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AbstractÐBiologically inspired Spiking Neural Networks (SNNs)
have attracted significant attention for their ability to provide
extremely energy-efficient machine intelligence through event-
driven operation and sparse activities. As artificial intelligence
(AI) becomes ever more democratized, there is an increasing
need to execute SNN models on edge devices. Existing works
adopt weight pruning to reduce SNN model size and accelerate
inference. However, these methods mainly focus on how to obtain
a sparse model for efficient inference, rather than training
efficiency. To overcome these drawbacks, in this paper, we propose
a Neurogenesis Dynamics-inspired Spiking Neural Network
training acceleration framework, NDSNN. Our framework is
computational efficient and trains a model from scratch with
dynamic sparsity without sacrificing model fidelity. Specifically,
we design a new drop-and-grow strategy with decreasing number
of non-zero weights, to maintain extreme high sparsity and high
accuracy. We evaluate NDSNN using VGG-16 and ResNet-19 on
CIFAR-10, CIFAR-100 and TinyImageNet. Experimental results
show that NDSNN achieves up to 20.52% improvement in accuracy
on Tiny-ImageNet using ResNet-19 (with a sparsity of 99%) as
compared to other SOTA methods (e.g., Lottery Ticket Hypothesis
(LTH), SET-SNN, RigL-SNN). In addition, the training cost of
NDSNN is only 40.89% of the LTH training cost on ResNet-19
and 31.35% of the LTH training cost on VGG-16 on CIFAR-10.

Index TermsÐspiking neural network, neural network pruning,
sparse training, neuromorphic computing

I. INTRODUCTION

Biologically inspired Spiking Neural Networks (SNNs)

have attracted significant attention for their ability to provide

extremely energy-efficient machine intelligence. SNNs achieve

this performance through event-driven operation (e.g., compu-

tation is only performed on demand) and the sparse activities

of spikes. As artificial intelligence (AI) becomes ever more

democratized, there is an increasing need to execute machine

learning models on edge devices with limited memory and

restricted computational resources [1, 2]. However, modern

SNNs typically consist of at least millions to hundreds of

millions of parameters (i.e., weights), which requires large

memory storage and computations [3, 4, 5]. Therefore, it is

desirable to investigate efficient implementation techniques for

SNNs.

Recently, the use of sparsity to compress SNN model size

and accelerate inference has attracted a surge of attention [6,

7], including the train-prune-retrain method (e.g, alternating

direction method of multipliers (ADMM) pruning [6, 8, 9, 10]),

iterative pruning (e.g., lottery ticket hypothesis (LTH) [7, 11])).

The aforementioned methods are shown in Fig. 1 and mainly

focus on how to obtain a sparse model for efficient inference.

However, the training process to obtain a sparse model is not

efficient. To illustrate consider the case VGG-16 on CIFAR-10,
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Fig. 1: Sparsity change of different sparsification methods on VGG-16
/ ResNet-19 CIFAR-10.

for train-prune-retrain [6, 12] (orange line), the first 150 training

epoches are dense (zero sparsity); For iterative pruning [7], the

sparsity gradually increases in the first 150 training epoches.

As shown in the highlighted grey area, both methods have low

sparsity hence low training efficiency.

In the field of neuroscience, the total number of neurons

declines with age during the process of neuron’s degeneration

(i.e., old neuron’s death) and redifferentiation (i.e., new neuron’s

birth), in human hippocampus, referred as Neurogenesis

Dynamics [13, 14]. In this paper, inspired by the Neurogenesis

Dynamics, we propose an efficient Spiking Neural Network

training acceleration framework, NDSNN. We analogize the

neuron’s death-and-birth renewal scheme to the drop-and-grow

schedule in SNN sparse training. We dynamically reduce the

number of neuron connections in SNN sparse training, to reduce

training memory footprint and improve training efficiency [15].

The number of zeros decreases in the dynamically changing

process of weight mask tensor (i.e., a binary tensor which has

the same size as weight, 0s / 1s denotes zeros / non-zeros

in corresponding weight tensor). The sparsity during NDSNN

training is illustrated in Fig. 1 as the green curve. We could

train from a highly sparsified model (e.g., initial sparsity is

80%) and achieve the final sparsity (e.g., 95%).

Overall our paper makes the following contributions:

• Inspired by neurogenesis dynamics, we propose an energy

efficient spiking neural network training workflow.
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Fig. 2: (a) shows the neurogenesis dynamics of nerve cells in the nervous system. A indicates inflammatory factors accumulating in nerve

system. B indicates neuron degeneration and redifferentiation process. C is the final nerve system. (b) shows drop and grow process of the
neural network. The total number of nonzero weights decreases with the increasing of drop-and-grow times.

• To reach high sparsity and high energy efficiency with

dense model like accuracy, we design a new drop-and-

grow strategy with decreasing number of non-zero weights

in the process of dynamically updating sparse mask.

• We evaluate the training efficiency of NDSNN via normal-

izing spike rate. Results show that the cost of NDSNN

on ResNet-19 and VGG-16 is 40.89% and 31.35% of

state-of-the-art (SOTA), respectively.

• We demonstrate extremely high sparsity (i.e., 99%) model

performance in SNN based vision tasks with acceptable

accuracy degradation.

We evaluate NDSNN using VGG-16 and ResNet on CIFAR-

10, CIFAR-100 and TinyImageNet. Experimental results show

that NDSNN achieves even high accuracy than dense model for

ResNet-19 on CIFAR-10. On Tiny-ImageNet, NDSNN achieves

up to 20.52% increase in accuracy compared to the SOTA at

a sparsity of 99%. The training cost of NDSNN VGG-16 is

10.5% of training a dense model.

II. RELATED WORK AND BACKGROUND

A. Related Work on Sparsity Exploration in SNN

Several network compression schemes for SNNs have been

proposed. In [6] the alternating direction method of multipliers

(ADMMs) pruning is employed to compress the SNNs on

various datasets. However, this technique has significant

accuracy loss, especially when the model has high sparsity.

Although IMP could find highly sparse neural network with

high accuracy, it is time consuming (e.g. it takes 2720 epochs to

achieve 89.91% sparsity on both CIFAR-10 and CIFAT-100) [7].

In [16] they propose a Spike Timing Dependent Plasticity

(STDP) based pruning method. Connections between pre-

synaptic and post-synaptic neurons with low spike correlation

are pruned. The correlation is tracked by STDP algorithm. The

performance of this method is limited as the original model

only achieves 93.2% accuracy on MNIST, and accuracy drops

to 91.5% after 92% weights are pruned. In [17] they propose

a technique to prune connections during training. Weights will

be pruned if they are less than a certain threshold or decrease

significantly in a number of training iterations. However, the

method’s evaluation is limited, as it is only tested on a single

dataset Caltech-101.

B. Spiking Neural Network

A key difference of SNN from DNN is that spiking neuron

is a stateful system that can be modeled by different equations.

The commonly used Leaky Integrate and Fire (LIF) spiking

neuron is defined as follows.

v[t] = αv[t−1] +
∑

i

wisi[t]− ϑo[t− 1] (1a)

o[t] = u(v[t]− ϑ) (1b)

u(x) = 0, x < 0 otherwise 1 (1c)

where t indicates time. Eq. (1a) depicts the dynamics of the

neuron’s membrane potential v[t]. α ∈ (0, 1] determines v[t]
the decay speed. si[t] ∈ {0, 1} is a sequence which consists

of only 0 and 1 to represent the i− th input spike train and

wi is the corresponding weight. o[t] ∈ {0, 1} is the neuron’s

output spike train, u(x) is the Heaviside step function.

Note that Eq. (1a) is recursive in the temporal domain, so it is

possible to use Backpropagation Through Time (BPTT) to train

SNNs. However, an issue arises with Eq. (1c), whose derivative

is the Dirac Delta function ∆(x). To overcome this, surrogate

gradient method can be used [18] so that the derivative of u(x)
is approximated by the derivative of a smooth function. In the

forward pass, the SNN still outputs spikes, while in backward

pass, ∆(x) is replaced by a surrogate function so the Heaviside

step function has an approximate derivative.

The BPTT for SNNs using a surrogate gradient is derived

as follows. Let L be the loss, δl[t]=
∂L

∂ol[t]
be the error signal at

layer l time step t, ϵl[t]=
∂L

∂vl[t]
. δl[t] is propagated recursively

as following rules, and gradient of lth layer weight wl is

calculated using Eq. (3).

δl[t] = ϵl+1[t]wl+1 (2a)

ϵl[t] = δl[t]ϕl[t] + αϵl[t] (2b)

∂L

∂wl

=

T−1∑

t=0

ϵl[t] · [sl[t]]
⊺ (2c)
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Fig. 3: A toy example of NDSNN training process. Red arrows denote dropping weights and green arrows denote growing weights.

where ϕl[t]=
∂ol[t]
∂vl[t]

=∂u(vl[t]−ϑ)
∂vl[t]

. Note that u(x) does not have

a well-defined derivative, so we use the gradient surrogate

function proposed in [19] to approximate it, such that:

∂u(x)

∂x
≈

1

1 + π2x2
(3)

III. NEUROGENESIS DYNAMICS-INSPIRED SPARSE

TRAINING ON SNN

We illustrate the overall workflow of the biological and

corresponding computational methods in Fig. 2.

A. Analogizing Neurogenesis Dynamics in Sparse Training

In human hippocampus, the total number of neurons declines

with age during the process of neuron’s degeneration (i.e., old

neuron’s death) and redifferentiation (i.e., neuron’s birth) [14].

We analogize the neuron’s death-and-birth renewal scheme to

the drop-and-grow schedule in sparse training [20, 21, 22, 23].

Here drop means the insignificant connections are deactivated

(weights with least absolute magnitude are set as zeros).

In our formulation grow refers to creating new connections

(weights with high importance are updated to nonzeros). For

the dynamics of neurogenesis in the human hippocampus, the

neurons declines with age [14]. Similarily in our framework,

we reduce the number of connections or reduce the number of

activated weights in the sparse training process in consideration

of the memory limitation of neuromorphic chips [15].

B. Problem Definiton

We aim to achieve high sparsity (low memory overhead)

during training and high energy efficiency (through SNN

implementation) without noticeable accuracy loss. The problem

is formally defined as: consider a L-layer SNN with dense

weights W = [W1,W2, ...,WL], a dataset X , and a target

sparsity θf , our goal is to develop an training workflow such

that the training process requires less memory overhead and

less computation, and the trained model achieves high accuracy.

C. Neurogenesis Dynamics-inspired Spiking Neural Network

(NDSNN) Training Acceleration Framework

Fig. 2 shows the overview of neurogenesis dynamics-

inspired spiking neural network (NDSNN) workflow. Fig. 2(a)

demonstrates the neuron cell loss or degeneration (the grey

neuron cells) and redifferentiation process (the green neuron

cells). In Fig. 2(b) we illustrate the training process of NDSNN,

where we drop the weights (i.e., setting the smallest positive

weights and the largest negative weights as zeros) in grey

color and grow the weights (i.e., update the zeros weights to

nonzeros) in green color, every ∆T iterations. The number

of weights we dropped is larger than the grown ones each

drop-and-grow schedule. Thus, the number of nonzero weights

decreases with the increasing of drop-and-grow times.

The goal of the proposed training method is to reduce

memory footprint and computations during the whole training

process. To achieve it, our proposed method uses less weights

and gradients than SOTA methods via dynamically updating

the sparse mask and training from scratch. Specifically, we

denote θi and θf as the initial and target sparsity, respectively.

t0 is the starting step of training, ∆T is the pruning frequency.

The full training workflow is be formed in the following steps.

1 First round / last round weight sparsity distributions

across different layers. Let Θi = θ1i , θ
2
i , ..., θ

L
i denote the

initial sparsity distribution (i.e., sparsity of different layers at the

beginning of training) of SNN model and Θf = θ1f , θ
2
f , ..., θ

L
f

denote the final sparsity distribution (i.e., sparsity of different

layers at the end of training) of the model. Here, we use

ERK [24] to distributing the non-zero weights across the

layers while maintaining the overall sparsity. We denote nl as

the number of neurons at l-th layer and wl, hl as the width

and height of the l-th convolutional kernel,then the number

of parameters of the sparse convolutional layers are scaled

proportional to 1 − nl−1+nl+wl+hl

nl−1∗nl∗wl∗hl . In our case, the overall

sparsity at the beginning of training θi is less than the one at

the end of training θf . Following the same scaling proportion

distribution, the sparsity of each separate convolutional layer at

the beginning of training is smaller than it’s sparsity at the end

of training (i.e., for l-th layer, we have θli ≤ θlf ). The sparsity

of l-th layer at t-th iteration is formulated as:

θlt = θlf + (θli − θlf )(1−
t− t0
n∆t

)3,

t ∈ {t0, t0 +∆T, ..., t0 + n∆T}, l ∈ {1, 2, ..., L}.
(4)

2 Training. We define non-active weights as weights has

value of zeros and active weights as weights has value of non-

zeros. For each iteration, we only update the active weights.



In backward path, gradients are calculated using BPTT with

surrogate gradient method, and forward pass is carried out like

standard neural network training.

3 Dropping (neuron death). During training, the sparse

masks are updated every ∆T iteration, i.e., for l-th layer, we

drop Dl
d weights that are closest to zero (i.e., the smallest

positive weights and the largest negative weights). we denote

d0 as the initial death ratio (i.e., the ratio of weights to prune

from non-zeros) and dt as the death ratio at step t. We use the

cosine annealing learning rate scheduler [25] for death ratio

updating. Then, we have

dt =dmin + 0.5(d0 − dmin)(1 + cos(
πt

n∆t
)),

t ∈ {t0, t0 +∆T, ..., t0 + n∆T},
(5)

where dmin is the minimum death rate during the training.

At qth round, the number of 1s in sparse mask of l-th layer

Npre
l
q

before dropping is

Npre
l

q = N
l(1− θ

l
q−1), 1 ≤ q ≤ n, l ∈ {1, 2, ..., L} (6)

where N l is the number of all weight elements in l-th layer

and θlq−1 is the training sparsity of l-th layer at (q − 1)-th
round. We denote the number of dropped weights of l-th layer

at q-th round as Dl
q , then, we have

D
l
q = dt ×Npre

l

q, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (7)

4 Growing (neuron birth). After dropping weights, the

number of 1s in l-th layer sparse mask Npost
l
q

is

Npost
l

q = Npre
l

q −D
l
q, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (8)

Combining Equation 4 and 8, we obtain the number of

weights to be grown, which is denoted as Gl
q , we have

G
l
q = N

l −Npost
l

q − θ
l
t ×N

l
, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (9)

The toy example of the training process is shown in Fig. 3.

Algorithm 1: NDSNN training flow.

Input: a L-layer SNN model g with dense weight W = W1, W2, ..., WL, input

data X , update frequency ∆T , initial sparsity θi, final sparsity θf , learning rate α,

total number of training iterations Tend.

Set M1, M2, ..., ML as the sparse masks.

Output: a L-layer sparse network with sparsity distribution Pf .

Calculate Θi = θ1

i , θ
2

i , ..., θ
L
i and Θf = θ1

f , θ
2

f , ..., θ
L
f using initial sparsity θi

and final sparsity θf , respectively via ERK.

W′ = W′

1
, W′

2
, ..., W′

L ← sparsify W1, W2, ..., WL with Pi

for each training iteration t do

Loss E ← g(xt, W′), xt ∈ X

if t (mod ∆T ) == 0 and t < Tend then

for 1 ≤ l ≤ L do

Calculate the number of weights to drop Dl
t/∆T using Equation 5 6 7

W′

i ← ArgDrop(W′

i,ArgTopK(W′

i, D
l
t/∆T ))

Calculate the number of weights to grow Gl
t/∆T using Equation 8 9

Calculate gradient Gradl by equation ( 2c)

W′

l ←ArgGrow(W′

l,ArgTopK(Gradl · (Ml == 0), Gl
t/∆T ))

end for

else

W′

l ← W′

l − α∇(W′

l)δt
end if

end for

D. Memory Footprint Analysis

We further investigate the training efficiency of our proposed

method in terms of memory footprint. Suppose a sparse SNN

model with a sparsity ratio (the percentage of number of

zeros in weight) of θ ∈ [0, 1]. In each round of forward

and backward propagation, N weights and tN gradients are

saved. For training, we use single precision (FP32) for weights

and gradients to guarantee training accuracy. For inference,

the weight precision bw is platform/implementation specific,

for example Intel Loihi uses 8 bits [15], mixed-signal design

HICANN [27] has 4 bits for weights, FPGA-based designs

such as [28] employes mixed precision (4 bits - 16 bits). For

sparse models, we use indices (denoted by bidx-bit numbers) to

represent the sparse topology of weights/gradients within the

dense model. Compressed sparse row (CSR) is a commonly

used sparse matrix storage format.

Consider a 2-D weight tensor reshaping from a 4-D tensor.

Each row of the 2-D weight tensor denotes the weight from

a filter. For the l-th layer, we denote Fl, Chl, and Kl as

the number of filters (output channels), number of channels

(input channels), and kernel size, respectively. Thus, the size

of the weight matrix is Fl rows by Chl ·K
2
l columns. Thus,

the total number of indices of the entire network is (1 −
θ) · N +

∑
l(Fl + 1). And the memory footprint of model

representation together with gradients for unstructured sparsity

is (1 − θ) · ((1 + t)N · bw + N · bidx) +
∑

l((Fl + 1) · bidx).
Since the number of filters is much smaller than the total

number of weights, we approximate the memory footprint as

(1−θ) ·((1+t)N ·bw+N ·bidx). Given same timestep t, higher

sparsity means the lower memory overhead, which support the

effectiveness of proposed method in reducing training memory

since it has much higher training sparsity than SOTAs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Architectures and Datasets.: We evaluate NDSNN on

two popular neural network architectures (i.e., VGG-16 and

ResNet-19) for three datasets (i.e., CIFAR-10, CIFAR-100 and

Tiny-ImageNet). For fair comparison, we set the total number

of training epochs as 300 on both CIFAR-10 and CIFAR-100,

while as 100 on Tiny-ImageNet as LTH-SNN. We use SGD as

the optimizer while setting the momentum as 0.9 and weight

decay as 5e− 4. Also, we follow the setting in [7] and set the

training batch size as 128, initial learning rate as 3e− 1 and

timesteps as 5 across all experiments.

2) Baselines.: We train VGG-16 / ResNet-19 dense SNNs

on various datasets and use them as our dense baselines. Other

baselines are divided into two types based on the initial sparsity

status of the training process (i.e., dense or sparse). For the

former, we choose the SOTA pruning methods (i.e., LTH and

ADMM) on SNN. For the latter, we implement the sparse

training methods (i.e., SET [24], RigL [26]) on SNN models

(i.e., SET-SNN, RigL-SNN).

3) Evaluation Platform: We conduct all experiments using

PyTorch with CUDA 11.4 on Quadro RTX6000 GPU and



Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Sparsity ratio 90% 95% 98% 99% 90% 95% 98% 99% 90% 95% 98% 99%

VGG-16(Dense) 92.59 69.86 39.45

LTH-SNN [11] 89.77 89.97 88.97 88.07 64.41 64.84 62.97 51.31 38.01 37.51 35.66 30.98

SET-SNN [24] 91.22 90.41 87.26 83.40 66.52 63.48 58.04 50.83 38.80 37.34 33.40 26.74
RigL-SNN [26] 91.64 90.06 87.30 84.08 66.59 63.47 58.21 52.26 38.96 37.75 32.94 28.39
NDSNN (Ours) 91.84 91.31 89.62 88.13 68.07 66.73 63.51 58.07 39.12 37.77 36.23 33.84

ResNet-19(Dense) 91.10 71.94 50.32

LTH-SNN [11] 87.57 87.16 85.91 82.29 54.66 54.78 42.10 41.46 38.40 37.74 31.34 21.44

SET-SNN [24] 90.79 90.07 87.24 83.17 68.12 64.65 57.49 49.11 49.46 42.13 37.25 27.79
RigL-SNN [26] 90.69 90.02 87.19 83.26 67.33 65.23 56.96 47.96 49.49 40.40 37.98 24.13
NDSNN (Ours) 91.13 90.47 88.61 86.30 70.08 68.95 65.48 59.61 49.25 47.45 45.09 41.96

TABLE I: Test accuracy of sparse VGG-16 and ResNet-19 on CIFAR-10, CIFAR-100, Tiny-ImageNet datasets. The highest test accuracy
scores are marked in bold. The LTH-SNN results are our reproduced accuracy using method from [7].

Intel(R) Xeon(R) Gold 6244 @ 3.60GHz CPU. We use

SpikingJelly [29] package for SNNs implementation.

B. Accuracy Evaluations of NDSNN

1) CIFAR-10 and CIFAR-100: Evaluation results on CIFAR-

10 and CIFAR-100 using VGG-16 and ResNet-19 are shown

in Table I. We compare NDSNN with baselines at sparsity

ratios of 90%, 95%, 98% and 99% on different models and

datasets. Experimental results show that NDSNN outperforms

the SOTA baselines on each dataset for VGG-16 and ResNet-

19. Specifically, on CIFAR-100, for VGG-16, our proposed

method has up to 3.66%, 3.26%, 5.47%, 7.24% increase in

accuracy (that is relatively 5.68%, 5.14%, 9.42% and 14.24%

higher accuracy) at four different sparsity, respectively. While

for ResNet-19, NDSNN has 15.42%, 14.17%, 23.88% and

18.15% increase in accuracy (that is relatively 28.2%, 14.17%,

23.38%, 18.15% higher accuracy) compared to LTH-SNN,

obtains 1.96%, 4.30%, 7.99%, 10.5% higher accuracy than

SET-SNN and achieves 2.75%, 3.72%, 8.52%, 11.65% higher

accuracy than RigL-SNN at a sparsity of 90%, 95%, 98% and

99%, respectively. On CIFAR-10, for VGG-16, NDSNN has up

to 2.07%, 1.34%, 2.36%, 4.73% relatively higher accuracy than

SOTA at sparsity of 90%, 95%, 98% and 99%, respectively.

While for ResNet-19, NDSNN has even higher accuracy than

the dense model at a sparsity of 90% and achieves the highest

accuracy compared to other baselines at different sparsity.

2) Tiny-ImageNet: The accuracy results on Tiny-ImageNet

are shown in Table I. Overall, for both VGG-16 and ResNet-19,

NDSNN outperforms other baselines. More specifically, for

VGG-16, NDSNN has up to 7.1% higher accuracy than other

methods at a sparsity of 99%. For ResNet-19, NDSNN has

10.85%, 9.71%, 13.75%, 20.52% higher accuracy than LTH-

SNN at sparsity of 90%, 95% and 98%, 99%, respectively.

Compared to SET-SNN, NDSNN has 7.10% and 14.17%

increase in accuracy at the sparsity of 99% for VGG-16 and

ResNet-19, independently. Compared to RigL-SNN, NDSNN

has up to 5.45% and 17.83% increase in accuracy at a sparsity

of 99% for VGG-16 and ResNet-19, respectively.

3) Comparison with ADMM Pruning: We compare NDSNN

with ADMM pruning using data from [6] as shown in Table II.

It can be seen that the accuracy loss become noticeable when

the sparsity reaches 75% on CIFAR-10 using LeNet-5. However,

the accuracy loss is almost 0 on CIFAR-10 using VGG-16

at the sparsity of 75% which indicates that NDSNN has less

accuracy loss when achieving the same sparsity.

Dataset CIFAR-10

Sparsity ratio 40% 50% 60% 75%

LeNet-5(Dense) 89.53

ADMM [6] 89.75 89.15 88.35 87.38

Acc. Loss (%) 0.18 -0.38 -1.18 -2.15

VGG-16(Dense) 92.59

NDSNN (ours) 92.46 92.32 92.33 92.18

Acc. Loss (%) -0.001 -0.003 -0.003 -0.004

TABLE II: Comparison of ADMM with NDSNN on CIFAR-10.

C. Efficiency Evaluations of NDSNN

We quantitatively analyze the training cost of dense SNN

model, LTH and NDSNN, as showed in Fig. 5. Since no

computation is required if there is no input spikes or a

connection is pruned. Such that the relative computation cost

of sparse model with respect to dense model at training epoch

i can be calculated as: [Ri
s × Sparsityi]/R

i
d, where Ri

s or Ri
d

is the average spike rate of the sparse model (LTH/NDSNN) or

the dense model at epoch i, which can be tracked throughout

entire training. Sparsityi is the sparsity of the model. On

CIFAR 10, the training cost of NDSNN VGG-16 is 10.5%

of training a dense model. The cost of NDSNN on ResNet-

19 and VGG-16 is 40.89% and 31.35% of LTH, respectively.

On CIFAR 100, the training cost of NDSNN ResNet-19 is

27.63% and 40.12% of dense model and LTH respectively;

The training cost of NDSNN VGG-16 is 11.87% and 36.16%

of dense model and LTH respctively.

D. Design Exploration

1) Effects of Different Initial Sparsity: As the initial sparsity

has influence on the average training sparsity, thus the overall

training cost. we study the effects of different initial sparsity on

accuracy and training FLOPs. Experimental results on VGG-

16 / ResNet-19 models and CIFAR-10 / CIFAR-100 datasets

are shown in Table III. It’s observed that the accuracy gap is

small for different initial sparsity. For high training sparsity,

we choose initial sparsity from {0.6, 0.7, 0.8} for experiments

on CIFAR-10 / CIFAR-100 / TinyImageNet.



(a) (b) (c) (d)

Fig. 4: Comparison of the accuracy of NDSNN and LTH for different sparsity when trained with smaller timestep (timestep=2) on different
models and datasets. (a) VGG-16/CIFAR-10. (b) VGG-16/CIFAR-100. (c) ResNet-19/CIFAR-10. (d) ResNet-19/CIFAR-100
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Fig. 5: Training cost comparison on CIFAR-10/CIFAR-100 using
VGG-16 and ResNet-19.

Target Initial VGG-16 VGG-16 ResNet-19 ResNet-19
sparsity sparsity CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

0.9 90.36 64.52 89.97 66.09
0.8 91.02 65.74 90.21 67.59

0.95 0.7 91.31 66.57 90.47 68.30
0.6 91.11 66.73 90.56 68.95
0.5 90.94 66.82 90.57 68.39

0.9 89.13 61.92 88.58 63.25
0.8 89.62 63.51 88.61 64.39

0.98 0.7 89.56 63.21 88.48 65.48
0.6 89.50 62.69 88.25 64.74
0.5 89.48 63.13 88.10 74.89

TABLE III: Study on effects on different initial sparsity.

2) Effects of Smaller Timesteps: We compare the accuracy

performance of NDSNN and LTH on a smaller timestep (i.e.,

t = 2) to further validate the effectiveness of proposed method

on a more efficient training approach (i.e., the smaller training

timesteps, the smaller training cost in time) as shown in

Fig. 4. It’s observed that NDSNN outperforms LTH on the four

experiments (i.e., VGG-16/CIFAR-10, VGG-16/CIFAR-100,

ResNet-19/CIAFR-10, ResNet-19/CIAFR-100). On CIFAR-

100, NDSNN has 5.55% and 13.34% improvements in accuracy

at a sparsity of 99% on VGG-16 and ResNet-19, respectively.

V. CONCLUSION

In this paper, we propose a novel, computationally effi-

cient, sparse training regime, Neurogenesis Dynamics-inspired

Spiking Neural Network training acceleration framework,

NDSNN. Our proposed method trains a model from scratch

using dynamic sparsity. Within our method, we create a

drop-and-grow strategy which is biologically motivated by

neurogenesis to promote weight reduction. Our method gives

higher accuracy and is computationally less demanding than

competing approaches. For example, on CIFAR-100, we can

achieve an average increase in accuracy of 13.71% over LTH

for ResNet-19 across all sparsities. For all datasets, DNSNN

has an average of 6.72% accuracy improvement and 59.9%

training cost reduction on ResNet-19. Overall, NDSNN could

shed light on energy efficient SNN training on edge devices.
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