
TalkToModel: Explaining Machine Learning Models

with Interactive Natural Language Conversations

Dylan Slack
University of California, Irvine

dslack@uci.edu

Satyapriya Krishna
Harvard University

skrishna@g.harvard.edu

Himabindu Lakkaraju∗

Harvard Univesity
hlakkaraju@hbs.edu

Sameer Singh*

University of California, Irvine, Allen AI
sameer@uci.edu

Abstract

Machine Learning (ML) models are increasingly used to make critical decisions
in real-world applications, yet they have become more complex, making them
harder to understand. To this end, researchers have proposed several techniques
to explain model predictions. However, practitioners struggle to use these ex-
plainability techniques because they often do not know which one to choose and
how to interpret the results of the explanations. In this work, we address these
challenges by introducing TalkToModel: an interactive dialogue system for ex-
plaining machine learning models through conversations. TalkToModel comprises
1) a dialogue engine that adapts to any tabular model and dataset, understands
language, and generates responses, and 2) an execution component that constructs
the explanations. In real-world evaluations with humans, 73% of healthcare work-
ers (e.g., doctors and nurses) agreed they would use TalkToModel over baseline
point-and-click systems for explainability in a disease prediction task, and 85%
of ML professionals agreed TalkToModel was easier to use for computing expla-
nations. Our findings demonstrate that TalkToModel is more effective for model
explainability than existing systems, introducing a new category of explainability
tools for practitioners. We release code a demo for the TalkToModel system at:
https://github.com/dylan-slack/TalkToModel.

1 Introduction

Machine learning (ML) models are being deployed to make consequential decisions in several critical
domains such as healthcare, finance, and law, due to their strong predictive performance. However,
state-of-the-art ML models, such as deep neural networks, have also become more complex and,
therefore, hard to understand. This dynamic poses challenges in real-world applications for the
model stakeholders who need to understand why models make predictions and whether to trust the
predictions. Consequently, there are an increasing number of techniques that explain the predictions
of ML models. However, recent work suggests practitioners often have difficulty interpreting the
results of the explanations and determining which ones to run [17, 14]. Being able to understand
ML models through simple and intuitive interactions is a key bottleneck in adoption across many
applications—particularly in settings where experts use models to aid decision making.

Natural language dialogues are a promising solution for supporting accessible interactions with
ML models. However, designing a dialogue system that supports a satisfying model understanding
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Table 1: Overview of the operations supported by TalkToModel, which are incorporated into the
conversation to generate responses.

operation, arguments, and description

Data

filter by using value and comparison operator
filter(dataset, feature, value, comp):

Increases, decreases, or sets feature by value
change(dataset, feature, value, dir):

show(list): Shows items in list in the conversation

Computes summary statistic for feature
statistic(dataset, metric, feature):

count(list): Length of list

and(op1, op2): Logical “and” of two operations

or(op1, op2): Logical “or” of two operations

Explainability

explain(dataset, method): Feature importances

cfe(dataset, number): Gets number cfe’s

topk(dataset, k): Top k most important features

feature
important(dataset, feature): Importance of

interaction(dataset): Interaction effects

mistakes(dataset): Error patterns dataset

operation, arguments, and description

ML

predict(dataset): Predictions on dataset

on dataset
likelihood(dataset): Prediction probabilities

incorrect(dataset): Incorrect predictions

score(dataset, metric): Model score

Conversational

prev_filter(conversation): Gets last filters

non-filtering operations
prev_operation(conversation): Gets last

followups
followup(conversation): Respond to system

Description

function(): Overview of the system’s capabilities

data(dataset): Summary of dataset

model(): Description of model

define(term): Defines term

2.1 Parsing User Utterances

To understand the intent behind user utterances, the system learns to translate or parse them into
logical forms. TalkToModel performs the following steps to accomplish this: 1) the system constructs
a grammar for the user-provided dataset and model, which defines the set of acceptable parses, 2)
TalkToModel generates (utterance, parse) pairs for the dataset and model, 3) the system finetunes
a large language model (LLM) to translate user utterances into parses, and 4) the system responds
conversationally to users by composing the results of the executed parse into a response.

Grammar To represent the intentions behind the user utterances in a structured form, TalkToModel
relies on a grammar, which expresses user utterances in a structured form. Compared with approaches
that treat determining user intentions in conversations as a classification problem [19, 4], our approach
expresses compositions of operations and arguments that are combinatorially challenging in a
prediction setting. This grammar consists of production rules that include the operations the
system can run (an overview is provided in Table 1), the acceptable arguments for each operation,
and the relations between operations.

Supporting Context In Dialogues User conversations naturally make references back to events
earlier in the conversation (e.g., “what do you predict for them?”). However, current models only
parse a single input, making hard to apply them in settings where the context is important. We
introduce two operations: previous filter and previous operation, which look back in the
conversation to find the last filter and last operation, respectively. In contrast with approaches that
maintain the conversation state using neural representations [6], grammar operations allow for much
more trustworthy and dependable behavior while still fostering rich interactions, which is critical for
high-stakes settings. These operations also act recursively, enabling users to build complex parses in
multiple steps, supporting natural conversations for users.

Parsing Dataset Generation We finetune an LLM to translate utterances into the grammar in a
seq2seq fashion. We automate the finetuning of an LLM to parse user utterances into the grammar by
generating a training dataset of (utterance, parse) pairs. Compared to dataset generation methods that
use human annotators to generate and label datasets for training conversation models [10, 31], this
approach is much less costly, while still being highly effective. We write an initial set of user utterances
and parses, where parts of the utterances and parses are wildcard terms. TalkToModel enumerates the
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wildcards with aspects of a user-provided dataset, such as the feature names or values, to generate a
training dataset. For instance, the utterance “How many people have {NUMERIC_FEATURE} above
{NUMERIC_VALUE}” would have the numeric features and numeric values in the data enumerated to
generate further training utterances. We have already written the initial set of utterances and parses,
so users only need to provide their dataset to setup the conversation.

Semantic Parsing We compare two strategies for using pre-trained LLMs to parse user utterances
into the grammar 1.) few-shot GPT-J [37] and 2.) finetuned T5 [29]. The few-shot approach does not
require finetuning the LLM and is quicker to setup, which makes it easier for users to get started with
the system. However, the finetuned T5 leads to improved performance and a better user experience
overall. For the few-shot approach, we prompt the LLM using (utterance, parse) pairs, ordering
the closest pairs according to cosine distance of embedding immediately before the user utterance
because LLMs exhibit recency biases and consider the GPT-J 6B model [43, 37]. We also fine-tune
pre-trained T5 models in a seq2seq fashion on our datasets. and consider T5 Small, Base, and Large.

Generating Responses TalkToModel composes the results of the operations into a natural language
response it returns to the user. The system generates these responses by filling in templates associated
with each operation based on the results. Compared to approaches that generate responses using
neural methods [32], this approach ensures the responses are trustworthy and do not contain useless
information hallucinated by the system, which could be a very poor user experience.

2.2 Executing Parses

In this subsection, we provide an overview of the execution engine, which runs the operations
necessary to respond to user utterances in the conversation.

Feature Importance Explanations TalkToModel explains why the model makes predictions to
users with feature importance explanations. We implement the feature importance explanations
using post-hoc feature importance explanations. Post-hoc feature importance explanations do not
rely on internal details of the model f (e.g., internal weights or gradients) and only on the input
data x and predictions y to compute explanations, so users are not limited to only certain types of
models [30, 22, 16, 28, 18]. While there exists several post hoc explanation methods, each one adopts
a different definition of what constitutes an explanation (e.g., LIME returns coefficients of a local
linear model, while SHAP computes Shapley values) [15]. Consequently, we automatically select the
most faithful explanation for users, unless a user specifically requests a certain technique. This metric
is the mean absolute difference between the model’s prediction on the original input and a fudged
version on m ∈ {0, 1}d features,

Fudge(f,x,m) =
1

N

N∑

n=1

|f(x)− f(x+ ǫn ⊙ m)| (1)

where ⊙ is the tensor product and ǫ ∼ N (0, Iσ) is N × d dimensional Gaussian noise. To evaluate
faithfulness for a particular explanation method, we compute area under the curve on the top-k most
important features, thereby summarizing the results into a single metric. We compute faithfulness for
multiple different explanations and select the one with the highest value. Practically, we consider
KernelSHAP [21] and LIME [30] when choosing explanation methods, because they tend to be able
to explain models predictions well.

Additional Explanation Types Since users have explainability questions that cannot be answered
solely with feature importance explanations, we also support counterfactual explanations and feature
interaction effects. These methods support topics around how to get different outcomes and if features
interact with each other during predictions, supporting a broad set of user queries. We implement
counterfactual explanations using DiCE, which generates a diverse set of counterfactuals [23], and
feature interaction effects using the partial dependence based approach from Greenwell et al. [12].

Exploring Data and Predictions Because understanding models often requires inspection of
model predictions, errors, and the data itself, TalkToModel supports a wide variety of data and model
exploration tools. For example, TalkToModel provides options for filtering data and performing
what-if analyses, supporting user queries that concern subsets of data or what would happen if data
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points change. Users can also inspect model errors, predictions, prediction probabilities, compute
summary statistics, and evaluation metrics for individuals and groups of instances.

Table 2: Exact Match Parsing Accuracy (%) for the 3 gold datasets, on the IID and Compositional
splits, as well as Overall for T5 and few-shot GPT models. The fine-tuned T5 models perform
significantly better than few-shot GPT-J, and T5 Large performed the best. These results demonstrate
that TalkToModel can understand user intentions with a high degree of accuracy using the T5 models.

German Compas Diabetes

IID Comp. Overall IID Comp. Overall IID Comp. Overall

KNN 26.2 0.0 16.5 27.4 0.0 21.9 10.9 0.0 8.4

GPT-J 6B
5-SHOT 51.6 14.9 38.0 51.3 6.9 42.5 55.8 7.0 44.7
10-SHOT 57.9 9.5 40.0 49.6 3.4 40.4 53.7 9.3 43.7

T5
SMALL 61.1 32.4 50.5 71.8 10.3 59.6 77.6 30.2 66.8
BASE 68.3 48.6 61.0 65.0 10.3 54.1 84.4 34.9 73.2
LARGE 74.6 44.6 63.5 76.9 24.1 66.4 84.4 51.2 76.8

3 Evaluation

We demonstrate the accuracy of the system’s language understanding capabilities and show it
effectively understands users in dialogues. Next, we perform a human study and verify users both
prefer and are more effective using TalkToModel than traditional point-and-click systems.

Language Understanding

Here, we quantitatively assess the language understanding capabilities of TalkToModel by creating
gold parse datasets and evaluating the system’s accuracy at parsing this data.

Gold Parse Collection While we synthetically generate training data, we construct gold datasets
to evaluate the parsing performance of our models across diabetes prediction, loan prediction, and
recidivism prediction tasks to ensure we evaluate TalkToModel in diverse settings. We adopt an
approach inspired by Yu et al. [41] to construct the datasets. First, we write 50 (utterance, parse) pairs
for the particular task (i.e., loan or diabetes prediction). From there, we ask Mechanical Turk workers
to rewrite the utterances while preserving their semantic meaning. Revising in this way ensures that
the ground truth parse for the revised utterance will stay the same, but the system will have a new
evaluation utterance. We ask workers to rewrite each pair 8 times for a total of 400 (utterance, parse)
pairs per task. Next, we filter out low-quality mturk revisions. We ask the crowd sourced workers to
rate the similarity between the original utterance and revised utterance on a scale of (1-4), where 4
indicates the utterances have the same meaning and 1 that they do not have the same meaning. We
collect 5 ratings per revision and remove (utterance, parse) pairs that score below 3.0 on average.

Results We present the results in Table 2. To evaluate performance on the datasets, we use the exact
match parsing accuracy and provide results on the IID and compositional split of the data [36, 41, 13].
The IID split contains (utterance, parse) pairs where the parse’s operations and their structure
(but not necessarily the arguments) are in the training data. The compositional split consists of the
remaining parses that are not in the training data. Because LM’s struggle compositionally, this split is
generally much harder for LM’s to parse [24, 40]. The fine-tuned T5 performs better overall than the
few shot GPT-J models. In particular, the T5 Large models perform strongly on both the IID and
compositional data and can even parse complex compositional phrases. Notably, the T5 small model
performs better than the GPT-J 6B model, which has two orders of magnitude more parameters. This
dynamic is particularly true in the compositional splits in the data where the GPT-J few shot models
never exceed 10% parsing accuracy. Overall, these results indicate TalkToModel can understand
user utterances with a high degree of accuracy using our best performing T5 models. Further, we
recommend using this model for the best results and use it for our remaining evaluation.
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Table 3: User study results: % of respondents that agree (> Neutral Likert score) TalkToModel is
better than the dashboard in the 4 comparison questions. A significant portion of respondents agreed
TalkToModel is better than the dashboard in all the categories except Grad. students and “Likeliness
To Use”. Still, a majority agreed TalkToModel was superior in this case.

% Agree TalkToModel Better

Comparison Health Care Workers ML Grad. Students

Ease of Use 82.2 84.6
Confidence 77.7 69.2
Speed 84.4 84.6
Likeliness To Use 73.3 53.8

User Study: Utility of Explainability Dialogues

In this subsection, we evaluate how well the end-to-end system enables users to understand ML
models compared to current systems.

Study Overview We compare TalkToModel against explainerdashboard, one of the most popular
open-source explainability dashboards [8] and measure their experiences using both systems. This
dashboard includes similar functionality to TalkToModel but provides access to explanations, predic-
tions, and other operations through point-and-click interactions. We perform this comparison using
the Diabetes dataset, and a gradient boosted tree trained on the data [26].

To compare both systems in a controlled manner, we ask participants to answer general ML questions
with TalkToModel and the dashboard. Each question is about basic explainability and model analysis,
and participants answer using multiple choice, where one of the options is “Could not determine.”
if they cannot figure out the answer (though it is straightforward to answer all the questions with
both interfaces). For example, questions are about comparing feature importances “Is glucose more
important than age for the model’s predictions for data point 49?” or model predictions “How many
people are predicted not to have diabetes but do not actually have it?” Participants answer 10 total
questions. We divide the 10 questions into 2 blocks of 5 questions each. Both blocks have similar
questions but different values to control for memorization (exact questions given in Appendix A).
Participants use TalkToModel to answer one block of questions and the dashboard for the other block.
In addition, we provide a tutorial on how to use both systems before showing users the questions
for the system. Last, we randomize question, block, and interface order to control for biases due to
showing interfaces or questions first.

Metrics Following previous work on evaluating human and ML coordination and trust, we assess
several metrics to evaluate user experiences [7, 9, 11]. We evaluate the following statements along
1-7 Likert scale at the end of the survey:

• Ease of Use: I found the conversational interface easier to use than the dashboard interface

• Confidence: I was more confident in my answers using the conversational interface than
the dashboard interface

• Speed: I felt that I was able to more rapidly arrive at an answer using the conversational
interface than the dashboard interface

• Likeliness To Use: Based on my experience so far with both interfaces, I would be more
likely to use the conversational interface than the dashboard interface in the future

To control for bias associated with the ordering of the terms conversational interface and dashboard
interface, we randomized their ordering in the questions. For example, users would either see
I found the conversational interface easier to use than the dashboard interface or I found the
dashboard interface easier to use than the conversational interface. In addition to these metrics, we
measure accuracy and time-taken to answer each question. Last, we asked to participants to write a
short description comparing their experience with both interfaces to capture participants qualitative
feedback about both systems.
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Table 4: User study results: Completion rate and accuracy across interfaces and participant groups.
We compute the completion rate as the questions users provided and answer for and did not mark
“could not determine.” We measure accuracy on completed questions. Participants answered questions
at a higher rate more accurately using TalkToModel than the dashboard.

Completed
% Questions

Completed Questions
% Accuracy On

Dash. TalkToModel Dash. TalkToModel

Health Care Workers 74.7 86.2 66.1 91.8

ML Grad. Students 73.8 93.9 62.5 100.0

Recruitment Since TalkToModel provides a highly accessible way to understand ML models, we
expect it to be useful for subject matter experts with variable degrees of ML expertise. As such, we
recruited 45 English speaking healthcare workers to take the survey using the Prolific service [25].
This group comprises a range of healthcare workers, including doctors, pharmacists, dentists, psy-
chiatrists, healthcare project managers, and medical scribes. As another point of comparison, we
recruited ML professionals with relatively higher ML expertise from ML Slack channels and email
lists. We received 13 potential participants, all of which had graduate course level ML experience
or higher, and included all of them in the study. We received IRB approval for this study from our
institution’s IRB approval process.

Metric Results A significant majority of health care workers agreed they preferred TalkToModel
in all the categories we evaluated (Table 3). The same is true for the ML professionals, save for
whether they were more likely to use TalkToModel in the future, where 53.8% of participants agreed
they would instead use TalkToModel in the future. In addition, participants subjective notions around
how quickly they could use TalkToModel aligned with their actual speed of use, and both groups
arrived at answers using TalkToModel significantly quicker than the dashboard. The median question
answer time (measured at the total time taken from seeing the question to submitting the answer)
using TalkToModel was 76.3 seconds, while it was 158.8 seconds using the dashboard.

Participants were also much more accurate and completed questions at a higher rate (i.e., they did not
mark “could not determine) using TalkToModel (Table 4). While both health care workers and ML
practioners clicked could not determine for around a quarter of the questions using the dashboard, this
was only true for 13.8% of health care workers and 6.1% of ML professionals using TalkToModel,
demonstrating the usefulness of the conversational interface. Further, on the questions they completed,
both groups were much more accurate using TalkToModel than the dashboard. Most surprisingly,
though ML professionals agreed they preferred TalkToModel only about half the time, they answered
all the questions correctly using it, while they only answered 62.5% of questions correctly using the
dashboard. These results indicate TalkToModel is a much more effective system for understanding
ML models for users with a variety of skill levels.

4 Conclusion

In this paper, we introduced TalkToModel, a modular platform for performing open-ended dialogues
for understanding ML models. We showed how end-users prefer TalkToModel over existing sys-
tems, find it easier to use, and can understand their models more rapidly and accurately using the
system. These results demonstrate that TalkToModel serves as a very effective route for providing
explanations to end-users of all skill levels. In the future, it will be helpful to investigate applications
of TalkToModel in-the-wild, such as in doctors’ offices, laboratories, or professional settings, where
model stakeholders use the system to understand their models.
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A Experimental Details

In this appendix, we provide an overview of additional experimental details. First, we provide
additional details about the grammar. Next, we describe how we generate our parsing training
sets. Further, we provide more details about the explanation selection procedure. After, we provide
examples of the sentences we had mturk workers revise to create our gold parsing datsets. Finally,
we provide additional details about the user study.

A.1 Model Details

Finetuning To perform fine-tuning for the T5 models, we split the dataset using a 90/10%
train/validation split and train for 20 epochs to maximize the next token likelihood with a batch size
of 32. We select the model with the lowest validation loss at the end of each epoch. We fine-tune
with a learning rate of 1e-4 and the AdamW optimizer [20]. and consider T5 Small, Base, and Large
variants.

Guided Decoding When parsing the utterances, one issue is that their generations are unconstrained
and may generate parses outside the grammar, resulting in the system failing to run the parse and bad
user experiences. To ensure the generations are grammatical, we constrain the decodings to be in the
grammar [33]. This technique, referred to as guided decoding, constrains the LLM generations to only
allow those tokens that appear next in the grammar at any point during generation. Practically, we
accomplish this by recompiling the grammar at inference time into an equivalent grammar consisting
of the tokens in the LLM’s vocabulary. While decoding from the LLM, we fix the likelihood of
ungrammatical tokens to 0 at every generation step. Thus, the LLM only generates grammatical
parses.

A.2 Grammar Details

In this subsection, we provide additional details about the grammar. First, we describe the design of
the grammar. After, we provide details about how we update the grammar for new datasets.

Design Recall from the main paper that the grammar serves as a logical form of user utterances,
which TalkToModel can execute. Here, we provide more details about the grammar design. The
grammar defines relations between the operations and the acceptable values arguments in Table 1.
For example, the grammar defines different acceptable values for the comparison argument in the
filter operation, such as less than or equal to or greater than. In addition, we structure
the grammar to make parses appear closer to natural language text instead of a formal programming
language like SQL or Python. The reason is that language models tend to perform better at translating
utterances into grammars that are more similar to natural language instead of a programming
language [33]. Consequently, we design the grammar, so that parses appear more like natural
language text, without unnecessary parentheses and commas, and omitting unnecessary arguments
where possible. In general, we found that simplifying the grammar and making it more like natural
language as much as possible considerably improved performance. For example, the question “What
are the three most important features for people older than thirty-five?” would simply translate to
filter age greater than 35 and topk 3. Note, here, because TalkToModel is applied to only
one dataset at a time, the dataset argument can be omitted for simplicity. Practically, we implement
the grammar in Lark [34] because the implementation supports interactive parsing, simplifying the
process of implementing the guided decoding strategy.

Updating the Grammar For Datasets and User Utterances In the main paper, we discussed
how we update the grammar based on the dataset. Here, we provide more description about how we
update the grammar. We update the grammar based on the feature names and categorical feature
values in the dataset. In particular, the acceptable values for the feature argument (Table 1) in the
grammar becomes all the feature values in the dataset. Further, the value argument for a categorical
feature becomes the set of categorical feature values that appear in the data for that feature. Because
there are many possible values of numeric features, we instead extract potential numeric values from
user utterances as they are provided to the system. Specifically, we set the value argument in the
grammar for numeric features to contain the set of numeric values that appear in the user utterance.
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We additionally support string based numeric values (e.g., “fifty-five” or “twelve”) to make the system
handle a wider variety of cases.

A.3 Training Dataset Generation

In this subsection, we provide details about the generation of the (utterance, parse) pair training
dataset. To ensure that we generate a diverse and comprehensive set of (utterance, parse) pairs for
training, we compose a total of 687 templates that use 6 different wildcard types. The templates
consist of a diverse set of utterances that encompass the different operations permitted in the system.
The wildcards include categorical feature names, numeric feature names, class names, numeric
feature values, categorical feature values, explanation types, and common filtering expressions (e.g.,
“{NUMERIC_FEATURE} above {NUMERIC_VALUE}”). Because templates can have potentially many
wildcards, we recursively enumerate all the wildcard values for each parse. Further, we also limit
the number of values for certain wildcards to ensure the number of training pairs generated does not
become extremely large. In particular, we limit the number of numeric values to 2 values per feature.
In addition, to prevent templates with many wildcards from dominating the training dataset, we also
downsample the number of values per wildcard to 2 values after the initial recursion. In this way, we
the training dataset does not get dominated by a few templates that have many wildcards, which we
found improves performance.

As an example, an utterance template is “Explain the predictions on data with
{NUMERIC_FEATURE} greater than {NUMERIC_VALUE}” and the corresponding parse template
is filter {NUMERIC_FEATURE} greater than {NUMERIC_VALUE} and explain feature
importance. From there, we enumerate the numeric features in the dataset and a selection
of numeric feature values, substituting these into {NUMERIC_FEATURE} and {NUMERIC_VALUE}
respectively to generate data.

A.4 Explanation Selection

Here, we provide additional details about the explanation selection algorithm. For our explanation

selection algorithm, we set σ = 0.05, K to floor(d
2
), and N = 10, 000. Further, because it would

not make sense to perturb categorical features using Gaussian noise, we permute these features to
another value occurring in the feature 30% of the time. We additionally use both LIME [30] and
KernelSHAP [21] with their default settings while computing explanations. In addition, we include
LIME with the following kernel widths: [0.25, 0.50, 0.75, 1.0], to generate explanations with a variety
of different localities.

In addition, if the different in fidelity between the top two explanation methods is small, so it is hard
to determine which explanation is most accurate, we use the explanation stability metric proposed
by Alvarez-Melis and Jaakkola [3] to break ties, because it is more desirable for the explanation
to robust to perturbations [35, 2]. In order to use the stability metric proposed by Alvarez-Melis
and Jaakkola [3] to break ties if the explanations fidelities are quite close (less than δ = 0.01), we
compute the jaccard similarity between feature rankings instead of the l2 norm as is used in their
work. The reason is that the norm might not be comparable between explanation types, because they
have different ranges, while the jaccard similarity should not be affected. Further, we compute the
area under the top k curve using the jaccard similarity stability metric, to make this measure more
robust.

A.5 Gold Parsing Dataset

In this subsection, we provide examples of 10 of the sentences provided to mturk workers to revise
during our data generation process for each dataset. The examples are provided in Table 5 and
illustrate the different types of utterances revised by mturkers to create a comprehensive testing set.
Also, we provide the number of (utterance, parse) pairs in the IID and compositional splits in Table 6.

A.6 User Study Questions

In this subsection, we provide the questions participants answered in the user study. The questions are
provided in Table 7. One of the two question blocks, Block 1 or Block 2, is shown for TalkToModel
and the other is shown for the dashboard (the ordering of TalkToModel and the dashboard is also
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Table 5: Examples of 10 sentences out of 50 from each dataset provided to mturk workers to revise.

C
O

M
P
A

S

What is your reasoning for determining if people older than 20 are likely to commit crimes?

How likely are people that are younger than 25 or have committed at least 1 crime in the past to commit a crime in future?

what are top 3 most important features you use for prediction for people if they were to decrease their prison terms by 10 months?

For people that are 18 years old and black, how often are you correct in predicting whether they will commit crimes in the future?

let’s look at those in the data with 3 or more prior crimes on record. what are some common mistakes the model makes on these people?

For this subset in the data, how accurate is the model?

For people that are 18 years old and black, how often are you correct in predicting whether they will commit crimes in the future?

how likely would the person with the id number of 33 in the data be to a commit a crime if they were 5 years younger?

But what if they were twenty years older?

Could you show me some data for people who are black?

D
ia

b
et

es

How likely are people that either (1) have had two pregnancies or (2) are older than 20 and younger than 30 to have diabetes?

What are the top five most important features for the model’s predictions on people with a bmi over 40?

Show the data for people older than 20. Then, could you show me the predictions on this data?

what would happen to the likelihood of having diabetes if we were to increase glucose by 100 for the data point with id 33

What’s the average age in the data?

For this subset in the data, how accurate is the model?

What does patient number 34 need to do in order to be diagnosed as unlikely to have diabetes?

What are the reasons why the model predicted data point number 100 and what could you do to change it?

How would the predictions change if age were decreased by 5 years for people with a bmi of 30?

How do the features of the data interact in the model’s predictions on this particular data?

G
er

m
an

If people in the data were unemployed, how important would the age and loan amount features be for predicting credit risk?

what would happen to the likelihood of being bad credit risk if we were to increase the loan amount by 250 for the data point with id 89

what are top three most important features for determining whether those who are applying for furniture loans are good credit risk?

What is the average loan amount for people with no current loans and that do not own a house?

How accurate are you at predicting whether people who are asking for loans for home appliances are good credit risk?

In the dataset, if the loan duration were to be increased by 2 years, what would the predictions for the data be?

Could you show me some examples the model predicts incorrectly and how accurate the model is on the data?

What do you predict on the instances in the data? Also, could you show me an example of a few mistakes you make in these predictions?

But why did you think these people are bad credit risk?

If these people were not unemployed, what’s the likelihood they are good credit risk? Why?

Table 6: The number of gold (utterance, parse) pairs in the IID and Compositional splits for the
datasets. There are relatively more IID questions in each dataset.

COMPAS Diabetes German

IID 117 147 127
Compositional 29 43 74
Overall 146 190 201

randomized). The two question blocks include similar concepts to ensure a similar level of difficulty
but include different numbers to discourage memorization between the question blocks.

Table 7: The question’s participants answered during the user study. Participants are shown either the
questions in Block 1 or Block 2 for TalkToModel and the other set of questions for dashboard.

B
lo

ck
1

What are the three most important features for the model’s predictions on people older than 30 with bmi’s above 35?

What is the feature importance ranking of the age feature for data point id 188?

How many individuals in the dataset are predicted to be likely to have diabetes but are not actually likely to have it?

If patient id 293 were to decrease their bmi by five, what’s the prediction probability of the "likely to have diabetes" class?

Is the "glucose" feature more important than the "age" feature for the model’s prediction on data point 49?

B
lo

ck
2

What are the three most important features for the model’s predictions on people younger than 23 with glucose levels below seventy-five?

What is the feature importance ranking of the insulin feature for data point id 57?

How many individuals in the dataset are predicted not likely to have diabetes but actually are likely to have it?

What’s the likelihood of patient 57 having diabetes if they increased their glucose levels by 100 and bmi by 3?

How important is the "diabetes pedigree function" feature compared to the "glucose" feature for the model’s prediction on data point 55?

A.7 User Study Length & Compensation

The survey took around 30 minutes for participants to complete. We compensated the ML profession-
als by providing them with a $20 gift card. We paid the prolific workers $14.74/hour on average for
completing the survey, considering their individual completion times.

B Additional Experiments

In this appendix, we provide additional experimental results. First, we provide experimental results
where we show the advantages of explanation selection. Second, we give results on the affects of the
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number of training templates. After, we provide error analysis for our parsing models. Last, we give
additional user study results.

B.1 Example Conversation

In this subsection, we provide an example dialogue using the system, in Table 8.

Table 8: A conversation about diabetes prediction, demonstrating the breadth of different conversation
points the system can discuss.

User “utterances” & TalkToModel response

increased bmi by 10?”
also tell me what would happen to these predictions if we
“What are the predictions on patients older than 30? Could you

➩ Diabetes on 69.9% of data
➩ No Diabetes on 30.1% of data

the model predicts:
On data with age greater than 30.0 and bmi is increased by 10.0,

➩ Diabetes on 53.2% of data
➩ No Diabetes on 46.8% of data

On data with age greater than 30.0, the model predicts:

over thirty group?”
“So how important is bmi for the model’s predictions on the

is highly important for the model’s predictions.
rank 1 is the most important feature (out of 8 features). Overall, bmi
bmi feature is ranked on average 2.86 (95% CI [2.685, 3.035]). Here,
For the model’s predictions on data with age greater than 30.0, the

bmi for these people?”
“Ah, so which two features are mostly more important than

2. pedigree_function
1. glucose

the top 2 most important features are:
For the models predictions on data where age is greater than 30.0,

incorrect here”?
“What types of patients is the model typically predicting

Want to take a closer look at these rules?
on 100.0% of 2 samples.

➩ (bmi ≤ 26.95) and (glucose > 180.5) then the model is incorrect
<= 0.943) then the model is incorrect on 62.5% of 8 samples

➩ (bmi > 26.95) and (glucose > 125.0) and (age > 57.5)
then the model is incorrect on 62.3% of 53 samples

➩ if (bmi > 26.95) and (glucose ≤ 125.0) and (pedigree_function
predicts incorrect:
For data with age greater than 30.0, the model typically predict

B.2 Advantages of Explanation Selection

In the main paper, we discussed how we select explanations based on those that have the highest
fidelity in order to ensure the user receives the most accurate explanations possible. In this subsection,
we provide more details about the advantages of explanation selection and show that without the
procedure, users may receive comparatively lower fidelity explanations, demonstrating the importance
of the technique.

Our evaluation procedure is as follows. For a data point, we compute the topk fidelity AUCs from all
the explanations we consider (details about the explanation pool in Appendix A.4). Next, we compute
several metrics that capture the improvement in fidelity using our selection technique. We compute
the absolute improvement over the worst fidelity explanation, absolute improvement over the median
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5-Shot 10-Shot

IID Compositional IID Compositional

Compas 29.8 77.8 15.3 53.6
Diabetes 40.0 40.0 19.1 28.2
German 44.2 50.8 28.3 26.9

Table 10: Percentage of mistakes for few-shot GPT-J 6B where selected prompts do not include all
the operations in the parse of the user utterance. We see that most of the time the operations for the
parse of the user utterance are included in the prompts for the 10-Shot models, yet these methods still
perform relatively poorly compared to finetuned T5.

This dynamic brings up the question: what is the cause of these poor few-shot results? Since the
few-shot GPT-J models select the (utterance, parse) pairs from the synthetic dataset using nearest
neighbors on a sentence embedding model, it could be possible these issues are due to the sentence
embedding model failing to select good pairs. In particular, this nearest neighbors technique could fail
to select pairs with the operations necessary to parse the user utterance, and not the model failing to
learn from the examples. To evaluate whether this is the case, we compute the percent of mistakes that
do not include the operations necessary to parse the user utterance for GPT-J. The results provided in
Table 10 demonstrate that, especially for the 10-Shot case, the operations needed to parse the user
utterance are included in the prompts, indicating the issues are likely due to the model’s capacity to
learn few-shot, rather than the selection mechanism. In this work, we were limited by using up to
6-billion parameter GPT-J, but it could be possible to achieve better results with larger models, as
results on emergent abilitiees suggest [39].

B.5 User Study Results: Per Question Likert Scores

In this subsection, we provide additional user study results. In addition to the questions asked at
the end of the survey (Table 3 and Table 4), we also asked users to rate their experiences using both
interfaces on a 1-7 Likert while they were taking the survey. In particular, we asked users how much
they agreed with the following statements:

• I am confidence I completed my answer correctly.

• Completing this task took me a lot of effort.

• The interface was useful for completing the task.

• Based on my experience so far, I trust the interface to understand machine learning models.

• Based on my experience so far, I would use the interface again to understand machine
learning models.

To evaluate these results, we compute the mean and standard deviation of the Likert score for the 1st
through 5th question each user sees (question ordering is randomized so users see different questions
first). We compute this for each statement and interface. The results for the medical workers are
provided in Figure 3 and the ML professionals in Figure 4. Overall, the medical workers clearly prefer
TalkToModel while answering the questions. Interestingly, they seem to gain trust in TalkToModel
over time, going from “somewhat agree” to “agree” with the statement “Based on my experience so
far, I trust the interface to understand ML models” by the end of the survey.
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