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Abstract. Logic programs (LPs) and argumentation frameworks (AFs) are two
declarative knowledge representation (KR) formalisms used for different reason-
ing tasks. The purpose of this study is interlinking two different reasoning com-
ponents. To this end, we introduce two frameworks: LPAF and AFLP. The for-
mer enables to use the result of argumentation in AF for reasoning in LP, while
the latter enables to use the result of reasoning in LP for arguing in AF. These
frameworks are extended to bidirectional frameworks in which AF and LP can
exchange information with each other. We also investigate their connection to
several general KR frameworks from the literature.

1 Introduction

A logic program (LP) represents declarative knowledge as a set of rules and realizes
commonsense reasoning as logical inference. An argumentation framework (AF), on
the other hand, represents arguments and an attack relation over them, and defines
acceptable arguments under various semantics. The two frameworks specify different
types of knowledge and realize different types of reasoning. In our daily life, however,
we often use two modes of reasoning interchangeably. For instance, consider a logic
program LP = {get vaccine ← safe∧ effective, ¬get vaccine ← not safe} which says
that we get a vaccine if it is safe and effective, and we do not get it if it is not safe. To see
whether a vaccine is safe and effective, we refer to an expert opinion. It is often the case,
however, that multiple experts have different opinions. In this case, we observe argu-
mentation among experts and take it into account to make a decision. In other words,
the truth value of safe is determined by an external argumentation framework such as
AF = ({s,d},{(s,d),(d,s)}) in its most condensed form where s represents safe and d
represents dangerous. A credulous reasoner will accept safe under the stable semantics,
while a skeptical reasoner will not accept it under the grounded semantics. A reasoner
determines acceptable arguments under chosen semantics and makes a decision using
his/her own LP. For another example, consider a debate on whether global warming is
occurring. Scientists and politicians make different claims based on evidence and scien-
tific knowledge. An argumentation framework is used for representing the debate, while
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arguments appearing in the argumentation graph are generated as results of reasoning
from the background knowledge of participants represented by LPs.

In these examples, we can encode reasoners’ private knowledge as LPs and argu-
mentation in the public space as AFs. It is natural to distinguish two different types of
knowledge and interlink them with each other. In the first example, an agent has a pri-
vate knowledge base that refers to opinions in a public argumentation framework. In the
second example, on the other hand, agents participating in a debate have their private
knowledge bases supporting their individual claims.

Logic programs and argumentation frameworks are mutually transformed with each
other. Dung [6] provides a transformation from LPs to AFs and shows that stable mod-
els [11] (resp. the well-founded model [16]) of a logic program correspond to stable
extensions (resp. the grounded extension) of a transformed argumentation framework.
He also introduces a converse transformation from AFs to LPs, and shows that the
semantic correspondences still hold. The results are extended to equivalences of LPs
and AFs under different semantics (e.g. [5]). Using such transformational approaches,
an LP and an AF can be combined and one could perform both argumentative rea-
soning and commonsense reasoning in a single framework. One of the limitations of
this approach is that in order to combine an LP and an AF into a single framework,
the two frameworks must have the corresponding semantics. For instance, suppose that
an agent has a knowledge base LP and refers to an AF . If the agent uses the stable
model semantics of LP, then to combine LP with AF using a transformation proposed
in [5,6] AF must use the stable extension semantics. Argumentation can have an inter-
nal structure in structured argumentation. In assumption based argumentation (ABA)
[7], for instance, an argument for a claim c is supported by a set of assumptions S if
c is deduced from S using a set of LP rules (S � c). A structured argumentation has a
knowledge base inside an argument and provides reasons that support particular claims.
An argument is represented as a tree and an attack relation is introduced between trees.
However, merging argumentation and knowledge bases into a single framework would
produce a huge argumentation structure that is complicated and hard to manage.

In this paper, we introduce new frameworks, called LPAF and AFLP, for interlink-
ing LPs and AFs. The LPAF uses the result of argumentation in AFs for reasoning
in LPs. In contrast, the AFLP uses the result of reasoning in LPs for arguing in AFs.
These frameworks are extended to bidirectional frameworks in which AFs and LPs can
exchange information with each other. We address applications of the proposed frame-
work and investigate connections to existing KR frameworks. The rest of this paper is
organized as follows. Section 2 reviews basic notions of logic programming and argu-
mentation frameworks. Section 3 introduces several frameworks for interlinking LPs
and AFs. Section 4 presents applications to several KR frameworks. Section 5 discusses
complexity issues and Sect. 6 summarizes the paper. Due to space limitation, proofs of
propositions are omitted in this paper. They are available in the longer version [15].

2 Preliminaries

We consider a language that contains a finite setL of propositional variables.
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Definition 1. A (disjunctive) logic program (LP) is a finite set of rules of the form:

p1 ∨·· ·∨ p� ← q1, . . . ,qm, not qm+1, . . . ,not qn (�,m,n ≥ 0)

where pi and q j are propositional variables in L and not is negation as failure (NAF).

The left-hand side of ← is the head and the right-hand side is the body. For each
rule r of the above form, head(r), body+(r), and body−(r) respectively denote the
sets of atoms {p1, . . . , p�}, {q1, . . . ,qm}, and {qm+1, . . . ,qn}, and body(r) = body+(r)∪
body−(r). A (disjunctive) fact is a rule r with body(r) = ∅. A fact is a non-disjunctive
fact if � = 1. An LP is a normal logic program if | head(r) |≤ 1 for any rule r in the
program. Given a logic program LP, put Head(LP) =

⋃
r∈LP head(r) and Body(LP) =

⋃
r∈LP body(r). Throughout the paper, a program means a propositional/ground logic

program and BLP is the set of ground atoms appearing in a program LP (called the
Herbrand base).

A program LP under the μ semantics is denoted by LPμ . The semantics of LPμ is
defined as the set M μ

LP ⊆ 2BLP (or simply M μ ) of μ models of LP. If a ground atom
p is included in every μ model of LP, we write LPμ |= p. LPμ is simply written as LP
if the semantics is clear in the context. A logic programming semantics μ is universal
if every LP has a μ model. The stable model semantics is not universal, while the well-
founded semantics of normal logic programs is universal.A logic program LP under the
stable model semantics (resp. well-founded semantics) is written as LPstb (resp. LPwf ).

Definition 2. An argumentation framework (AF) is a pair (A,R) where A ⊆ L is a
finite set of arguments and R ⊆ A×A is an attack relation.

For an AF (A,R), we say that an argument a attacks an argument b if (a,b) ∈ R. A set
S of arguments attacks an argument a iff there is an argument b ∈ S that attacks a; S is
conflict-free if there are no arguments a,b ∈ S such that a attacks b. S defends an argu-
ment a if S attacks every argument that attacks a. We write D(S) = {a | S defends a}.

The semantics of AF is defined as the set of designated extensions [6]. Given
AF = (A,R), a conflict-free set of arguments S⊆ A is a complete extension iff S=D(S);
a stable extension iff S attacks each argument in A \ S; a preferred extension iff S is a
maximal complete extension of AF (wrt ⊆); a grounded extension iff S is the mini-
mal complete extension of AF (wrt ⊆). An argumentation framework AF under the ω
semantics is denoted by AFω . The semantics of AFω is defined as the set E ω

AF (or simply
E ω ) of ω extensions of AF . We abbreviate the above four semantics of AF as AFcom,
AFstb, AFprf and AFgrd , respectively. AFω is simply written as AF if the semantics is
clear in the context. Among the four semantics, the following relations hold: for any
AF , E stb

AF ⊆ E prf
AF ⊆ E com

AF and E grd
AF ⊆ E com

AF . E stb
AF is possibly empty, while others are

not. In particular, E grd
AF is a singleton set. An argumentation semantics ω is universal

if every AF has an ω extension. The stable semantics is not universal, while the other
three semantics presented above are universal. 1

1 We assume readers familiarity with the stable model semantics [11], [14] and the well-founded
semantics [16]
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3 Linking LP and AF

3.1 From AF to LP

We first introduce a framework that can use the result of argumentation in AFs for
reasoning in LPs. In this subsection, we assume that Head(LP)∩A= ∅ for a program
LP and AF = (A,R), that is, no rule in a logic program has an argument in its head.

Definition 3. Given an LP and AF = (A,R), define LP+A = {r ∈ LP | body(r)∩ A �=
∅} and LP−A = {r ∈ LP | body(r)∩ A = ∅}. We say that each rule in LP+A (resp.
LP−A) refers to arguments (resp. is free from arguments). An argument a∈ A is referred
to in LP if a appears in LP. Define A |LP= {a ∈ A | a is referred to in LP}.

By definition, an LP is partitioned into LP= LP+A ∪LP−A.

Definition 4. Given an LP and AF = (A,R), a μ model of LP extended by A ⊆ 2A is a
μ model of LP∪{a ←| a ∈ E ∩A |LP} for some E ∈ A if A �= ∅; otherwise, it is a μ
model of LP−A.

Definition 5. A simple LPAF framework is a pair 〈LPμ , AFω 〉, where LPμ is a program
under the μ semantics and AFω is an argumentation framework under the ω semantics.

Definition 6. Let ϕ = 〈LPμ , AFω 〉 be a simple LPAF framework. Suppose that AF has
the set of ω extensions: E ω = {E1, . . . ,Ek} (k≥ 0). Then an LPAF model of ϕ is defined
as a μ model of LPμ extended by E ω . The set of LPAF models of ϕ is denoted by Mϕ .

By definition, an LPAF model is defined as a μ model of the program LP by intro-
ducing arguments that are referred to in LP and are acceptable under the ω semantics
of AF . If the AF part has no ω extension (E ω = ∅), on the other hand, AF provides
no justification for arguments referred to by LP. In this case, we do not take the conse-
quences that are derived using arguments in AF . Then an LPAF model is constructed
by rules that are free from arguments in AF .

Example 1. Consider ϕ1 = 〈LPstb, AFstb 〉 where LPstb = { p ← a, q ← not a} and
AFstb = ({a,b},{(a,b),(b,a)}). As AFstb has two stable extensions {a} and {b}, ϕ1

has two LPAF models {p,a} and {q}. On the other hand, if we use ω = grounded
then AFgrd has the single extension ∅. Then 〈LPstb, AFgrd 〉 has the single LPAF model
{q}.2 Next, consider ϕ2 = 〈LPstb, AFstb 〉 where LPstb = { p ← not a, q ← not p} and
AFstb = ({a,b},{(a,b),(a,a)}). As AFstb has no stable extension and the second rule in
LPstb is free from arguments, ϕ2 has the single LPAF model {q}. Note that if we keep
the first rule then a different conclusion p is obtained from LPstb. We do not consider
the conclusion justified because AFstb provides no information on whether the argument
a is acceptable or not.

Proposition 1. Let ϕ1 = 〈LPμ , AF1
ω1

〉 and ϕ2 = 〈LPμ , AF2
ω2

〉 be two LPAFs such that
E ω1
AF1 �= ∅. If E ω1

AF1 ⊆ E ω2
AF2 , then Mϕ1 ⊆ Mϕ2 .

2 Note that an AF extension represents whether an argument is accepted or not. If an argument
a is not in an extension E, a is not accepted in E. Then not a in LP becomes true by NAF.
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Proposition 1 implies the inclusion relations with the same AF under different
semantics: Mϕ1 ⊆ Mϕ2 holds for ϕ1 = 〈LPμ , AFpr f 〉 and ϕ2 = 〈LPμ , AFcom 〉; ϕ1 =
〈LPμ , AFstb 〉 and ϕ2 = 〈LPμ , AFpr f 〉; or ϕ1 = 〈LPμ , AFgrd 〉 and ϕ2 = 〈LPμ , AFcom 〉.

Two programs LP1
μ and LP2

μ are uniformly equivalent relative to A (denoted LP1
μ ≡A

u

LP2
μ ) if for any set of non-disjunctive facts F ⊆ A, the programs LP1

μ ∪F and LP2
μ ∪F

have the same set of μ models [10]. The equivalence of two simple LPAF frameworks
is then characterized as follows.

Proposition 2. Let ϕ1 = 〈LP1
μ , AFω 〉 and ϕ2 = 〈LP2

μ , AFω 〉 be two LPAFs such that
E ω �= ∅. Then, Mϕ1 =Mϕ2 if LP1

μ ≡A
u LP2

μ and A |LP1μ= A |LP2μ where AFω = (A,R).

A simple LPAF framework ϕ = 〈LPμ , AFω 〉 is consistent if ϕ has an LPAF model.
The consistency of ϕ depends on the chosen semantics μ . In particular, a simple LPAF
framework ϕ = 〈LPμ , AFω 〉 is consistent if μ is universal. ϕ = 〈LPμ , AFω 〉 may have
an LPAF model even ifM μ

LP = E ω
AF = ∅.

Example 2. Consider ϕ = 〈LPstb, AFstb 〉 where LPstb = { p ← not a, not p, q ←} and
AFstb = ({a}, {(a,a)}). Then M stb

LP = E stb
AF = ∅, but ϕ has the LPAF model {q}.

A simple LPAF consists of a single LP and an AF, which is generalized to a frame-
work that consists of multiple LPs and AFs.

Definition 7. A general LPAF framework is defined as a tuple 〈LP
m,AF

n 〉 where
LP

m = (LP1
μ1

, . . . ,LPm
μm
) and AF

n = (AF1
ω1

, . . . ,AFn
ωn
). Each LPi

μi
(1 ≤ i ≤ m) is a logic

program LPi under the μi semantics and each AF j
ω j (1 ≤ j ≤ n) is an argumentation

framework AF j under the ω j semantics.

A general LPAF framework is used in a situation where multiple agents have indi-
vidual LPs as their private knowledge bases and each agent possibly refers to the results
of argumentation of open AFs. The semantics of a general LPAF is defined as an exten-
sion of a simple LPAF framework.

Definition 8. Let ϕ = 〈LP
m,AF

n 〉 be a general LPAF framework. The LPAF state of
ϕ is defined as a tuple (Σ1, . . . ,Σm) where Σi = (Mi

1, . . . ,M
i
n) (1 ≤ i ≤ m) and Mi

j

(1 ≤ j ≤ n) is the set of LPAF models of 〈LPi
μi

,AF j
ω j 〉.

By definition, an LPAF state consists of a collection of LPAF models such that each
model is obtained by combining a program LPi

μi
and an argumentation framework AF j

ω j .

Example 3. Consider ϕ = 〈(LPstb, LPwf ), (AFstb, AFgrd)〉 where LPstb = LPwf = { p←
a, not q, q← a, not p} andAFstb =AFgrd =({a,b},{(a,b),(b,a)}). In this case, 〈LPstb,
AFstb〉 has three LPAF models: {p,a}, {q,a} and ∅; 〈LPstb, AFgrd 〉 has the single
LPAF model: ∅; 〈LPwf , AFstb 〉 has two LPAF models:3 {a} and ∅; 〈LPwf , AFgrd 〉
has the single LPAF model: ∅. Then ϕ has the LPAF state (Σ1,Σ2) where Σ1 =
({{p,a},{q,a},∅},{∅}) and Σ2 = ({{a},∅},{∅}).

3 We consider the well-founded model as the set of true atoms under the well-founded semantics.
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The above example shows that a general LPAF is used for comparing the results of
combination between LP and AF under different semantics. Given tuples (S1, . . . ,Sk)
and (T1, . . . ,T�) (k, � ≥ 1), define (S1, . . . ,Sk)⊕ (T1, . . . ,T�) = (S1, . . . ,Sk,T1, . . . ,T�).

Proposition 3. Let ϕ = 〈LP
m,AF

n 〉 be a general LPAF framework. Then the LPAF
state (Σ1, . . . ,Σm) of ϕ is obtained by (Σ1, . . . ,Σk)⊕ (Σk+1, . . . ,Σm) (1 ≤ k ≤ m− 1)
where (Σ1, . . . ,Σk) is the LPAF state of ϕ1 = 〈LP

k, AF
n 〉 and (Σk+1, . . . ,Σm) is the

LPAF state of ϕ2 = 〈LP
m
k+1, AF

n 〉 where LP
m
k+1 = (LPk+1

μk+1
, . . . ,LPm

μm
).

Proposition 3 presents that a general LPAF has the modularity property; ϕ is partitioned
into smaller ϕ1 and ϕ2, and the introduction of new LPs to ϕ is done incrementally.

3.2 From LP to AF

We next introduce a framework that can use the result of reasoning in LPs for arguing
in AFs. In this subsection, we assume that Body(LP)∩A = ∅ for a program LP and
AF = (A,R), that is, no rule in a logic program has an argument in its body.

Definition 9. Let AF = (A,R) and M ⊆ L . Then AF with support M is defined as
AFM = (A,R′) where R′ = R\{(x,a) | x ∈ A and a ∈ A∩M }.
By definition, AFM is an argumentation framework in which every tuple attacking a∈M
is removed from R. As a result, every argument included inM is accepted in AFM .

Definition 10. Let AF =(A,R) andM ⊆ 2BLP . An ω extension of AF supported byM
is an ω extension of AFM for some M ∈ M if M �= ∅; otherwise, it is an ω extension
of (A′,R′) where A′ = A\BLP and R′ = R∩ (A′ ×A′).

Definition 11. A simple AFLP framework is a pair 〈AFω , LPμ 〉 where AFω is an argu-
mentation framework under the ω semantics and LPμ is a program under μ semantics.

Definition 12. Let ψ = 〈AFω , LPμ 〉 be a simple AFLP framework andM μ ⊆ 2BLP be
the set of μ models of LP. An AFLP extension of ψ is defined as an ω extension of AFω
supported by M μ . Eψ denotes the set of AFLP extensions of ψ .

By definition, an AFLP extension is defined as an ω extension of AFM
ω that takes

into account support information in a μ model M of LP. If the LP part has no μ model
(M μ = ∅), on the other hand, LP provides no ground for arguments in A∩BLP. In
this case, we do not use those arguments that rely on LP. Then an AFLP extension is
constructed using arguments that do not appear in LP.

Example 4. Consider ψ1 = 〈AFstb, LPstb 〉 where AFstb = ({a,b},{(a,b),(b,a)}) and
LPstb = {a← p, p← not q, q← not p}. LPstb has two stable modelsM1 = {a, p} and
M2 = {q}, then AFM1

stb = ({a,b},{(a,b)}) and AFM2
stb = AFstb. Hence, ψ1 has two AFLP

extensions {a} and {b}. On the other hand, if we use ω = grounded, then 〈AFgrd , LPstb 〉
has two AFLP extensions {a} and∅. Next, consider ψ2 = 〈AFgrd , LPstb 〉where AFgrd =
({a,b,c},{(a,b),(b,c)}) and LPstb = {a ← p, p ← not p}. As LPstb has no stable
model, ψ2 has the AFLP extension {b} as the grounded extension of ({b,c},{(b,c)}).
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Proposition 4. Let ψ1 = 〈 AFω , LP1
μ1

〉 and ψ2 = 〈AFω , LP2
μ2

〉 be two AFLPs such that
M μ1

LP1
�= ∅. IfM μ1

LP1
⊆ M μ2

LP2
, then Eψ1 ⊆ Eψ2 .

Baumann [1] introduces equivalence relations of AFs with respect to deletion of
arguments and attacks. For two AF1

ω = (A1,R1) and AF2
ω = (A2,R2), AF1

ω and AF2
ω are

normal deletion equivalent (denoted by AF1
ω ≡nd AF2

ω ) if for any set A of arguments
(A′

1,R1 ∩ (A′
1 ×A′

1)) and (A′
2,R2 ∩ (A′

2 ×A′
2)) have the same set of ω extensions where

A′
1 = A1 \A and A′

2 = A2 \A. In contrast, AF1
ω and AF2

ω are local deletion equivalent
(denoted by AF1

ω ≡ld AF2
ω ) if for any set R of attacks (A1,R1 \R) and (A2,R2 \R) have

the same set of ω extensions. By definition, we have the next result.

Proposition 5. Let ψ1 = 〈AF1
ω , LPμ 〉 and ψ2 = 〈AF2

ω , LPμ 〉 be two AFLPs. Then,
Eψ1 = Eψ2 if (i)M

μ = ∅ and AF1
ω ≡nd AF2

ω ; or (ii)M
μ �= ∅ and AF1

ω ≡ld AF2
ω .

Baumann shows that AF1
ω ≡ld AF2

ω if and only if AF1
ω =AF2

ω for any ω = {com,stb,prf ,
grd}. In contrast, necessary or sufficient conditions for AF1

ω ≡nd AF2
ω are given by the

structure of argumentation graphs and they differ from the chosen semantics in general.
A simple AFLP framework ψ = 〈AFω , LPμ 〉 is consistent if ψ has an AFLP exten-

sion. By definition, a simple AFLP framework ψ = 〈AFω , LPμ 〉 is consistent if ω is
universal. A simple AFLP consists of a single AF and an LP, which is generalized to a
framework that consists of multiple AFs and LPs.

Definition 13. A general AFLP framework is defined as a tuple 〈AF
n,LP

m 〉 where
AF

n = (AF1
ω1

, . . . ,AFn
ωn
) and LP

m = (LP1
μ1

, . . . ,LPm
μm
). Each AF j

ω j (1 ≤ j ≤ n) is an
argumentation framework AF j under the ω j semantics and each LPi

μi
(1 ≤ i ≤ m) is a

logic program LPi under the μi semantics.

A general AFLP framework is used in a situation such that argumentative dialogues
consult LPs as information sources. The semantics of a general AFLP is defined as an
extension of a simple AFLP framework.

Definition 14. Let ψ = 〈AF
n,LP

m 〉 be a general AFLP framework. The AFLP state
of ψ is defined as a tuple (Γ1, . . . ,Γn) where Γj = (E j

1, . . . ,E
j
m) (1 ≤ j ≤ n) and E j

i

(1 ≤ i ≤ m) is the set of AFLP extensions of 〈AF j
ω j , LP

i
μi

〉.
By definition, an AFLP state consists of a collection of AFLP extensions such that

each extension is obtained by combining AF j
ω j and LPi

μi
.

Example 5. Consider ψ = 〈(AFgrd), (LP1
stb, LP

2
stb)〉 where AFgrd = ({a,b},{(a,b)}),

LP1
stb = {a ← p, p ←}, and LP2

stb = {b ← q, q ←}. Then, 〈AFgrd ,LP1
stb 〉 has the

AFLP extension {a}, while 〈AFgrd ,LP2
stb 〉 has the AFLP extension {a,b}. Then the

AFLP state of ψ is (Γ1) where Γ1 = ({{a}},{{a,b}}).
A general AFLP has the modularity property. The operation ⊕ is defined in Sect. 3.1.

Proposition 6. Let ψ = 〈AF
n,LP

m 〉 be a general AFLP framework. Then the AFLP
state (Γ1, . . . ,Γn) of ψ is obtained by (Γ1, . . . ,Γk)⊕ (Γk+1, . . . ,Γn) (1 ≤ k ≤ n−1) where
(Γ1, . . . ,Γk) is the AFLP state of ψ1 = 〈AF

k, LP
m 〉 and (Γk+1, . . . ,Γn) is the AFLP state

of ψ2 = 〈AF
n
k+1, LP

m 〉 where AF
n
k+1 = (AFk+1

ωk+1
, . . . ,AFn

ωn
).
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3.3 Bidirectional Framework

In Sects. 3.1 and 3.2 we provided frameworks in which given LPs and AFs one refers
the other in one direction. This subsection provides a framework such that LPs and AFs
interact with each other. Such a situation happens in social media, for instance, where
a person posts his/her opinion to an Internet forum, which arises public discussion on
the topic, then the person revises his/her belief by the result of discussion. In this sub-
section, we assume that any rule in LP could contain arguments in its head or body.

Definition 15. A simple bidirectional LPAF framework is defined as a pair
〈〈LPμ , AFω 〉〉 where LPμ is a logic program and AFω is an argumentation framework.

Definition 16. Let ζ = 〈〈LPμ , AFω 〉〉 be a simple bidirectional LPAF framework. Sup-
pose that a simple AFLP framework ψ = 〈AFω , LPμ 〉 has the set of AFLP extensions
Eψ . Then a BDLPAF model of ζ is defined as a μ model of LPμ extended by Eψ .

BDLPAF models reduce to LPAF models if Eψ coincides with E ω
AF . In the bidirectional

framework, an LP can refer to arguments in AF and AF can get a support from the LP.

Example 6. Consider ζ = 〈〈LPstb, AFstb 〉〉 where LPstb = {a ← not p, q ← c} and
AFstb = ({a,b,c},{(a,b),(b,a),(b,c)}). The simple AFLP framework 〈AFstb,LPstb 〉
has the AFLP extension E = {a,c}. So, the BDLPAF model of ζ becomes {a,c,q}.

Similarly, we can make a simple AFLP bidirectional.

Definition 17. A simple bidirectional AFLP framework is defined as a pair
〈〈AFω , LPμ 〉〉 where AFω is an argumentation framework and LPμ is a logic program.

Definition 18. Let η = 〈〈AFω , LPμ 〉〉 be a simple bidirectional AFLP framework. Sup-
pose that a simple LPAF framework ϕ = 〈LPμ , AFω 〉 has the set of LPAF models Mϕ .
Then a BDAFLP extension of η is defined as an ω extension of AFω supported by Mϕ .

Example 7. Consider η = 〈〈AFgrd , LPstb 〉〉 where AFgrd = ({a,b},{(a,b),(b,a)}) and
LPstb = { p ← a, q ← not a, b ← q}. The simple LPAF framework 〈LPstb,AFgrd 〉 has
the single LPAF model M = {b,q}. So, the BDAFLP extension of η becomes {b}.

Given AFω and LPμ , a series of BDLPAF models (or BDAFLP extensions) can
be built by repeatedly referring to each other. Starting with the AFLP extensions E0

ψ ,
the BDLPAF models M1

ϕ extended by E0
ψ are produced, then the BDAFLP extensions

E1
ψ supported by M1

ϕ are produced, which in turn produce the BDLPAF models M2
ϕ

extended by E1
ψ , and so on. Likewise, starting with the LPAF models M0

ϕ , the sets E
1
ψ ,

M1
ϕ , E

2
ψ , . . ., are produced. We write the sequences of BDLPAF models and BDAFLP

extensions as [M1
ϕ ,M2

ϕ , . . .] and [E1
ψ ,E2

ψ , . . .], respectively.

Proposition 7. Let [M1
ϕ ,M2

ϕ , . . .] and [E1
ψ ,E2

ψ , . . .] be sequences defined as above.

Then, Mi
ϕ =Mi+1

ϕ and E j
ψ = E j+1

ψ for some i, j ≥ 1.
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4 Applications

4.1 Deductive Argumentation

A structured argumentation is a framework such that there is an internal structure to an
argument. In structured argumentation, knowledge is represented using a formal lan-
guage and each argument is constructed from that knowledge. Given a logical language
L and a consequence relation � inL , a deductive argument [2] is a pair 〈F ,c〉 where
F is a set of formulas in L and c is a (ground) atom such that F � c. F is called
the support of the argument and c is the claim. A counterargument is an argument that
attacks another argument. It is defined in terms of logical contradiction between the
claim of a counterargument and the premises of the claim of an attacked argument.

An AFLP framework is captured as a kind of deductive arguments in the sense
that LP can support an argument a appearing in AF . There is an important difference,
however. In an AFLP, argumentative reasoning in AF and deductive reasoning in LP are
separated. The AF part is kept at the abstract level and the LP part represents reasons for
supporting particular arguments. As such, an AFLP provides a middle ground between
abstract argumentation and structured argumentation. Such a separation keeps the whole
structure compact and makes it easy to update AF or LP without changing the other part.
Thus, AFLP/LPAF supports an elaboration tolerant development of knowledge bases.
This allows us to characterize deductive argumentation in AFLP as follows.

Definition 19. Let ψ = 〈AF
n, LP

m 〉 be a general AFLP framework s.t. AFi
ωi
= (Ai,Ri)

(1 ≤ i ≤ n). (i) a ∈ Ai is supported in LPj
μ j for some 1 ≤ j ≤ m (written (LPj

μ j ,a)) if
LPj

μ j |= a; (ii) (LPj
μ j ,a) and (LPk

μk
,b) rebut each other if {(a,b), (b,a)} ⊆ Ri for some

i; (iii) (LPj
μ j ,a) undercuts (LP

k
μk

,b) if LPk
μk

∪{a} �|= b.

Example 8. ([2]) (a) There is an argument that the government should cut spending
because of a budget deficit. On the other hand, there is a counterargument that the
government should not cut spending because the economy is weak. These arguments
are respectively represented using deductive arguments as: A1 = 〈{deficit, deficit →
cut}, cut 〉 and A2= 〈{weak, weak→ ¬cut}, ¬cut 〉 where A1 and A2 rebut each other.
The situation is represented using the AFLP 〈(AFstb), (LP1

stb, LP
2
stb)〉 such that AFstb =

({cut,no-cut}, {(cut,no-cut), (no-cut,cut)}); LP1
stb = {cut ← deficit, deficit ←};

LP2
stb = {no-cut ← weak, weak ←}. Then (LP1

stb,cut) and (LP2
stb,no-cut) rebut each

other.
(b) There is an argument that the metro is an efficient (eff ) form of transport, so

one can use it. On the other hand, there is a counterargument that the metro is inef-
ficient (ineff ) because of a strike. These arguments are respectively represented using
deductive arguments as: A1 = 〈{eff , eff → use}, use〉 and A2 = 〈{strike, strike →
¬eff}, ¬eff 〉 where A2 undercuts A1. The situation is represented using an AFLP
〈(AFstb), (LP1

stb, LP
2
stb)〉 such that AFstb = ({eff , ineff}, {(eff , ineff ),(ineff ,eff )});

LP1
stb = {use ← eff , eff ← not ineff }; LP2

stb = { ineff ← strike, strike ←}. Then
(LP2

stb, ineff ) undercuts (LP
1
stb, use).
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4.2 Argument Aggregation

Argument aggregation or collective argumentation [3] considers a situation in which
multiple agents may have different arguments and/or opinions. The problems are then
what and how to aggregate arguments. In abstract argumentation, the problem is for-
mulated as follows. Given several AFs having different arguments and attacks, find
acceptable arguments among those AFs. In the argument-wise aggregation, individu-
ally supported arguments are aggregated by some voting mechanism.

Example 9. ([3]) Suppose three agents deciding which among three arguments a,
b, and c, are collectively acceptable. Each agent has a subjective evaluation of the
interaction among those arguments, leading to three different individual AFs: AF1 =
({a,b,c}, {(a,b),(b,c)}), AF2 = ({a,b,c}, {(a,b)}), and AF3 = ({a,b,c}, {(b,c)}).
Three AFs have the grounded extensions {a,c}, {a,c}, and {a,b}, respectively. By
majority voting, {a,c} is obtained as the collective extension.

In Example 9, however, how an agent performs a subjective evaluation is left as a black-
box. The situation is represented using a general AFLP ψ where ψ = 〈(AFgrd), (LP1

stb,
LP2

stb, LP
3
stb)〉 with AFgrd = ({a,b,c}, {(a,b),(b,c)}), LP1

stb = { p ← not q}, LP2
stb =

{c ← p, p ←}, and LP3
stb = {b ← not q}. Then (AFgrd ,LP1

stb) has the AFLP
extension {a,c}; (AFgrd ,LP2

stb) has the AFLP extension {a,c}; (AFgrd ,LP3
stb) has

the AFLP extension {a,b}. In this case, the AFLP state of ψ is (Γ ) with Γ =
({{a,c}}, {{a,c}}, {{a,b}}). As such, three agents evaluate the common AF based
on their private knowledge base, which results in three individual sets of extensions
in the AFLP state. Observe that in this case, the private knowledge of the agents are
related to p and q, and only the third agent is influenced by his private knowledge base
in drawing the conclusion.

When multiple agents argue on the common AF, argument-wise aggregation is char-
acterized using AFLP as follows. Suppose Γ = (T1, . . . ,Tk) (k ≥ 1) with Ti ⊆ 2A where
A is the set of arguments of AF. For any E ⊆ A, let FΓ (E) = h where h is the number
of occurrences of E in T1, . . . ,Tk. Define maxFΓ = {E | FΓ (E) is maximal}.
Definition 20. Let ψ = 〈AF

1, LP
m 〉 (m ≥ 1) be a general AFLP that consists of a

single AF and multiple LPs. When ψ has the AFLP state (Γ ) with Γ = (T1, . . . ,Tm), the
collective extension by majority voting is any extension in maxFΓ .

Applying it to the above example, maxFΓ = {{a,c}}. In Definition 20, if there is
E ⊆ A such that FΓ (E) = m, then E is included in every Ti (1 ≤ i ≤ m). In this case,
all agents agree on E.

4.3 Multi-context System

Multi-context system (MCS) has been introduced as a general formalism for integrat-
ing heterogeneous knowledge bases [4]. An MCSM = (C1, . . . ,Cn) consists of contexts
Ci = (Li,kbi,bri) (1 ≤ i ≤ n), where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a
knowledge base of Li, BSi is the set of possible belief sets, ACCi : KBi �→ 2BSi is a
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semantic function of Li, and bri is a set of Li-bridge rules of the form:

s ← (c1:p1), . . . ,(c j:p j), not (c j+1:p j+1), . . . , not (cm:pm)

where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is an element of some belief
set of Lck , and kbi ∪{s} ∈ KBi. Intuitively, a bridge rule allows us to add s to a context,
depending on the beliefs in the other contexts. Given a rule r of the above form, we
denote head(r) = s. The semantics of an MCS is described by the notion of belief states.
A belief state of an MCS M = (C1, . . . ,Cn) is a tuple S = (S1, . . . ,Sn) where Si ∈ BSi
(1 ≤ i ≤ n). Given a belief state S and a bridge rule r of the above form, r is applicable
in S if p� ∈ Sc� for each 1 ≤ � ≤ j and pk �∈ Sck for each j+ 1 ≤ k ≤ m. By app(B,S)
we denote the set of the bridge rules r ∈ B that are applicable in S. A belief state S ofM
is an equilibrium if Si ∈ ACCi(kbi ∪{head(r) | r ∈ app(bri,S)}) for any i (1 ≤ i ≤ n).

Given an LPAF ϕ = 〈LPμ , AFω 〉, the corresponding MCS of ϕ is defined by ϕmcs =
(C1,C2) whereC1 = (L1,LPμ ,br1) in which L1 is the logic of LP under the μ semantics
and br1 = {a ← (c2 : a) | a ∈ A |LP}; and C2 = (L2,AFω ,∅) where L2 is the logic of
AF under the ω semantics. Intuitively, the bridge rules transfer the acceptability of
arguments in AFω to LPμ .

Proposition 8. Let ϕ = 〈LPμ ,AFω 〉 be an LPAF framework and ϕmcs the correspond-
ing MCS of ϕ . If AFω is consistent then (S1,S2) is an equilibrium of ϕmcs iff S1 is an
LPAF model of ϕ and S2 is an ω extension of AFω .

Let ψ = 〈AFω , LPμ 〉 be an AFLP framework with AFω = (A,R). The corresponding
MCS of ψ is defined by ψmcs = (C1,C2) where C1 = (L1,AFω ,br1) in which L1 is
the logic of AF under the ω semantics, and br1 = {(y,x) ← (c2 : a) | ∃a∃x [a ∈ A∩
BLP and (x,a) ∈ R]} where y(�∈ A) is a new argument; C2 = (L2,LPμ ,∅) where L2
is the logic of LP under the μ semantics. As with LPAF, the bridge rules transfer the
acceptability of arguments from LPμ to AFω . We assume that new arguments and attacks
introduced by the bridge rules br1 are respectively added to the set of arguments and
attacks of AF .

Proposition 9. Let ψ = 〈AFω ,LPμ 〉 be an AFLP framework and ψmcs the correspond-
ing MCS of ψ . If LPμ is consistent then (S1,S2) is an equilibrium of ψmcs iff S1 \Y is an
AFLP extension of ψ and S2 is a μ model of LPμ , where Y is the set of new arguments
introduced by br1.

A general LPAF ϕ = 〈LPm, AFn 〉 can be viewed as a collection of MCS. Let
C j
i be the corresponding MCS of 〈LPi

μi
,AF j

ω j 〉. It is easy to see that by Proposi-

tion 8, (C1
i , . . . ,C

n
i ) can be used to characterize the i-th element Σi of the LPAF state

(Σ1, . . . ,Σm) of ϕ . A similar characterization of an AFLP state using MCS could be
derived by Proposition 9. A simple LPAF/AFLP is captured as an MCS with a restric-
tion of two systems (Propositions 8 and 9). However, ϕmcs (resp. ψmcs) is well-defined
only if its submodule AFω (resp. LPμ ) is consistent. This is because an MCS assumes
that each context is consistent. By contrast, LPAF/AFLP just neglects rules/arguments
relying on information that comes from inconsistent AF/LP. As such, LPAF/AFLP
shares a view similar to MCS while it is different from MCS in general.
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4.4 Constrained Argumentation Frameworks

Constrained argumentation frameworks (CAF) [13] could be viewed as another attempt
to extend AF with a logical component. A CAF is of the form 〈A,R,C 〉 where (A,R)
is an AF and C is a propositional formula over A. A set of arguments S satisfies C if
S∪ {¬a | a ∈ A \ S} |= C. For a semantics ω , an ω C-extension of 〈A,R,C 〉 is an ω
extension of (A,R) that satisfiesC, i.e., the constraintC is used to eliminate undesirable
extensions. Therefore, a CAF can be viewed as an LPAF (LPμ ,AFω) where AFω is the
original AF of the CAF and LPμ is used to verify the condition C.

Consider a CAF δ = 〈A,R,C 〉. For simplicity of the presentation, assume
that C is in DNF. For a ∈ A, let na be a unique new atom associated with
a, denoting that a is not acceptable. Let � be a special atom denoting true.
Define the logic program LP(C) as: LP(C) = {� ← l′1, . . . , l

′
n | a conjunct l1 ∧ ·· · ∧

ln is in C and l′i = a if li = a, and l′i = not a if li = ¬a}∪{na ← not a, ← a,na | a ∈
A}∪{← not �}. We can easily verify that a set of arguments S satisfies C iff S∪{na |
a ∈ A \ S}∪{�} is a stable model of LP(C). The next proposition highlights the flex-
ibility of LPAF in that it can also be used to express preferences among extensions
of AF.

Proposition 10. Let δ = 〈A,R,C 〉 be a CAF. Then, (LP(C)stb,AFω) has an LPAF
model M iff M \ ({na | a ∈ A}∪{�}) is an ω C-extension of δ .

5 Complexity

The complexity of LPAF/AFLP depends on the complexities of LP and AF. Let us con-
sider the model existence problem of simple LPAF frameworks, denoted by ExistsM ,
which is defined as: “given an LPAF framework ϕ , determine whether ϕ has an LPAF
model.” For a simple LPAF framework ϕ = 〈LPμ , AFω 〉, the existence of an LPAF
model of ϕ depends on μ and ω . For example, if μ = well-founded and ω = grounded
then ϕ has a unique LPAF model which can be computed in polynomial time (if LP
is a normal logic program); on the other hand, if μ = stable and ω = stable then the
existence of an LPAF model of ϕ is not guaranteed. Generally, the next result holds.

Proposition 11. Let ϕ = 〈LPμ , AFω 〉 be a simple LPAF framework such that μ is not
universal. Also, let Cμ and Cω be the complexity classes of LPμ and AFω in the poly-
nomial hierarchy, respectively, and max(Cμ ,Cω) the higher complexity class among
Cμ and Cω . Then the model existence problem of ϕ belongs to the complexity class
max(Cμ ,Cω).

Intuitively, the result follows from the observation that we can guess a pair (X ,Y )
and check whether Y is an ω extension of AFω and X is a μ model of LPμ ∪{a ←| a ∈
Y ∩A |LP}. A similar argument is done for a simple AFLP framework. As an example,
the existence of a stable model of a propositional disjunctive LP is in ΣP

2 [9] while
the existence of extensions in AF is generally in NP or trivial [8], then ExistsM for
LPAF/AFLP involving μ = stable is in ΣP

2 where ω is one of the semantics of AF
considered in this paper. Other semantics of AF (e.g. semi-stable, ideal, etc.) or LP (e.g.
supported, possible models, etc.) can be easily adapted.
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The model existence problem of simple LPAF/AFLP can be generalized to the state
existence problem of general LPAF/AFLP frameworks, and it can be shown that it is the
highest complexity class among all complexity classes involved in the general frame-
work. Similar arguments can be used to determine the complexity class of credulous or
skeptical reasoning in LPAF/AFLP. For example, the skeptical entailment in LPAF, i.e.,
checking whether an atom a belongs to every LPAF model of ϕ = 〈LPstb,AFω 〉 is in
ΠP

2 . We omit detailed discussion for space limitation.

6 Concluding Remarks

Several studies have attempted to integrate LP and AF–translating from one into the
other (e.g. [5,6]), or incorporating rule bases into an AF in the context of structured
argumentation (e.g. [2,7]). An approach taken in this paper is completely different from
those approaches. We do not merge LP and AF while interlinking two components in
different manners. LPAF and AFLP enable to combine different reasoning tasks while
keeping independence of each knowledge representation. Separation of two frameworks
also has an advantage of flexibility in dynamic environments, and several LPs and AFs
are freely combined in general LPAF/AFLP frameworks under arbitrary semantics. In
addition, it supports an elaboration tolerant use of various knowledge representation
frameworks. The potential of the proposed framework is shown by several applications
to existing KR frameworks. LPAF or AFLP is realized by linking solvers of LP and AF.

In the proposed framework, LP imports ω extensions from AF in LPAF, while
AF imports μ models from LP in AFLP. We can also consider frameworks such that
LP (resp. AF) imports skeptical/credulous consequences from AFω (resp. LPμ ). Such
frameworks are realized by importing the intersection/union of ω extensions of AF to
LP (or μ models of LP to AF). In this paper we considered extension based semantics
of AF. If we consider the labelling based semantics of AF, each argument has three
different justification states, in, out, or undecided. In this case, LPAF/AFLP is defined
in a similar manner by selecting a 3-valued semantics of logic programs. The current
framework can be further extended and applied in several ways. For instance, we can
extend it to allow a single LP/AF to refer to multiple AFs/LPs. If AFω is coupled with
a probabilistic logic program LPμ , an AFLP (AFω ,LPμ) could be used for comput-
ing probabilities of arguments in LPμ and realizing probabilistic argumentation in AFω
[12]. As such, the proposed framework has potential for rich applications in AI.
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