®

Check for
updates

xASP: An Explanation Generation System
for Answer Set Programming

Ly Ly Trieu'!®™®, Tran Cao Son', and Marcello Balduccini?

' New Mexico State University, New Mexico, USA
lytrieu@nmsu.edu, tson@cs.nmsu.edu
2 Saint Joseph’s University, Pennsylvania, USA
mbalducc@sju.edu

Abstract. In this paper, we present a system, called xASP, for generating expla-
nations that explain why an atom belongs to (or does not belong to) an answer
set of a given program. The system can generate all possible explanations for a
query without the need to simplify the program before computing explanations,
i.e., it works with non-ground programs. These properties distinguish xASP from
existing systems such as xClingo, DiscASP, exp(ASP¢), and s(CASP), which
also generate explanations for queries to logic programs under the answer set
semantics but simplify and ground the programs (the three systems xClingo,
DiscASP, exp(ASP€)) or do not always generate all possible explanations (the
system s(CASP)). In addition, the output of xASP is insensitive to syntactic vari-
ations such as the order conditions and the order of rules, which is also different
from the output of s(CASP).

Keywords: Explainable Al + Logic Programming - Answer Set Programming

1 Introduction

Recent interest in explainable artificial intelligence provided the impulse for the devel-
opment of several systems capable of generating explanations for queries posed to
a logic program under the answer set semantics such as xClingo [2], DiscASP [4],
exp(ASP¢) [7], and s(CASP) [1]. These systems can be characterized by three dimen-
sions: (i) the strategy for computing the explanation (grounding vs. non-grounding), (i7)
the types of queries that can be posed to the system (true atoms and false atoms), and
(iii) the representation of the answers. Among these systems, only s(CASP) does not
ground the program before computing the answers; both s(CASP) and exp(ASP¢) gen-
erate explanations for atoms in an answer set (true atoms) and atoms not in an answer
set (false atoms); while xClingo is not applicable to false atoms; and DiscASP cur-
rently only works for propositional answer set programs. s(CASP) generates a partial
answer set supporting a query while others generate a full justification, represented by
an explanation graph, given an answer set.

Partially supported by NSF grants 1914635, 1757207, 1812628. This contribution was also made
possible in part through the support of NIST via cooperative agreement 70NANB21H167.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 363-369, 2022.
https://doi.org/10.1007/978-3-031-15707-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15707-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-15707-3_28

364 L. L. Trieu et al.

Grounding a program before computing an explanation comes at some costs. One
of the most significant problems is that the grounding simplification techniques applied
by answer set solvers tend to remove various pieces of information, resulting in expla-
nations that are no longer faithful to the original program, or unable to even provide an
explanation. This is illustrated in the next example.

Example 1 (Limitation of Current Approaches). Let P be a program:

d:—b(X),a(X). b1). a(4).

This program has a unique answer set {a(1),b(4)}. d is false in this answer set. Suppose
that we are interested in the question “why is d false?”

Among the four systems mentioned earlier, only s(CASP) is able to provide an
explanation for this query. For other systems, no explanation for a false atom is pro-
vided, either by design or by the simplification process. exp(ASP°) does not return an
explanation graph for d because d is eliminated by the solver during the grounding
phase.

In the above example, s(CASP) generates the following justification'

not d :- not b(var0 | {Var0 \= 1}), b(l), not a(l).

This says that there is an answer set containing b(1), that does not contain a(1) and
does not contain any other atom of the form b(z) such that z # 1.

When we switch the position of b(X) and a(X) in the first rule, we receive a dif-
ferent justification:

not d :- not a(var0 | {Var0 \= 4}), a(4), not b(4).

The above example highlights the shortcomings of existing systems. For s(CASP),
even though both answers are correct, it is not ideal that a slight semantics-preserving
change in the input results in a different justification.

In this work, we describe xASP, a system capable of computing the explanation
graphs of a ground atom a w.r.t. an answer set A of a non-ground program P. By work-
ing directly with programs including variables, xASP generates explanation graphs that
are faithful to the program, thus distinguishing itself from xClingo, DiscASP, and
exp(ASP), which simplify the program before computing an explanation. Different
from s(CASP), it generates all full explanation graphs for an atom given an answer set
and its behavior is not affected by semantics-preserving changes in the program. To
work with programs including variables, xASP uses the given atom and answer set to
dynamically identify relevant ground rules for the construction of the answers. Again,
the main purpose of xASP is to help respond to the need for explainable AI. However,
by presenting the applicable rules, facts, and assumptions used in the derivation of a
given atom, xASP could be useful for debugging as well. For example, if an atom a is
supposed to be false in all answer sets of a program P but appears in some answer set
A, the explanation graph of a could be useful in figuring out which rule must not be
applicable, etc.

' p(V | V # v) represents the set of all atoms of the form p(x) except for the atom p(v).

xASP: An Explanation Generation System for Answer Set Programming 365

2 The xASP System

xASP generates explanation graphs under the stable model semantics [3]. It deals with
normal logic programs, which are collections of rules of the form h « b where h is
an atom and b = py,...,pm, not ni,..., not n,, p; and n; are atoms, and not is
the default negation operator. For a rule r, 7™ and r~ denote the set of positive atoms
{p1,...,pm} and the set of negative atoms {ny,...,n,}, respectively. xASP utilizes
the notions of supported set and derivation path [7,8] and the concept of explanation
graph [5] which are illustrated using the program P; consisting of the following rules:

(r1) m — 1(X),not d, not h(X).
(r9) 4 — b(X), a(X). (rg) h(X) :— k(X), p.
(ra) b(1). (r5) a(4). (r¢) 1(1). (r7) k(6).

Given the answer set A1 = {I(1),m, a(4),b(1), k(6)}, the explanation graphs of m
are shown in Fig. 1. Both indicate that m is true in A; because of the existence of the
rule 1 and the following dependencies:

— m depends positively on /(1), which is a fact;

— m depends negatively on h(1), which is false, because there is only one instance
of the rule r3 with the head h(1). In that instance, h(1) depends positively on k(1)
(left) or p (right) and both are false because there is no rule for deriving them;

— m depends negatively on d, which is false. That is because there are two instances
of rule 75 supporting the derivation of d, but none of them is applicable in the given
answer set. In fact, both a(1) and b(4) are false because there are no rules for deriv-
ing them.

In general, for a node z in
an explanation graph G, if x
is an atom o then the set of
nodes directly connected to a—
the nodes y such that (a,y,)
is an edge in G—represents the

El EEN
body of a rule whose head isx @ | v ‘ 0 | I o | I . I ~aml I o I
and whose body is satisfied by L S
A. If 2 is ~ a for some atom ‘ 6
a, then the set of nodes directly @ @
connected to ~ a represents a
set of atoms whose truth values Fig. 1. Explanation graph of m
in A are such to make each rule
whose head is a unsatisfied by A. In other words, the direct connections with a node
represent the support [7] for the node being in (or not in) the answer set under consid-
eration.

The three types of links connecting a node x (corresponding to an atom a) to a node
y (for an atom b) in explanation graphs are as follows:

m
.

— + (represented by a solid 1link) demonstrates that the truth value of a depends
positively on the truth value of b w.r.t. A. If node y is T (T'rue), atom a is a fact.

366 L. L. Trieu et al.

Grounding as-needed for a Minimal assumption set U
Identifying rules related to ‘ ‘ Computing 74 ‘
Input: An ain P[H] tentative a_ssrl.unntlon set
aoma ||| Grounding the rues [7] | ComputingEy, Tk
(query),a [=1 | derivation paths for atoms in 74 via U ¢
program P, an Computing substitutions via Grounding as-needed for 7,
answer set 4 needed for f)undln H, AWhe‘je 'l E€TA : Drawing
’ Computing E, ‘ Computing minimal assumption explanation
derivation paths of @ set U via exp(ASP®) and E, graphs for a

Fig. 2. The overview of xASP system

— — (represented by a dashed 1ink) demonstrates that the truth value of a depends
negatively on the truth value of b w.r.t. A. If node y is | (F'alse), it means that atom
a is always false. Note that in our prior system exp(ASP°), this link does not exist
because the atoms, that are always false, have been simplified during the grounding
process of clingo.

— o (represented by a dotted 1link)is used in the case in which node y is assume,
which means that atom « is assumed to be false (see in examples in [5,7]).

2.1 Overview of xASP

Figure 2 shows the overview of xASP. The large two boxes represent the two main
phases of xASP, grounding as-needed and computing a minimal assumption set. The
grey boxes are implemented via exp(ASP€).

Grounding as-needed: xASP computes the set of ground rules that are necessary for the
construction of explanation graphs of a and the set of derivation paths of a given A. It
starts by identifying the rules related to a, e.g., rules whose head is a or an atom that a
depends on. Afterwards, these rules are grounded, taking into consideration the given
answer set. Finally, the derivation paths of a and its dependencies are obtained via the
computation of supported sets which is the focus of this paper (Sect. 2.2).

Computing a minimal assumption set: xASP computes Er 4, the set of derivation paths
of all atoms in the tentative assumption set 7'A and a minimal assumption set U of A.
It then utilizes exp(ASP¢) [7] to construct explanation graphs for a.

2.2 Computing Derivation Paths of a

This section presents a key algorithm for computing E,, an associative array whose
keys are a or atoms that a depends on, directly or indirectly, as defined via the depen-
dency graph [6]. E,.keys() denotes the set of keys in E,. For each z € E,.keys(),
E,[z] is the value associated with « in E, and contains the supported sets of x [7].

Given two atoms a = p(t1,ta,..,t,) and b = q(¢},th, .., t,,), we write pu(a, b) to
denote that a and b have the same predicates (p = ¢) and arities (n = m), i.e., a and b
are possibly unifiable.

xASP: An Explanation Generation System for Answer Set Programming 367

Algorithm 1: PartialGrounding(a, P, A)

Input: a-a ground atom; P-program; A-an answer set
Output: E, - set of derivation paths of a and a’s dependencies

1 Let Eqfa] =[]ifa € Aorlet Ej[~a] =[ifa g A

2 Let Ho={(h,v",r7) | r =h < b€ P Apu(a,h)}

3 for (h,r",r7) € H, do

4 if 310 such that 0 be the unifier of {a, h} then

5 L={p|per® Apbisnot ground}

6 for 0’ € w(L, A) do

7 0 — 0 00 // Composition of substitutions
8 D« {d0|dert},N—{nf |ner}

9 if a € A then

—
]

T—{DU{~n|neN}|DCANNA=0}
Append T to Eq[a]

else
L T—{{d}|de ANN}U{{~n}|ne D\ A}

—
L I

Ea[~a] — [XUL| X € Eyl~a],L €T)

Eq[~a) < [{L}Y] | #(h,rT,r7) € H, such that a is unifiable with h
6 PartialGrounding(c, P, A) where either c € C or ~c € C, C € Eqfa] U Eq4[~al
7 return F,

—
W

Algorithm 1 takes a grounded atom a and an answer set a
A of program P as inputs and computes E, for the con-

struction of the explanation graph for a € A (true atom) / \
ora ¢ A (false atom). F, is initialized with the empty
array (line 1). Only rules in H, whose head could be uni-

fied with a are involved in the partial grounding process NS
(lines 2-14). For each (h,r+,r~) € H,, the grounding

process starts with a unifier § of a and h (line 4). L is @
the set of positive atoms that are not grounded after sub-
stituting with 6. pf denotes that variables in atom p are
substituted by elements in 6. Due to the restriction that
variables occurring in negative atoms must appear in pos-
itive atoms, ground substitutions of atoms in r* are ground substitutions for the nega-
tive atoms in r~. We define w(L, A) as the set of potential substitutions for variables
in L given A, in which each element 6’ of w(L, A) is a set of substitutions of the form
v/t such that for some 2 € L and 26’ € A, and {v | v/t € '} = V where V is the
set of variables in L. Note that §’ must be composed to a valid substitution for vari-
ables in L, e.g., it must not specify two different values for a variable (called conflict
in the variable). In addition, some atoms in L cannot be unified with any atoms in A
and hence are false w.r.t. A. Therefore, those atoms are not grounded (see Sect. 2.3). If
L =0, w(L, A) is empty. After obtaining substitutions, the positive and negative atoms
are grounded via ¢’ (line 7) and supported sets of a are computed which depend on the

~b(4) ~a(l)

Fig. 3. Explanation graph of d

368 L. L. Trieu et al.

truth value of @ in A (lines 6-14). Note that, in line 10, if D = @ and N = (, then
T = {T}, denoting that atom a is a fact. Observe that if there are no rules whose head
can be unified with a, then the atom is false (no rule in P supports a). As such, E,[~ a]
is set to [{_L}], i.e. atom a is false in P (line 15). Unlike exp(ASP¢), Algorithm 1 is
recursively called only on atoms in supported set of a (line 16).

Example 2. Let us reconsider program P; and compute the derivation paths for m.
Given a ground atom m, there is only rule ; whose head is unifiable with m where
6 = (. 0 is not a ground substitution for positive atoms in 7. Thus, answer set A; is
utilized to obtain a unifier {X/1} to substitute for atoms in the body of 7, resulting in
E.[m] = {I(1),~d,~ h(1)}. Algorithm 1 is called recursively on atoms [(1), d and
h(1).

— En[l(1)] = [{T}] because of rule rg.

— Similar to m, unifier § = () for atom d is not a ground substitution for positive atoms
in ry. However, given A, we can conclude that there are two possible substitutions,
{X/1} and {X/4}, for ro. We have E,,[~d] = [{~a(1),~b(4)}]. Algorithm 1 is
then called for atoms a(1) and b(4).

e Although the head of rule r5 has the same predicate and arity as a(1), a(1)
and a(4) are not unifiable. Thus, E,,[~ a(1)] = [{L}]. Similar to a(1), E,,[~
b(4)] = [{L}).

— Similaly, we have E,,[~ h(1)] = [{~ k(1)},{~ p}], En[~ k()] = [{L}] and

Bl~p] = {1}].

2.3 TIllustrations m
Figure 3 shows the explanation graph for d in the case of i
Example 1. Unlike s(CASP), in xASP the explanation for ~
d being false is that all possible ground rules whose head N
is d have an unsatisfied body, in this case because a(1)
and b(4) are false. 400
Consider another program P’ containing the rules:
(r1)m — notq. (ro)g — d(X). -1

(rg)d(X) — a(x), 1. (rg)a(l). .

An explanation graph of m w.r.t. P’ and answer set ‘
A" = {m,a(1)} is shown in Fig.4. It contains non- @
ground atom d(X) because no atoms formed by d/1 occur
in A’ Fig. 4. Explanation graph of m

3 Conclusion

We presented xASP, a system for computing explanation graphs of true and false atoms
w.r.t. an answer set of a program. xASP does not simplify the program before finding the
explanations, thus providing faithful explanations for the truth value of the given atom.
This is important to form a correct understanding of programs. Future work includes
testing xASP on realistic debugging tasks and supporting the full language of clingo.

xASP: An Explanation Generation System for Answer Set Programming 369

References

1. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint answer set
programming. Electron. Proc. Theor. Comput. Sci. 325, 59-72 (2020)

2. Cabalar, P., Fandinno, J., Muiiiz, B.: A system for explainable answer set programming. Elec-
tron. Proc. Theor. Comput. Sci. 325, 124-136 (2020)

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R., Bowen, K. (eds.) Logic Programming: Proceedings of the Fifth International Conference
and Symposium, pp. 1070-1080 (1988)

4. Li, F,, Wang, H., Basu, K., Salazar, E., Gupta, G.: Discasp: a graph-based asp system for find-
ing relevant consistent concepts with applications to conversational socialbots. arXiv preprint
arXiv:2109.08297 (2021)

5. Pontelli, E., Son, T., El-Khatib, O.: Justifications for logic programs under answer set seman-
tics. TPLP 9(1), 1-56 (2009)

6. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs.
In: Foundations of Deductive Databases and Logic Programming (1988)

7. Trieu, L.L., Son, T.C., Balduccini, M.: exp(aspc): explaining asp programs with choice atoms
and constraint rules. Electron. Proc. Theor. Comput. Sci. 345, 155-161 (2021)

8. Trieu, L.L., Son, T.C., Pontelli, E., Balduccini, M.: Generating explanations for answer set
programming applications. In: Artificial Intelligence and Machine Learning for Multi-domain
Operations Applications III, pp. 390-403. International Society for Optics and Photonics,
SPIE (2021). https://doi.org/10.1117/12.2587517

http://arxiv.org/abs/2109.08297
https://doi.org/10.1117/12.2587517

