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AbstractÐCompute-in-Memory (CiM), built upon non-volatile memory

(NVM) devices, is promising for accelerating deep neural networks

(DNNs) owing to its in-situ data processing capability and superior

energy efficiency. To battle device variations, noise injection training

is commonly used, which perturbs weights with Gaussian noise during

training to make the model more robust to weight variations. Despite its

prevalence, however, existing successes are mostly empirical, and very

little theoretical support is available. Even the most fundamental questions

such as why Gaussian but not other types of noises should be used is not

answered. In this work, through formally analyzing the effect of injecting

Gaussian noise in training to improve the k-th percentile performance

(KPP), a realistic worst-case performance metric, for the first time we

provide a theoretical justification of the effectiveness of the approach.

We further show that surprisingly Gaussian noise is not the best option,

contrary to what has been taken for granted in the literature. Instead, a

right-censored Gaussian noise significantly improves the KPP of DNNs.
We further propose an automated method to determine the optimal

hyperparameters for injecting this right-censored Gaussian noise during

the training process. Our method achieves up to a 26% improvement

in KPP compared to the state-of-the-art methods employed to enhance

DNN robustness under the impact of device variations.

I. INTRODUCTIONS

Deep neural networks (DNNs) have demonstrated remarkable

advancements, surpassing human performance in a wide range of

perception tasks. The recent emergence of deep learning-based

generation models, such as DALL-E [1] and the GPT family [2], has

further reshaped our workflows. To date, the trend of incorporating

on-device intelligence across edge platforms such as mobile phones,

watches, and cars, has become an evident [3]±[5], transforming every

walk of life. However, the limited computational resources and strict

power constraints of these edge platforms present challenges. These

circumstances necessitate more energy-efficient DNN hardware beyond

the general-purpose CPUs and GPUs.

Compute-in-Memory (CiM) DNN accelerators [6], on the other

hand, are competitive alternatives to replace CPUs and GPUs in

accelerating DNN inference on edge. In contrast to the traditional

von Neumann architecture platforms, which involve frequent data

movements between memory and computation components, CiM

DNN accelerators reduce energy consumption by enabling in-situ

computation directly at the storage location of weight data. Moreover,

emerging non-volatile memory (NVM) devices, such as ferroelectric

field-effect transistors (FeFETs) and resistive random-access memories

(RRAMs), allows NVCiM accelerators to achieve higher memory

density and improved energy efficiency compared to conventional

MOSFET-based designs [4]. However, the reliability of NVM devices

can be a concern due to device-to-device (D2D) variations incurred by

fabrication defects and cycle-to-cycle (C2C) variations due to thermal,

radiation, and other physical impacts. These variations can have a

notable negative impact on NVCiM DNN accelerators’ inference

accuracy, as they may introduce significant differences between the

weight values read out from NVM devices during inference and their

intended values.

Various strategies have been proposed to mitigate the impact of

device variations. These strategies can be broadly categorized into

two categories: reducing device value deviations and enhancing the

robustness of DNNs in the presence of device variations. Device value

deviations can be reduced through methods such as write-verify [7],

which iteratively applies programming pulses to reduce device value

deviation from the desired value after each write. On the other hand,

there exist various approaches that enhance DNN robustness in the

presence of device variations. One direction is to identify novel DNN

topologies that are more robust in the presence of device variations.

This can be achieved through techniques such as neural architecture

search [8], [9] or by leveraging Bayesian Neural Networks [10] which

use variational training to improve DNN robustness. Another line

of methods focuses on training more robust DNN weights using

noise injection training [3], [11], [12]. In this approach, randomly

sampled noise is injected into DNN weights during the forward

and backpropagation phases of DNN training. After the gradient is

calculated through backpropagation, the noise is then removed and

the weight value without noise is updated by gradient descent. 1

Despite its wide adoption, very little theoretical support is available

for noise injection training. Even the most fundamental questions

such as why Gaussian but not other types of noises should be used

is not answered. To date, only empirical analyses have been offered,

suggesting that this method is effective because it simulates the noisy

inference environment. However, no theoretical explanation has been

provided. In this work, in light of this gap between implementation

and understanding, we propose to formally explain the effect of

noise injection training. By mathematically analyzing its impact

on improving the worst-case performance of DNN models under

the influence of device variations, for the first time, we provide

a theoretical justification of the effectiveness of the approach. We

demonstrate that surprisingly vanilla noise injection training, which

merely mirrors the inference noise by injecting Gaussian noise, is not

the best approach for enhancing the worst-case performance of DNN

models, contrary to what has been taken for granted in the literature.

Instead, a right-censored Gaussian noise injection framework better

improves DNN robustness under the influence of device variations.

In detail, worst-case analysis is crucial for safety-critical applica-

tions, so we propose to analyze the effect of noise injection training

in improving the worst-case performances of DNN models [13]. To

capture realistic worst-case scenarios precisely in the presence of

device variations, in this work, we propose to use the k-th percentile

performance (KPP) metric, instead of the average or absolute worst-

case performance. With a predetermined K value, the KPP metric

aims to identify a performance score that the model’s performance

is consistently greater than this score in all but k% of cases. For

example, if a model has a KPP of 0.912 when K = 1, this suggests

that the likelihood of a model’s performance being greater than 0.912

is 99% (except the 1% of the cases). When a realistically small K
value is given, such as K = 1, KPP can capture a realistic worst-case

performance of a DNN model because it (1) guarantees a lower bound

of the model’s performance and (2) filters out extreme corner cases.

Given the same K value, a higher KPP for a DNN model is desirable
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as it signifies that the model can consistently deliver high performance

within a certain probability threshold.

Since improving KPP guarantees higher realistic worst-case per-

formance of a DNN model, we revisited the state-of-the-art (SOTA)

Gaussian noise injection training method to analyze its effectiveness

in improving KPP. Gaussian noise injection training is widely used

simply because it injects noises that statistically mirror the noises in

the inference environment. Although it is empirically valid to state

that a precise simulation of the inference environment during training

would yield optimal results, there is no theoretical proof for it. Thus,

to prove the effectiveness of Gaussian noise injection training, we

thoroughly analyze the relationship between KPP of a DNN model and

the properties of DNN weights to show what kind of models would

provide higher KPP. Surprisingly, our analysis shows that Gaussian

noise injection training is far from optimal in generating robust DNN

models in the presence of device variations.

In particular, our key observation is that achieving a higher KPP in

the presence of device variation needs to satisfy the following three

requirements simultaneously: (1) higher DNN accuracy under no

device variation; (2) smaller 2nd derivatives w.r.t. DNN weights, and

(3) larger 1st derivatives w.r.t. DNN weights. However, our analysis

(see Section III-C) shows that the conventional Gaussian noise-injected

training approaches can only fulfill the first two requirements, but not

the third, making them ineffective for KPP improvement. Specifically,

the third requirement necessitates distributions with non-zero expected

values, a condition that the Gaussian distribution fails to satisfy.

To this end, we develop TRICE, a method that injects adaptively

optimized right-censored Gaussian (RC-Gaussian) noise in the training

process. The abbreviation of this method is derived from the name

Training with RIght-Censored Gaussian NoisE (TRICE), to address

all aforementioned three requirements simultaneously. TRICE differs

from existing approaches in several aspects: (1) rather than using the

general Gaussian noise, TRICE uses RC-Gaussian noise which exhibits

a unique feature±for all sampled values greater than a designated

threshold, the sample value is fixed (i.e., censored) to the threshold.

This results in a negative expected value for the injected noise,

thus meeting the third requirement. (2) TRICE requires additional

hyperparameters tuning, e.g., via a dedicated adaptive training method

to identify the optimal noise hyperparameters within a single run of

DNN training, which is different from the conventional Gaussian noise-

based approaches using the same noise hyperparameters in training

and inference. The main contributions of this work are multi-fold:

• We analytically derive the effect of noise injection training in

improving KPP and show that the common practice of injecting

Gaussian noise is not the optimal solution.

• We propose to inject right-censored Gaussian noise during

DNN training to improve the KPP in the presence of device

variations. An adaptive training method that can automatically

identify optimal noise hyperparameters in the training process is

developed accordingly.

• Extensive experimental results show that TRICE improves the

1st percentile performance (in terms of top-1 accuracy) in the

presence of device variations by up to 15.42%, 25.09%, and

26.01% in LeNet for MNIST, VGG-8 for CIFAR-10 and ResNet-

18 for CIFAR-10, respectively compared with SOTA baselines.

• We also demonstrate the scalability of our proposed TRICE. That

is, in addition to evaluations on uniform RRAM devices, TRICE

also improves the 1st percentile accuracy by up to 15.61%, and

12.34% in two different types of FeFET devices respectively.

• To the best of our knowledge, this is the first work that formally

analyzes the effect of Gaussian noise injection training and

demonstrates its limitations.

II. RELATED WORKS
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Fig. 1: Illustration of the NVCiM DNN accelerator architecture for

(a) architecture overview and (b) crossbar (XBar) array. In a crossbar

array, the input is fed horizontally and multiplied by weights stored in

the NVM devices at each cross point. The multiplication results are

summed up vertically and the sum serves as an output. The outputs

are converted to the digital domain and further processed using digital

units such as non-linear activation and pooling.

The computation engine driving NVCiM DNN accelerators is the

crossbar array structure, which can perform matrix-vector multipli-

cation in a single clock cycle. Crossbar arrays store matrix values

(e.g., weights in DNNs) at the intersection of vertical and horizontal

lines using NVM devices (e.g., RRAMs and FeFETs), while vector

values (e.g., inputs for DNNs) are fed through horizontal data lines

(word lines) in the form of voltage. The output is then transmitted

through vertical lines (bit lines) in the form of current. While the

crossbar array performs calculations in the analog domain according

to Kirchhoff’s laws, peripheral digital circuits are needed for other

key DNN operations such as shift & add, pooling, and non-linear

activation. Additional buffers are also needed to store intermediate data.

Digital-to-analog and analog-to-digital conversions are also needed

between components in different domains.

Crossbar arrays based on NVM devices are subject to a number

of sources of variations and noise, including spatial and temporal

variations. Spatial variations arise from defects that occur during

fabrication and can be both local and global in nature. In addition,

NVM devices are susceptible to temporal variations that result from

stochastic fluctuations in the device material. These variations in

conductance can occur when the device is programmed at different

times. Unlike spatial variations, temporal variations are usually

independent of the device but could be subject to the programmed

value [14]. For the purpose of this study, we have considered the non-

idealities to be uncorrelated among the NVM devices. However, our

framework can be adapted to account for other sources of variations

with appropriate modifications.

B. Evaluating DNN Robustness in the Presence of Device Variations

Most existing research uses Monte Carlo (MC) simulations to

assess the robustness of NVCiM DNN accelerators in the presence of

device variations. This process typically involves extracting a device

variation model and a circuit model from physical measurements. The

DNN to be evaluated is then mapped onto the circuit model, and the

desired value for each NVM device is calculated. In each MC run, one

instance of a non-ideal device is randomly sampled from the device

variation model, and the actual conductance value of each NVM

device is determined. DNN performance (e.g., classification accuracy)

in this non-ideal accelerator, is then recorded. This process is repeated

numerous times until the collected DNN performance distribution



converges. Existing practices [11], [15] generally include around 300

MC runs. This number of MC runs is empirically sufficient according

to the central limit theorem [8].

Only a few researchers are focusing on the worst-case scenarios

of NVCiM DNN accelerators in the presence of device variations. A

line of research [13], [16], [17] focuses on determining the worst-case

performance by identifying weight perturbation patterns that can cause

the most significant decrease in DNN inference performance, while

still adhering to the physical bounds of device value deviations. One

representative work [13] shows that DNN classification accuracy can

drop to random guesses level when adding a less than 3% perturbation

to weights. However, the likelihood of such a worst-case scenario

occurring is lower than < 10−100, which can be safely ignored in

common natural environments [13]. Thus, such kinds of worst-case

analyses are impractical in terms of accessing the robustness of an

NVCiM DNN accelerator.

Thus, in this work, we advocate using k-th percentile performance,

a metric that is both practical and precise, for capturing the worst-case

performances of a DNN model.

C. Addressing Device Variations

Various approaches have been proposed to deal with the issue of

device variations in NVCiM DNN accelerators. Here we briefly review

the two most common types: enhancing DNN robustness and reducing

device variations.

A common method used to enhance DNN robustness in the presence

of device variations is variation-aware training [3], [11], [12], [18].

Also known as noise injection training, the method injects variation

to DNN weights in the training process, which can provide a DNN

model that is statistically robust in the presence of device variations. In

each iteration, in addition to traditional gradient descent, an instance

of variation is sampled from a variation distribution and added to

the weights in the forward pass. In the backpropagation pass, the

same noisy weight and noisy feature maps are used to calculate the

gradient of weights in a deterministic and noise-free manner. Once the

gradients are collected, this variation is cleared and the variation-free

weight is updated according to the previously collected gradients.

The details of noise injection training are shown in Alg. 1. Another

fashion of training more robust DNN weights is CorrectNet [19]. This

approach uses a modified Lipschitz constant regularization during

DNN training so that the regularized weights are less prone to the

impact of device variations. Other approaches include designing more

robust DNN architectures [3], [8], [10] and pruning [20].

To reduce device variations induced device value deviation, write-

verify [7], [21] is commonly used during the programming process. An

NVM device is first programmed to an initial state using a pre-defined

pulse pattern. Then the value of the device is read out to verify if its

conductance falls within a certain margin from the desired value (i.e.,

if its value is precise). If not, an additional update pulse is applied,

Algorithm 1 NoiseTrain (M, w, Dist, ep, D, α)

1: // INPUT: DNN topology M, DNN weight w, noise distribution

Dist, # of training epochs ep, dataset D, learning rate α;

2: for (i = 0; i < ep; i++) do

3: for x, GT in D do

4: Sample ∆wi from Dist;
5: loss = CrossEntropyLoss(M(w +∆wi, x), GT );

6: w = w − α ∂loss
∂w+∆wi

7: end for

8: end for

aiming to bring the device conductance closer to the desired one. This

process is repeated until the difference between the value programmed

into the device and the desired value is acceptable. This approach

is highly effective in reducing the device value deviations, but the

process typically requires a few iterations, which is time-consuming.

There are also various circuit design efforts [22], [23] that try to

mitigate the device variations.

III. PROPOSED METHOD

In this section, we introduce a novel variant of the noise injection

training method designed to improve the k-th percentile performance

(KPP) of a DNN model. The conventional noise injection training

injects Gaussian noise in the training process simply because it mirrors

the impact of device variations occurring in inference. There is no

theoretical proof that such practice would offer the most robust DNN

models. In this section, we show through mathematical analysis that

Gaussian noise injection training is far from optimal in improving KPP.

Specifically, this section begins with a formal definition of KPP and

an analysis of its relationship with DNN weights. Next, we analyze

the noise injection training framework and identify the requirements

for the noise injected during training. We show that Gaussian noise

does not satisfy all requirements.

Thus, we propose several candidate noise types and select right-

censored Gaussian noise through experimentation. Moreover, we

develop an adaptive training method that automatically determines

the optimal hyperparameters for the right-censored Gaussian noise

injection. The resulting framework is called Training with RIght-

Censored Gaussian NoisE (TRICE).

A. K-th Percentile Performance

The KPP of a DNN model is derived from the k-th percentile of a

distribution. The k-th percentile of a distribution can be defined as

the value zpk that separates the lowest k% of the observations from

the highest (100-k)% of the observations in a distribution. Formally

speaking, given a random variable Z following a distribution Dist,
there exists a value zpk that, if sampling a value zi from Z, there is

a k% probability that zi ≤ zpk. It is equivalent to:

k/100 = cdfDist(zpk) (1)

where cdfDist is the cumulative distribution function of Dist.
In the context of a DNN model’s performance in the presence of

device variations, the KPP represents the minimum performance level

that the model achieves with a probability of at least (100-k)%. For

example, As shown in Fig. 2, the 5th percentile performance in terms

of top-1 accuracy (i.e., k-th percentile accuracy) of this DNN model

in the presence of device variations is 0.4623 which means for 5%

of the cases the DNN accuracy will be lower than 0.4623, and for

95% of the cases, the DNN accuracy is greater than 0.4623.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0

1

2

3

4

Di
st

rib
ut

io
n 

De
ns

ity

5% 50% 90%

5th percentile
50th percentile (median)
90th percentile

Fig. 2: Illustration of KPP (in terms of top-1 accuracy). The red curve

represents the accuracy distribution of a DNN in the presence of

device variations. The intersection point of each straight line and the

x-axis represents the k-th percentile accuracy.



Algorithm 2 QuantEval (M, w, σd q, D, Nsample)

1: // INPUT: DNN topology M, DNN weight w, device value

variation σd, q = k/100 for k-th percentile, evaluation dataset

D, number of samples Nsample;

2: // OUTPUT: k-th percentile performance of M(w);
3: initialize empty list perfl;

4: for (i = 0; i < Nsample; i++) do

5: Sample ∆wi from Gaussian(0, σd);

6: perfi = performance of M(w +∆wi) in dataset D;

7: Add value perfi to list perfl;

8: end for

9: perfl = sort(perfl);

10: perfq = perfl[q × len(perfl)]
11: return perfq;

KPP of a DNN model can be easily evaluated through Monte-Carlo

simulation. Specifically, with Nsample Monte Carlo runs, Nsample

performance values are collected. These performance values are then

sorted in ascending order and the (Nsample × k%)th element of this

sorted array is the estimation of KPP. The overall process is shown

in Algorithm 2.

B. Relationship Between Weights and k-th Percentile Performance

After establishing the definition of the KPP, we proceed to analyze

how it relates to the trained weights of the DNN model. We use the

loss function as the metric for assessing the performance throughout

this analysis.

Given a neural network model M and its trained weight vector w,

the output out of this model from the input x can be described as

out =M(w,x). Further given the ground truth label GT and the

loss function f , its loss can be described as loss = f(M(w,x),GT).
Because the values of x and GT are fixed when inferencing on a

given dataset, the loss expression can be simplified as a function of

w, i.e., loss = f(w).
Here we study the impact of perturbing one element w0 in the

weight vector w. Specifically, because this weight value is subjected
to the impact of device variations, it is perturbed to w0 +∆w, where
∆w is the device variation-induced perturbation. We can then apply
Taylor expansions to the loss function w.r.t. the perturbed weight:

f(w0 +∆w) =f(w0) + f ′(w0)∆w +
f ′′(w0)

2
(∆w)2 + o((∆w)3)

≈f(w0) + f ′(w0)∆w +
f ′′(w0)

2
(∆w)2

(2)

We can observe in Eq. 2 that the loss function can be approximated

by a quadratic function of ∆w. Given that the weight perturbation

∆w follows the distribution of device variations (∆w ∼ Dist), we

can calculate the k-th percentile of the loss as follows:

First, let q = k/100 be the probability number of k-th percentile.

We then let the unknown k-th percentile be lossq . According to the

property of quadratic functions, along with the fact that f ′′(w) ≥
0 [24] and lossq is greater than the minimum value of Eq. 2, we

know that there exist two real numbers ∆w1 and ∆w2, ∆w1 < ∆w2,

such that if ∆w1 < ∆w < ∆w2, then f(∆w) < lossq .

By the definition of KPP and the loss is the lower the better, we

have q as the probability of f(∆w) ≥ lossq , and then 1− q is the

probability of ∆w1 ≤ ∆w ≤ ∆w2. Recalling that weight perturbation

∆w follows the device variation distribution (∆w ∼ Dist), we have:

1− q = cdfDist(w2)− cdfDist(w1) (3)

where cdfDist is the cumulative distribution function (CDF) of Dist.
Through the definition of w1, w2 and lossq , we also know that:

w1 =
−f ′(w0)− β

f ′′(w0)

w2 =
−f ′(w0) + β

f ′′(w0)

β =
√

f ′(w0)2 − 2f ′′(w0)(f(w0)− lossq)

(4)

Combining Eq. 3 and Eq. 4, we can get an analytical relationship

between q and lossq and thus can calculate lossq given the device

value deviation distribution Dist and the trained model weight w0.

In this work, we target a device model that the device value deviation

follows Gaussian distribution N (0, σd), whose CDF is:

cdfDist(w) =

∫ w

−∞

e−t2dt (5)

Combining Eq. 3 and Eq. 4 and the first-order approximation of

Eq. 5, we obtain:

lossq = −
f ′(w0)

2

2f ′′(w0)
+ f(w0) +

f ′′(w0)πq
2σ2

d

4
(6)

Considering f ′(w0) as a variable, it is clear that lossq is a quadratic

function w.r.t. f ′(w0). Extensive research works [24], [25] have

shown that when using cross-entropy loss with softmax as the loss

function, the second derivatives of weights w.r.t. the loss is positive,

i.e., f ′′(w0) > 0. Thus, it is clear that Eq. 6 reaches its maximum

value when f ′(w0) = 0 and decreases when f ′(w0) diverges from 0.

Therefore, by observing the first term of 6, to gain a low enough lossq ,

hence high enough KPP, a smaller f ′′(w0), and a f ′(w0) with larger

absolute values is required. Similarly, by observing the second and the

third term of 6, a smaller f(w0), and a smaller f ′′(w0) is required.

Thus, to improve the KPP of a DNN model, the DNN training process

needs to simultaneously minimize f(w0) and f ′′(w0), and maximize

|f ′(w0)|.

C. The Effect of Noise Injection Training

According to the conclusion in Section III-B, the DNN training

process needs to minimize f(w0) and f ′′(w0), then maximize

|f ′(w0)| at the same time. We now analyze the noise injection training

process to see how to satisfy these requirements.

Using similar denotations as Section III-B and recall Alg. 1, one

iteration of the noise injection training process can be depicted as:

wt+1 = wt − αf ′(wt +∆w) (7)

where wt is the current weight value, wt+1 is the updated weight

value after this iteration of training and α is the learning rate. By

applying Taylor expansion on f ′(wt +∆w), we obtain:

wt+1 ≈ wt − α

(

f ′(wt) + ∆wf ′′(wt) +
(∆w)2

2
f ′′′(wt)

)

(8)

Considering a noise injection training process where in each

iteration of training, the device variation-induced weight value

perturbation ∆w is sampled for enough instances instead of only

once, the statistical behavior for such noise injection training is:

wt+1 = wt − αE∆w[f
′(wt +∆w)]

≈ wt − α

(

f ′(wt) + E[∆w]f ′′(wt) +
E[(∆w)2]

2
f ′′′(wt)

)

(9)

where E[∆w] is the expected value (i.e., mean) of ∆w.

By observing Eq. 9 and by recalling the requirements derived

through Eq. 6 that the DNN training process needs to (1) minimize

f(w0), (2) minimize f ′′(w0), then (3) maximize |f ′(w0)| at the same

time. We can analyze the three terms after α in Eq. 9 to design the

noise distribution to be injected.

For the three terms after α, the first term f ′(wt) is the first-

order gradient that is used in vanilla gradient descent that minimizes



the value of f(wt+1). This satisfies the first requirement gained in

Section III-B. Another side effect is that, when the training process

is close to converging, this term would push the first-order gradient

toward zero.

The third term
E[(∆w)2]

2
f ′′′(wt) affects the second derivatives.

Because E[(∆w)2] is always positive, this term minimizes the

value of f ′′(wt+1). This satisfies the second requirement gained

in Section III-B.

For the second term E[∆w]f ′′(wt), it affects the first derivatives.

As E[∆w] can be either positive, zero, or negative, this term would

respectively minimize, not change, or maximize the first-order gradient.

Combined with the first term that pushes the first-order gradient

towards zero, injecting a noise with a negative mean would result

in a maximized positive first-order gradient and vice versa. Because

Eq. 6 requires a first-order gradient of larger absolute value, a noise

distribution with a non-zero mean value is required. The widely used

Gaussian distribution, whose mean value is zero, however, does not

meet this requirement. Therefore, a new type of noise needs to be

utilized for noise injection training.

D. Candidate Noise Distributions

According to Section III-C, to improve the model robustness,

the distribution injected in the training process needs to satisfy

requirements that: E[(∆w)2] > 0 and E[(∆w)] ̸= 0. We also

need this distribution to yield a model with high enough accuracy

when noise-free, according to Section III-B. We propose to consider

four candidate noise distributions for our study, all of which are

variations of the Gaussian distribution. These distributions include (a)

Right-Censored Gaussian (RC-Gaussian), (b) Left-Censored Gaussian

(LC-Gaussian), (c) Right-Truncated Gaussian (RT-Gaussian), and (d)

Left-Truncated Gaussian (LT-Gaussian). In a Right-Censored Gaussian

distribution, all values follow Gaussian distribution except that those

greater than a certain threshold are set (censored) to be the threshold

value. This applies similarly to the LC-Gaussian distribution except

that the value smaller than the threshold is censored. The property of

RC-Gaussian is shown in Eq. 10. Different from RC and LC-Gaussian,

in the Right-Truncated Gaussian distribution, any value greater than

a threshold is cut off, which means there is zero probability for

the perturbation value to be greater than the threshold. This applies

similarly to LT-Gaussian. The distribution histograms of the four

candidates are shown in Fig. 3.

RC-Gaussian(th, σt) =

{

th× σt, if g ≥ th× σt

g, else

g ∼ N (0, σt)

(10)
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Fig. 3: The distribution histogram of different candidate noise with

σt = 1 and th = 2. The x-axis represents the perturbation magnitude

and the y-axis represents the distribution density.

With excessive experiments, we select to inject Right-Censored

Gaussian distribution during noise injection training because it would

result in the best KPP. The results of this study are shown in the

experiment section.

E. Automated Hyperparameter Selection through Adaptive Training

Right-Censored Gaussian noise injection training requires massive

hyperparameter tuning. Unlike traditional Gaussian noise injection

training, which employs noise hyperparameters the same as the device

variation-induced weight value deviation during training to accurately

replicate the inference environment, injecting RC-Gaussian noise

introduces different types of noise during training and inference. Thus,

the two hyperparameters, σt and th, need to be calibrated for each

different DNN model and σd value. The process of determining

the optimal hyperparameters can be time-consuming and requires

significant human effort. AutoML [9]-based methods are possible

solutions but they typically require multiple trials to determine the

optimal hyperparameter. Therefore, we propose an adaptive training

method to find the optimal noise hyperparameters during the training

process. This method requires no hyperparameter tuning and takes

only one single training run to train the optimal model. To develop

this method, we first conduct a grid search of hyperparameters. As

shown in Fig. 4, for both hyperparameters (σt and th), as the value of

the hyperparameter increases, the DNN performance initially increases

and then decreases after reaching an optimal point. This property

allows us to use a binary search-like method to find the optimal

hyperparameter values.
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Fig. 4: Results for the grid search of injecting right-censored Gaussian

noise with different hyperparameters on model LeNet for dataset

MNIST. The x-axis and y-axis represent the different choices of

hyperparameter σt and th, respectively. The z-axis represents the 1st

percentile accuracy of the trained model. It is clear that the optimal

solution sets in the middle of the search space for each hyperparameter.

Specifically speaking, during the training process, three identical

DNN models are initialized and trained simultaneously. Each DNN

model is trained by injecting noises with different hyperparameters.

The hyperparameters each model uses are determined by the binary

search engine. After each epoch, the KPP of each model trained under

noises with different hyperparameters is evaluated. The binary search

engine then updates the hyperparameters of each model according

to their performance rankings. The weight of each model is also

reassigned by the model that has the highest KPP. To stabilize training,

the model is first trained by warm warm-up epochs without updating

the noise hyperparameters. Moreover, to accelerate training, when the

binary search method converges, which means all three models are

using the same noise hyperparameters, the three models are merged

into one model, which means only one model needs to be trained.

The binary search-like policy to identify the optimal value of one

hyperparameter is as follows: with the starting point start and the

ending point end, in each iteration, the three candidate values are the



three quartiles of start and end, i.e., left = start + 1 × (end −
start)/4, mid = start+2× (end− start)/4 and right = start+
3× (end− start)/4. If the model trained with hyperparameter mid
has the highest KPP, this means the optimal value is not in the range

of [start, left] and [right, end], so we can perform start← left
and end← right. Similarly, if the model trained with hyperparameter

left has the highest KPP, we only perform end← right, and if the

model trained with hyperparameter right has the highest KPP, we

only perform start ← left. This process is performed iteratively

until |end− start| ≤ 1e− 4.

Algorithm 3 TRICE (M, start, end, th, ep, warm, Ntrain, σd, q,

D, α)

1: // INPUT: DNN topologyM, start and end perturbation magnitude

start, end, RC-Gaussian threshold th, number of training epochs

ep, number of warm up epochs warm, number of evaluation

samples during training Ntrain, target device value variation σd,

target percentile q, dataset D and learning rate α;

2: Initialize three DNN models M(w1), M(w2), M(w3) of

topology M;

3: for (i = 0; i < ep; i++) do

4: if end− start < 1e− 4 then

5: // Train only one model when start == end.

6: NoiseTrain(M, w1, RC-Gauss(th, start), 1, D, α);

7: else

8: // Train three models with three different hyperparameters.

9: left = start+ 1× (end− start)/4;

10: mid = start+ 2× (end− start)/4;

11: right = start+ 3× (end− start)/4;

12: NoiseTrain(M, w1, RC-Gauss(th, left), 1, D, α);

13: NoiseTrain(M, w2, RC-Gauss(th, mid), 1, D, α);

14: NoiseTrain(M, w3, RC-Gauss(th, right), 1, D, α);

15: if i ≥ warm then

16: // Only evaluate performance and update hyperparameters

after warmup.

17: perf1 = QuantileEval(M, w1, σd, q, D, Ntrain);

18: perf2 = QuantileEval(M, w2, σd, q, D, Ntrain);

19: perf3 = QuantileEval(M, w3, σd, q, D, Ntrain);

20: // use binary search to update hyperparameters

21: if max(perf1, perf2, perf3) == perf2 then

22: start, end,w1,w3 = left, right,w2,w2;

23: else if max(perf1, perf2, perf3) == perf1 then

24: end,w2,w3 = right,w1,w1

25: else if max(perf1, perf2, perf3) == perf3 then

26: start,w1,w2 = left,w3,w3

27: end if

28: end if

29: end if

30: end for

Note that there are more efficient hyperparameter tuning algorithms

available compared to our method. The optimal solution requires

training fewer models using different hyperparameters. However,

our approach is better suited for noise injection training due to

the following reasons. (1) It involves more estimations of model

performances using different hyperparameters, thereby reducing the

impact of imperfect KPP estimations obtained from a small number

of Monte Carlo runs. (2) It continuously trains a model using a

hyperparameter of mid = (start + end)/2, which is closer to the

final optimal hyperparameter. This makes the training process easier

to converge.

In our practice, we use adaptive search to automatically find

perturbation scale σt and manually determine th.

The whole training framework with automated hyperparameter

tuning is named Training with RIght-Censored Gaussian NoisE

(TRICE) and shown in Algorithm 3.

IV. EXPERIMENTAL EVALUATION

In this section, we comprehensively evaluate our proposed TRICE

method in terms of KPP improvement for CiM DNN accelerators

suffering from device variations. We first discuss how to link the

device value variations to additive noise on weights based on the

noise model. We then compare the effectiveness of TRICE against

SOTA baselines using different datasets, models, and different types

of NVM devices that can be used to build NVCiM DNN accelerators.

Ablation studies that show the advantages of RC-Gaussian noise over

different noise candidates are also conducted.

A. Modeling of Device Variation-induced Weight Perturbation

Without loss of generality, we mainly focus on device variations

originating from the programming process, in which the conductance

value programmed to NVM devices can deviate from the desired

value. Next, we show how to model the impact of device variations

on DNN weights.

Assume a H bits DNN weight, the desired weight value after

quantization (Wdes) can be represented as:

Wdes =
max |W|

2H − 1

H−1
∑

j=0

hj × 2j (11)

where hj ∈ {0, 1} is the value of the jth bit of the desired weight

value, W is the floating point weight value and max |W| is the

maximum absolute value of the weight. For an NVM device capable

of representing B bits of data, since each weight value can be

represented by H/B devices2, the corresponding mapping process

can be expressed as:

gi =

B−1
∑

j=0

hi×B+j × 2j (12)

where gi is the desired conductance of the ith device representing a

weight. Note that negative weights are mapped in a similar manner.

Considering the impact of device variations, the actually programmed

conductance value gpi is as follows:

gpi = gi +∆g (13)

where ∆g is the deviation from the desired conductance value gi.
Thus when weight is programmed, the actual value Wp mapped

on the devices would be:

Wp =
max |W|

2H − 1

H/B−1
∑

i=0

2i×Bgpi

=Wdes +
max |W|

2H − 1

H/B−1
∑

i=0

∆g × 2i×B

(14)

To simulate the above process, we follow the settings consistent

with existing works. Specifically, we set B = 2 based on existing

works [3], [24], while H is specified by each model. For the device

variation model, we adopt ∆g ∼ N (0, σd) (if not specified), which

indicates that ∆g follows Gaussian distribution with a mean of zero

and a standard deviation of σd. We constrain σd ≤ 0.4 as this is a

reasonable range that can be realized by device-level optimizations

such as write-verify based on the measurement results. Our model and

parameter settings are in line with that of RRAM devices reported

in [7].

2Without loss of generality, we assume that H is a multiple of B.
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Fig. 5: Comparison of the 1st percentile accuracy achieved by models trained using TRICE and baseline methods on (a) VGG-8 and (b)

ResNet-18 for dataset CIFAR-10. The x-axis represents the magnitude of device value variation (σd) and the y-axis represents the 1st

percentile accuracy.

B. Experimental Setup

Platforms and Metrics: All experiments are conducted on PyTorch

using an on-the-shelf GPU. To precisely capture the performance

(accuracy) of the DNN model under device variations, our report data

points are averaged from 5 identical runs. For the evaluation metric, if

not specified, we report the 1st percentile accuracy, which is KPP using

accuracy as the performance metric and with k = 1. To obtain the

KPP of a DNN model under sufficiently high precision, we choose to

run 10,000 Monte Carlo simulations (Nsample = 10,000). Since our

experiments show that 10,000 runs can output 1st percentile accuracy

whose 95% confidence interval is ±0.009 based on the central limit

theorem.

Baselines for Comparison: We compare TRICE with three

baselines that are built upon training: (1) training w/o noise injection,

(2) CorrectNet [19], and (3) injecting Gaussian noise in training [3],

[12]. For a fair comparison, we do not compare TRICE with other

orthogonal methods like NAS-based DNN topologies design [3], [8]

or Bayesian Neural Networks [10], given TRICE can be used together

with them.

Hyperparameters Setting: For all experiments, TRICE uses the

same hyperparameter setups: start = 0, end = 2 × σd, th = 2,

ep = 100, warm = 5 and Ntrain = 300, where σd is the standard

deviation for device variation. We limit the range of σd as suggested

by Sect. IV-A and report the effectiveness of TRICES across different

σd values within that range. For other training hyperparameters such

as learning rate, batch size, and learning rate schedulers, we follow

the best practice in training a noise-free model.

C. The Effectiveness of TRICE on MNIST Dataset

We first compare TRICE with the aforementioned baselines using

the model LeNet to recognize the 10-class handwritten digits dataset

MNIST [26]. LeNet is a plain convolutional neural network consisting

of two convolution layers and three fully connected layers. All

weights and layer outputs (i.e., activations) are quantized to four

bits (H = 4). We also compare TRICE with injecting right-censored

Gaussian noise with handpicked hyperparameters (RC-Manual) as an

ablation study. Table I shows the 1st percentile accuracy of models

trained with different training methods under different levels of device

variations (σd) following the noise model discussed in Section IV-A.

As shown in Table I, compared with training w/o noise, CorrectNet

improves the 1st percentile accuracy by up to 19.94%, but this is

not comparable to the improvement of up to 49.44% by injecting

Gaussian noise and up to 58.01% by our proposed TRICE. We can

also observe that, compared with injecting Gaussian noise, TRICE can

improve the 1st percentile accuracy by up to 15.42%. It is clear that

TRICE outperforms all baselines in generating models with higher

TABLE I: Effectiveness of TRICE method on model LeNet for MNIST

across different σd values. The performance is shown in 1st percentile

accuracy. The baselines are vanilla DNN training w/o noise injection,

CorrectNet [19], and injecting Gaussian noise in training [3], [12].

Injecting RC-Gaussian noise with hand-picked hyperparameters (RC-

Manual) is also shown as an ablation study.

Dev. var. Training Method
(σd) w/o noise CorrectNet Gauss. RC-Manual TRICE

0.00 99.01 97.99 98.86 98.88 98.94
0.05 93.31 97.56 97.45 96.89 98.08

0.10 70.72 90.66 95.59 95.47 95.99

0.15 38.15 67.70 87.60 90.43 90.58
0.20 19.81 39.54 66.04 75.47 77.82

0.25 11.95 22.26 40.27 50.14 54.12

0.30 08.58 14.26 23.09 28.56 38.51

0.35 06.89 10.83 14.38 16.83 25.29

0.40 06.05 09.23 10.38 11.61 17.94

1st percentile accuracy in all simulated σd values. Moreover, TRICE

demonstrates more significant improvement when facing large device

variations while still delivering comparable accuracy when σd is too

small to distinguish the difference between different training methods.

Because CorrectNet cannot generate a model with higher robustness

compared with injecting Gaussian noise, we do not show the results

for it in the latter experiments. The ablation study also shows that

TRICE outperforms injection right-censored Gaussian with handpicked

hyperparameters (RC-Manual) and the improvement in 1st percentile

accuracy is up to 9.95%, so we do not show the result of RC-Manual

in the remainder of this paper.

D. The Effectiveness of TRICE in Large Models

After showing the effectiveness of TRICE in a small model LeNet

for MNIST, here we further demonstrate the effectiveness of TRICE

by comparing it with the baselines in larger DNN models for larger

datasets. We choose two representative models VGG-8 [27] and

ResNet-18 [28]. Both models use a 6-bit quantization (H = 6) for

weights and activations. They both perform image classification tasks

for dataset CIFAR-10 [29]. As shown in Fig. 5a and Fig. 5b, TRICE

clearly outperforms all baselines in most device value deviation values

and performs similarly as baselines in some rare cases where device

value deviation is too small to make an impact or too large to perform

a valid classification. Compared with injecting Gaussian noise, TRICE

improves the 1st percentile accuracy by up to 25.09%, and 26.01%

in VGG-8 for CIFAR-10 and ResNet-18 for CIFAR-10, respectively.

E. The Effectiveness of TRICE in Different Devices

To demonstrate the scalability of TRICE, we also show the

effectiveness of TRICE on NVCiM platforms using different types of
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Fig. 6: Comparison of the 1st percentile accuracy achieved by models trained using TRICE and baseline methods on LeNet for dataset

MNIST targeting devices (a) FeFET1 and (b) FeFET2. The x-axis represents the magnitude of device value variation (σd) and the y-axis

represents the 1st percentile accuracy.

NVM devices. As discussed in Section IV-A, previous experiments

use a four level (2-bit, B = 2) device as in [3], [24]. More specifically,

it is a four-level RRAM device whose device value deviation model

is ∆g ∼ N (0, σd), which means ∆g follows Gaussian distribution

with a mean of zero and a standard deviation of σd, independent of

the programmed device conductance.

We further analyze the effectiveness of TRICE on two real-world

FeFET devices whose device value deviation magnitude varies as its

programmed conductance changes. Their device models are derived

from measurement results in [30]. Specifically, a generalized device

value variation model for a four-level device is:

gpi = gi +∆g
∆g ∼ N (0, σh)

, σh =



















σd0, if gi = 0

σd1, if gi = 1

σd2, if gi = 2

σd3, if gi = 3

(15)

which means ∆g follows Gaussian distribution with a mean of

zero and a standard deviation of σh but the σh value differs as

its programmed conductance changes. We abstract the behaviors of

the two FeFET devices to be:

FeFET1 → {σd0 = σd3 = σd, σd1 = σd2 = 4σd} (16)

FeFET2 → {σd0 = σd3 = σd, σd1 = σd2 = 2σd} (17)

This means the devices suffer from more device variations when they

are programmed to value 1 and 2 and suffer from less device variations

when they are programmed to value 0 and 3. As a comparsion, we

show the conductance (gp) distribution of the previously used RRAM

device and FeFET2 in Fig. 7a and Fig. 7b, respectively.

We report the effectiveness of TRICE in NVCiM platforms using

FeFET1 and FeFET2 in Fig. 6a and Fig. 6b, respectively. As expected,
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Fig. 7: Illustration of uniform and non-uniform devices. (a) Uniform

devices suffer from the same magnitude of noise when programmed

to different conductance values. (b) Non-uniform devices suffer

from different magnitudes of noise when programmed to different

conductance values. The perturbation is more significant when the

conductance value is 1 and 2.

again, it is obvious that TRICE outperforms all baselines in most

σd values and performs similarly as baselines where device value

deviation is too small to make an impact. Compared with injecting

Gaussian noise, TRICE improves the 1st percentile accuracy by up

to 15.61%, and 12.34% in FeFET1 and FeFET2, respectively.

F. Ablation Study for Different Noise Candidates
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Fig. 8: Comparison of injecting different types of noise in training

LeNet for MNIST. The y-axis represents the 1st percentile accuracy of

models trained by injecting different types of noise when σd = 0.25.

We also show the effectiveness of injecting RC-Gaussian noise in

the training process by comparing it against injecting other three noise

candidates: LC-Gaussian, RT-Gaussian, and LT-Gaussian noise. Here

the result of training with Gaussian noise is also included as a baseline.

Without loss of generality, we perform this study on the LeNet for

MNIST dataset using uniform RRAM devices with σd = 0.25. As

shown in Fig. 8, training with RC-Gaussian noise shows a clear

advantage over training with other types of noise by at least 8.76%.

Note that training with left and right truncated Gaussian performs

even worse than injecting Gaussian noise because they exhibit lower

accuracy w/o the presence of device variations.

V. CONCLUSIONS

In this work, we offer a mathematical explanation for the ef-

fectiveness of noise injection training in improving the robustness

of DNN models under the influence of device variations. We also

propose to use k-th percentile performance (KPP) instead of widely

used average performance as a metric to evaluate the realistic worst-

case performance of a DNN model. By analyzing the properties of

DNN models and noise injection-based training, we show that the

conventional Gaussian noise injection training improves KPP but far

from optimal. Instead, we propose a novel noise injection training

framework that injects right-censored noise during training. Extensive

experiments show that TRICE clearly outperforms SOTA baselines in

improving the k-th percentile performance of DNN models.
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