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Abstract

Deep neural networks (DNNs) are becoming ubiquitous in

various safety- and security-sensitive applications such as self-

driving cars and financial systems. Recent studies revealed

that bit-flip attacks (BFAs) can destroy DNNs’ functionality

via DRAM rowhammer –by precisely injecting a few bit-flips

into the quantized model parameters, attackers can either de-

grade the model accuracy to random guessing, or misclassify

certain inputs into a target class. BFAs can cause catastrophic

consequences if left undetected. However, detecting BFAs is

challenging because bit-flips can occur on any weights in a

DNN model, leading to a large detection surface.

Unlike prior works that attempt to “patch” vulnerabilities

of DNN models, our work is inspired by the idea of “honey-

pot”. Specifically, we propose a proactive defense concept

named NeuroPots, which embeds a few “honey neurons” as

crafted vulnerabilities into the DNN model to lure the at-

tacker into injecting faults in them, thus making detection

and model recovery efficient. We utilize NeuroPots to de-

velop a trapdoor-enabled defense framework. We design a

honey neuron selection strategy, and propose two methods

for embedding trapdoors into the DNN model. Furthermore,

since the majority of injected bit flips will concentrate in the

trapdoors, we use a checksum-based detection approach to

efficiently detect faults in them, and rescue the model accu-

racy by “refreshing” those faulty trapdoors. Our experiments

show that trapdoor-enabled defense achieves high detection

performance and effectively recovers a compromised model

at a low cost across a variety of DNN models and datasets.

1 Introduction

Deep neural networks (DNNs) have achieved tremendous

success in many real-world applications ranging from com-

puter vision, speech recognition, disease diagnosis to safety-

and security-critical autonomous vehicles, and banking sys-

tems [1, 2, 3, 4, 5, 6]. Unfortunately, recent studies have

revealed that DNN inference execution on hardware engines

such as GPUs, FPGAs, and ASICs, can be directly compro-

mised by a variety of fault injection attacks [7]. In paral-

lel with existing data-centric attacks [8, 9, 10, 11, 12, 13],

these emerging model-centric attacks can also lead to attacker-

desired persistent accuracy loss without altering the input.

Fault injection attacks disrupt DNN inference by manipulat-

ing the model’s neuron activation, computed intermediate re-

sults, or weight parameters stored in buffers or memories, via

active fault injection techniques such as laser beaming [14],

row hammering [15, 16], or clock glitching [17]. Among

these methodologies, the recently discovered Bit-Flip Attack

(BFA) [16, 18] that exploits DRAM rowhammer vulnerability

is considered to be one of the most destructive attacks. BFA

injects faulty bits directly into memories that host weight

parameters with DeepHammer [16], a type of rowhammer

that can precisely flip a bit inside a DRAM page [19]. As

demonstrated in real DNN testbeds, by flipping only 13 bits

out of 1.2 billion bits of an 8-bit quantized DNN model, Deep-

Hammer can degrade the model accuracy to random guessing

within 66 seconds [16]. Moreover, a stealthy and probably

more dangerous variant of BFAs called Targeted Bit-Flip At-

tack (T-BFA) was proposed [20]. T-BFA can go unnoticed

for a long time as it only alters the classification of some

inputs with a very marginal impact on others. Considering a

resource-sharing environment where highly optimized DNN

models are deployed to serve multiple users (e.g., machine-

learning-as-a-service [5, 21]), BFAs can result in catastrophic

consequences if left undetected.

Defending against BFAs, however, can be very challeng-

ing. BFAs leverage a progressive search algorithm to select

and flip bits only in the most sensitive weights, and the lo-

cations of those bits are highly dependent on a very small

portion of input data that attackers have. As a result, it is

difficult to predict where BFAs will be landed and concen-

trate on those weights, as complex DNN models have too

many “vulnerable points” to protect against (more details in

Section 2.2). Defense solutions that passively detect faults

of weights in pre-selected layers can be suboptimal [22]. To

tackle this challenge, we propose a proactive defense con-
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cept named “NeuroPots” (formally defined in Section 3.2).

Inspired by the idea of honeypots, NeuroPots embeds a few

specially designed “honey neurons” as vulnerabilities (i.e.,

trapdoors fully controlled by the defender) into the model to

lure BFA’s targeted chain of bit-flips. As honey neurons are

more vulnerable than normal neurons, BFAs are highly likely

to land on a few designated honey neurons. At runtime, faults

in honey neurons can be efficiently detected using checksums,

and the faulty weights can be recovered to the original value.

We comprehensively study NeuroPots’s theoretical and

practical foundations of trapping bit-flips under real system

constraints. Then based on NeuroPots, we design a trapdoor-

enabled defense framework to detect and mitigate different

basic and adaptive attacks. The evaluation shows that our

design incurs minimal impact on inference accuracy, but

is able to lure attackers to inject most bit-flips (if not all)

into those honey neurons. By checking only a very small por-

tion of model weights, attacks can be easily detected with a

close-to-zero false negative rate. The discovered position in-

formation of the trapped bit-flips further offers a unique oppor-

tunity to repair the model online at low cost (e.g., 0.69ms

time overhead and 99KB storage overhead for 14ms/22MB

ResNet-34 in ImageNet).

To the best of our knowledge, this is the first work that

adopts a HoneyPot-style proactive defense policy to offer

extremely lightweight real-time mitigation on the challenging

model-centric bit-flip attacks whose attack surface could be

too large to be covered by existing solutions. We hope that

our results could provide a new perspective for defending

emerging attacks in deep learning and will enable more in-

depth research along this direction.

2 Background and Motivation

In this section, we first provide a brief background on BFA,

T-BFA, and DeepHammer. Then we explain why a proactive

defense solution is crucial. Finally, we explain at a high level

the design intuition behind NeuroPots.

2.1 Bit-Flip Attack

Bit-Flip Attack and Target BFA. The goal of BFA is to

significantly degrade the model’s accuracy by performing a

minimum number of bit-flips. The objective function can be

represented as: maxB L( f (x,B), t), where B is the two’s com-

plement representation of quantized weights, t is the ground-

truth target of input x, L denotes the loss function of the model.

Unlike BFA, T-BFA aims to misclassify inputs from source

category p into the target category q (q 6= p). Meanwhile, the

remaining inputs will maintain their original categories (with

no impact on their accuracy) to ensure attack stealthiness.

T-BFA will minimize the following objective function:

min
B

L( f (x,B), tq)|x ∈ Xp)+L( f (x,B), t)|x /∈ Xp) (1)

Although BFA and T-BFA have different objectives, they both

utilize a gradient-based Progressive Bit Search (PBS) to find

the most vulnerable bits iteratively on quantized DNNs. PBS

consists of two steps: intra-layer and cross-layer search. In

the k-th iteration, the intra-layer search selects bits with top n

gradient5bL as the most vulnerable bit candidates at layer l.

For a q-bit quantized DNN,5bL can be represented as:

5bL = [
∂L

∂bNq−1
, . . . ,

∂L

∂b0
] (2)

Then, they apply a classical Fast Gradient Sign Method

(FGSM) [8] algorithm from adversarial attack to the n se-

lected vulnerable bit candidates, which can be presented as:

b∗ = b⊕

(

b⊕

(

±sign(5bL)+1

2

))

(3)

Note, BFA uses +sign(5bL) to maximize objective function,

while T-BFA applies -sign(5bL) to minimize its objective

function. Then, they evaluate the loss increment as L
k
l for

layer l. The same process will be performed in each layer

to obtain loss set {Lk
1 , . . . ,L

k
l , . . .L

k
L}. Then, the cross-layer

algorithm identifies the j-th layer with maximum loss (i.e.,

j=argmaxl{L
k
1 , . . . ,L

k
l , . . .L

k
L}) and flip the most vulnerable

bit with largest gradient in j-th layer.

DeepHammer Attack (BFA via row-hammer). At the

software-level, DeepHammer attack [16] optimizes BFA’s

vulnerable bits search algorithm. In the k-th iteration, after

selecting n vulnerable bits by ranking gradients 5bL like

BFA, DeepHammer flips each bit respectively and generates

a loss set as {Lk
l }

n
i=1. The same process will be performed for

each layer. As a result, the total candidate bits will be n× l and

the corresponding loss set is {Lk}n×l
i=1 . DeepHammer selects

the bit that has the maximum loss as the most vulnerable bit.

At the hardware level, a new double-sided row-hammer attack

using a targeted column-page-stripe data pattern is proposed

to perform precise bit-flips in a DRAM page. Unlike the

previous two ideal attacks, to achieve precise bit flipping,

DeepHammer needs to obey a strict constraint, that is, only

one bit-flip per page. In this work, we assume BFA and

TBFA can flip any number of bits per DRAM page, while

DeepHammer is constraint by flipping only one bit per page.

2.2 Motivation for Proactive Defense

To maximize the attack efficiency, BFAs always perform bit-

flips on the most sensitive weights with the largest gradients.

Because the gradients for weights highly rely on inputs, the

generated bit-flip chain can be very different (i.e., different

combinations of bits, weights, and layers) if attackers use

different input data. Fig. 1(a) shows how bit-flips performed

by BFAs change as input data alters. In this study, we follow

the original setup of BFAs, first use three random seeds to

pick three batches of input data, and then perform BFAs on
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Figure 1: Comparison of the normal model and trapdoored model with NeuroPots under BFAs. (a) Layer-wise bit-flips distribution

of 3 attack chains with different seeds for ResNet-20 (normal model). (b) A diagram of the position of bit-flips of 3 attack chains

in a normal model. (c) A diagram of the position of bit-flips of 3 attack chains in a trappdoored model with NeuroPots.

each batch of input data individually. By only flipping 20

bits, BFAs can effectively degrade the model accuracy to

random guesses for ResNet-20 on CIFAR-10. From the three

trails of attack, we notice that although each trial focuses on

flipping bits in just a few layers, none of the layers receives a

bit-flip in all three trials. This study demonstrates that DNN

models have many unpredictable natural “vulnerable points”,

and hence defense solutions that rely on detecting faults of

weights in a few pre-selected layers can be suboptimal. In

other words, passively finding and examining a subset of

neurons (or layers) that is more vulnerable to BFAs can easily

lead to false negative given the limited coverage. Moreover,

it fails when facing adaptive attackers who can circumvent

these “fixed” vulnerable points and find another attack path.

The above observation motivates us to design a proactive

defense mechanism. Instead of blindly analyzing which lay-

ers/weights the highly unpredictable BFAs will land on, we

intentionally introduce vulnerabilities into the model to attract

BFAs, such that the locations of faults become determined. If

the crafted vulnerabilities are always easily discovered, we

can ensure that attackers inject bit-flips into them even if us-

ing different data. Furthermore, as we only need to protect

a few vulnerabilities, the detection overhead will be trivial

even using precise but high-cost detection methods. More

excitingly, if the vulnerabilities can trap most of the bit-flips,

we can quickly recover model accuracy by “refreshing" faulty

weights. To our best knowledge, no prior work can recover

model accuracy to the original level at run time.

2.3 NeuroPots Design Intuition

Consider a scenario where, starting from a trained DNN

model with a quantized parameter set B and any input x, the

attacker searches for a universal adversarial binary weight-bit

perturbation to induce a misclassification from the correct

label yx to any incorrect label other than yx in BFA (or a target

label yt 6= yx in T-BFA). This is analogous to looking for a

“shortcut” from the model to achieve the required systemat-

ical misclassification for any legitimate input x by flipping

the least amount of bits in the model parameter set B (e.g.,

13 bit-flips out of 1.2 billion bits [16]). Along these lines,

NeuroPots intentionally disguise a few neurons as decoys and

create shortcuts that are easier to locate and shorter than any

natural weakness attackers are searching for. Once the model

is trapdoored, an attacker will generate the adversarial chain

of bit-flips along shortcuts produced by NeuroPots.

Fig. 1(b) and 1(c) respectively depict the distribution of

bit-flips of three attack chains in the DNN model without

and with NeuroPots. Without NeuroPots, the bit-flips of the

three attack chains can appear in any weights across all layers.

In Fig. 1(c), we embed one honey neuron in each layer to

construct a trapdoored model. We can observe that 5 out

of 6 bit-flips of the three attack chains appear in weights

connected with the embedded honey neurons. Because at least

one bit-flip appears in honey weights for each attack chain,

we can therefore detect the attack accurately (we assume that

the detection approach can correctly detect faults of honey

weights). Moreover, all bit-flips of attack chains A and C

are trapped by NeuroPots, so these two trials can achieve

completed accuracy recovery by replacing faulty weights with

their golden backup. Because honey weights are a tiny portion

out of the entire weights in our experiments (e.g., ∼ 0.5% in

ResNet-34), the time and storage overhead for fault detection

and model recovery will be very low.

3 Trapdoor Defense using NeuroPots

We utilize NeuroPots to design a trapdoor-enabled proactive

defense framework. The key is to expand specific vulnerabili-

ties in the model via designed honey neurons. Such intentional

weaknesses we build into the DNN model (called “trapdoored

model”) will shape and lure bit-flip attacks to make them eas-

ily detected and recovered at inference time.

3.1 Threat Model and Design Objectives

Threat Model. We adopt the white-box threat model assump-

tion consistent with prior relevant works [16, 18], of which
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the goal is to crush a well-trained quantized DNN model by

flipping a minimum number of weight bits after model de-

ployment. In particular, the attacker is assumed to possess

complete knowledge of the victim trapdoored model’s struc-

ture, weights, gradients, and partial knowledge of the training

data. This can be obtained by ways such as side-channel at-

tacks [23, 24]. The attacker’s program co-locates with the

victim model on resource-sharing platforms such as machine-

learning-as-a-service with DRAM hosting quantized parame-

ters. The attacker searches for the target chain of bit-flips via

gradient-based BFA algorithm [18] and performs the Deep-

Hammer attack [16] to precisely flip DRAM bits selected by

the BFA algorithm. Under real system constraints, we assume

DeepHammer only flips one bit per page. We also assume

the attacker does not have access to proposed detector (e.g.,

checksum or bit-by-bit check used at run time to detect BFA

or DeepHammer) and the small number of backup weights

associated with NeuroPots for online model recovery (e.g.,

secured in the trusted execution environment (TEE) like Intel

SGX [25] or ARM Trustzone [26, 27]). If ever compromised,

trapdoor detection and recovery can be reset.

Adaptive Adversaries. We define three types of attackers

based on their knowledge levels as follows. We evaluate the

online detection and model recovery capabilities against all

attackers in Section 6.

1. Basic Attacker is an entry-level attacker with no knowledge

of the trapdoor defense. The attacker directly applies BFAs

to the trapdoored model.

2. Expert Attacker is aware that the model is protected by

trapdoors and detection will examine the flipped bits dur-

ing inference. The attacker may also know some basic

principles of trapdoor designs (e.g., algorithms for select-

ing and creating honey neurons) and try to leverage such

knowledge to circumvent the defense. However, the at-

tacker does not know the exact characteristics of trapdoor

defense (e.g., the locations and number of honey neurons).

3. Oracle Attacker knows comprehensive details of trapdoor

defense, for example, the design principles, the number

and exact locations of embedded honey neurons, etc.

Defender’s Capability. We consider two scenarios: 1) The

defender has the ability to fine-tune the well-trained model

using training data (often a few epochs), so as to quickly

create trapdoored models. This is referred to as retraining-

based strategy described in Section 4.1.2. 2) The defender

does not have access to training hardware but a small number

of testing data, and can directly build the trapdoor from the

trained model without involving retraining. This is referred to

as one-shot strategy described in Section 4.1.2).

Design Goals. We have three major design goals. First,

the defense should detect adversarial bit-flips with very high

precision and/or close-to-zero false negative rate under differ-

ent levels of attackers; and recover model accuracy to almost

the original level (e.g., < 3%) for basic and expert attackers1.

Second, the trapdoored model should not impact inference ac-

curacy. Third, the defense should incur very low overhead, for

example, a very small number of honey neurons for detection

and negligible latency impact on normal inference.

3.2 Theoretical& Practical Basis of NeuroPots

In this section, we present formal theoretical principles as

well as practical implementation principles of our trapdoor-

enabled defense. These principles guarantee effectiveness in

mitigating adversarial bit-flips. They also lay solid founda-

tions for our detailed defense implementation in Section 4.

Theoretical Foundation of NeuroPots. To lure an attacker

into flipping weight bits within our designed NeuroPots, we

examine how the attacker uses a greedy strategy to identify

the most vulnerable weight bits from the model. While the

attacker’s choice of a chain of bit-flips could be highly unpre-

dictable (see Section 2.2), the first critical step is to identify

a bit with the largest gradient w.r.t loss function from each

layer based on a batch of training data. Then, the attacker

compares the impact of each individual bit-flip to loss func-

tion and finally flips the most influential bit from one iteration

to another. Intuitively, if we can intentionally magnify the gra-

dient |5W L | of some selected weights, then we will be able

to improve the chance of luring bit-flips to such weights and

make the attacker’s bit-flip chain predicable. Inspired by the

above intuition, we further investigate the backpropagation

rule to compute the gradient of loss function L w.r.t. weight

W l
i j that connects neuron j at layer l to neuron i at layer l−1:

∂L

∂W l
i j

=

{

g′(al
j)o

l−1
i ∑nl+1

k=1 W l+1
jk δl+1

k 1≤ l < N

δl
jo

l−1
i l = N

(4)

where g is the activation function and δl
j is the error term of

neuron j at layer l (i.e., δl
j = ∂L

∂al
j

, in which al
j is neuron j’s

output before passed to g at layer l). In a hidden layer (i.e.,

1 ≤ l < N), the gradient magnitude of loss function L w.r.t.

W l
i j is determined by three key terms: g′(al

j) — the derivative

of activation function for neuron j at layer l; ol−1
i — neuron

i’s activation value at layer l−1; and ∑nl+1

k=1 W l+1
jk δl+1

k — the

weighted summation of error terms of all neurons at layer

l + 1. The first term generally equals to a constant (either

0 or 1) due to the widely adopted ReLU function in DNNs

(g(x) = x if x ≥ 0, otherwise 0). Meanwhile, the last term

cannot guarantee the increase of the absolute value of the

summation, because weights and error terms could be negative

or positive As a result, we focus on the second term ol−1
i ,

which is the activation value of source neuron i at current

layer l−1. By just increasing ol−1
i , theoretically the gradient

1The online model repair is meaningful only if the recovered accuracy

can be close to its original level. We do not consider such recovery for the

oracle attacker due to a complete defense bypass.
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magnitude of all weights (W l
i j) starting from a source neuron

i at the current layer to any destination neuron j at the next

layer can be enlarged. This is also applicable to the output

layer. In this way, we have the following formal definitions:

DEFINITION 1. Any neuron (or feature map in a convolu-

tional layer) with its activation value intentionally enlarged

can be defined as a “honey neuron” (or “honey feature map”).

All weights connected from the honey neuron to any neurons

at the next layer are “honey weights” that can be used to trap

malicious bit-flips from an attacker.

DEFINITION 2. “NeuroPots” consist of a set of honey neu-

rons and the weights connected from each honey neuron.

DEFINITION 3. Any DNN model with “NeuroPots” embed-

ded is defined as a trapdoored model.

Practical Foundation of NeuroPots. Another important

consideration of NeuroPots is to cover scatted bit-flips which

could stem from an expert attacker under real system con-

straints (e.g., DeepHammer with one flippable bit per 4KB

DRAM page). Fig. 2 depicts an example of mapping and

storing honey neuron’s connected weights in DRAM pages

for a convolutional layer. In this example, we use a honey

feature map (marked in yellow) instead of a single honey

neuron, and its connected weights to the next layer are 2D

filters in the same channel (marked in yellow) across all 3D

kernels. Since the computation of every output feature map

needs to read its corresponding 3D kernel from memory, the

weights will be stored in the granularity of an entire 3D kernel

for better access to a page. Given that honey weights in the

yellow 2D filter appear in every 3D kernel, and the size of

the total kernels in a convolutional layer (e.g., 256 3D kernels

with 3×3×64) is much larger than a DRAM page size (e.g.,

4KB), honey weights will be stored across several pages to

trap bit-flips, even if only a single honey feature map is embed-

ded. This is also applicable to fully connected layers — the

weight of a single honey neuron will be accessed whenever

computing an output neuron of the next layer.

Why Focus on Neurons? We need to emphasize that Neu-

roPots focus on neurons/feature-maps instead of individual

weights to create figurative holes. When attackers construct

adversarial bit-flips against the model, they will have a high

probability of falling into the trap. This is based on the fact

that the number of neurons/feature-maps is usually much

smaller than the weights in modern DNNs, and this can signif-

icantly reduce the attack surface and hence achieves efficient

and effective detection and mitigation in real-time.

4 Detailed Defense Implementation

A useful defense should be able to mitigate different levels

of attacks which are unpredictable but may occur in practical

scenarios. Therefore, the design of trapdoor-enabled defense

shall proactively consider defeating adversaries with differ-
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Figure 2: A conceptual view of mapping and storing honey

weights to DRAM pages for a convolutional layer. Each

DRAM page consists of multiple honey weights from the

highlighted 2D filters, covering the scattered bit flips.

ent capabilities (see Section 3.1). To achieve this, we first

introduce the two-step defense implementation: 1) offline

trapdoored model construction; and 2) online adversarial bit-

flip detection/mitigation. We then present the final defense

recommendation against basic and expert attackers.

4.1 Step 1: Trapdoored Model Construction

Our first step is to construct a trapdoored model offline before

model deployment, in which honey neurons and their associ-

ated weights are carefully designed and stealthily embedded

into a trained model.

4.1.1 Honey Neuron Selection

Since the basic idea of trapdoor design is to intentionally

make a small number of neurons more vulnerable, a sim-

ple approach would be to design a honey neuron selection

strategy based on the ranking of neuron activation response.

Intuitively, activating such already highly activated neurons is

more likely to trap bit-flips produced by basic attackers, with

less impact on inference accuracy. However, for skilled attack-

ers who are aware that honey neurons are selected by ranking

activation values, it may not work well since attackers may

avoid flipping bits associated with those highly activated neu-

rons to bypass the defense. Therefore, our solution needs to

enforce multiple levels of randomness in honey neuron selec-

tion: 1) the positions of honey neurons (e.g., which layer and

which neuron in a layer); 2) the activation rankings of honey

neurons (e.g. ranking at different levels); and 3) the number

of honey neurons. In this process, we also avoid selecting

“dead” neurons that always produce zero activation.

We further treat fully connected layer (neuron) and con-

volutional layer (feature map) differently in honey neuron

selection. In particular, for neurons in a fully connected layer,
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we can randomly select the N neurons at a layer l. For neurons

in a convolutional layer, considering that weights (or kernels)

are shared by different neurons within the same output feature

map, to simplify the design, we could treat an entire input

feature map as a honey neuron, a.k.a honey feature map, and

all its corresponding 2D filters in 3D kernels become honey

weights (see Fig. 2). As a result, we randomly select the N

feature-maps as honey feature maps at layer l.

4.1.2 Honey Neuron Embedding

Once honey neurons are identified, the next step is to em-

bed them into a well-trained DNN model to create trap-

doors. Meanwhile, trapdoor embedding should not degrade

the model accuracy. To achieve the above goals, we need to

solve the following optimization problem:

min
θ

L( f (x,θ),y)+α ·
Nh

∑
l=1

Lh(o
l , t l) (5)

where Lh is the loss function for embedding honey neurons,

and α (0 < α < 1) is to balance model accuracy (first term)

and trapdoor embedding (second term). Nh is the number of

layers embedded with honey neurons. ol is the honey neuron’s

activation at layer l, while t l is its target activation value

(t l� ol). In our implementation, we set the target t l as γ times

initial value of ol (before trapdoor embedding), i.e., t l = γ ·ol

(γ > 1 is an expanding coefficient). To simply our design, we

set the same γc for all convolutional layers and the same γ f

for all fully connected layers. To solve the above optimization

problem, we propose two different methods: retraining-based

embedding and one-shot embedding.

Method 1: Retraining-based Embedding (Fine-tuning).

To optimize Eq. 5, a straightforward method is to fine-tune the

original model using an optimization (training) algorithm. For

trapdoor embedding, our goal is to minimize the difference

between honey neuron activation and its target. We use Mean

Square Error (MSE) as an extra loss term to achieve this goal:

Lh(o
l , t l) =

1

k

k

∑
i=1

(ol
i − t l

i )
2 (l 6= 0) (6)

where k is the number of honey neurons, and t l
i is the target

(constant) activation value for honey neuron i at layer l. It is

worth noting that honey feature maps embedding in convolu-

tional layers will be conducted at the granularity of a single

neuron of a feature map. Specifically, given a honey feature

map ol
i , we have (ol

i− t l
i )

2 = 1
n ∑n

j=1(o
l
i j− t l

i j)
2, where n is the

number of neurons of a certain feature map at layer l. Intu-

itively, we can also concentrate on a small portion of neurons

(rather than all) of the feature map for reducing potential ac-

curacy degradation. However, our experiment indicates there

is not much difference in accuracy from acting on all neurons

of the feature map when the number of honey feature maps

is small. Thus, for design simplification, we will focus on all

neurons of a feature map in real implementation.

We use ADAM [28] as our optimization algorithm to mini-

mize Eq. 5 and Eq. 6. In general, we set a small value for α
in Eq. 5 (e.g., 0.01), since the value of L is very small for a

well-trained model, while the target activation value of honey

neuron, namely t l
i , is much larger than ol

i at the beginning of

the retraining process. Note that the retraining-based trapdoor

can be applied to any layer except for the input layer (i.e.,

l = 0). This is because the input data (e.g., pixels or words)

cannot be enlarged by fine-tuning parameters (e.g., weights).

Method 2: One-shot Embedding (Retraining-free). The

retraining-based trapdoored model construction is relatively

complex and costly, and it is only for defenders who have

the ability to fine-tune models using a large amount of train-

ing data. The one-shot trapdoored model construction ad-

dresses those issues. Specifically, the one-shot strategy aims

to quickly solve Eq. 5 by a set of simple computations with

very low cost, using the following two steps. First, we directly

enlarge the activation value of a honey neuron by multiplying

γ, i.e., ol ← γ · ol , to achieve trapdoor embedding (the sec-

ond term of Eq. 5 will be 0). Second, we shrink all weights

connected to the honey neuron by 1
γ , so that the weighted

contributions from this neuron to neurons in the next layer

remain almost unchanged, hence minimizing the first term of

Eq. 5. The specific one-shot processing can be formulated as:

ol+1
i =

nl

∑
j=1

wl
ji ·o

l
j = wl

0i ·o
l
0 + · · ·+(

1

γ
·wl

hi)(γ ·o
l
h)+ · · · (7)

where ol
h is the honey neuron at layer l, and wl

hi is the associ-

ated honey weights. For a full-precision model, this one-shot

processing will not bring any errors (we ignore bias here). For

a quantized model, however, because we need to re-quantize

the shrunk weights 1
γ ·w

l
hi to fixed-point numbers, this will

bring a small amount of quantization error. A large γ could

also lead the original weight to 0 (behaves like pruning) if

the weight is small. However, we found that it only has a mi-

nor impact on model accuracy when embedding a few honey

neurons. For the honey feature map, like retraining-based trap-

door embedding, the one-shot processing will be applied to all

neurons of a feature map in a convolutional layer. Note that

the one-shot strategy can be applied to any layer (including

the input layer) because it will directly change the activation

value of honey neurons.

Impact of Trapdoor on Model Output. After finding the

most sensitive bit, the attacker will further measure the impact

of bit flipping on the loss function to verify if the flipping can

degrade model accuracy. Thus, to trap bit-flips efficiently, we

need to ensure that our trapdoor can cause a more considerable

change in model output when bit-flips are injected. For a

normal neuron, its impact on next layer’s output under BFAs

can be expressed as ol+1 = (w+∆w) · ol , where ∆w is the

weight distortion caused by bit-flips. In comparison, taking

the one-shot trapdoor as an example, a honey neuron’s impact
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Figure 3: Trapdoor-based fault detection and mitigation.

to the next layer is represented as:

ol+1 = (
1

γ
·w+∆w) · γ ·ol = (w+∆w) ·ol +(γ−1) ·∆w ·ol (8)

We can see ol+1 increases by (γ−1) ·∆w ·ol compared to the

normal neuron. Moreover, the attacker is more likely to flip

the most significant bit of weights to produce a large pertur-

bation ∆w, so the impact of the honey neuron to ol+1 will be

more significant, especially for a large γ. Such change will

propagate and accumulate to the following layers, causing a

dramatic change to the model output. Therefore, our trapdoor

can trap bit-flips efficiently.

Activation Ranking Obfuscation. While using a larger

expanding coefficient–γ to intentionally activate honey neu-

rons significantly can achieve a better bit-flip trapping effi-

ciency in basic attackers, expert attackers may still use such

information to bypass the defense. Therefore, we propose to

moderately enlarge the activation of honey neurons using a

smaller expanding coefficient (e.g., γ = 2) during embedding.

In this way, honey neurons’ ranking can be moved up slightly

and distributed across all ranking positions in a layer, increas-

ing the stealthiness. Even if attackers bypass higher-ranked

ones, those with a lower ranking can still trap bit-flips.

4.2 Step 2: Online Detection/Model Recovery

After constructing the trapdoored model offline, the next step

is to take advantage of it for online fault detection and model

recovery. As Fig. 3 shows, we add fault detection and miti-

gation into layers embedded with the trapdoor, while other

layers simply follow the original inference flow. Because

honey weights are a tiny portion of the DNN model, the fault

detection and recovery overhead will be very low. Therefore,

our defense has a trivial impact on the original inference. We

evaluate the inference time and storage overhead in Section 6.

4.2.1 Fault Detection

Because our trapdoor can significantly reduce the detection

surface, lightweight fault detection could be easily realized,

for example, via simple checksum or distance-based compar-

ison. As an example, we develop a simple checksum mech-

anism to detect faults on honey weights. If the sum of the
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Figure 4: Example of computing the filter-wise checksum of

honey weights (filter) with convolution (MAC) operations.

current honey weights is different from the original sum, the

model is then considered to be tampered. In particular, the

method takes advantage of Multiply-Accumulate (MAC) op-

erations commonly available in DNN hardware, and thus can

eliminate additional hardware support for detection. Also,

instead of checking the sum of all honey weights, it checks

the sum of honey weights at the granularity of filters to im-

prove detection performance. Fig. 4 illustrates the procedure

of utilizing convolution (or MAC) operations to compute the

sum of honey weights without additional hardware support.

Specifically, we set the honey feature map into 1 and others to

0. After conducting convolution operations with a 3D kernel,

the first neuron’s value in the output feature map will be the

sum of the honey weights (filter). For fully connected layers,

computation of neurons output can be treated as 1×1 con-

volution operation, so we can also use similar operations to

compute the sum of honey weights.

4.2.2 Run-time Model Recovery

After building the trapdoored model, the defender will need

to store a copy of clean honey weights in a secured zone (e.g.,

trusted execution environment (TEE) like Intel SGX [25] or

ARM Trustzone [26, 27]). Once faults are detected, we can

directly replace faulty honey weights with the clean copy

at run-time. In particular, to fit our filter-wise checksum de-

tection, the level of granularity for fault mitigation is set as

filter. Because we only need to store/recover a very small

amount of weights, the storage and time overheads are ex-

tremely low. Furthermore, since our trapdoor can trap most of

the bit-flips and mitigate the faults, the recovered model will

be very close to the original model and hence the inference

accuracy. It is worth mentioning that the recovered model

is still a trapdoored model, so we do not need to repeat the

trapdoor embedding process.

4.3 Putting It All Together For Final Defense

We build our final trapdoor-enabled defense to effectively

mitigate different basic and expert attackers by combining

all aforementioned techniques via the following manner: 1)

random honey neuron selection (position), neuron activation
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ranking obfuscation (via tuning expanding coefficient γ in

embedding) and layer-wise coverage (via adjusting honey

neuron number); 2) filter-wise fine-grained fault detection

and model recovery in real time. In the following sections, we

use such a combination as the final recommended defense for

evaluation and discussion.

5 Adaptive Attack Design

Beyond the basic adversary, any meaningful defense must

withstand countermeasures from expert attackers who ac-

knowledge the defense. In Section 3.1, we define attackers

with different abilities to comprehensively evaluate trapdoor-

enabled defense. Particularly, attackers without any knowl-

edge of defense (original BFA, T-BFA and DeepHammer

Attack in Section 2.1), are referred as basic attackers.

In this section, we design expert attackers that are aware

that the target model has been embedded with trapdoors, and

know the basic principles of trapdoor design but no specific

details. We present multiple expert attackers separated into

two broad categories. First, we consider the bit (weight)-level

bypass approach (BBA) by crafting an adversarial bit-flip

chain from weight bits with lower gradients in the trapdoor

protected model, and then use it to attack this model. The

purpose is to avoid choosing an individual (weight) bit from

established NeuroPots in the model that often has a higher gra-

dient. Second, we consider neuron-level bypass approaches

(NBA) that focus on finding bit-flip chains that cause mis-

classification while avoiding using all weight bits possibly

associated with honey neurons.

5.1 Bit-level Bypass Attack (BBA)

To achieve the highest attack efficiency, a greedy non-expert

attacker searches the more vulnerable bits of the model to

generate an attack that would lead to the least number of

bit-flips. Our trapdoor-enabled defense takes advantage of

such an attack pattern to set a few disguised vulnerable traps,

e.g., weight bits with intentionally enlarged gradients located

in NeuroPots, to lure the attacker’s bit selection. Therefore,

an expert attacker who knows that a target model contains

such trapdoors may simply lower the objective by picking

weight bits whose gradients are not among the top list, to

circumvent pre-defined NeuroPots. Accordingly, the gradient-

based bit ranking search algorithm of this adaptive BFA can

be modified as follows:

bn−1
i = Topp|5W n−1

i
L( f (x,{W n−1

i }l
i=1))|

=⇒ bn−1
i = Topp

(

Lowt |5W n−1
i

L( f (x,{W n−1
i }l

i=1))|
) (9)

where t ∈ (0,100%) is an adjustable threshold. The algorithm

iteratively searches the most vulnerable p bits only from a

subset of weights–t% of weights with lower gradients in a

layer l, and excludes the rest (top) (1− t%) of weights with

higher gradients that may contain trapdoors.

5.2 Neuron-level Bypass Attacks

Instead of examining individual weight bit, more advanced

expert attackers would also consider defeating trapdoor by

first speculating honey neurons, and then avoiding injecting

bits in all their associated weights. Such neuron- (or Neu-

roPots) level bypass could potentially lead to better efficiency

for expert attacks, since all weights associated with identified

neurons will not be selected for bit flipping.

5.2.1 Ranking-based Neuron Bypass (R-NBA)

To trap more bit-flips, honey neurons generally need to have

large activations. Therefore, expert attackers could utilize

this property to identify honey neurons and bypass trap-

doors. Specifically, the attacker may rank activation mag-

nitude of neurons or feature maps (i.e., |o| or ∑n
i |oi|), then

bypass all weights associated with the neurons with topkb
|o|

or topkb ∑n
i |oi| (e.g., kb = 10%) in certain layers. We name

this attack as R-NBA-b. On the other hand, if expert attackers

are aware that our trapdoor obfuscates the activation ranking

of honey neurons, they may further upgrade their attacks by

deliberately attacking the top-ranked neurons only to craft

the attack, since these neurons may not be honey neurons.

This attack can potentially generate a stealthy attack chain

that would need much fewer bit-flips, thereby lowering the

possibility of being detected by the trapdoor. This variant is

called R-NBA-a.

5.2.2 Frequency-based Neuron Bypass (F-NBA)

Another approach to precisely detect and bypass honey neu-

rons is to leverage the fact that, statistically, honey neurons are

likely to receive more bit-flips than normal neurons. In this

case, expert attacker can perform BFAs multiple times using

different input data, during which he or she counts the number

of bit-flips in weights associated with each neuron/feature-

map. A neuron whose weights receive more bit-flips is likely

to be a honey neuron, and all weights associated with this

neuron can be excluded from the bit-flip search process. We

name such a bypass attack as F-NBA. Specifically, this bit-flip

frequency detection includes two stages: 1) Testing (detect-

ing) stage –we perform the attack algorithm using different

training/testing data m times to generate a honey neuron set

{h}. In each testing, the number of bit-flips in weights asso-

ciated with each neuron ni will be counted. If the number of

bit-flips on neuron ni is larger than a threshold T (e.g., T = 2),

then ni is considered to be a honey neuron. We then add neu-

ron ni into the honey neuron set {h} (i.e., {h} ← {h}∪ ni).

2) Attacking (bypassing) stage–during attack we bypass all

weights associated with the honey neurons obtained from the
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last step ni ∈ {h}. Generally, it is difficult for an attacker to

obtain enough data to generate different bit-flip chains to test

the target model many times. Here we make an aggressive

assumption for the purpose of evaluation.

6 Evaluation

In this section, we evaluate the performance of our trapdoor-

enabled defense against basic adversary and expert adversary

as described in Section 3.1. Specifically, our evaluation an-

swers the following questions:

1. How does NeuroPots impact the model accuracy?

2. How is the detection and mitigation performance of our

defense framework against basic and adaptive BFAs?

3. How much time and storage overhead does our fault detec-

tion and model recovery framework introduce?

6.1 Experimental Setup

We use PyTorch as our implementation framework. All simu-

lations are conducted in a workstation with one AMD Ryzen

Thread ripper 2990WX 32-Core Processor and four NVIDIA

GeForce RTX 2080Ti GPUs. Our DRAM is 32GB (X64, DR)

260-Pin DDR4 SODIMM and consists of 16 internal banks.

6.1.1 Datasets and DNN Structures

We evaluate the effectiveness of our trapdoor-enabled defense

framework with CIFAR-10 [29] and ImageNet [30] for image

classification and Google Speech Command [31] for speech

recognition datasets. Specifically, CIFAR-10 consists of 60K

of 32×32 colored images from 10 classes, in which 50K and

10K images are used for training and testing, respectively. Im-

ageNet contains 256×256 colored images from 1000 classes,

in which 1.3M, 100K and 50K images are used for training,

testing, and validation, respectively. Google Speech Com-

mand includes 65,000 one-second-long clips from 12 classes

(10 commands and 2 additional special labels), each of which

has 30 different words.

We evaluate our trapdoor-enabled defense across differ-

ent DNN structures. In particular, ResNet-20 [32] and VGG-

16 [33] are evaluated on CIFAR-10, while the evaluations of

AlexNet [34], ResNet-34, and a memory-efficient MobileNet-

V2 [35] are conducted on the complex ImageNet. The Google

Speech Command dataset is used to evaluate WideResNet-

28 [36]. The weights of all these DNNs are quantized to 8-bit.

The accuracy of well-trained quantized models are shown in

Table 1 (see w/o trapdoor column).

6.1.2 Attack Configuration and Fault Models

Basic Adversary. For basic adversary evaluation, we use

three types of original bit-flip attacks: BFA, T-BFA, and Deep-

Hammer. The goal of BFA and DeepHammer is to degrade

model accuracy to random guesses (i.e., 10%, 0.1%, 8.33%

for CIFAR-10, ImageNet, Google Speech Commands, respec-

tively). In comparison, T-BFA only misclassifies inputs from

source class p to a target class q while maintaining accu-

racy for all inputs from other classes j. We randomly select

a source and a target class in our experiment. In terms of

hardware constraints of bit-flips in DRAM, we assume BFA

and T-BFA can inject bit-flips into any weights of the model.

In contrast, as a real bit-flip attack via row-hammer, Deep-

Hammer only flips one bit per DRAM page. For each type

of BFAs, we repeat the above attack configuration 50 times

to generate 50 bit-flip chains (i.e., 50 fault models) using

different random seeds for each DNN.

Expert Adversary. We consider that attackers can inte-

grate the defense bypass techniques described in Section 5

with realistic DeepHammer to develop four adaptive Deep-

Hammer attacks: BBA, R-NBA-b, R-NBA-a, and F-NBA.

Without loss of generality, we set the configurations for these

attacks as follows: t = 98% for BBA (i.e., bypass weight bits

with top 2% gradient), kb = 5% for R-NBA-b and R-NBA-a

(i.e., bypass/only-attack 5% top-ranked neurons), T = 2 and

test times is 50 for F-NBA (i.e., run the attack algorithm 50

times with different seeds in the targeted model and bypass all

neurons that are attacked more than two times in any trials).

For simplicity, we focus on discussing these attacks under a

given defense budget (see defense budget setting discussion

in Section 6.1.3). We leave more evaluations under different

adaptive attack parameter settings in Appendix C.

The detailed configurations for three basic BFAs and four

adaptive attacks in all DNN models, including the number of

needed bit-flips, are presented in Table 8 of Appendix A.

6.1.3 Guidelines of Setting Key Parameters in Defense

We follow the procedure in Section 4.1 to create honey neu-

rons for defense. In particular, we randomly select honey

neurons and apply activation ranking obfuscation within a

layer. To increase their stealthiness and improve the trapping

rate, honey neurons are distributed across more layers. To

properly set the three key parameters of this process: 1) num-

ber of honey neurons per layer N, 2) expanding coefficient

γ, and 3) number of selected layers Nl , we follow the gen-

eral guidelines described below. A detailed ablation study is

provided in Section 7.1.

To choose an appropriate N for different models, we

empirically set the honey neuron number per layer–N =
max(2,d p%×Nm

Nl
e), where p is a given budget (percentage)

of honey neurons that can be used in defense, Nm is the to-

tal number of neurons in the model and Nl is the number

of selected layers. These parameters determine the defense

performance and time/storage overhead. In our evaluation,

we consider the following typical defense budget: the de-

fense incurred time overhead is no more than 10% of a single

inference time in any model, and the proportion of all se-
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Table 1: The accuracy (%) of original and trapdoored models

(w/o and w/ trapdoor) on various datasets and DNN structures.

Dataset Structure
w/o

trapdoor

w/ trapdoor

retraining one-shot

CIFAR-10
ResNet-20 90.34 89.34 90.24

VGG-16 92.07 91.3 91.82

ImageNet

AlexNet 57.47 56.16 56.04

ResNet-34 72.56 71.21 71.05

MobileNet-V2 71.89 70.16 69.96

Google Speech

Command
WideResNet-28 97.73 96.58 97.12

lected neurons in any model is < 1%, except for ResNet-20

where 2.8% are honey neurons because it only contains∼ 700

neurons/feature-maps). We set Nl to 10 for all DNN models.

Note that, AlexNet only has 8 layers, so we embed honey neu-

rons to all layers of AlexNet. For honey neuron embedding,

we use a small expanding coefficient (e.g., γ = 2) to ensure

stealthiness and maintain original accuracy for all models.

To find a suitable expanding coefficient for each model, our

practice is to start with a relatively larger value (e.g., γ = 4). If

it incurs a noticeable impact on model accuracy, or all honey

neurons are top-ranked, we then gradually reduce its value

until not all honey neurons are top-ranked and the accuracy

drop is acceptable (e.g., less than 3%). The detailed defense

parameter settings are listed in Table 7 of Appendix B.

6.1.4 Evaluation Metrics

We focus on three evaluation metrics: 1) detection rate is

defined as the ratio between the number of models correctly

identified as malicious and the total number of malicious mod-

els. A higher detection rate indicates better defense efficiency;

2) mitigation success rate is calculated as the number of

models with accuracy recovered close to original level af-

ter defense divided by the total number of malicious models.

Here we define a successful mitigation empirically if the ac-

curacy difference between the recovered model and clean

model (without trapdoor) is less than 3%; 3) trapping rate

is the proportion of trapped bits out of the total number of

bit-flips injected by attackers. Intuitively, a higher trapping

rate indicates a better mitigation success rate.

6.2 Results and Analysis

6.2.1 Impact on Performance

If not properly selected and embedded, honey neurons can

cause model accuracy drop. We first evaluate how NeuroPots

impacts the model accuracy. Table 1 lists the accuracy of

the original model (w/o trapdoor) and the trapdoored model

(w/ trapdoor) in different DNN structures. We can observe

that both trapdoor embedding techniques (see Section 4.1)

only cause marginal accuracy drop for all DNN structures on

different datasets compared to the clean models. For example,

the retraining and one-shot trapdoored models of VGG-16 can

achieve 91.3% and 91.82% accuracy, which are only 0.77%

and 0.25% lower than their respective clean models.

6.2.2 Detection and Mitigation Effectiveness

Trapping Efficiency. Table 2 shows that our defense can

trap most bit-flips in the attack chain based on three bit-flip

chains generated by BFA on the retraining-based trapdoored

model of VGG-16. For example, our model captures 10 out

of 13 bit-flips in the first attack chain and achieves a 76.92%

trapping rate. Although our defense might not trap all faults

from attackers, the model’s accuracy can still be recovered to

the original level in the fault mitigation stage. This is because

our defense always traps the most destructive bit-flips of the

attack chain to interrupt the critical “attack path”. For example,

in Table 2, the first three bit-flips are trapped by our defense

in all three attack chains. The attackers always search for the

most vulnerable bits of current model iteratively. For each

iteration, the current most vulnerable bit is on top of the prior

bit-flips to maximize accuracy drop. If we can recover the first

few critical bit-flips, the remaining bit-flips are less important.

Detection and Mitigation Performance. As Table 3

shows, our trapdoor-enabled defense can achieve a very high

detection rate (100% in most cases) for three types of basic

attacks and four types of adaptive attacks in all DNN models.

Table 3 also reports the mitigation success rate in different

DNN models. On the one hand, for three types of basic attacks,

our defense achieves a considerably high mitigation success

rate in all DNN models. This indicates that most faulty mod-

els’ accuracy are recovered to the original level at run-time. In

particular, our defense achieves a similar mitigation success

rate for BFA and T-BFA (90.33% vs. 90% on average) but a

slightly worse performance for DeepHammer in most cases

(85.33% on average). This is because DeepHammer has the

one-bit-flip-per-page constraint, and therefore, the injected bit-

flips are more scattered and a lower portion of them is trapped.

On the other hand, for four types of adaptive attacks, our de-

fense only achieves slightly worse mitigation effectiveness

than the basic version (i.e., Deep Hammer) due to the random-

ness of selecting honey neurons. Such minor performance

degradation means that these strong adaptive attacks have a

very small chance to bypass a few honey weights/neurons.

6.2.3 Time and Storage Overhead

One of our design goals is to minimize the overhead of the

trapdoor-enabled defense model. Table 4 shows the time spent

on a model inference with and without the trapdoor, as well

as the additional storage overhead. For time cost, our defense

only takes slightly more time than the baseline due to involv-

ing fault detection and mitigation in the inference pipeline.

For example, in VGG-16, it costs an additional 0.07ms (to-

tal 4.96ms) compared to the baseline (4.89ms). For networks

with convolutional layers only (e.g. ResNet-20), the time over-
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Table 2: Example bit-flip attack chains generated on retraining-based trapdoored VGG-16 (bold denotes trapped bits by defense).
# of

bit-flips
Attack chain (layer number, in-layer offset of weight) Trapping rate (%) Accuracy (%)

Accuracy (%) after

fault mitigation

13
(3,36441)->(2,9913)->(2,9916)->(1,363)->(16,1771)->(16,3587)->(4,77753)

->(16,1984)->(5,208)->(16,3312)->(7,226285)->(4,2873)->(4,98494)
76.92 10.65 90.31

6 (3,36446)->(2,9913)->(4,98494)->(4,144574)->(16,1771)->(16,3587) 100 10.72 91.3

10
(2,21432)->(3,36447)->(4,98490)->(2,9913)->(6,240883)->(16,1771)

->(5,243840) ->(5,204670)->(16,3587)->(5,48002)
60 10.84 91.34

Table 3: Detection/mitigation rate of trapdoor design (one-shot) on different models and datasets under basic and adaptive attacks.
Detection Rate (%)

Attack

Type
Attack

CIFAR-10 ImageNet
Google Speech

Command AVG

VGG-16 ResNet-20 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

Basic

BFA 100 100 100 100 100 100 100

T-BFA 100 100 100 100 100 100 100

DeepHammer 100 100 100 100 100 100 100

Adaptive

BBA 100 100 100 100 100 100 100

R-NBA-b 100 100 100 100 100 100 100

R-NBA-a 100 100 100 100 100 100 100

F-NBA 100 100 100 100 100 100 100

Mitigation Success Rate (%)

Basic

BFA 98 96 88 90 84 86 90.33

T-BFA 98 94 90 92 80 86 90

DeepHammer 92 90 84 86 78 82 85.33

Adaptive

BBA 88 76 80 64 76 74 76.33

R-NBA-b 86 70 78 68 74 72 74.67

R-NBA-a 90 86 80 84 78 76 82.33

F-NBA 90 80 82 82 76 74 80.67

head is slightly increased but is < 10% due to having more

honey feature maps. For storage cost, it requires almost neg-

ligible extra memory (e.g., 99KB or 0.5% in ResNet-34), to

store a small number of clean honey weights for all DNN

models. Overall, compared to traditional passive defense ap-

proaches, our proactive approach can effectively reduce the

number of weights needed for fault detection and mitigation

under BFAs, and incurs very low time and storage overhead.

7 Discussion

7.1 Ablation Study

In Section 6.1.3 we present general guidelines for selecting

three key hyper-parameters for NeuroPots-based trapdoor de-

fense. Without loss of generality, in this section we analyze

how these parameters impact our model performance using

ResNet-20 and CIFAR-10 dataset.

Impact of Expanding Coefficient γ. Fig. 5(a) shows how

expanding coefficient impacts the trapping effectiveness under

basic and adaptive attacks. For most of the attacks (e.g., Deep

Hammer and BBA), a larger γ could significantly increase

the trapping effectiveness. However, we can also observe that

a larger γ decreases the trapping rate for R-NBA-b. This is

because the weight gradients of honey neurons increases as γ
grows. Once the gradients become large enough, these honey

neurons will fall into the higher-ranked category, which R-

NBA-b can effectively bypass. Therefore, to ensure a decent

detection and mitigation performance for all attacks, we need

to choose an appropriate γ (generally less than 3).

Impact of Number of Honey Neurons Per Layer N. In

Fig. 5(b), we observe that more honey neurons in each se-

lected layer improves the trapping rate for all attacks. How-

ever, having too many honey neurons suffers from higher

time and storage overhead. For example, when N = 5, storing

honey weights brings 3.38% extra storage overhead. There-

fore, an appropriate number of honey neurons in each layer is

essential to balance trapping effectiveness and overhead.

Impact of Number of Selected Layers Nl (or Honey

Neuron Distribution). Fig. 5(c) shows how Nl impacts the

trapping rate. In this experiment, we keep the total number

of honey neurons unchanged (i.e., 20 honey neurons/feature-

maps) and spread honey neurons evenly across each selected

layer. For example, if the number of selected layers is 4, we

select 5 honey neurons in each layer for the first 4 layers in the

model. We found that distributing honey neurons across more

layers can increase trapping rates for most attacks. However,

for R-NBA-b, we observe that too scattered honey neurons

could hurt trapping effectiveness (e.g., when the number of

selected layers is larger than 10). This is because when Nl

becomes too large, some layers may have only one honey

neuron, and therefore R-NBA-b can bypass it so that the en-

tire layer becomes unprotected. Therefore, we use at least

2 honey neurons in each selected layer with an appropriate

number of selected layers (e.g., 10 layers) to ensure trapping

effectiveness for all attacks.
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Table 4: Time and storage overhead of our trapdoor-enabled defense on different DNN structures and datasets.

Inference flow
CIFAR-10 ImageNet Google Speech Command

ResNet-20 VGG-16 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

Time Cost (ms)
w/o trapdoor (baseline) 1.13 4.89 48.22 13.45 31.98 12.19

w/ trapdoor +0.11 (9.7%) +0.07 (1.4%) +0.87 (1.8%) +0.69 (5.1%) +0.34 (1.1%) +0.55 (4.5%)

Storage Cost (MB)
w/o trapdoor (baseline) 0.27 34 61 22 3.5 36

w/ trapdoor +0.0037 (1.3%) +0.12 (0.4%) +0.57 (0.9%) +0.099 (0.5%) +0.0038 (0.1%) +0.33 (0.9%)
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Figure 5: The impact of expanding coefficient γ (a), number of honey neurons per layer N (b), and number of selected layers Nl

(c) on trapping rates.

Table 5: The trapping rate, detection rate and mitigation rate

in different DRAM page sizes under DeepHammer attack.

Size Trapping rate (%) Detection rate (%)
Mitigation

Success rate (%)

4K 72.3±8.5 100 92

8K 71.5±8.4 100 94

16K 69.5±7.9 100 92

32K 68.2±8.6 100 92

64K 68.9±8.2 100 92

7.2 Comparison and Discussion

Influence of Scattered Flips. We now discuss the impact of

scattered bit-flips on defense performance. Keeping the one-

bit-per-page constraint unchanged, we vary the page size to

control the degree of scattering bit-flips in Deep Hammer. The

default DRAM page size in Deep Hammer is 4K. As Table 5

shows, the detection rate remains 100% for all page sizes.

The trapping rate of trapdoor defense remains stable beyond

4K page size. Similarly behavior is observed for mitigation

success rate. As the page size grows, each page will contain

more honey neurons. Although bit-flips becomes more scat-

tered in larger pages, having more honey neurons in each page

can effectively trap the bit-flips and stabilize the trapping rate

(and hence mitigation rate). Overall, more scattered bit-flips

only have a limited impact on our defense.

Comparison to Natural “Neural Pots”. We inspect the

relationship between natural “neural pots” (neurons with natu-

rally very high activation with no additional embedding oper-

ation) and NeuroPots. To make a fair comparison, for natural

“neural pots”, we use the same configuration as NeuroPots

(i.e., N = 2, Nl = 10 in ResNet-20). As Fig. 6 shows, the

trapping effectiveness of natural “neural pots” is much lower

than NeuroPots, especially for adaptive attacks such as BBA.

This is because in natural “neural pots”, without the embed-

ding operation, there is no guarantee that the selected highly

activated neurons remain highly activated for all inputs. Addi-

tionally, in some trials, those highly activated neurons can be

bypassed by well-designed adaptive attacks. Therefore, the

stealthy honey neuron embedding in NeuroPots is necessary.

Comparison to Random Neuron Monitoring and Run-

time Analysis. A simple baseline defense could be monitor-

ing neurons randomly to detect attacks. Fig. 7 compares our

trapdoor defense with this random neuron monitoring defense.

To achieve a relatively high detection rate (e.g., > 90%), this

baseline needs to monitor 50% of neurons at least, resulting in

a high time overhead. For example, an extra 1.82ms is needed

for an inference that normally takes 1.13ms to monitor 50% of

neurons, totaling 2.95ms or 2.6× that original inference time–

1.13ms). Compared to random neuron monitoring, trapdoor

defense only needs to monitor 2.8% of neurons with 0.11ms

additional time (e.g., total 1.24ms, 9.7% of the inference time)

to achieve a 100% detection rate.

Comparison to Existing Detection Methods. One of the

key capabilities of NeuroPots is to detect BFAs accurately

in real-time at extremely low cost, hence we also experimen-

tally compare trapdoor defense with detection-based defense.

Since existing detection can be roughly divided into two cate-

gories: 1) machine learning-based–training a simple model

for fault detection [22, 37]; 2) signature-based–embed unique

signatures, e.g., watermark or checksum, into the original

model and then compute and compare signatures on the fly

to detect faults [38, 39, 40]. Without loss of generality, we

choose two representative solutions in the respective category

for the comparison: weight encoding detection (WED) [22]

and DeepAttest (a.k.a., Fingerprint) [38]. In particular, WED

applies weight sensitivity analysis to pick weights from a

few most sensitive layers to train a single-layer perception to

generate the detecting secret-key, while Fingerprint utilizes a

shredder storage format to randomly select weights to embed

fingerprint. Then the detecting secret-key or fingerprint ex-

tracted and computed from protected weights are compared
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Figure 7: The detection rate and time cost by random neuron

monitoring. Time cost of monitoring 0% neuron is the original

inference time (1.13 ms).

with the golden ones for fault detection at the online stage.

Since BFAs only change a few weights, it is nearly impossi-

ble to capture faulty weights using random weight selection.

Thus, to construct a fair baseline and lower the detection

overhead, we also apply WED’s sensitive weight selection

to Fingerprint. It is worth noting that neither Fingerprint nor

WED offers fault mitigation, so we only compare detection

efficiency. As Fig. 8 (a) shows, NeuroPots achieves a better

detection rate than WED and Fingerprint. Moreover, as Fig. 8

(b) shows, NeuroPots incurs much lower time cost than the

two baselines in all models due to significantly reduced attack

detection surface (e.g., 90∼ 100× for AlexNet).

7.3 Defense Against Oracle Attack

An oracle attacker has all details about the trapdoor, including

algorithm, the number and exact locations of honey neurons,

such that the attacker can entirely circumvent NeuroPots and

crush the trapdoor defense. We use this strongest attack which

is often impractical, to test the upper bound of our defense.

We design a hybrid countermeasure to ensure that the ora-

cle attacker cannot circumvent NeuroPots without spending

an unreasonable amount of effort. So far, we have explained

how NeuroPots can be used to craft honey neurons. In the hy-

brid countermeasure described below, we also use NeuroPots

to enhance normal neurons that are vulnerable to BFAs and

make them more robust. We name such neurons as enhanced

De
te

ct
io

n 
Ra

te
 

(%
) 

) —_
 

oS
 

oO
 ] 

Ti
me

 
Co
st
 
(t

im
es

 
wo 

co
 

oO 
ol
 

|
,
 

4 

©o
 

on
 | 

1 

  co So
 | 

1 

N
O
 

bh 
o
 

oO
 

©
 

©
 

i)
 

So
 

J
y
 

f
y
 

dl 

  
  

  

    
[|] WED [fj Fingerprint [9] Trapdoor Defense 
  

  

ResNet-20 VGG-16 MOXNe ) ResNet-34 MobileNet-V2 WideResNet-28 

a 

[~] WED | Fingerprint 
  

      

     Trapdoor Defense 

      ResNet-20 VGG-16 AlexNet ResNet-34 MobileNet-V2 WideResNet-28 

(b)
Figure 8: The comparison of detection rate and time cost

against existing representative detection approaches.

neurons. We assume the oracle attacker is also fully aware of

details about enhanced neurons in addition to honey neurons.

The rationality is that: if the attacker circumvents honey neu-

rons which offer a shortcut for BFA, and enhanced neurons

that indicate a much longer path for bit-flips, he or she will

be forced to create a path from the (remaining) normal neu-

rons insensitive to BFA. This could lead to the unreasonable

amount of effort for attacker under real hardware constraints.

Specifically, the hybrid countermeasure involves two steps:

(1) Selecting honey neurons and normal neurons that need en-

hancement; and (2) Embedding honey neurons and enhanced

neurons into the DNN model. In step 1, we first categorize

neural network layers into three levels (high/mid/low) accord-

ing their sensitivity to attack. A layer’s sensitivity can be

measured by the sum of the absolute value of its top n weight

gradient. The larger it is, the more sensitive a layer is. We

empirically choose the number of layers for each level. For

high-sensitivity layer, we treat all neurons as honey neurons.

For mid-sensitivity layers, we identify the top kh activated

neurons (e.g., kh = 10%) as honey neurons. In addition, en-

hanced neurons are selected from the top ke activated neurons

(e.g., ke = 50%) among the remaining 1− kh neurons. We

leave all neurons in low-sensitivity layers untouched (nor-

mal neurons). In step 2, we set a large expanding coefficient

(γ > 1) for honey neurons but a smaller one (0 < γ < 1) for en-

hanced neurons. The purpose is to suppress the sensitivity of

enhanced neurons that might originally have high sensitivity.

We evaluate it against oracle DeepHammer attack based on

the following settings: γ = 2 (γ = 0.5) for honey neurons (en-

hanced neurons), the 1st and 8th layers as the high-sensitivity

layers, 2nd, 3rd, 4th layers as the mid-sensitivity layers, and

the remaining layers as the low-sensitivity layers. As Table 6

shows, the number of bit-flips needed by oracle attacker in-

creases as the percentage of honey weights increases, for

example, 17.6× with merely 2.4% honey weights compared

to clean models without trapdoor. We observe the similar

trend in other models (See Appendix D). This means that the

USENIX Association 32nd USENIX Security Symposium    6359



Table 6: The overhead of trapdoor and the number of bit-flips

under the oracle attack (ResNet-20).
kh (%) 0 (baseline) 5% 10% 15% 20%

No. of bit-flips 14 82 125 169 243

Num. of

honey weights
-

5K

(1.8%)

5.5K

(2%)

5.9K

(2.2%)

6.3K

(2.4%)

Num. of

honey neurons
-

22

(3.2%)

24

(3.5%)

26

(3.8%)

28

(4%)

defense can significantly raise the bar for the attacker to exert

faults injection physically at the cost of more honey neurons.

7.4 Limitations

While our NeuroPots-enabled trapdoor defense can effectively

trap bit-flips and repair the model online at a low cost, it has a

few known limitations. First, the fine-tuning-based honey neu-

ron embedding may incur a retraining cost in large and com-

plex models. Although the retraining-free one-shot method

lowers the cost, both methods still lead to marginal accu-

racy drop. Second, there is still time overhead added into the

original inference, e.g. higher overhead in small models than

large ones (9.7% for ResNet-20 v.s. 1.1% for MobileNet-V2).

Third, while our defense well defeats a series of the state-of-

the-art bit-flip attacks which always attempt to tamper the

model by flipping a minimum amount of weight bit-flips, in-

cluding the latest BFA flipping even less bits within only

one layer [41], our evaluated adaptive attacks are limited to

weight gradient-based bit-flip attacks. Considering the exis-

tence of other attacks, e.g. bit-flip trojan attack by hacking

model weights and input simultaneously [42] (different threat

model), and non-gradient attacks, the NeuroPots-based de-

fense idea can be further explored along this direction.

8 Related Work

Deep Neural Networks (DNNs) are vulnerable to both data-

and model-centric attacks. While the defenses against the

former, such as evasion [8, 9, 10], poisoning [43, 44], back-

door/trojan [11, 12, 13, 45, 46] have been intensively studied,

this does not hold for the latter exploiting hardware-based

fault injection techniques [14, 15, 16, 17, 47, 48]. Along this

direction, the recent BFAs crush quantized DNNs by leverag-

ing greedy gradient-based bit search and precise row-hammer

to flip the least number of weight bits stored in DRAMs.

There exist a few attempts to directly address BFA which

can be grouped into two categories: fault-tolerance enhance-

ment and fault detection. In the first category, it often requires

costly binarization-aware training [49] or BFA-aware weight

reconstruction [50], leading to either noticeable accuracy drop

or limited robustness improvement. For the second category, it

either requires detecting all model weights [38, 40, 51] to en-

sure detection rate or detecting weights within sensitive layers

only [22, 39] through embedding signatures or training ma-

chine learning models for detection. They either suffer from

high overhead or false negative detection. Moreover, they

cannot realize high-accurate real-time model recovery. As

evaluated in Section 7.2, NeuroPots-based trapdoor defense

outperforms them in detection rate and overhead significantly.

Hardware countermeasures can also prevent physical fault

injection channels. However, general rowhammer defenses

such as Error-Correcting Code and Intel SGX can be bro-

ken by new types of rowhammer attacks [52, 53], not to

mention the non-trivial hardware modifications like addi-

tional/probabilistic refreshes, memory controller redesign, etc.

Honeypot-based proactive defense has been applied in

many fields like IoT security [54, 55], cloud security [56, 57],

and network security [58, 59]. Recently “honeypot" is also

used to detect input-based adversarial attacks in deep learn-

ing [60]. However, our work differs in two aspects from theirs:

1) problem– bit flips inside DNN models v.s. pertubations of

input data outside DNNs; 2) approach– crafting honey neu-

rons inside DNNs vs. input trigger-based backdoor training.

9 Conclusion

In this work, we propose NeuroPots–a proactive defense con-

cept against the emerging bit-flip attacks (BFAs) dedicated to

quantized DNNs. Based on NeuroPots, we design a trapdoor-

enabled defense framework to efficiently detect and mitigate

BFAs. Our method embeds a very few well-designed honey

neurons as vulnerabilities into DNN models. These vulnera-

bilities are trapdoors that largely attract attackers to inject bit-

flips to the weights associated with honey neurons. Since most

bit-flips are captured by trapdoors, defenders can detect faults

and recover model accuracy effectively at run time. Extensive

experimental results show that our trapdoor-enabled defense

achieves high detection (mitigation) rate and extremely low

overhead against a variety of static and adaptive attacks.
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A Number of Bit-flips under BFAs

In Table 8, we list the number of bit-flips generated by three

basic BFAs and four adaptive attacks in clean models (w/o

trapdoor) and the trapdoored models (w/ trapdoor) on various

DNN structures. For basic attacks, we can observe that the

number of bit-flips in the trapdoored model is less than the

corresponding clean model on average for most DNN struc-

tures. For example, in ResNet-20, DeepHammer needs to flip

an average of 16 bits to degrade the clean model’s accuracy to

random guessing, while it needs 5 bits on the trapdoored mod-

els. This is because our defense intentionally implants more

vulnerable points into the model to attract attackers, which

makes attackers achieve their goals more easily. Note differ-

ent models have different resistance abilities to BFAs, causing

varied numbers of needed bit-flips. Since attackers usually

cannot know how many bit-flips are needed to achieve their

goal in a clean targeted model, it is hard to perceive trapdoors

by attackers. For adaptive attacks, we can observe that attack-

ers need to flip more bit-flips to achieve their goal, compared

to clean and trapdoored models under basic attacks.

B Detailed Settings of Trapdoor Techniques

Detailed settings of the trapdoor techniques are listed in Ta-

ble 7. We can observe that the optimal γ based on the guide-

lines described in Section 6.1.3 is generally (1, 3].

C Results of Defending against Adaptive At-

tacks with Different Attack Settings

We further evaluate the defense performance of the trapdoor-

enabled defense against various adaptive attacks by using

three representative DNN models and two datasets–CIFAR-

10 and ImageNet.

C.1 Defending against BBA

As Fig. 9 shows, the detection rate of our defense is always

100%. When t = 90%, the mitigation success rate slightly

drops, but the number of bit-flips of attack increases > 12.2×
(we set the maximum number of bit-flips is 500 in our ex-

periments), 13.9×, 14.6× compared to baseline on VGG-16,

AlexNet, ResNet-34, respectively.

C.2 Defending against NBA

Results for R-NBA. In Fig. 10, we can observe that, when

kb = 30%, the mitigation success rate of our defense decreases

by ∼ 20%, while the number of bit-flips of the attack rises

by > 12.2×, 10.1×, 13.9× on VGG-16, AlexNet, ResNet-34,

respectively.

Results for F-NBA. The results are shown in Fig.11. As

Fig. 11 (a) shows, when test times is 100, the attacker only

detects a small percentage of honey neurons on three models.

Therefore, in Fig 11 (b) and (c), we can observe that the

detection rate of our defense is still 100%, and the mitigation

success rate only has negligible degradation on three models.

D Defending against Oracle Attack

Table 9 reports the detailed settings and results of hybrid

countermeasures against oracle attack to test the bound of our

trapdoor defense. As a result, if oracle attacker bypasses our

functional neurons (honey and enhanced neurons), the needed

bit-flips (or the efforts needed in physical fault injection) of

the attacker will increase by > 12.2×, 12.1×, 13× on VGG-

16, AlexNet, ResNet-34, respectively.

Table 7: Detailed configurations of NeuroPots on different

DNN structures and datasets
Dataset Structure N Nl γ

CIFAR-10
ResNet-20 2 10 3

VGG-16 10 10 3

ImageNet

AlexNet 25 8 (all layers) 2

ResNet-34 15 10 3

MobileNet-V2 2 10 1.1

Google

Speech

Command

WideResNet-28 10 10 3

USENIX Association 32nd USENIX Security Symposium    6363



Table 8: Number of bit-flips (mean±standard deviation) of clean model (w/o trapdoor) and trapdoor model (w/ trapdoor) under

various basic BFAs and adaptive attacks for different DNNs.
Basic Attacks

Trapdoor Attack
CIFAR-10 ImageNet

Google Speech

Command

ResNet-20 VGG-16 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

w/o trapdoor

BFA 13±6 32±11 13±4 9±2 3±1 5±3

T-BFA 13±5 35±11 13±5 8±2 3±1 5±4

DeepHammer 16±6 41±13 16±5 11±3 3±1 6±3

w/ trapdoor

BFA 4±1 10±2 10±4 5±1 3±1 3±1

T-BFA 4±1 11±2 10±4 6±1 3±1 4±2

DeepHammer 5±1 22±9 13±5 8±1 3±1 3±1

Adaptive Attacks

w/ trapdoor

BBA 17±7 75±16 31±6 16±5 3±1 8±3

R-NBA-b 20±8 80±15 29±8 18±4 3±1 11±2

R-NBA-a 17±6 62±12 17±5 13±3 3±1 8±2

F-NBA 19±6 60±13 20±6 12±3 3±1 7±2

Table 9: Configuration details and results of our hybrid countermeasures under oracle attack.

Models High-sensitivity layers Mid-sensitivity layers
γ for honey/

enhanced neurons
kh/ke

Num. of bit-fllips Honey weights

w/o trapdoor w/ trapdoor w/ trapdoor

VGG-16 [1] [2,3,4] 5/0.5 20/50 41 >500 51K (0.15%)

AlexNet [1] [2,3,4] 2/0.5 30/50 15 181 576K (1.06%)

ResNet-34 [1,10] [2,3,4,5,8,32] 2/0.5 20/50 10 130 92K (0.42%)
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Figure 9: Results of the trapdoor-enabled defense against bit-level bypass (BBA) expert attack on VGG-16, AlexNet, ResNet-34.

a) Detection rate of our defense. b) Mitigation success rate of our defense. c) Number of bit-flips of the attack.
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Figure 10: Results of the trapdoor-enabled defense against neuron-level bypass expert attack (R-NBA-b) with bypassing

top-ranked neurons on VGG-16, AlexNet, ResNet-34. a) Detection rate of our defense. b) Mitigation success rate of our defense.

c) Number of bit-flips of the attack.
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Figure 11: Results of the trapdoor-enabled defense against neuron-level bypass expert attack with bit-flips frequency-based

neuron bypass (F-NBA) on VGG-16, AlexNet, ResNet-34. a) Honey neurons detection rate of the attack b) Detection rate of our

defense. c) Mitigation success rate of our defense. d) Number of bit-flips of the attack.
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