data from the file

3.2 Computations

We perform several computations of the data obtained from the parflow binary files.
Some of the computations are average, sum, max, and min.

In this thesis, we discuss average computation as an example.

3.2.1 Average

Consider listing 3.2 which is used to compute the mean of the data along the z-axis.

As we discussed in an earlier section 3.1, the data is continuous along the x-axis. But

17

z=0

Figure 3.2: Organization of data in the grid pattern

the innermost loop is the mean along the z-axis and runs continuously on the z-axis.
This creates lots of jumps in memory access patterns. While reading data from the
disk, we read the data in smaller block sizes but while computing the mean we are

using the larger chunk of data.

1 for(int x = 0; x < m_nx; x++){
for(int y = 0; y < m_ny; y++){
sum = 0;
for(int z = 0; z < m_nz; ++z){
sum +=m_data[static_cast<long long>(z)*m_ny*m_nx+y*m_nx+x] ;
}

mean[(x+y*m_nx)] = sum/m_nz

N O Ot = W N

18

9 }

Listing 3.2: Section of code to compute mean

3.3 Writing PFB to Disk

Once the computations are performed the data is written back to the disk in the
parflow binary formats for further use in the simulation. The read-and-write process
is similar and consistent. Section 3.3 shows the section of code to write data to disk.

We iterate over the z,y, and x dimensions to write data back.

| for(iz=calcOffset(m_nz,m_r,nsg_z); iz < calcOffset(m_nz,m_r,nsg_z+1);iz++){

2 for(iy=calcOffset(m_ny,m_q,nsg_y); iy < calcOffset(m_ny,m_q,nsg_y+1);iy++){

3 uint64_t* buf = (uint64_t*)&(m_datal[iz*m_nx*m_ny+iy*m_nx+calcOffset(
m_nx,m_p,nsg_x)1);

4 long long j;

5 for(j=0; j<x_extent;j++){

6 uint64_t tmp = buf[j];

7 tmp = bswap64 (tmp) ;

8 writeBuf [j] = *(doublex) (&tmp) ;

9 }

10 fwrite(writeBuf.data(),sizeof (double) ,x_extent,fp);

11 }

12 }

Listing 3.3: Section of code to write data back to the disk

3.4 Chapter Summary

From the codes in listing 3.1, 3.2, and 3.3 we can see that we are iterating over x, vy,
and z dimensions time and again on the same data for our computations. It makes
sense to represent these programs in a Polyhedral framework to reason about them
and apply different transformations for the optimized program. In the next chapter,

we discuss representing these computations in SPF and transforming them.

19

CHAPTER 4

THE LIBRARY/LANGUAGE

Users are provided with a Python library that contains functions commonly present in
PFtools API. The library consists of a collection of functions needed for a hydrologic
data processing tool. Each function consists of a series of computations. These

functions are exposed through a library.

The library is a subset of Python that can be used in any Python interpreter.
When an end user writes a program for e.g. to compute a mean and runs it in the
Python interpreter, no operations happen till the point where the user requests a
file output. During this time we just record the operation that the user is trying to
perform. As soon as we reach the point where the actual I/O is requested, a series of
optimization recipes are applied. The main optimization recipe is file I/O fusion. We
use a heuristic to determine the best block size of data that is loaded into memory
from the disk which is then used in the computation. As soon as we compute the
results for the loaded block we store it back on the disk. After we are done with the
optimizations we spit out the C4++ code. This code is then compiled with any C++

compiler and is used for executing the user program.

20

4.1 The Library from End User Perspective

End users are exposed to a series of functions through a library written in Python.
This library wraps the Computation API which allows all the functionality to repre-
sent the necessary computations in the Sparse Polyhedral framework along with the
functionality for code generation. Users can import the library and call functions as
per their needs. Each time a function is called the library just keeps the track of
functions and at the end when the output is requested, the library combines all the

functions and generates the C code after applying a series of optimizations.

import iegenlib
iegenlib.readFile("snakeriver.pfb")
iegenlib.compute_mean(axis="z")
iegenlib.storeFile("snakeriver.pfb")

Listing 4.1: Program to Compute mean

4.2 Computation API Representation

In the previous chapter, we identified all the potential functions that need to be
implemented for hydrologic data processing tools. The first stage for our library is to
represent these functionalities in the Computation API. Consider a small section of

code that is currently used for the mean computation of a file along the z-axis.

for(int x = 0; x < m_nx; x++){

1

2 for(int y = 0; y < m_ny; y++){

3 mean [x+m_nx*y] = 0;

4 for(int z = 0; z < m_nz; z++){

5 mean [x+m_nx*y] +=m_data[static_cast<long long>(z)*m_ny*m_nx+y*
m_nx+x] ;

6 }

7 mean [(x+y*m_nx)] = mean[x+m_nx*y] /m_nz

8 by

9}

The corresponding Computation API representation is:

21

O U W N

co

19
20
21
2
23
24
25
26
27
28
29

dataReadsl = iegenlib.PairVector([])
dataWritesl = iegenlib.PairVector([("mean","{[x,y]->[x,y1}")]1)
sl = iegenlib.Stmt("mean[x+m_nx*y] = 0;",
"{[x,y] :0<=y<m_ny && O<=x<m_nx}",
"{[x,y]->[0,%,0,y,11}",
dataReadsl1,
dataWrites1)
parflowio_mean.addStmt (s1)

dataReads2 = iegenlib.PairVector([("m_data","{[x,y,z]l->[z,y,x]}")])
dataWrites2 = iegenlib.PairVector([("mean","{[x,y,z]->[x,y]1}")]1)

s2 = iegenlib.Stmt ("mean [x+m_nx*(y)]+=m_data[(long long) (z)*m_ny*m_nx+(y) *
m_nx+x];",
"{[x,y,z] :0<=y<m_ny && O0<=x<m_nx && 0<=z<m_nzl}",
"{[x,y,z]->[0,x,0,y,1,z,0]}",
dataReads?2,
dataWrites?2)
parflowio_mean.addStmt (s2)

dataReads3 = iegenlib.PairVector([("mean","{[y,x]->[y,x]1}")]1)
dataWrites3 = iegenlib.PairVector([("mean","{[y,x]->[y,x]1}")]1)

s3 = iegenlib.Stmt("mean[x+m_nx*y] = mean[x+m_nx*y]/m_nz;",
"{[x,y] :0<=y<m_ny && O<=x<m_nx}",
"{[x,y]->[0,x,0,y,2]}",
dataReads3,
dataWrites3)

parflowio_mean.addStmt (s3)

In order to represent each statement in the original program in Computation API,

we need four specific components.

e Statement: The statement portion contains the actual statement string in the

source code

e Iteration Space: The iteration space provides iteration domain of the loop nests

e Execution Schedule: The execution schedule gives us the order of the execution

of statements

22

e Data Reads: Data reads writes provide the data read relations

e Data Writes: Data writes provide the data read relations

4.3 Functions

The functions provided in our library are the Python function that performs one
particular task in the PFtools API. Each function contains a series of statements
that altogether form a computation. The function starts with creating a computation

object and returns the computation object.

def readFile(filename):
comp = iegenlib.Computation()
comp . addStmt (s0)
comp.addStmt (s1)
return comp

4.4 Append Computations

When we combine two or more functions for a complete program, we need to append
all the computations to form a single computation. The execution schedule needs to

adjust to form a new single computation with increasing order of execution schedule.

compl = readFile("snakeriver.pfb")
comp2 = compute_mean(axis=’z’)
comp3 = storeFile("snakeriver.pfb")

The Computation API provides the function to append computation to another.
Consider if the execution schedule of “compl” ends with a relation “[0] — [3]”. After
we append the comp2 to compl the execution schedule of the first statement should

start with “{[0] — [4]}”. We can achieve this by using the command below:

compl.appendComputation(comp2, "{[0]}","{[0]->[4]}")

23

In the appendComputation function, the first argument is the computation that needs
to be appended, the third argument takes the new execution schedule from which the

new execution schedule should start for comp2 in combined computation.

4.5 Optimization Recipes

We have the opportunity to optimize the program in order to reduce memory use
and run time. The library also provides a function to apply a series of optimizations.
We explored the code at the first and found that we can re-order the loops for better
data access patterns. We also can fuse multiple loops to combine loops with producer-

consumer patterns.

4.5.1 Loop Transformation

In loop transformation, we change the order of the loop nesting. The outer loop can
be moved to the inner part. The main objective of the loop transformation is to

improve the data access pattern such that maximum data can be reused from the

cache
1 import iegenlib
2
3 parflowio = iegenlib.Computation()
| dataReads4 = iegenlib.PairVector([("m_data","{[x,y,z]->[z,y,x]1}")]1)
5 dataWrites4 = iegenlib.PairVector([("mean","{[x,y,z]->[x,y]1}")]1)

7 s4 = iegenlib.Stmt("mean[x+y*m_nx]+=m_data[(long long) (z)*m_ny*m_nx+y*m_nx+x] ;

n
B

8 "{[x,y,2z] :0<=y<m_ny && 0<=x<m_nx && 0<=z<m_nz}",
9 "{[x,y,z]->[0,x,0,y,1,z,0]}",

10 dataReads4,

11 dataWrites4)

12 parflowio.addStmt (s4)
13

14 print(parflowio.codeGen())

Listing 4.2: Section of Computation specification to calculate mean

24

The generated code from the above computation specification is:

#undef s0

#undef s_0

#define s_0(x, y, z) mean[x+y*m_nx]+=m_data[(long long) (z)*m_ny*m_nx+y*m_nx+x
13

4 #define s0(__x0, x

.

)

L N

X2, y, __x4, z x6) s_0(x, y, 2z);

y —— 9 ==

int t1 =0
8 int t2 = 0
9 int t3 = 0
10 int t4 = O;
11 int t5 = 1
12 int t6 = 0
13 int t7 = 0

15 if (m_nz >= 1 && m_ny >= 1) {
16 for(t2 = 0; t2 <= m_nx-1; t2++) {

17 for(t4 = 0; t4 <= m_ny-1; t4++) {

18 for(t6 = 0; t6 <= m_nz-1; t6++) {
19 s0(0,t2,0,t4,1,t6,0);

20 }

21 +

22}

23 }

24

25 #undef sO

26 #undef s_O

Listing 4.3: The generated code for computing the mean

We have already established in chapter 3 that the data is continuous in the x-
direction. The generated code in accessing the data in the z-direction first. So,
there will be many jumps in the memory to access the data. We could benefit from
caching if we can read in the x-direction. We use loop transformation for this. The
Computation API provides an easy interface for performing loop transformation. We
need to define a relation that can map our initial execution schedule to a target
execution schedule. For our example, to change the loop order of loops from [x,y,z]

to [z,y,x] we need to apply the below relation.

|l rel = iegenlib.Relation("{[0,x,0,y,0,z,0]-> [0,2,0,y,0,x,0]}")
2 parflowio.addTransformation(stmtIndex=0,rel=rel)

25

Listing 4.4: Relation and function for the loop transformation

In listing 4.4 we can see the transformed loops where the x-direction is read first

which is the desired outcome.

15 #undef sO
16 #undef s_0O
17 #define s_0(x, y, z) mean[x+y*m_nx]+=m_data[(long long) (z)*m_ny*m_nx+y*m_nx+x
iIE
18 #define sO0(__x0, z1, __x2, y1, __x4, x1, __x6) s_0(x1, yi1, zl1);
19
20
21 int t1 = 0;
22 int t2 = 0;
23 int t3 = 0;
24 int t4 = 0;
25 int t5 = 0;
26 int t6 = 0;
27 int t7 = 0;
28
29 if (m_nx >= 1 & m_ny >= 1) {
30 for(t2 = 0; t2 <= m_nz-1; t2++) {
31 for(t4 = 0; t4 <= m_ny-1; t4++) {
32 for(t6 = 0; t6 <= m_nx-1; t6++) {
33 s0(0,t2,0,t4,0,t6,0);
34 }
35 }
36 3}
37 }
38
39 #undef sO
40 #undef s_O
Listing 4.5: The generated code after loop transformation
4.5.2 Tiling
To perform the fusion between the file reading portion and mean computation we

need to tile at first. The upper bounds of the loops for the reading file and mean

computation are different. We break loops for mean computation in tiles of the size

identical to loops of the file reading portion of the code. Consider listing 4.5 and 4.6.

26

Listing 4.5 is used for reading data from the file while listing 4.6 is used for computing
the mean. If we re-order the loops in listing 4.6 to match the looping in listing 4.5 i.e

if both listings have the same loop nest “[z,y,x]”, then we can tile and fuse them.

Listing 4.5 and 4.6 are iterating over the same domain of data. In listing 4.5 only
a block of data is being considered at a time whereas listing 4.6 considers the whole
data. Establishing the domain of data for listing 4.5 and 4.6 is a separate work in

itself. For our work, we consider they are equivalent.

12 for(t2 = 0; t2 <= m_numSubgrids-1; t2++) {
13 s3(3,t2,0);

14 s4(3,t2,1);

45 if (ny >= 1) {

46 for(td4d = 0; t4 <= nz-1; t4++) {

AT for(t6 = 0; t6 <= ny-1; t6++) {

18 s5(3,t2,2,t4,0,t6,0);

19 for(t8 = 0; t8 <= nx-1; t8++) {
50 s6(3,t2,2,t4,0,t6,1,t8,0);
51 }

52 }

53 +

54 }

55 }

Listing 4.6: Read Data

for(t2 0; t2 <= m_ny-1; t2++) {
for(t4 = 0; t4 <= m_nx-1; té4++) {
s8(4,t2,0,t4,1);
for(t6 = 0; t6 <= m_nz-1; t6++) {
s9(4,t2,0,t4,1,t6,0);

Gl W N

6 }
s10(4,t2,0,t4,2);

-3

8 }
9 }

Listing 4.7: Compute Mean

27

tile of size m_nx

nx

Figure 4.1: Block of size m_nx tiled into size of nx

4.5.3 Producer-Consumer Loop fusion

In Loop fusion, we combine two or more statements in different loop nests into single
loop nests. The data produced in the Listing 4.5 can be consumed directly by Listing

4.6. The outcome of the producer-consumer loop fusion is:

I for(t2 = 0; t2 <= m_numSubgrids-1; t2++) {
2 83(3,t2,0);

3 s84(3,t2,1);

4 if (ay >= 1) {

5 for(t4d = 0; t4 <= nz-1; t4++) {

6 for(t6 = 0; t6 <= ny-1; t6++) {
7 s5(3,t2,2,t4,0,t6,0);
8 for(t8 = 0; t8 <= nx-1; t8++) {

9 s6(3,t2,2,t4,0,t6,1,t8,0);
10 s9(3,t2,2,t4,0,t6,1,t8,1);
11 }

12 }

13 }

14 3}

15 }

Listing 4.8: Fusing input and mean computation

4.6 Code Generation

The Computation API also provides the functionality for code generation from the

computation object. We generate the C code as soon as we have a complete pipeline

28

i.e. a user requests output. The code is then compiled with any standard C++

standard compiler.

29

CHAPTER 5

RESULTS

5.1 Experimental Setup

All the experiments were run on the verde server hosted at Princeton University. The
verde server is an HPC cluster with 96 CPUs of model AMD EPYC 7402 24-Core
Processor. The 96 CPUs are distributed in 16 numa nodes with each node consisting
of 6 CPUs.

All the generated codes are compiled with GCC compiler version 8.5.0 20210514.

5.2 Performance Evaluation

We evaluate the performance of our approach with existing Python-based implemen-
tation. We selected five PFB files of size 2.6 GB for benchmarks. We recorded the

time to compute the mean for the existing approach and our implementation.

5.2.1 Execution Time

Table 5.1 shows the execution time for both of the implementations. We can clearly
see that our approach is much faster than the existing implementation with an average
speedup of 2.58x. Figure 5.1 shows the average execution time for both of the

implementations.

30

There is overhead in generating the C-code, compiling, and running them. Since
these programs are run time and again the code of delayed execution (codegen and

execution) is amortized.

16000 7

14000 ~

12000 ~

10000 ~

8000 ~

6000

Time taken (milliseconds)

4000 1

2000 ~

Our Approach Existing
Implementations

Figure 5.1: Comparions of execution times of our implementation vs existing imple-
mentation

5.2.2 Memory Utilization

With our approach, we could totally eliminate the temporary storage required for
the memory footprint as we are immediately performing computations of the block

of data that is being read from the file.

31

File Our Approach(ms) Existing(ms) Speedup
NLDAS.Press.001777_to_001800.pfb 6254 11206 1.79
NLDAS.Press.000433_to_000456.pfb 6427 16401 2.55
NLDAS.Press.000697_to_000720.pfb 6543 17011 2.60
NLDAS . Press.000841_to_000864.pfb 6459 19354 3.00
NLDAS.Press.000337_to_000360.pfb 5978 17570 2.94
Average 6332.2 16308.4 2.58

Table 5.1: Comparison of execution times of our approach over existing approach and

speedup

32

CHAPTER 6

CONCLUSIONS

6.1 What have we done so far

We have established that static compilation techniques along with optimization like
file I/O fusion can significantly reduce the computation time required for processing
large hydrologic data files. We have seen an average speedup of 2.58 times. Also
using our approach we could totally eliminate the temporary storage that is being

used in the existing implementation.

6.2 Future directions

This work has shown using static compilation techniques can significantly enhance
the performance of hydrologic data processing systems. This work is a stepping stone
towards creating tools that can significantly improve performance for data processing

systems without impacting the programmer’s productivity.

6.2.1 Supporting more hydrologic data processing tools

The hydrologic data processing tools consist of a wide array of functionality. Our

library as of now implements only a subset of functionality. We need to implement

33

more features that enable end users to perform different types of computations related

to hydrologic data processing.

34

CHAPTER 7

RELATED WORK

This work builds on research done on various python libraries and domain-specific

languages.

7.1 Python Libraries

Xarray [7] is an open-source python package that extends the labeled data function-
ality of Pandas to N-dimensional array-like (tensors) datasets. It provides features
for manipulating multi-dimensional datasets, and out-of-core computation to sup-
port parallel and streaming computation on larger-than-memory datasets backed by
dask [14].

Dask [14] is a flexible library for parallel computing in Python that provides
multi-core execution on larger-than-memory datasets and deferred execution. Dask
represents the computations in the form of task graphs. The actual computation on
these graphs is only done when output is involved. Dask divides arrays into many
small pieces, called chunks, each of which is presumed to be small enough to fit into
memory. It helps for larger than memory dataset computation.

Dask and Xarray provide various features like parallelism and lazy loading. These
features are essential to increase performance and productivity. But, they do not offer

features like improving data locality to utilize cache hierarchies. Representing code

35

in the SPF-IR framework, we can find legal transformations to improve data locality.
Hence, we can benefit from cache hierarchies. Also, the proposed library provides

differed execution.

7.2 Domain Specific Languages/Compilers

Halide [13] is a programming language developed to enhance large-scale image and
array processing performance. Halide separates algorithms from schedules. The main
advantage is that users can search for many schedules to find the optimal schedule.

PolyMages [10] is also a domain-specific language for the automatic optimization
of image processing pipelines. Polymage uses the polyhedral framework for trans-
formations and code generation, providing features like complex fusion, tiling, and
storage optimization.

Our approach combines fusing input and output to optimize hydrologic data pro-
cessing systems. It allows optimally reading data streams, performing computation
on them, and immediately writing them back to the disk. It reduces memory footprint
and improves the performance of the programs. Halide and Polymage do not consider

file input/output in their optimization pipelines.

1]

2]

36

REFERENCES

Stephen J Burges. Trends and directions in hydrology. Water Resources Research,
22(9S):1S-58, 1986.

Liz Carolan, Fiona Smith, Vassilis Protonotarios, Ben Schaap, Ellen Broad,
Jack Hardinges, and William Gerry. How can we improve agriculture, food and
nutrition with open data. London, UK: Open Data Institute, 2015.

Chun Chen. Polyhedra scanning revisited. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 499-508, 2012.

Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A framework for
composing high-level loop transformations. Technical Report 08-897, University
of Southern California, June 2008.

Ralf W Grosse-Kunstleve, Thomas C Terwilliger, Nicholas K Sauter, and Paul D
Adams. Automatic fortran to c++ conversion with fable. Source code for biology
and medicine, 7(1):1-11, 2012.

Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—performing
polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(04):1250010, 2012.

Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in
python. Journal of Open Research Software, 5(1), 2017.

Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman,
and David Wonnacott. The Omega Library interface guide. Technical Report
CS-TR-3445, University of Maryland at College Park, March 1995.

Benjamin NO Kuffour, Nicholas B Engdahl, Carol S Woodward, Laura E Con-
don, Stefan Kollet, and Reed M Maxwell. Simulating coupled surface-subsurface
flows with parflow v3. 5.0: capabilities, applications, and ongoing development
of an open-source, massively parallel, integrated hydrologic model. Geoscientific
Model Development, 13(3):1373-1397, 2020.

[10]

[11]

[12]

[13]

37

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Auto-
matic optimization for image processing pipelines. ACM SIGARCH Computer
Architecture News, 43(1):429-443, 2015.

David A Patterson and John L Hennessy. Computer organization and design
ARM edition: the hardware software interface. Morgan kaufmann, 2016.

Tobi Popoola, Ravi Shankar, Anna Rift, Shivani Singh, Eddie C Davis,
Michelle Mills Strout, and Catherine Olschanowsky. An object-oriented interface
to the sparse polyhedral library. In 2021 IEEE /5th Annual Computers, Software,
and Applications Conference (COMPSAC), pages 1825-1831. IEEE, 2021.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing pipelines. Acm
Sigplan Notices, 48(6):519-530, 2013.

Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task
scheduling. In Proceedings of the 14th python in science conference, volume 130,
page 136. Citeseer, 2015.

Alina Sbirlea, Jun Shirako, Louis-Noél Pouchet, and Vivek Sarkar. Polyhedral
optimizations for a data-flow graph language. In Languages and Compilers for
Parallel Computing: 28th International Workshop, LCPC 2015, Raleigh, NC,
USA, September 9-11, 2015, Revised Selected Papers 28, pages 57-72. Springer,
2016.

Michelle Mills Strout, Geri Georg, and Catherine Olschanowsky. Set and relation
manipulation for the Sparse Polyhedral Framework. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7760 LNCS:61-75, 2013.

