
Prediction and Control in DNA Nanotechnology
Marcello DeLuca, Sebastian Sensale, Po-An Lin, and Gaurav Arya*

Cite This: https://doi.org/10.1021/acsabm.2c01045 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: DNA nanotechnology is a rapidly developing field that uses DNA as a
building material for nanoscale structures. Key to the field’s development has been the
ability to accurately describe the behavior of DNA nanostructures using simulations and
other modeling techniques. In this Review, we present various aspects of prediction and
control in DNA nanotechnology, including the various scales of molecular simulation,
statistical mechanics, kinetic modeling, continuum mechanics, and other prediction
methods. We also address the current uses of artificial intelligence and machine learning in
DNA nanotechnology. We discuss how experiments and modeling are synergistically
combined to provide control over device behavior, allowing scientists to design molecular
structures and dynamic devices with confidence that they will function as intended. Finally,
we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction
ability and suggest possible solutions to these weak areas.

KEYWORDS: DNA nanotechnology, DNA origami, simulations, molecular dynamics, artificial intelligence, machine learning,
statistical mechanics, kinetic modeling

■ INTRODUCTION
DNA nanotechnology1 is a field that uses the canonical base-
pairing rules of DNA to rationally program its self-assembly
into nanoscale structures. Over the past 40 years of the field’s
development, DNA nanotechnology has enabled scientists to
make advancements in diagnostics,2 therapeutics,3 metrology,4

computation,5 photonics,6 and other applications.7 DNA
nanotechnology’s best-known design paradigm, DNA origami,8

is emerging as a highly versatile tool for creating elaborate
devices for investigating nanoscale and microscale phenomena,
which are leading to applications that would not have been
foreseen even a decade ago.
Key to many of these developments has been an increasing

capability of prediction and control, which fall largely into the
domain of modeling. Every technology that finds its way into
long-term use has relied upon the ability to predict behavior
given a set of inputs and thus control system behavior by
optimizing those inputs. DNA nanotechnology is no different,
and scientists can now use it purely as a tool for investigations
that have little to do with the technology itself. This has been
enabled largely by the advent of modeling techniques, which
can reliably predict the outcomes of correct DNA structure
folding;9,10 availability of various biochemical-biophysical tools
for characterizing DNA structure and properties;11 and greater
understanding of fundamental processes such as toehold-
mediated strand displacement,12 change in form of DNA,13−15

etc. As time goes on and DNA nanotechnology begins to be
relied upon for commercial applications in potentially high-
cost industries such as healthcare,16,17 the value of quantitative

understanding of DNA nanotechnology will surely increase.
However, the field currently lacks a comprehensive description
of the available modeling paradigms and opportunities to
improve our ability to predict experimental outcomes. In this
Review, we will describe the various modeling techniques used
in this field and how they are used to predict device behavior,
which ultimately affords control over DNA nanotechnology.
We will also identify underutilized modeling techniques as well
as areas where modeling is currently insufficient and therefore
hinders the progress of DNA nanotechnology.
The span of length and time scales relevant to DNA

nanotechnology is enormous. At the smallest scale, bond
vibrations occur on a time scale of femtoseconds. Base-pair
fluctuations occur on a time scale of nanoseconds and length
scale of angstroms. Hybridization of tens of nucleotides can
take milliseconds for individual hybridization events18 on
partially hybridized strands and seconds to minutes for
separated strands to hybridize in bulk solution at physically
relevant concentrations.19 The self-assembly of DNA struc-
tures thousands of nucleotides in size takes seconds to a few
hours and spans tens to hundreds of nanometers,20 and
hierarchical assembly and larger-scale organization of giga-

Special Issue: Computational Advances in Biomaterials

Received: December 15, 2022
Accepted: February 9, 2023

Reviewwww.acsabm.org

© XXXX American Chemical Society
A

https://doi.org/10.1021/acsabm.2c01045
ACS Appl. Bio Mater. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

D
U

K
E 

U
N

IV
 o

n 
Se

pt
em

be
r 6

, 2
02

3 
at

 1
8:

02
:1

0 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marcello+DeLuca"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Sensale"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Po-An+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gaurav+Arya"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsabm.2c01045&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01045?ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01045?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01045?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01045?fig=agr1&ref=pdf
https://pubs.acs.org/toc/aabmcb/current?ref=pdf
https://pubs.acs.org/toc/aabmcb/current?ref=pdf
www.acsabm.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsabm.2c01045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsabm.org?ref=pdf
https://www.acsabm.org?ref=pdf


dalton-scale DNA assemblies can take from a few to several
hours and span from hundreds of nanometers to micro-
meters.21−23 To further complicate matters, some components
of DNA nanotechnology behave rigidly where they can be
modeled as continuum bodies,24 while others exhibit
significant thermally driven stochasticity25,26 that is best
described using statistical treatments.
Unsurprisingly, there is not a single modeling technique that

can capture the full span of these behaviors, and some
compromise must be made between detail/resolution and
time/length scale when conducting simulations. In this Review,
we will categorize modeling techniques by resolution into
quantum mechanics, all-atom, coarse-grained, mesoscopic, and
continuum resolution models and describe the utility and
limitations of each. We will also describe the different
simulation techniques available for each of these models,
including explicit-solvent molecular dynamics, Brownian
dynamics, rigid-body dynamics, finite element analysis,
statistical mechanics theory, kinetic modeling, and machine
learning to determine experimental or simulation observables;
we will also describe existing techniques, which span multiple
resolution or simulation paradigms. A diagram of where some
of these modeling techniques fit into DNA nanotechnology’s
span of length and time scales can be found in Figure 1. We

will describe how simulations and experiments are compared
to refine models and improve predictive power. Finally, we will
describe grand challenges in the field and propose some
solutions to those challenges.

■ RESOLUTIONS OF MODELING AND SIMULATION
TECHNIQUES

Quantum Mechanics (QM). In QM simulations, the
Schrödinger equation is approximately solved for the time-
independent many-electron case to obtain the electronic
distributions of all species in the system. Density Functional
Theory27 (DFT) is the most common technique used for this
purpose. DFT replaces the many body wave functions Ψ(r1, r2,
...rN) of a system, where ri denotes the Cartesian coordinates of
individual bodies, with a single spatial electronic density n(r),
which is notably a function of a single set of Cartesian

coordinates; the many other properties of the system such as
potentials and energy gradients may then be expressed as
functionals of n(r). Interaction forces computed by using this
method can also be propagated in time and used to simulate
system dynamics in a method known as ab initio molecular
dynamics.28

The above formalism contains all of the nuance of multibody
effects, nonspherical interactions, chemical reactivity, and
electron transport, so in theory it should accurately reproduce
the structural and dynamic behavior of DNA nanodevices.
However, the schemes employed to calculate these electronic
structures are extremely computationally expensive, so the use
of QM in direct simulation of DNA origami devices has been
mostly limited to the study of very specific aspects, such as
electron transfer in single- and double-stranded DNA,29−32 the
formation of G-quadruplexes,33 the impact of polarization
effects on ionic binding to DNA quadruplexes,34 and QM
studies of basic DNA features such as hydrogen bonding,35

base stacking,36 and ionic binding in canonically bound
DNA.37 A less apparent yet more pervasive way that QM
simulations have impacted DNA nanotechnology is through
their role in parametrizing classical force fields of DNA, ions,
and water molecules commonly used in all-atom molecular
dynamics (AAMD) simulations.38 Interestingly, the advent of
quantum computing may eventually make it possible to rapidly
compute electronic structure and conduct quantum mechan-
ics-based simulations at significantly lower cost, which could
open the doors for new modeling paradigms.39

All-Atom Molecular Dynamics (AAMD) Simulations.
In atomistic models, the electronic degrees of freedom,
explicitly treated through QM simulations, are implicitly
treated by means of semiempirical potential energy functions
representing the “effective” interatomic interactions between
the individual atoms of a molecular system. By propagating the
classical Newton’s equations of motion for every atom found in
a molecular system of interest, the dynamics of the system can
be simulated in physical time. The simplified treatment of
interatomic interactions in AAMD simulations allows access to
orders of magnitude longer time scales than is possible with
QM simulations, although the accuracy of the results obtained
is highly dependent on the quality of the imposed interatomic
interactions (i.e., the implemented force field). Atomistic
models have been utilized to study biological systems for
almost 50 years,40 and the first atomistic simulations of nucleic
acid molecules were reported in the early 1980s by Levitt41 and
Tidor et al.42 In these simulations, canonical B-form DNA
duplexes of under 20 base pairs were simulated for tens of
picoseconds with an implicit treatment of the solvent, leading
to highly distorted and unreasonable conformations. Since that
time, major advances in algorithms and computing hardware
have drastically expanded the accuracy, sizes, and simulation
times accessible with atomistic accuracy, offering fundamental
insights into the structure and function of both nucleic acids
and proteins.
The 1990s saw rapid development in the atomistic modeling

of biological systems, as computing power allowed for the
inclusion of explicit solvent in AAMD simulations.43 Different
force fields such as AMBER44 and CHARMM45,46 were first
developed during this decade, capturing the conformational
dynamics of B-form DNA duplexes over longer time scales.47,48

However, the time step for numerical integration is still limited
to the order of femtoseconds by the extremely fast vibrational
frequency of bonds and angles involving hydrogen atoms.49

Figure 1. Length and time scales of features and processes in DNA
nanotechnology and the length and time scales practically accessible
by different modeling techniques, including quantum mechanics
calculations (“QM”), all-atom molecular dynamics simulations
(“AA”), coarse-grained simulations (“CG”), and mesoscopic modeling
(“MESO”). Shape representations for each dynamic process type are
not precise but aim to generally capture their range.
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Hence, a limitation of AAMD simulations is that trillions of
time steps must be integrated to capture many phenomena of
biological interest that occur over milliseconds,50 a number
that challenges the capabilities of even the most advanced
massively parallel supercomputers (i.e., Anton).51

In DNA nanotechnology, AAMD can be used for producing
atomically precise relaxed structures for comparison to
experimental characterization techniques such as cryo-electron
microscopy (cryo-EM);52 for more detailed mechanistic
understanding of the conformations of critical components in
larger DNA assemblies; and for quantifying interactions of
DNA nanostructures with proteins.53 Figure 2 presents several
notable studies which make use of atomistic modeling and
demonstrate a variety of applications of AAMD toward
prediction and control in DNA-based systems. The first
atomistic simulations of a DNA origami nanostructure were
performed by Yoo and Aksimentiev in 2013.54 By simulating
millions of atoms including ions and water, DNA origami
nanostructures approximately 50 nm long were simulated for
over 100 ns, revealing significant departure of the simulated
nanostructures from their idealized conformations. Explicit
treatment of the solvent allows for detailed studies on the
effect of the environment in the stability and local
conformation of DNA origami nanostructures,52,59−63 while
also allowing for the characterization of the ionic conductivity
of DNA origami constructs such as nanopores.57,64−68

Critically, some AAMD force fields can reasonably capture
differences in interactions between DNA and monovalent ions

such as sodium versus divalent ions such as magnesium,69 a
feature that is not present in coarser modeling techniques but
can be very important to DNA nanostructure function. For
example, phenomena such as magnesium-mediated DNA form
change may be captured with AAMD simulations70 but would
not be captured with an implicit solvent model, which does not
account for ionic size, correlation effects, and coordination.
Finally, noncanonical DNA motifs, which might not be
captured using coarse-grained models, can often be captured
with atomistic models.71 Overall, AAMD is generally not used
for simulating entire DNA origami devices. The computational
cost of atomistic simulations often restricts their use to
studying small DNA origami constructs (such as Seeman J1
sequences72,73), subsections of DNA devices (where the rest of
the DNA origami is fixed60,74,75), or large structures for very
short times.76

Current force fields have shown great agreement with
multiple experimental observations of DNA structure and
dynamics, including sequence-dependent conformations,77−80

deformability,81,82 ionic conductivity,83−85 spectroscopic fea-
tures,86−88 and DNA−surface interactions.89,90 Force field
refinement and creation will remain a process in constant
evolution for as long as computer power continues improving
and as the ever-growing access to longer time scales exposes
the inaccuracies of existing force fields. We can thus expect
additional uses of AAMD simulations to arise with the
improvement of these models.

Figure 2. Applications of all-atom molecular dynamics simulations. The simulations were used for the prediction of (a) base pair and base pair step
properties, (b) conformational dynamics of an 18 DNA helix bundle, (c) DNA−protein interactions, (d) cholesterol-mediated stabilization of a
DNA nanostructure within a lipid bilayer, and (e) conformation of a DNA nanostructure for comparison to cryo-EM reconstruction. (a)
Reproduced with permission from ref 55. Copyright 2009 Oxford University Press. (b) Reproduced with permission from ref 54. Copyright 2013
National Academy of Science. (c) Reproduced with permission from ref 56. Copyright 2021 Oxford University Press. (d) Reproduced with
permission from ref 57. Copyright 2018 Springer Nature. (e) Reproduced with permission from ref 58. Copyright 2012 National Academy of
Science.
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Coarse-Grained Simulations. AAMD has two primary
limitations when applied to simulations: hydrogen bonds have
very fast vibrations, and so simulations conducted with
timesteps beyond ∼2 fs will encounter numerical instability
and fail; and there may be many atoms in the system, resulting
in expensive force calculations and a large amount of
computation time for each increment of physical time being
simulated. Coarse-grained (CG) representations and their
corresponding CG molecular dynamics (CGMD) simulations
attempt to circumvent both of these issues by changing the
representation of molecules to one that is coarser than an
atomistic representation. Coarse-grained modeling has been
covered exhaustively in the past,91 but we will provide a
general overview here.
In this approach, groups of atoms are each considered as a

single representative particle. This serves to remove fast
vibrational modes from the system, which allows much larger
timesteps to be used, and also reduces the quantity of particles
in the system, which reduces the computational cost of force
calculations at each time step. In addition, the many degrees of
freedom arising from solvent molecules are removed by
replacing the explicit solvent from AAMD with a simple
implicit solvent representation. There are a few approaches to
achieving such coarse graining. Some “top-down” schemes

attempt to reproduce experimentally characterized mechanical
properties (e.g., bending and torsional persistence length and
pitch of DNA) in addition to thermodynamic properties (e.g.,
melting temperature) through effective interaction potentials
between coarse-grained particles.10,92 Other coarse graining
techniques may begin with a reference AAMD simulation and
attempt to match its equilibrium behaviors, which generally
include distance and angle distributions between points in the
AA model mapped to the CG particles. These “bottom-up”
methods (readers are referred to multiple excellent reviews93,94

on this topic) include iterative Boltzmann inversion (IBI),95,96

force matching,97 relative entropy minimization,98 and others.
Machine learning approaches have also been used for bottom-
up parametrization.99

There have been a few different coarse-grained DNA models
developed over the past decade, including Martini100 and
oxDNA,101 among others.102,103 The top-down parametrized
oxDNA model has proven to be the most reliable at
reproducing the behavior of large DNA nanostructures, and
top-down models have generally provided better overall
accuracy than bottom-up parametrizations. This is likely
because top-down approaches focus on capturing specific
characteristics of DNA, for example, propeller twist, major and
minor groove spacing, and persistence length. All of these

Figure 3. Coarse-grained modeling of DNA nanostructures. (a) Principal component analysis of a large DNA origami hinge. (b) Direct simulation
of DNA nanostructure self-assembly. (c) Use of coarse-grained modeling as a predictor of the equilibrium shape of a nanopincer. (d)
Characterization of a nanorotor made of DNA. (a) Reproduced with permission from ref 104. Copyright 2017 American Chemical Society. (b)
Reproduced with permission from ref 105. Copyright 2016 American Chemical Society. (c) Reproduced with permission from ref 106. Copyright
2021 Springer Nature. (d) Reproduced with permission from ref 107. Copyright 2022 Elsevier.
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characteristics are directly and intuitively related to the
equilibrated structure, conformations, and other characteristics
of DNA nanostructures that scientists desire to predict with
simulations. However, bottom-up parametrization schemes
often have a broad set of solutions, and many resulting
potentials may be unphysical. For example, DNA can form a
variety of structures, but AAMD simulations used for
parametrization may only capture DNA as a duplex. Bottom-
up parametrization based on such simulations would thus not
account for the myriad of other relevant DNA motifs such as
Holliday junctions that are fundamental to DNA nano-
technology. Even if AAMD simulations used for para-
metrization did include whole DNA nanostructures with all
possible motifs, bottom-up schemes with simple descriptions
of potentials are not typically designed to handle the
interaction complexity of DNA; therefore, the resulting
model would be unlikely to correctly capture transitions or
behaviors of other structures, or even the structure on which
the parametrization was based. To summarize, top-down
coarse-graining has provided the most accurate coarse-grained
models because it focuses on directly reproducing features that
are relevant to experimental observables.
Coarse graining’s primary trade-off is the resulting loss of

detail as compared to atomistic models; the particles are less
well resolved, and the potentials have been fitted as an
approximation to the interactions of many atoms, so they are
not perfect and typically replace an anisotropic set of
interactions (which may be functionally important) with a
spherical or ellipsoidal approximation. In addition, solvent-
specific effects such as the aforementioned ionic effects are lost.
However, the smallest modes of motion of AAMD simulations
are typically not very important in the context of DNA
nanotechnology, and many properties of interest can be
reproduced using CG models. oxDNA has played a vital role in
probing the equilibrium conformations of structures, stability
verification of designs of large DNA nanostructures produced
using common design packages,108−115 structural character-
istics of archetypal DNA origami structures,116 conformations
of ssDNA brushes on DNA origamis,117 basic motion and
reconfiguration of dynamic devices,26,104,118−121 and DNA
hybridization-based phenomena such as toehold-mediated
strand displacement (TMSD).92,122−124 The self-assembly of
DNA nanostructures has even been directly simulated (Figure
3b).105 Besides use in self-assembly, all of these examples used
CG-based simulations to iteratively modify DNA nanostruc-
ture designs and ultimately control experimental outcomes
without having to repeat experiments. It is further worth noting
that this has become a somewhat standard practice that is not
often reported in the literature; most DNA origami designs
that have been fabricated for use in research were first
simulated using CGMD and were often modified on the basis
of results from these simulations.
Sometimes, instead of using MD simulations, Monte Carlo

(MC) simulations125 can be used to sample the configurational
space. This can be advantageous because this technique may
offer larger physical jumps between sampled configurations
resulting in more efficient sampling. MC simulations perform a
sequence of perturbations of the particle configuration in a
stochastic manner that is not associated with time integration
and then accept or reject those moves based on the incurred
energy change ΔE, typically according to the Metropolis
acceptance criterion Pacc = min(1, exp(−ΔE/kBT)). This
procedure enables thermodynamically valid sampling such that

the average of an observable in the simulation corresponds to
the true ensemble average of that observable, which is ideally
the expected value of that observable in an experiment. For
dense systems such as DNA origami, MC move types that
move a single particle tend to be inefficient. However, carefully
constructed “cluster” move types that perturb groups of
particles together may be drastically more efficient than MD.
More complicated implementations of MC such as virtual
move Monte Carlo (VMMC) enable these more sophisticated
move types to be used101 and have been implemented in the
oxDNA simulation package. Figure 3 presents a few
representative examples where CG simulations have played a
role in prediction and nanostructure design.

Mesoscopic Models. Along the same vein but perhaps
deserving its own discussion, mesoscopic modeling (meso
serving to describe an intermediate scale between molecular
scale and macroscale systems) is an even coarser way to
represent DNA structures. Generally, CG modeling groups a
maximum of several atoms per representative particle and
intends to use clusters of particles to mimic the behavior of
monomers or small molecules; we can draw a distinction here
for mesoscopic models, which further coarsen the representa-
tion of these systems to the point where the molecular detail is
not well-defined.
Typically, representative particle size is on the order of a few

nanometers or larger, and many mesoscopic models are bead-
chain models. At this scale, the molecular detail of the system
is not of concern, and more emphasis is placed on reproducing
properties that take place over larger length scales, for example,
persistence length, end-to-end distance distributions, general
shape of nanostructures, etc. This can be useful for capturing
very coarse behaviors of dynamic nanostructures such as the
opening and closing of hinges when several devices need to be
considered simultaneously. This kind of simulation would be
quite expensive to perform using finer models such as oxDNA
but can be very efficiently performed using coarser
representations. With such coarse models, the relaxation
timecales of the particles often become shorter than the
simulation time step so that the highly efficient overdamped
Langevin dynamics (Brownian dynamics) simulations can be
used to describe device motion. Mesoscopic models are also
generally good candidates for implementation into lattice
models.126

While mesoscopic models have been used for studying
various DNA-based systems such as chromatin,127−133 DNA
renaturation,134 DNA motion in microfluidic and nanofluidic
systems,135,136 and viral DNA packaging,137 they are generally
underutilized in DNA nanotechnology. So far, mesoscopic
models have been used in the beginning stages of multiscale
models for modeling DNA nanostructures,138 and patchy
mesoscopic representations of DNA building blocks have been
used to elucidate the nucleated nature of DNA brick self-
assembly139,140 and the self-assembly of DNA tetrahedra into
cubic diamond crystals.141

Statistical Mechanics Models. Molecular simulation
techniques are not generally capable of studying kinetic
phenomena such as the folding of large DNA origami or the
supramolecular assembly of larger structures from DNA
origami tiles. Accessing the long time scales involved in these
processes requires more efficient computational techniques or
analytical treatments based on statistical mechanics.142

Statistical mechanics uses the statistical behavior of molecular
systems (e.g., the Boltzmann relation at constant temperature)

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.2c01045
ACS Appl. Bio Mater. XXXX, XXX, XXX−XXX

E

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.2c01045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to compute the long-time scale or bulk behavior of the system
of interest. The ability to analyze systems using statistical
mechanics comes from the observation that molecular
microstates are Boltzmann distributed, Pν ∝ exp(−βEν).
Here, ν is a system microstate, Eν is its energy, and β ≡ 1/
kBT, where kB is the Boltzmann constant and T is the system
temperature. The partition function Q describes the sum of
Boltzmann factors of all possible states in the system, or

=Q e E in the case of a constant T, constant number of
particles, and constant volume (NVT) ensemble. The
expectation value of any collective variable can thus be
expressed as = =X X P X Qe /E . Statistical
mechanics-based models developed for DNA origami
applications to this date have generally addressed one of
three objectives: prediction of the conformational dynamics
and actuation behavior of dynamic DNA origami nanostruc-
tures, characterization of the dynamics of systems involving
strand displacement reactions, and prediction of the kinetics
and thermodynamics of assembly processes. Besides the
general role of statistical mechanics in MD and MC
simulations and in CG model development,143 most existing
methods have focused on fitting and predicting the behavior of
simple dynamic DNA origami devices like hinges.24 These
systems usually incorporate short single-stranded molecules in
each arm, referred to as “overhangs”. The binding and
unbinding of these overhangs, driven by actuation methods
such as changes in salt concentration or TMSD, drives
conformational changes between system states. Hybridization
affinities are additionally controlled by tuning the length,
sequence, and location of these strands.120 The thermody-
namic properties of the hinges are then fully described by
hinge and overhang dynamics, whose effects can be decoupled.
Marras et al.26 and Crocker et al.142 used partition functions to
characterize the free energy associated with ion- and
temperature-mediated actuation of DNA origami nanohinges,
respectively. These models have shown great agreement with
experiments, suggesting notable control over the behavior of
dynamic DNA origami nanodevices. However, their applica-
tions are limited to a narrow range of devices; theories and
models characterizing the long-time behavior of dynamic DNA
nanostructures are few and rare.
Kinetic Modeling. Many analysis techniques used in DNA

computing and molecular programming, such as chemical
reaction networks and automata-theoretic models, have
diffused into structural and dynamic DNA nanotechnology,
inspiring diverse mechanisms for actuation, communication,
and programmability while providing fundamental insights into
mechanistic processes such as those involving assembly. DNA
origami platforms have been used to study the dynamic
behavior of DNA strand displacement (DSD) systems,
ensuring the (reaction-limited) spatial locality typical of
other computing models.144−146 While TMSD is often used
for actuation,12,24,147 in DSD systems, these reactions are used
to execute signal processing and control instructions146,148

such as logic gates,144 fork and join gates,149 catalytic gates,150

neural network computation,151 and oscillators.152 Integration
of DNA and RNA enzyme strategies has expanded the design
toolbox of these nucleic acid circuits,153−155 allowing for the
design of feedback control mechanisms,156 predator−prey
dynamics,157 and transcriptional oscillators,158 among other
circuit implementations.

The system size that can be solved analytically148 is limited
and has long since been exceeded by the complexity of
experimentally implemented circuits. Modeling techniques
thus play an important role in determining the state space of
DSD systems,148 estimating signal propagation times,159,160

and verifying if the observed behavior of a system corresponds
to the behavior predicted from design.148 Two modeling
approaches specifically stand out by virtue of their simplicity:
reaction-diffusion equations and Brownian dynamics.161 The
kinetics of a DSD system can be modeled as a continuous time
Markov process through the state space of all possible
conformations,159 which can be characterized either by
means of mathematical treatments or stochastic simulations
(i.e., Monte Carlo Gillespie algorithms). For simple DSD
systems based strictly on strand displacement reactions, the
different conformations of a system are defined by the state of
the strands, and strand displacement reactions occur with an
effective rate related to diffusion, hybridization-denaturation
rates (typically modeled using specialized software such as
Multistrand159), and the physical constraints of the sys-
tem.146,160,162 These three properties can be integrated to
obtain the effective strand displacement rates by means of
reaction-diffusion equations,163−165 reactive Brownian dynam-
ics simulations,146,162,166 or analytical theories involving first
passage times.160 Most DSD analysis has now been automated
and can be treated computationally using specialized kinetics
software such as Visual DSD,165 KinDA,167 and DyNAMiC
Workbench.168

Similar modeling strategies have been used to design,
program, and optimize the algorithmically directed assembly of
DNA origami tiles.169,170,187,188 A wide variety of DNA origami
tile shapes and interactions are possible,171 offering ways to
build large, complex assemblies with nanoscale resolution.
Experimentally implemented systems have been regulated by
diverse physical processes, including hybridization,172 strand
displacement,173 shape complementarity,171,174 and base
stacking.171,175 Knowledge of the thermodynamics and kinetics
of tile binding can then be used as input for theoretical models
at different levels of abstraction, including kinetic mod-
els,170,176 Monte Carlo models,177 and chemical reaction
networks.178,179

Kinetic modeling has also been used in structural and
dynamic DNA nanotechnology systems beyond the context of
DSD and tile systems. Many systems are purely reaction based,
and so their behavior can be represented using mass-action
kinetics, that is, as a system of ordinary differential equations
(ODEs) describing the time evolution of concentration, which
can be solved using eigenvalue decomposition or ODE solvers.
To provide a few examples, kinetic modeling has been used to
study individual attachment and detachment processes
between separated DNA origami structures demonstrating
autonomous regulation behavior,180,181 and to describe the
growth of polythymine brushes onto DNA via a catalytic
enzymatic polymerization process.182 Strategies similar to
those described for DSD systems have also been successfully
implemented to model DNA origami folding.183,185,186 Figure
4 depicts a few relevant kinetically modeled systems.

Continuum Modeling. While CGMD and mesoscale
simulations are very useful in DNA nanotechnology and offer
some of the best value in terms of accuracy versus
computational cost, in some cases it is expedient to use
continuum models. Continuum modeling assumes that the
response of a system to a perturbation can be approximated as
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a continuous function satisfying macroscopic balance and
conservation principles. When applied to solid mechanics,
partial differential equations are often used to solve the spring
equation for continuum solids to compute the global
deformation response to an applied load, which is introduced
as a boundary condition. When geometry is too complex to
analytically solve this equation, the problem can be discretized
into a set of small volumetric elements whose displacements
are described by the equation f = Ku, where f is the set of all
forces on connective elements (nodes), u is the displacement
vector of the nodes, and K is a stiffness matrix that accounts for
both compressive/tensile stiffness and bending and torsional
stiffness within the element accounting for the intrinsic moduli
of the material and moment of inertia of the element shape in
the direction of the applied load. Continuity between all
elements is assumed through their shared nodes, which
converts this partial differential equation problem into a
matrix algebra problem that can easily be solved.
A finite element model called CanDo189 has been developed

for continuum analysis of DNA nanostructures; this model
treats individual nucleotides as connected continuum non-
linear beams (because DNA’s behavior is more complex than
the usual, linear macroscopic treatment of most isotropic
engineering materials) and computes the equilibrium config-
uration and fluctuations of the DNA nanostructure being
studied. While it does not serve as final validation for structural
integrity or stability, CanDo is a good first check for having

attained the desired final structure before running a CG
simulation, as CanDo can usually predict undesired twisting
and bending of structures in a fraction of the simulation time
required by CGMD simulations. This allows experimental
groups designing DNA origami to quickly test their designs
and return to the drawing board if significant undesired
bending or twisting is predicted. The more recent SNUPI
model190 improves upon the CanDo model by adding
electrostatic interactions and has been shown to work well
for computing the equilibrium conformations of hierarchical
superstructures consisting of many DNA origami,191,192 a task
that has proven quite challenging for both AAMD and CGMD
simulations. Continuum mechanics provides additional value
to DNA nanotechnology by providing practically useful quasi-
analytical scaling behavior of new systems. For example, basic
solid mechanics including beam bending calculations based on
moment of inertia can be used to intuitively explain the
relationship between DNA origami cross section and structural
persistence length with remarkable agreement.193 This is useful
because as DNA nanotechnology has been advancing in
complexity (with nanostructures containing structural ele-
ments with many different cross sections being introduced
recently110), these continuum mechanics assumptions provide
basic predictive power for controlling the deformation
behavior of these structures and provide quantitative data for
comparison of multiple cross sections when they, for example,
contain the same overall cross-sectional area but different
shapes.

Multiscale and Hybrid Resolution Models. There are
some approaches that combine multiple modeling paradigms
to address specific limitations of individual techniques. For
example, some larger DNA nanostructures may be prohib-
itively expensive to equilibrate at a coarse-grained resolution.
To address this, a model has been developed that performs
major equilibration steps such as global structure relaxation at
a mesoscopic resolution and gradually refines modeling
resolution to achieve atomically reasonable equilibrium
conformations in just a few minutes.138 This model has the
added benefit of accessing very long dynamic time scales for
other purposes such as the simulation of applied electric fields.
Other examples of hybrid approaches include a recently
developed model that allows CGMD simulations of DNA to be
run in the presence of a mesoscale protein representation194

and, in the area of chromatin modeling, a mesoscale
representation of DNA and a coarser representation of
nucleosomes with charges represented using a discrete surface
charge approach.128 Another multiscale model used oxDNA to
sample the local free energy landscape of DNA brick self-
assembly, and then used that data to produce a two-state
kinetic rate model of the self-assembly process.195 Examples of
multiscale and hybrid resolution models can be found in Figure
5. Quantum Mechanics/Molecular Mechanics (QM/MM)
multiscale models have also been used in limited context to
study DNA. QM/MM models apply QM-based behavior to
reactive species, for example, those undergoing some kind of
chemical reaction, while treating other species using standard
AAMD force fields within the same simulation. This enables
time scale access approaching that of AAMD while still
capturing the physics required for phenomena such as ATP
hydrolysis196 or enzyme activity.197 In the context of DNA
nanotechnology, combinations of QM and MD simulations
have already been applied toward the optimization of dye
placement74 to afford control over device signal output and

Figure 4. Kinetic modeling in DNA nanotechnology. (a) Kinetic
model of higher-order self-assembly and disassembly of DNA
nanotubes. (b) Kinetic model of DNA origami self-assembly. (c)
Kinetic model of a reconfigurable DNA origami sheet. (a)
Reproduced with permission from ref 180. Copyright 2019 Springer
Nature. (b) Reproduced with permission from ref 183. Copyright
2015 AIP Publishing LLC. (c) Reproduced with permission from ref
184. Copyright 2014 American Chemical Society.
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could find future use in photonic systems198 or systems
containing quantum dots.199−201

■ ANALYSIS OF SIMULATIONS
The objective of simulations is typically to produce data that
can be compared to an experimental result or another
simulation to provide interpretable information about system
behavior. However, simply running simulations of DNA
nanostructures and attempting to “observe” phenomena by
eye is often insufficient to capture interesting phenomeno-

logical behavior. Trajectories must be analyzed to remove
unimportant degrees of freedom and capture the true mean
structure, dynamics, or some other property of the system. We
will describe some of the most common analyses performed on
simulations.

Mean Structure Computation and Removal of
Diffusive Degrees of Freedom. Computation of the mean
structure of a DNA nanodevice from dynamic simulations is
often a first step in the process of trajectory analysis. Molecular
simulations are often conducted on species that are floating in
solution; these species correspondingly have six degrees of
freedom (three degrees of translation and three axes of
rotation), which are not relevant to the actual intradevice
motion. To address this, we may isolate the specific
components of the body of molecules that we want to analyze
(excluding other bodies that do not participate in or are not
relevant to the process under study) and perform a rotational
and translational transform to minimize the mean squared
distance between the selected particles in frame i and those
particles in every other frame of the simulation. This frame i is
often selected at random but may also be selected to force
alignment to some basis, for example, Cartesian axes. This
yields a trajectory of a structure that does not translate or
rotate but instead solely performs its own internal motions,
which is much easier to analyze. Taking the mean of this
modified trajectory provides what is referred to as the “mean
structure”, which is the average structure accounting only for
internal motions. Examples of where this analysis has been
applied include characterizing polythymine brush extent on
DNA nanostructures,117 and capturing the mean structure of a
dynamic DNA origami hinge,120 both of which demonstrated
good agreement with experiments.

Principal Component Analysis. To determine the
dynamical behavior of structures, one may conduct principal
component analysis (PCA).202 In a general sense, PCA
generates a set of orthogonal vectors within a D-dimensional
data set along which the first vector captures the largest
deviation in that data set, the second vector captures the
second largest deviation, and so forth, until there are no more
orthogonal vectors that can be created. This results in D − 1
vectors or principal components. In the case of molecular
simulations, PCA can be used to compute the combinations of
particle motions that produce the largest overall deviation from
the structure’s mean. To do this, one can calculate the
Cartesian displacement of particles in each frame from the
mean structure of an N-particle system, flattening them into a
vector of length 3N for each frame, computing a covariance
matrix of this vector, and computing the eigenvectors and
eigenvalues of that covariance matrix, where each eigenvector
is a “component” of motion. These components can then be
redistributed into a set of three-dimensional vectors v each
accounting for the motion of a single particle. This is often
diagrammatically represented using an image of the mean
structure at c superimposed with a new image of the structure
where each particle has been moved by its corresponding
three-dimensional vector to locations c ± v (Figure 3a). With
PCA, one can understand how a structure is moving, including
determining whether undesired motions are occurring, thereby
allowing researchers to better design dynamic devices to have
more controlled motions.104 The recent introduction of the
oxView Web server203 enables these components to be
computed easily.

Figure 5. Three multiscale/hybrid scale models used to solve
tractability problems in DNA nanotechnology. (a) Multiresolution
DNA model used for rapid configurational equilibration. (b) Hybrid
DNA−protein model for simulation of DNA and protein complexes.
(c) Hybrid scale nucleosome−DNA model for simulation of
chromatin. (a) Reproduced with permission from ref 138. Copyright
2020 Oxford University Press. (b) Reproduced with permission from
ref 194. Copyright 2021 The Royal Society of Chemistry. (c)
Reproduced with permission from ref 133. Copyright 2006 National
Academy of Science.
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Estimating the Mechanical Properties of Structures.
The exact mechanical properties of DNA nanostructures could
be of importance to future experiments in DNA nano-
technology. Past studies have focused on applying the
principles of mechanical engineering beam analysis to DNA
nanostructures. The chemistry and biophysics communities
typically address the bending stiffness of DNA nanostructures
in terms of persistence length lp, whereas the mechanical
engineering community tends to use quantities such as Young’s
modulus E and bending moment of inertia I to describe
stiffness. These properties are connected by the relationship lp
= EI/kBT.

204 The persistence length can be computed using
standard methods from MD simulations,205 providing a
quantity that can be compared against experiments.206 The
mechanical stiffness of other bodies such as hinges can be
determined by calculating hinge angle distributions and
computing the slope of the free energy landscape dF/dθ.24
Calculating Diffusion Coefficients. The diffusion of

particles in a liquid, which is the typical environment for DNA
systems, generally follows Stokes−Einstein behavior,207 where
the translational self-diffusivity Ds is inversely proportional to
the particle’s hydrodynamic radius. Ds can be ascertained in
simulations from the slope of a plot of mean squared
displacement as a function of time change t in the long-time
limit. These diffusive statistics apply not only to a single
isolated particle, but also to the centroid of a group of particles
forming a single-stranded oligonucleotide or even an entire
DNA origami, although many existing models such as oxDNA
do not account for hydrodynamic interactions,208 and so
simulations using these may be inaccurate for comparison to

experimental techniques. AAMD simulations should hypo-
thetically produce accurate diffusion behavior that accounts for
hydrodynamics, although this technique suffers from periodic
boundary condition artifacts and computational expense.

Enhanced Sampling and Computation of Energy
Landscapes. The free energy of systems with respect to some
reaction coordinate is often of interest. For example, one might
wish to design a DNA hinge with a specific energy barrier to
opening and closing. Describing such energy barriers and
quantifying the time scale of transitions between states would
likely involve conducting CGMD simulations of that hinge,
which sample its full configurational space. However, such
simulations might be prohibitively long because the transition
time across barriers scales exponentially with barrier height
normalized by thermal energy. For this reason, one can turn to
enhanced sampling techniques such as umbrella sampling,
metadynamics, or various other techniques.210 Enhanced
sampling applies a known bias to a simulation, which drives
the system being studied out of local energy minima and then
uses that bias to determine the free energy landscape along a
reaction coordinate. Normally, the Hamiltonian of a system is
simply a function of their coordinates rN and momenta pN:
H(rNpN). As the most basic example, umbrella sampling
modifies the Hamiltonian being used in the simulation to

= +H H kr p( ) ( )N N 1
2 0

2, where χ is the current
location along the reaction coordinate being considered and
χ0 is some value around which we would like to sample, and kχ
is some stiffness that is selected roughly corresponding to how
steep the energy gradient is along the area being sampled. By
running simulations with this modified (“biased”) Hamiltonian

Figure 6. Use of enhanced sampling to predict DNA nanodevice behavior. (a) Pseudoknot formation in a dodecamer. (b) Metadynamics to
improve conformational sampling of a DNA nanostructure. (c) Umbrella sampling using the hinge angle of a DNA nanostructure as a reaction
coordinate. (d) Umbrella sampling of a toehold-mediated strand displacement reaction. (a) Adapted with permission from ref 101. Copyright 2021
Frontiers Media S.A. (b) Reproduced with permission from ref 209. Copyright 2022 American Chemical Society. (c) Reproduced with permission
from ref 120. Copyright 2020 Oxford University Press. (d) Adapted with permission from ref 122. Copyright 2013 Oxford University Press.
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for many different values of χ0 such that there is a contiguous
set of simulations with significant overlap in the distribution of
χ between each, we can effectively force the sampling of the
entire energy landscape of interest. These overlapping
distributions in χ are then unbiased and combined using
weighted histogram analysis211 to produce a contiguous free
energy landscape across the entire range of χ. This is a simple
yet very powerful paradigm, which has only recently begun to
be exploited for more advanced analysis of DNA nanostruc-
tures.104,120 Another enhanced sampling technique, metady-
namics,212 defines a reaction coordinate and then begins
sampling the energy landscape along that reaction coordinate.
As sampling proceeds, artificial potentials (usually Gaussians)
are added to the current location being sampled to favor
exploring other sections of the energy landscape. This pushes
the system out of well-sampled regions and into less well-
sampled ones. Once the entire range of interest has been
sampled, the artificial potentials are summed and inverted to
reveal the true free energy landscape. This technique has been
used to enhance the sampling of the configurational space of
DNA nanostructures for comparison to experiments involving
DNA origami with broad configurational flexibility,209 but it
has also been applied in a variety of biochemistry
systems213−215 and will surely find additional uses. Figure 6
depicts a few studies utilizing enhanced sampling.

■ COMPARING SIMULATION RESULTS TO
EXPERIMENTS

The value of predictive simulation data is somewhat limited
unless a sufficiently large body of paired data, consisting of
simulations and corroborative experimental data, has been
produced to merit confidence that the simulations are
accounting for all or nearly all sources of experimental
variability. This experimental data may be generated in several
ways, from direct imaging with light microscopy to
fluorescence spectroscopy to more advanced and well-resolved
techniques like cryo-electron microscopy (cryo-EM). Gen-
erally, simulations and experiments are compared by defining
useful collective variables and then designing schemes for
measuring those variables both in simulations and in
experiments. The distributions or other features of these
collective variables can then be compared between simulation
and experiment to determine whether the model is capturing
the relevant physics. We previously described the ways that
simulations are processed to gather collective variables of
interest; in this section, we will describe a few ways in which
experiments are used to generate collective variable data that
may be mappable to simulations.
Electrophoresis. The most common first step in

experimental characterization of a DNA origami nanostructure
is gel electrophoresis of the folding products. Because larger
DNA species tend to flow more slowly through an agarose gel
under an electric field, differently sized species will separate
over time where they can be compared to reference DNA
ladders. The separation of these species is based upon the
general concept of electrophoretic terminal velocity v. The net
force F acting on a molecule carrying charge q and being driven
by electric field E is given by F = qE − γv, where γ is the
friction coefficient of the species. Because agarose gel is highly
viscous, species rapidly reach terminal velocity so F = 0 and
thus v = qE/γ. Because q and γ scale differently with molecule
size, larger DNA species tend to have a slower terminal velocity
and thus migrate more slowly through the gel, resulting in a

band of DNA (identified using a loading dye) that is closer to
the well where the sample was loaded than smaller species. For
sufficiently long stimulation times, these DNA bands become
so well separated that they can be distinguished from each
other and individually isolated and further characterized. This
technique is primarily comparative, as the ladder and existing
known species serve as points of reference. However, this can
be useful for identifying bulk aggregation, dimerization,
disassembly, and other desired/undesired behavior. Further-
more, bands from these gels may be repurified and assayed
directly to further characterize the experimental result. This
may serve to corroborate modeling-based predictions of
structural stability or instability, or to direct further modeling
and simulation to understand the cause of experimental
outcomes such as aggregation.

Direct Imaging. Atomic force microscopy (AFM) and
transmission electron microscopy (TEM) are typically used to
provide direct images of DNA nanostructures. AFM works on
the principle of mechanical cantilever bending, where a
nanoscale silicon cantilever with a sharp tip is dragged or
tapped across a nanoscale surface; a laser beam pointed at the
top of the cantilever helps to measure the cantilever’s angular
deflection, from which the height of the tip can be calculated.
The height values z measured at each location x,y scanned
using a motorized stage then provide a three-dimensional map
of surfaces at very high resolution. TEM works on the principle
of an electron source, which fires electrons through a specimen
and records the unscattered electron density behind the
sample, providing an image of the specimen being sampled.
This provides a massive amount of useful information that can
be compared to simulations, ranging from simple qualitative
comparison between images and equilibrium simulations112 to
measuring the extent of polymers grafted to DNA origami for
comparison to CGMD simulations216 or nanoparticles,217,218

to measuring the angle distributions of hinge and lever
nanodevices and comparing these distributions to simula-
tions.104 The complexity in this technique arises from
measuring collective variables, which must generally be
performed manually, although this can be enhanced using
artificial intelligence (see below).

Spectroscopy. Spectroscopy is the study of matter’s
interactions with electromagnetic waves. This is often a coarse
but very effective way of observing DNA nanostructures and
their behavior. Within spectroscopy is fluorescence, a
phenomenon where certain molecular species absorb light at
one (often invisible) wavelength and then emit (usually
visible) light in their excited state. The emitted light can be
used to determine the locations of DNA nanostructure
components that have been labeled with fluorescent groups.
Fluorescent particle tracking has been used to characterize the
free energy landscapes of DNA origami devices, revealing
landscape features that are corroborated by CGMD
simulations.107 One adjacent example to fluorescence is
Förster resonance energy transfer (FRET), a nonradiative
dipole−dipole energy transfer phenomenon arising when one
molecular species (“donor”) is excited. If that species is close
to a species that is capable of receiving energy from resonance
energy transfer (“acceptor”), the excited donor species will
shunt its energy to the acceptor species and excite it, then
causing the acceptor to emit its characteristic excitation signal;
if the donor is not close to an acceptor, the energy from
excitation will be emitted as the donor’s signal. When FRET
pairs are placed on different parts of a DNA nanostructure, the
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signal arising from that FRET pair can be used to determine
whether those two parts are near each other or far away from
each other. While very simple in nature, this is extremely useful
as it can indicate open/closed states for hinge and box type
structures2 or can serve as a signal for whether a certain
component has incorporated into or dissociated from a DNA
nanostructure.20 These data are also easy to corroborate with
simulations because a simple collective variable can be defined
on the basis of the separation of the pair’s grafting locations
and the system can be predicted using CGMD simulations.219

Ultraviolet−visible (UV−vis) spectroscopy measures the
absorption of UV and visible spectrum electromagnetic
radiation by a sample. DNA’s spectral absorption can be
used to estimate the concentration of DNA in solution,220

which can provide information about DNA nanostructure
yield. The G-quadruplexes also have a distinct spectral
absorbance from ssDNA or dsDNA, leading to the use of
UV−vis spectroscopy to quantify the behavior of DNA-based
nanoswitches.221 Finally, UV−vis spectroscopy has been used
to quantify DNA binding onto gold nanoparticles.222

As the characteristic energy levels of rotation and vibration
of DNA molecules fall in the high gigahertz (GHz) to low
terahertz (THz) spectra,87,223−227 GHz to THz radiations
these wavelengths have found use in manipulating DNA
origami nanostructures, increasing their yield228 and allowing
for the development of biosensors and antennas with tunable
resonance.229−231 To better understand these devices,
computational THz spectroscopy of DNA origami molecules
can be performed using specialized software86,232,233 and
algorithms234,235 together with atomistic simulations.87,88

However, such treatment can only be implemented on small
molecular systems.
Cryo-Electron Microscopy (Cryo-EM). Cryo-EM236

vitrifies samples at extremely low temperatures and then uses
transmission electron microscopy (TEM) to resolve 2D
projections of those samples. Mathematical transformations
can be performed on the 2D data to recover 3D structural
information.237 This can be used to resolve the structure or
dynamics of proteins or DNA nanostructures in a nearly
atomically precise manner. In DNA nanotechnology, cryo-EM
reconstructions of DNA origami52 have been used as validation
for new simulation models.190

Dynamic Light Scattering (DLS). DLS uses the
autocorrelation of laser light scattering intensity to determine
the diffusive properties of the species contained within a
sample. It is most often used to obtain the diffusion coefficient
of species and to estimate the hydrodynamic radius of those
species.238−240 For a single species in solution, the
autocorrelation of scattering intensity decays as a single
exponential with a decay constant τ = q2, where q is the
wave vector and the translational self-diffusivity. This is
relatively straightforward to compare to approximations for
the diffusive properties of nonspherical shapes,241−243 making
for a useful point of comparison with the DLS result.
Small-Angle X-ray Scattering (SAXS). This technique is

used to determine the sizes and distributions of nanoparticles
in solution239,244 in addition to their shapes and for
distinguishing between different conformational states and
resolving their transitions.245 SAXS functions on the same
principle of standard X-ray scattering: when the paths of
scattered X-rays differ by a perfect multiple of their wavelength
λ, those X-rays collectively exhibit a high intensity from
cooperativity, while paths differing by a perfect half multiple λ/

2 are mutually destructive and will produce essentially no
scattered signal; SAXS data are typically a plot of scattering
intensity as a function of scattering vector q; these data may be
interpreted to provide information about particle size and
shape, which can be compared directly to simulations. While
its use has been limited, SAXS promises to resolve behavior
similar to that captured using fluorescence, but without the use
of bulky and saturation-prone fluorescent molecules.

Less Common Techniques. Some additional experimen-
tal characterization techniques applied toward DNA origami
include small-angle neutron scattering,246 ion mobility
spectrometry−mass spectrometry,247 and individual particle
electron tomography.248

■ ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

Artificial intelligence (AI) and machine learning (ML) are
somewhat distinct from the rest of the methods covered in this
Review because they are more general. However, due to the
incredible power of inference, ML and AI have seen broad
adoption across the domains of physics,249,250 biology,251,252

and materials science,253,254 and discussion of their use in the
context of prediction and control in DNA nanotechnology is
warranted. AI is a discipline that concerns solving problems
that cannot necessarily be addressed procedurally, in a manner
inspired by the learning behaviors of intelligent beings such as
humans. In most cases, AI attempts to establish a mapping
relationship between some input and a desired output. This
output may be, for example, the correct identification of the
subject of an image or an estimation of the probability
distribution of some collective variable. This process is often
accomplished using feedback,255−257 where the output is
compared to the ground truth (expected outputs); the
mapping function is then adjusted until it can reliably
reproduce these input−output relationships.
As a subset of AI, ML covers algorithms capable of learning

from pre-existing examples to make decisions or predictions by
recognizing the underlying patterns of a problem. There are
three main categories of ML: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning is
commonly adopted when a labeled data set is available for the
model to capture the relationship between feature and label.
However, unsupervised learning is adopted when labeling is
physically or economically prohibited, or when the goal is to
identify the underlying distribution of data, for example, using
clustering algorithms.258 Both supervised and unsupervised
learning provide data-driven predictions on properties of
interest. In the framework of reinforcement learning, the
objective would be for an agent to identify an optimal strategy
(policy) by maximizing a given reward function. The agent
does this by directly interacting with the environment and
learning from the received rewards. For how AI and ML
techniques work, we refer readers to existing comprehensive
literature addressing these topics.259,260

In DNA nanotechnology, AI has been adopted to address
emergent topics in the field, including nanostructure
annotation, design optimization, and device development.
The most straightforward application is to apply AI toward
direct imaging data of DNA nanostructures. Correctly
quantifying the values of collective variables in DNA
nanostructures and annotating AFM imaging usually takes a
tremendous amount of human input, where a researcher must
manually label hundreds to thousands of data points to
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establish sufficient statistical power in an experiment. AI
promises to enable automated labeling of experimental data in
a way that is not only less work but also less error-prone than
manual human entry.261−263 For example, YOLOv5 and its
recent derivative YoloX,264 convolutional neural networks that
perform extraordinarily well in image recognition tasks, have
been implemented in the context of nanostructure detection to
avoid laborious manual annotation of AFM images, leading to
a much more labor-efficient and statistically robust approach to
distinguishing between DNA nanostructures265 and estimating
their yields. A deep neural network has also been used to
directly improve the resolution of DNA origami AFM
images.266 Similar goals can also be achieved by nano-
TRON,267 an open-source imaging package that performs
classification tasks and has been shown to reliably reconstruct
nanostructures from super-resolution DNA-PAINT268 imaging
of DNA origami. A more recent study used AI to reduce the
amount of sampling required to reconstruct these structures by
an order of magnitude,269 indicating that AI can be used to
massively improve throughput in DNA nanotechnology-based
imaging applications.
Beyond accelerating laborious analysis tasks, AI has also

been applied to develop better DNA origami designs. In
simulation work, researchers have implemented shape
annealing and evolutionary strategies on the oxDNA model
and simulation software package10,92,270 to design nanostruc-
tures that closely match a desired shape profile.271 AI has also
been applied to provide a more accurate prediction of
structural properties, for example, constructing quantum-
accurate electron density profiles for DNA nanostructures up
to ∼225 kDa.272 Another interesting experimental application
of AI to DNA origami is the use of ML to predict and optimize
the performance of molecular photonic wires based on their
chromophore attachment configuration.273 eXtreme Gradient
Boosting (XGB)274 has additionally been used to classify the
sequence of molecular barcodes for multiplexed detection of
biomolecules on surfaces.275

■ GRAND CHALLENGES AND OPPORTUNITIES
The past decade has produced astounding advancements in
our ability to understand and optimize the behavior of DNA
nanodevices. However, several behaviors of DNA origami are
still not under our control. First, the folding of DNA
nanostructures and the associated yield of this process are
not predictable. While several design and fabrication recipes
help to avoid folding problems,8,276,277 they must be developed
on a case-by-case basis and do not always guarantee good
folding results. Better understanding of the folding process will
lead to much higher confidence that designs will fold properly,
both within the field and when researchers adopt DNA origami
as a tool in other fields.
Several properties of correctly assembled DNA nanostruc-

tures are also not very predictable, for example, the interaction
of DNA with proteins. Addressing this issue is well
underway,194 but the field still lacks a coarse-grained force
field capable of accurately capturing the interactions between
different peptides and DNA. In addition to proteins, the effect
of ions on DNA, specifically multivalent ions, may not be
accurately captured with CG modeling. This is likely because
CG models tend to treat salt effects using the Debye−Hückel
theory, which is too simple to address multivalent ions.
Currently, multivalent ion effects in the oxDNA model are
treated by simply applying an artificially high monovalent ionic

concentration. While this treatment functions well in
fabrication conditions, it is not clear how it will perform at
multivalent ion conditions deviating significantly from those
used during fabrication. This may potentially be resolved in the
future using more complex CG interactions that account for
other factors such as ion type, correlation, and valency in
addition to ionic concentration. CG models in adjacent fields
such as chromatin modeling have successfully reproduced
multivalent cation-mediated effects,278 offering potential
solutions to this challenge.
The size of the DNA nanostructures, especially those

hierarchically assembled from multiple DNA origamis, is
increasing at a rapid pace. At the larger length and time scales
associated with these structures, existing CG simulation
techniques are becoming insufficient to characterize dynamic
behavior. Mesoscale models using a coarser representation
than the oxDNA model may be useful for this purpose, where
capturing transition behavior over micrometers and seconds
may be tractable. The aforementioned mrDNA model138 may
be a good starting framework for this.
Lastly, AI can be used to improve our understanding of

several under-addressed topics in DNA nanotechnology. The
first is to use AI to understand fundamental processes. For
instance, one can exploit the inference power of ML models to
predict the transition behavior of dynamic DNA origami
devices. This can take place either in a simulation or in
experiments for the inference of relevant collective variables, or
in identifying interesting behavioral patterns. The second is to
exploit AI to improve assembly yields and control defects.
Instead of relying on expert intuition to craft assembly rules to
obtain desired origami design with sufficient yields, we
envision that reinforcement learning or active learning can be
well suited for this type of task. The third is to encourage the
use of AI in DNA technology by improving data accessibility.
Powerful ML models have achieved great success in other
research fields, such as Alphafold 2279 in the protein field,
largely thanks to the existence of vast data repositories such as
the RCSB Protein Data Bank.280 Yet, the adoption of ML has
been relatively slow in DNA nanotechnology because there has
not historically been a database or a data-sharing platform for
DNA nanostructure data, hindering AI workers from accessing
data and extracting knowledge or building models on it. A
promising new resource in the DNA nanotechnology space has
been Nanobase, a database and repository for DNA
nanostructures.281 This makes it possible to see the designs
used in various publications in the field, with additional data
available describing fabrication protocols. This resource could
be further leveraged in AI and ML applications and in data
harvesting for the enhancement of the field if additional
information about these nanostructures was provided, for
example, AFM or TEM images of folding products and
standardized and accessible data fields for annealing ramps and
salt conditions used in the fabrication of these nanostructures.
This could potentially aid in the improvement of our
understanding of DNA origami folding and provide a robust
body of reference data against which new simulation models
may be parametrized. Another way that ML and especially
deep learning can contribute is in the development of
simulation force fields where AI can provide nonfunctional
parametrization of CG force fields that may be more accurate
than functional representations.
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■ CONCLUSION
In this Review, we discussed the broad range of time and
length scales over which events in DNA nanotechnology take
place and the modeling resolutions used to represent DNA
nanostructures at these length and time scales. We then
discussed different simulation methods for the prediction and
control of DNA structure and device behavior. We described
the different experimental characterization techniques that are
available for comparison to model predictions and how they
are used in synergy with modeling for practical device design
and fabrication. We then discussed the recent development of
AI- and ML-based tools for DNA nanotechnology. Finally, we
discussed the current limitations and gaps in the modeling and
simulation space and identified key opportunities in prediction
and control that may further aid in the advancement of the
field.
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acid−protein model for hybrid nanotechnology. Soft Matter 2021, 17
(13), 3586−3593.
(195) Fonseca, P.; Romano, F.; Schreck, J. S.; Ouldridge, T. E.;
Doye, J. P.; Louis, A. A. Multi-scale coarse-graining for the study of
assembly pathways in DNA-brick self-assembly. J. Chem. Phys. 2018,
148 (13), 134910.
(196) Wang, C.; Huang, W.; Liao, J.-L. QM/MM investigation of
ATP hydrolysis in aqueous solution. J. Phys. Chem. B 2015, 119 (9),
3720−3726.
(197) Ahmadi, S.; Barrios Herrera, L.; Chehelamirani, M.; Hostas,̌ J.;
Jalife, S.; Salahub, D. R. Multiscale modeling of enzymes: QM-cluster,
QM/MM, and QM/MM/MD: a tutorial review. Int. J. Quantum
Chem. 2018, 118 (9), e25558.
(198) Kuzyk, A.; Jungmann, R.; Acuna, G. P.; Liu, N. DNA origami
route for nanophotonics. ACS photonics 2018, 5 (4), 1151−1163.
(199) Chen, C.; Wei, X.; Parsons, M. F.; Guo, J.; Banal, J. L.; Zhao,
Y.; Scott, M. N.; Schlau-Cohen, G. S.; Hernandez, R.; Bathe, M.
Nanoscale 3D spatial addressing and valence control of quantum dots
using wireframe DNA origami. Nat. Commun. 2022, 13 (1), 1−15.
(200) Bui, H.; Onodera, C.; Kidwell, C.; Tan, Y.; Graugnard, E.;
Kuang, W.; Lee, J.; Knowlton, W. B.; Yurke, B.; Hughes, W. L.
Programmable periodicity of quantum dot arrays with DNA origami
nanotubes. Nano Lett. 2010, 10 (9), 3367−3372.
(201) Huang, D.; Freeley, M.; Palma, M. DNA-mediated patterning
of single quantum dot nanoarrays: A reusable platform for single-
molecule control. Sci. Rep. 2017, 7 (1), 1−7.
(202) David, C. C.; Jacobs, D. J. Principal component analysis: a
method for determining the essential dynamics of proteins. Methods
Mol. Biol. 2014, 1084, 193−226.
(203) Poppleton, E.; Bohlin, J.; Matthies, M.; Sharma, S.; Zhang, F.;
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