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Abstract

Graph neural networks (GNNs) have brought superb
performance to various applications utilizing graph struc-
tural data, such as social analysis and fraud detection. The
graph links, e.g., social relationships and transaction his-
tory, are sensitive and valuable information, which raises
privacy concerns when using GNNs. To exploit these vul-
nerabilities, we propose VertexSerum, a novel graph poi-
soning attack that increases the effectiveness of graph link
stealing by amplifying the link connectivity leakage. To in-
fer node adjacency more accurately, we propose an atten-
tion mechanism that can be embedded into the link detection
network. Our experiments demonstrate that VertexSerum
significantly outperforms the SOTA link inference attack,
improving the AUC scores by an average of 9.8% across
four real-world datasets and three different GNN structures.
Furthermore, our experiments reveal the effectiveness of
VertexSerum in both black-box and online learning settings,
further validating its applicability in real-world scenarios.

1. Introduction

Graph Neural Networks (GNNs) have been widely
adopted in various domains, such as financial fraud detec-
tion [25], social network analysis [[19], and heart-failure
prediction [6]], thanks to their capabilities to model high-
dimensional features and complex structural relationships
between entities [30]. However, with the increasing use of
graph data, concerns about data privacy are also growing
[LL, 17, 27]. This is particularly relevant in industries such
as finance and healthcare, where sensitive relationships are
often embedded in graph-structured data.

Recently, there has been a rise in privacy attacks on
GNNs [[1L1} 28] that infer the existence of links between
nodes in graphs by only querying the graph model, thus pos-
ing a threat to the confidentiality of GNNs. For a graph node
pair, the similarity of their posterior distributions (abbrevi-
ated as “posteriors” [L1]) is measured to deduce the link

“These authors contributed equally to this work. This work to be ap-
peared in ICCV 2023.

existence. For instance, in federated learning scenario [10],
where different parties keep private data locally but con-
tribute to the GNN training in the cloud based on their data,
a malicious contributor can infer the link belonging to other
contributors by querying trained GNN models. In this con-
text, the risks of link information leakage lie in the joint
training of GNNs and the available GNN inference APIs on
graph data.

In this work, we identified a limitation of the existing
link-inferring attacks: they do not perform well if the inter-
ested node pairs are from the same category (intra-class).
This is due to the high similarity of the posterior distribu-
tions between node pairs in the same category. To overcome
this limitation, we propose a novel approach to significantly
improve link inference attacks, particularly on intra-class
node pairs, by allowing a malicious contributor to poison
the graph during GNN training in an unnoticeable way.

This paper proposes a novel privacy-breaching data poi-
soning attack on GNNs, VertexSeru with a new anal-
ysis strategy. The attack aims to amplify the leakage of
private link information by modifying nodes/vertices. This
work makes the following contributions:

1. We propose a new evaluation metric, intra-class AUC
score, for link inference attacks, by considering only
node pairs from the same class. This new metric over-
comes the bias of the prior works that do not differentiate
between inter-class and intra-class, and brings valuable
insights for our approach.

2. We introduce the first privacy-breaching data poisoning
attack on GNNs, which injects adversarial noise into a
small portion (< 10%) of the training graph to amplify
the graph’s link information leakage. We constructively
employ a self-attention-based network to train the link
detector and propose a pre-training strategy to overcome
the overfitting issue of limited training data.

3. We demonstrate the effectiveness of the proposed link
inference attack on popular GNN structures and graph
datasets. The attack improves the link stealing AUC
score by 9.8% compared to the SOTA method in [L1]].

I'The name is inspired by Veritaserum in the Harry Potter series.



4. We consider the practicality of applying VertexSerum by
evaluating its homophily noticeability of the poisoned
graph and the victim model accuracy. The experimental
results show that VertexSerum increases model privacy
leakage without affecting the GNN performance.

2. Background and Related Work
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) are widely used in
semi-supervised graph node classification tasks [30]. A
graph, denoted as G=(V, E), has a topology with a set of
nodes V' and edges/links E/. This work focuses on undi-
rected homogeneous graphs, commonly studied in graph
theory and network analysis [5, 16} 16} [19} 25 29]. A link
between node u and v is represented by (u,v) € E, while
its absence is (u,v) ¢ E. For each node, it has fea-
tures x and corresponding categorical label y for a clas-
sification task. Together with the graph, node features
and labels compose the dataset used for GNN training and
validation, denoted as D={G,X,Y }. After training, a
neural network model for the graph is generated, denoted
as f, where the model output f(u) represents the pos-
terior probabilities of node u for the classes. The main
GNN architectures for node classification include Graph
Convolutional Network (GCN) [13], Graph SAmple and
aggreGatE (GraphSAGE) [9]], and Graph Attention Net-
work(GAT) [24]. These models, with different neural net-
work architectures, all learn to aggregate feature informa-
tion from a node’s local neighborhood, whose receptive
field is bounded by the model depth. Different from pre-
vious works that do not differentiate between nodes in the
graph for evaluation, we specifically analyze the intra-class
node pairs, which refer to nodes in the same class.

2.2. Link Inference Attack

GNNS, like other machine learning models, are suscep-
tible to various privacy attacks that compromise the confi-
dentiality of sensitive information within the data. These in-
clude membership inference attacks [[15], adversarial graph
injection attacks [20], graph modification attacks [32], and
link privacy attacks [[11} 28]]. Stealing Link Attack [L1] was
the first link privacy attack, where the graph structure infor-
mation is inferred from the prediction results of the GNN
model, i.e., posterior distributions of nodes. Another at-
tack, LinkTeller [28]], takes into account the influence prop-
agation during GNN training for link inference. However,
LinkTeller requires the attacker to have access to the graph’s
node features X, a much stronger attack model than ours
where the attacker only accesses the posterior distributions
of interested nodes, a more realistic scenario.

Benchmark Riinked Runtinkea | AUCqy  AUCy
Cora 0.81:0.19 0.18:0.82 0.907 0.874
Citeseer 0.74:0.26 0.18:0.82 0.987 0912
AMZPhoto 0.83:0.27 0.16:0.84 0.919 0.813

AMZComputer | 0.78:0.22 0.21:0.79 | 0913  0.826

Table 1. Node pairs’ distribution analysis. R is the ratio of intra-
class node pairs vs. inter-class, among all linked node pairs and
unlinked node pairs. AUC reflects the success rate of link ref-
erence attacks, where AUC,;; considers overall node pairs and
AUC; considers only node pairs from intra-class, e.g., in class 1.

2.3. Enhance Privacy Leakage via Data Poisoning

Data poisoning is an effective method to manipulate the
behavior of the victim model during training by intention-
ally introducing malicious training samples into the be-
nign dataset [31]. The recent work [3]] poisons the training
dataset with a small number of crafted samples, with in-
correct labels, which results in a trained model that overfits
the training data, significantly increasing the success rate
of membership inference attacks. Inspired by the previ-
ous membership leakage amplification by data poisoning,
on conventional deep learning models, this work shows that
properly crafted data poisoning is also able to amplify link
leakage of the graph in GNNSs, posing a significant privacy
threat to GNNs. Data poisoning on GNNs can be achieved
by modifications made to node features, node labels, or the
graph structure. We choose to poison node features with
small perturbations to make the attack stealthy. Our attack
is more effective than the state-of-the-art link inference at-
tacks [[11} 28] with a specific focus on intra-class inference.

3. Observations and Insights
3.1. Link Inference Attack Does Not Always Work

Previous research of link inference attacks on GNNs has
demonstrated good performance in predicting the existence
of links among overall node pairs [L1]. The GNN model
is queried, and the similarity of the posterior distributions
of the node pair is calculated for a link detector, which re-
turns the prediction of whether a link exists between these
two nodes. Although the performance on overall node pairs
tends to be good, when considering only intra-class node
pairs, i.e., to infer the link existence of node pairs from
the same class, the effectiveness is much lower. This is
due to several reasons: (D Though it is common to select
equal numbers of linked and unlinked node pairs for eval-
uation, the distribution of inter-class and intra-class node
pairs in both sets are highly unbalanced: while the major-
ity of linked node pairs are intra-class, most of the unlinked
node pairs are inter-class; @ the posterior distributions of
intra-class nodes are much more similar than those of inter-
class nodes. We demonstrate the characteristic of node pairs
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Figure 1. Visualization on link inference, overall vs. intra-class.
We randomly sampled 200 node pairs (100 linked + 100 unlinked)
from all nodes (all) and only the second class (1). The dots are the
PCA projections of the similarities of node pair posteriors, where
dots in red represent linked pairs and dots in gray represent un-
linked pairs. The more apart the two distributions are, the easier
link inference can be.

distribution in Table[I] If we only consider node pairs from
the same classes, their posterior distribution will be similar
regardless of whether they are linked or not. The differ-
ent success rates of the link inference attack on node pairs
from the entire graph and only one class are reflected by the
AUC scores, presented in the third and fourth columns of
Table 1] and also visualized in Figure|l} As the visualiza-
tion shows, in the top row across three different datasets,
the linked node pairs and unlinked node pairs are easily dis-
tinguishable, from the overall node pairs; while the bottom
row shows that for intra-class node pairs, the two distribu-
tions are not easily separable, indicating the difficulty for
link inference. To address this issue, we propose a new
metric, intra-class AUC score, to evaluate the link infer-
ence attack’s performance in the same classes, as presented
in Column 5 of Table

3.2. Graph Poisoning Threat to GNNs

Data poisoning on Graph neural networks can be
achieved on various entries. For example, in social net-
works, an adversarial user can create fake accounts or mod-
ify their profile deliberately. As GNNs applied to these
graphs must be frequently retrained or fine-tuned, an at-
tack surface is created for malicious parties to compro-
mise the GNN performance or privacy by crafting malicious
data. Specifically in federated learning, a common struc-
tural graph is used by distributed contributors to provide
data for training, malicious parties may upload carefully
poisoned data into the graph in a stealthy and unobtrusive
way. Graph poisoning attacks are easy to conduct, difficult
to detect, and highly effective in compromising GNNs. Our
proposed attack shows that by data poisoning, the link leak-
age of intra-class nodes can be significantly amplified, and
link inference can be effectively accomplished.
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Figure 2. Overview of VertexSerum with Self-Attention Detector.

4. VertexSerum - The Proposed Attack

In this section, we illustrate our proposed privacy-
breaching data poisoning attack — VertexSerum. The
overview of the attack procedure is presented in Figure 2]

4.1. Threat Model

Adversary’s Goal. The attack targets GNN-based classi-
fiers, which utilize node features and the graph topology to
predict the labels for querying nodes. The attacker aims to
deduce the connectivity between any pair of nodes (u,v)
belonging to class k by querying a pre-trained GNN model.
Adversary’s Knowledge. We assume the attacker has lim-
ited access to the vendor’s GNN as they can only acquire
the interested nodes’ posteriors through queries. We also as-
sume that the attacker has access to a portion of the graph,
as in federated learning, where the attacker acts as a dis-
tributed contributor to provide data for the training dataset,
which can be intentionally poisoned. Note these assump-
tions align with “Attack-3" in the state-of-the-art link infer-
ence attack [11] and are practical. We limit the portion
of the graph that the attacker can manipulate, such as 10%
of the entire graph, which is more practical and realistic in
federated learning settings.

4.2. Inspiration from ML Poisoning

In conventional machine learning (ML) regime, poison-
ing the training dataset with tainted data can expose user
data privacy [3|22], e.g., by injecting label-tampered sam-
ples to the training data, forcing the victim model to overfit
on specific features of each sample, thereby exacerbating its
membership leakage. However, the potential of such data
poisoning schemes have not been explored in attacking the
link privacy of GNNs. This work bridges this knowledge
gap by crafting samples in training dataset to strengthen
GNN model’s attention on node connections, making the
model to produce more similar outputs for linked nodes and
increase the dissimilarity between unlinked nodes. Rather
than generating abnormal labels which may be detected
by outlier detection tools, we induce poisoned features
with small perturbations with Projected Gradient Descent



Algorithm 1 Link Stealing with VertexSerum
Require: Target class k; Partial graph G, = (V},, Ep); Step
size €; Maximum number of iterations N; Training al-
gorithm 77; Vendor graph G = (V, E).
Ensure: Link existence of node pair 2 = (u, v).
/*Generate Poisoned Graph*/
1: Train shadow GNN model on G}, with the public train-
ing algorithm f§" « T(G,).
2: forn=1,2,...,Ndo b Projected Gradient Descent
3: Compute the gradient of loss L(f§"): g, < VL
: Update nodes features in class k to increase loss,
T €VE Tyt  Tn + €gn
5: end for
6: Get poisoned graph G; and send it to the vendor.
7: The vendor trains a GNN model fp on G U G),.
/*Train Link Detector™*/
8: Query model fy to obtain posteriors of nodes in Vp’“.

. T k
9: Compute and aggregate the similarity features F') from

. Py . k _ k' k
node pairs’ posteriors as truth dataset D, = {F, E7'}.

10: Train binary classifier M on D’; using self-attention
link detector.
/*Link Inference*/

11: Given a target node pair in class k, u,v € V¥, compute
the similarity feature Fﬁ)v.

12: Feed in Fﬁyv to detector M for link inference.

13: return True / False

(PGD), allowing us to achieve attack stealthiness.

4.3. Attack Flow of VertexSerum

VertexSerum aims to steal the true link information of
interested node pairs. The attack is carried out between a
model vendor V and a malicious contributor .A. The vendor
has access to the entire graph dataset D={G, X,Y } and
trains a downstream task with a public training algorithm 7
The adversary contributes a small portion of the dataset,
D,={G,,X,,Y ,}, containing a partial graph G, which is
used for both generating the poisoning sub-graph and train-
ing the link detector. The attack steps are:

1. The adversary chooses a target class k from the label
space Y. The attack goal is to predict the link existence
between nodes u, v, i.e., if (u,v) € E, when y,=y,=k.

2. Following the steps in Lines [TH6|of Algorithm[I] the ad-
versary generates a partial dataset D,, with a poisoned
graph G, by analyzing a shadow model trained on G,
as depicted in the shadow part in Figure [2| and sends it
to the vendor.

2We assume the GNN type is open to the adversary for the ease of eval-
uation. We also demonstrate the effectiveness of VertexSerum in Section
when the adversary has no clue of the GNN model.

3. The vendor trains a GNN model for downstream tasks
fo < T(D U D)) on the poisoned graph G' U G,

4. The adversary queries the GNN model, fy, with the pos-
sessed poisoned partial graph G; and generates similar-
ities of posteriors. Binary link detectors are constructed
to infer link existence, as shown in the right bottom part
of Figure 2]and detailed in Lines of Algorithm

5. The adversary makes a guess £ = (u,v) with the link

detectors (Line [11H13).

Our attack utilizes data poisoning to breach the confiden-
tiality of GNNs: the poisoned graph G; is used in the vic-
tim GNN model training, with an objective to amplify the
model privacy leakage.

4.4. Requirements of the Poisoning Nodes

For Step 2 of the attack, to generate a graph that enhances
the model’s aggregation on linked nodes, we design a spe-
cific poisoned graph G, that makes the GNN model fj fo-
cus more on adjacency. Next, we outline requirements for
successful node poisoning:

1. Intact Community. The adversary should ensure that
the node classification accuracy for the victim task is
not evidently affected, so that the poisoned graph is less
likely to be rejected by the vendor for GNN training. Be-
sides, misclassified nodes can negatively impact passing
information to adjacent linked nodes, leading to an over-
all lower aggregation capability for the GNN model.

2. Node Attraction and Repulsion. The poisoned sam-
ples should simultaneously promote the similarity of the
GNN outputs on linked nodes (attraction) and the dis-
similarity on unlinked nodes (repulsion). This requires
a balance between the attraction and repulsion of node
features when poisoning the dataset.

3. Adversarial Robustness. Adversarial training tech-
niques [[17,121] can improve a model’s robustness against
adversarial samples, where the model tolerates small in-
put perturbations and outputs similar predictions. In
VertexSerum, we utilize adversarial training to increase
the model’s adversarial robustness, guiding linked nodes
with similar features to produce similar posteriors.

4.5. Crafting Poisoning Features via PGD

To meet these requirements, we propose a graph poi-
soning method optimized with projected gradient descent
(PGD). We adopt the shadow training methods [11} [18]],
where the attacker will first train a shadow GNN (f3") on
the possessed partial graph G,. The optimal perturbation to
add on node features is found based on the gradient of the
loss function shown in Eq. [T}

L = aLatt'raction + /BLrepulsion + )\LCE (1)



The loss function includes three terms, with «, 3, \ as
positive coefficients to balance attraction and repulsion:

1. The attraction loss penalizes the euclidean distance of
posteriors on two linked nodes. The PGD will find node
features that reduce the distance between linked nodes.

Lattraction = — Z (fgh(u) - fgh(v))z (2)

(u,v)EE

2. The repulsion term computes the cosine similarity be-
tween unlinked nodes. The rationale is that cosine is
bounded so as to avoid an overlarge dissimilarity term.
The PGD will find the node features that reduce the sim-
ilarity between unlinked nodes.

Lreputsion =y (1 —cos(f5"(u), f5" (©)))* (3
u,veEV,u#v,
(u,v)¢E

3. The cross-entropy term Lo g serves as a regularization
in the loss function. Its goal is to improve the victim
model’s adversarial robustness to amplify link leakage.

The previous poisoning attack includes regularization of
perturbations, such as the L1 norm, during optimization.
However, we observed that this term is not necessary for
the PGD process if we have a small updating step size €. By
only optimizing Eq. 1} the generated perturbation is already
effective and unnoticeable.

4.6. Self-attention Link Detector

In Step 4 of the attack, the adversary trains a link detec-
tor using the posteriors of the partial graph by querying the
pre-trained vendor model. Previous work [11]] used a Multi-
Layer Perceptron (MLP) to analyze the similarity features
of the node pair posteriors. However, the dense structure of
MLP is often inadequate to capture the complex dependen-
cies among similarity features. Furthermore, since the at-
tacker only has a small part (< 10%) of the graph, training
an MLP is prone to be unstable due to overfitting. More-
over, since VertexSerum introduces more complex charac-
teristics such as attraction and repulsion during poisoning,
the underlying patterns in the similarity features are ex-
pected to be more informative. To address these issues, we
propose improvement to the MLP model with a Multihead
Self-attention [23] link detector, which can efficiently use
information by selectively attending to different parts in the
input similarity features. We follow the same construction
of similarity features as the previous method [11], consist-
ing of eight distances and four entropy features between two
nodes. To ensure stability of the self-attention detector on a
small dataset, we initialize its first embedding layer with the
first fully-connected layer from the MLP. The experimental
results in Table 2]in next section show that the introduction
of self-attention improves the attack AUC score by an aver-
age of 7.2% with the standard deviation dropping by 35%.

5. Experiments
5.1. Experimental Setup

Datasets: We evaluate the effectiveness of VertexSerum on
four publicly available datasets: Citeseer [13], Cora [13],
Amazon Photo Dataset [14], and Amazon Computer
Dataset [14]. These datasets cover different daily-life sce-
narios and are widely used as benchmarks for evaluating
graph neural networks. The first two datasets are citation
networks where nodes represent publications, and links in-
dicate citations among them. The last two datasets are
co-purchase graphs from Amazon, where nodes represent
products, and edges represent the co-purchased relations
of products. Our benchmarks scale from (3k nodes + 11k
edges) for Cora to (14k nodes + 492k edges) for AMZCom-
puter. We assume the vendor’s model is trained on 80% of
the nodes and evaluated on the remaining in the graph.

Since we assume the attacker only contributes a small
portion of the graph for training, i.e., G;,, we sample 10%
nodes among the training dataset. To train the link detec-
tor, we collect all linked node pairs and randomly sample
the same number of unlinked node pairs in G;. Similarity
features are computed based on these node pairs, following
[L1], together with corresponding link information. We split
this dataset into 80% for training and 20% for validation.
Metric: ROC-AUC is a commonly used evaluation met-
ric for binary classification tasks and has also been applied
in previous works on link inference [11} 28]]. It measures
the ability of the link detector to distinguish between linked
and unlinked node pairs. A higher AUC indicates superior
performance of the link detector in identifying linked node
pairs from unlinked ones.

In addition to overall AUC, we also evaluate the intra-
class AUC. Overall AUC measures the ability of the link de-
tector to identify linked node pairs among all classes, while
intra-class AUC measures its ability only in one class. As
mentioned in Section 3.1} a successful link inference attack
should have a high overall AUC as well as a high intra-class
AUC. Without loss of generality, we set Class 1 as target
class to evaluate performance of the link inference attack.
Models: We evaluate VertexSerum on three commonly
used GNN structures: GCN [13], GraphSAGE [9], and
GAT [24]]. Deep Graph Library (DGL) is used for model
implementation [26]. We construct a 3-layer MLP as the
baseline link detector, with the first layer containing 64 hid-
den neurons which is also the initialization for the self-
attention link detector. The self-attention detector is of a 16-
head attention structure with an input dimension of 64. For
initialization, we train MLP for 50 epochs with a learning
rate of 0.001. We then fine-tune the self-attention detector
with a learning rate of 0.0001, using the cross-entropy loss
and Adam optimizer [12]. We run experiments 10 times and
report the average and standard deviation of AUC scores.



Model GCN GAT GraphSAGE
Dataset Citeseer Cora Citeseer Cora Citeseer Cora

SLA + MLP[11] | 0.914+0.008 | 0.874+0.018 0.969+0.002 | 0.845+0.011 0.972+0.002 | 0.854+0.009
SLA + ATTN 0.951£0.064 | 0.903+0.067 0.980+£0.003 | 0.868+0.029 0.976+£0.007 | 0.931£0.029
VS + MLP 0.892+0.006 | 0.912+0.065 0.913+£0.005 | 0.856+0.017 0.949+£0.007 | 0.859+0.027
VS + ATTN(*) 0.978+0.033 | 0.927+0.023 0.997+0.002 | 0.924+0.022 0.994-+0.006 | 0.957+0.007
Dataset AMZPhoto AMZComputer | AMZPhoto AMZComputer | AMZPhoto AMZComputer
SLA + MLP[11] | 0.813£0.015 | 0.8264+0.018 0.881£0.007 | 0.820+0.046 0.873£0.015 | 0.883+0.004
SLA + ATTN 0.917£0.037 | 0.956+0.007 0.963+0.011 | 0.889+0.066 0.972+0.009 | 0.978-+0.005
VS + MLP 0.780£0.007 | 0.849+0.009 0.917£0.006 | 0.852+0.033 0.873£0.032 | 0.898+0.004
VS + ATTN(*) 0.939+0.018 | 0.962+0.011 0.990-£0.008 | 0.919+0.031 0.987+0.006 | 0.985+0.006

Table 2. Comparison of the average AUC with standard deviation for different attacks on the four datasets. The best results are highlighted

in bold. (*) denotes our proposed method.
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Figure 3. A visualization of nodes and edges belonging to the tar-
get class from the original (Ne = 0) and poisoned (Ne > 0)
partial graphs. Node color represents the low-dimensional embed-
ding of the GNN model’s output, i.e., the node posteriors. Color’s
similarity indicates posteriors’ similarity.

5.2. Graph Visualization

Figure (3| displays part of the poisoned graph of Ver-
texSerum on a 3-layer GraphSAGE model trained on the
Cora dataset with different distortions Ne. By injecting
poisoned samples into the partial graph while maintaining
the topology, the PGD objective loss induces correspond-
ing attraction and repulsion forces between nodes, resulting
in increased attention to linked nodes. As the distortion in-
creases from O to 1, the node colors shift to demonstrate
attraction to linked nodes and repulsion to unlinked nodes.

5.3. Attack Performance

We evaluate the effectiveness of VertexSerum (VS), in-
cluding both the poisoning method and the self-attention-
based (ATTN) link detector. The prior stealing link attack
(SLA) [[11] serves as the SOTA method for us to compare,
as it shares a similar threat model with our attack. SLA uses
similarity features and an MLP-based link detector to attack
a graph neural network, without poisoning. We compare the
performance of different attack strategies and link detector
structures, and report intra-class AUC scores in Table @

VertexSerum with the attention detector significantly im-
proves the performance of link inference attacks for all

E SLA+MLP
1.0

BN SLA+ATTN [ VS+MLP [ VS+ATTN

0.9
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808
20.
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Figure 4. The AUC score along each target class. We take a case

study on Cora dataset (7 classes in total) with GraphSAGE as the
GNN model.

datasets and GNN models. Compared to the method us-
ing SLA with MLP, our attack has an average improvement
of 9.8% on AUC scores. Note that the self-attention-based
link detector significantly improves the attack performance
even without poisoning datasets (see the two rows of “SLA
+ ATTN ” in Table[2)). This is because the multi-head atten-
tion structure models the dependencies between elements in
similarity features, better exposing the link existence during
inference. On the other hand, using VertexSerum with MLP
alone does not improve the detection performance on some
datasets, such as Citeseer and AMZPhoto. From our con-
sideration, VertexSerum enforces GNN to learn more about
the connections between nodes, adding more hidden infor-
mation to the similarity feature, for which MLPs lack the
capability to capture. However, by combining VertexSerum
with our proposed self-attention link detector, the poisoning
works effectively towards increasing the link leakage.

We also demonstrate the intra-class AUC scores by vary-
ing the target class, taking the Cora dataset with the Graph-
SAGE model in Figure 4] as an example. We can draw the
same conclusion as above on the link inference attack. Not
only the self-attention detector can greatly outperform the
MLP detector, but the poisoning also boosts link detection
as well. Further, we demonstrate that VertexSerum can still
preserve the highest effectiveness of link inference on over-



‘ Cora Citeseer AMZPhoto ~ AMZComputer
SLA+MLP [11] | 0.9074+0.001 0.98740.001 0.9194+0.020  0.913+0.043
SLA+ATTN 0.994+0.008  0.995+0.001  0.947+0.005  0.962+0.005
VS+MLP 0.9454+0.003  0.9784+0.013  0.946+0.010  0.900+0.055
VS+ATTN 0.997+0.012  0.994+0.001  0.956+0.001  0.968-0.004

Table 3. Comparison of the overall AUC scores for different tasks
on GraphSAGE model, by inferring the link between node pairs
from all classes.
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Figure 5. Homophily analysis on graph poisoning. Cora and
AMZPhoto are selected as the case study. The top histogram plots
show the node homophily before and after the poisoning attack,
where high coincidence on distribution means two graphs have
high homophily. The lower tables demonstrate various model ac-
curacies on the graphs before and after poisoning, showing that the
accuracy is barely affected by the poisoning.

all classes. We show the overall AUC scores in Table [3]
assuming the GNN model is based on GraphSAGE. Be-
sides the elevated attack success, we can explicitly observe
the overall AUC scores are higher than the intra-class AUC
scores. This also affirms our observation discussed in Sec-
tion [3.T] that evaluation on overall node pairs yields higher
performance than that on intra-class node pairs.

5.4. Attack Stealthiness

We evaluate the stealthiness of VertexSerum from two
perspectives: homophily unnoticeability and model accu-
racy. Homophily unnoticeability is an important metric for
graph adversarial attacks and is defined as the node-centric
homophily distribution shifting between the clean and poi-
soned graph being upper-bounded by a threshold, which
ensures that the malicious nodes are not easily detectable
by the database administrators [4]. We visualize the ho-
mophily distribution of the benign and poisoned graphs in
Figure [5} It is clear that VertexSerum can effectively pre-
serve the homophily while still conducting effective poison-
ing. The lower tables in Figure[5|present the model accuracy
before and after poisoning, demonstrating that VertexSerum
only introduces small accuracy degradation/improvement.
Since from the vendor’s perspective, the new accuracy is
achieved after the re-training, thus, the trivial difference en-
sures stealthiness, i.e., the vendor will not stop using the
poisoned graph due to poor performance.
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Figure 6. Performance of our attack on the GraphSAGE model
with varying numbers of layers. The blue line represents the attack
AUC scores, while the pink dashed lines indicate the training and
testing accuracies.

8=0.01 B=0.1 B=1
X=01 A=1|A=01 A=1]|Ar=01 A=1
a=01] 0914 0942 0931 0943 | 0954 00953
a=1 | 0952 0963 | 0954 00953 | 0946 0.945
a=10 | 0949 00947 | 0950 0949 | 0925 00926

Table 4. AUC scores of VertexSerum Attack on GraphSAGE for
Cora Dataset with different regularization strengths.

5.5. Ablation Study
5.5.1 Influence of the Depth of GNN

We conduct an evaluation of our attack on the GraphSAGE
model with varying numbers of layers (depth) in the GNN
fo.The results are shown in Figure|6] where the blue line il-
lustrates the attack AUC scores, while the pink dashed lines
indicate the training and testing accuracy. As the number
of layers increases, the GNN aggregates information from
neighborhoods across multiple hops progressively, leading
to overly similar output representations on linked nodes,
known as over-smoothing [2].

When GNNs have only one layer, the attack is harder be-
cause of the lack of aggregated information between linked
nodes. VertexSerum shows good performance when the
number of layers is greater than 1, as more hops of neigh-
bors are taken into consideration. Meanwhile, the model
training and testing accuracy decreases as the number of
layers increases, because of over-smoothing, where the rep-
resentations of nodes become similar after multi-layer mes-
sage passing. Consequently, the attack performance slightly
drops, due to the underperformance of model accuracy. This
is a concerning observation since the attack success rate is
bound to the model accuracy. A well-performed model is
also highly vulnerable to link inference attacks.

5.5.2 Impact of Different Loss Terms

In designing our PGD objective loss in Eq. |1} we consider
a trade-off between the attraction loss, repulsion loss, and
cross-entropy loss by controlling the corresponding regu-
larization strength terms «, 3, and \. We compare the at-
tack performance using different tuples of regularization
weights in Table We find that the optimal choice is
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Figure 7. Performance of our attack on the GraphSAGE model un-
der the online training setting. The blue line in the plot represents
the attack AUC scores, and the x-axis represents different poison-
ing time during online training.

(o, 8,2)=(1,0.01,1), where the repulsion weight is much
smaller than the others. This is due to the imbalance be-
tween the number of linked and unlinked node pairs, which
leads to a high repulsion loss, and this choice balances the
effect of the repulsion loss and attraction loss.

5.6. Online Poisoning on GNNs

Graph neural networks in practice are not always trained
offline, but multiple contributors may provide data at differ-
ent times for online training. This is particularly relevant in
scenarios such as recommendation systems, where models
are frequently updated with incoming user behavior data.
In this section, we investigate a training scenario where the
vendor’s model is trained batch-by-batch as the data arrives.
We divide the dataset into eight batches, each representing
a different contributor. We select one of the contributors
as the adversary and use VertexSerum to poison the corre-
sponding partial graph. The model is updated in order as the
contributors arrive, and we evaluate the attack performance
when the adversarial contributor arrives at different times.

Figure [/| presents the attack AUC when the adversarial
batch arrives at different times during online training. We
observe that poisoning the early batches is more effective
than poisoning the last batch. This is likely because the
early batches have a long-term effect on fitting the online
model, while the poisoning data in the last round is only
fitted during the last update. Further, the poisoning attack
on offline training yields better results. Since the poisoning
exists throughout the offline training, the model fitting on
the benign batches is also consistent throughout the training,
akin to poisoning at an early time. Overall, VertexSerum is
effective for both online and offline training on GNNGs.

5.7. Transferability in the Black-Box Setting

In previous evaluations, we assume that the attacker has
prior knowledge of the vendor model’s architecture and
training process, which is a gray-box setting. In this section,
we extend our evaluation to the black-box setting, where the
attacker has no knowledge of the victim model’s architec-
ture and configuration. We investigate the transferability of
VertexSerum, where the attacker trains the subgraph using
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] 3 shadow-GAT

5
0.9 £
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Figure 8. The attack performance when the vendor model is un-
known and trained on Cora Dataset, where the attacker uses arbi-
trary GNN structures to train the shadow model.

a different model from the vendor model. For instance, the
attacker may train the subgraph using GAT when the vendor
model is trained using GraphSAGE. Figure [8| shows the re-
sults under the black-box setting. We find that even without
knowledge of the vendor model structure, the attacker can
still achieve high performance using VertexSerum. Interest-
ingly, the attacker achieves the highest AUC scores when
using GAT as the shadow model to generate the poison ex-
ample. We hypothesize that GAT has a higher generaliz-
ability in estimating the real boundary of the vendor model,
making the poison samples from GAT more effective.

6. Defense

There are two potential directions to defend against the
VertexSerum attack. The first approach is to blur the per-
turbation. Our poisoning samples are similar to adversarial
samples, which are clean features with small added noise.
Thus, it is possible to slightly change the training samples
through preprocessing methods such as denoising or aug-
mentation, without harming the model accuracy. The sec-
ond approach is to increase the GNN’s robustness against
the link stealthy attack. One way to achieve this is to build
GNNs with certified robustness using differential privacy
[8]]. Alternatively, the vendor can train the GNN with an
appropriate depth to avoid over-smoothing or over-fitting.

7. Conclusions

In this paper, we investigate the vulnerability of graph
neural networks to privacy leakage amplified by data poi-
soning. We propose VertexSerum, with data poisoning and
self-attention link detector, a link inference attack with sig-
nificantly better attack performance on intra-class nodes.
We conduct extensive evaluations on different attack set-
tings, including gray-box, offline training, online training,
and black-box. As graph neural networks become increas-
ingly popular, our findings pose a new challenge to confi-
dentiality of the structural datasets using GNNs. The work
serves as a cautionary note to model vendors, informing
them of possible privacy exposure of their training datasets
and calling for more follow-on work to build robust GNNs
against such privacy-breaching attacks.
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