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ABSTRACT

Existing machine learning models have proven to fail when it
comes to their performance for minority groups, mainly due
to biases in data. In particular, datasets, especially social data,
are often not representative of minorities. In this paper, we con-
sider the problem of representation bias identification on image
datasets without explicit attribute values. Using the notion of
data coverage, we develop multiple crowdsourcing approaches.
Our core approach, at a high level, is a divide and conquer algo-
rithm that applies a search space pruning strategy to efficiently
identify if a dataset misses proper coverage for a given group. We
provide a different theoretical analysis of our algorithm, includ-
ing a tight upper bound on its performance which guarantees
its near-optimality. Using this algorithm as the core, we propose
multiple heuristics to reduce the coverage detection cost across
different cases with multiple intersectional/non-intersectional
groups. We demonstrate how the pre-trained predictors are not
reliable and hence not sufficient for detecting representation bias
in the data. Finally, we adjust our core algorithm to utilize existing
models for predicting image group(s) to minimize the coverage
identification cost. We conduct extensive experiments, including
live experiments on Amazon Mechanical Turk to validate our
problem and evaluate our algorithms’ performance.

Artifact Availability:
The source code, data, and/or other artifacts have been made
available at https://github.com/melimou/ImageDataCvgCrwd.

1 INTRODUCTION

Tracing back machine bias to its source, there have been major ef-
forts to identify different types [21, 37, 44] and sources [13, 16, 54]
of bias in data. Representation bias [48], in particular, happens
when a dataset fails to represent some parts of the target popula-
tion [52]. Lack of representation from certain minority groups in
data has caused many instances of machine bias and algorithmic
unfairness in data-driven algorithms. For example, Facebook’s
ad algorithm excluding women from seeing specific jobs [27], or
commercial gender classification systems from Microsoft, IBM,
and Face++ that performed up to 35% worse on dark skin women
compared to light skin men [9]. Similarly, the blink-detection
feature of Nikon Cameras misclassified Asian eyes as being
closed [46] due to a lack of representation for this group. We
shall also demonstrate similar results in our experiments in § 6.4.

Recognizing the potential harms of representation bias, data
coverage [1, 2, 4, 5, 29, 35, 39, 53] has been introduced to ensure
proper representation of minority groups in datasets used for
decision making and building advanced data science tools. At
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a high level, a dataset has proper coverage for a given group
if it contains at least a certain amount of samples belonging to
that group. Despite the extensive work on detecting lack of data
coverage, existing work is limited to the tabular data. On the con-
trary, many of the well-known incidents of representation bias
causing machine bias, including all aforementioned examples,
are in non-tabular contexts, such as multi-media or textual data.

Admitting the wide range of multimedia databases, with at-
tributes of interest being in different forms and cardinalities, as
our first attempt in this project, we consider image data and a
small number of low-cardinality categorical attributes. Our choices
are motivated by image data’s popularity in data science tasks
and the reported unfairness issues in the image application do-
mains. Our assumption of the attributes of interest follows the
fact that sensitive attributes such as race and gender are low-
cardinality and non-ordinal, where each value such as black or
female represents a specific demographic group.

It is common that image datasets lack explicit values for at-
tributes of interest (such as gender or race). An image dataset is
often a collection of images from different domains with little to
no information about their domain and which groups they belong
to. As a result, even studying coverage over low-cardinality and
categorical attributes of interests is challenging in these cases.
There are multiple directions one can seek to overcome such
challenges. Considering a small number of categorical attributes
of interest (such as race and gender), one can use off-the-shelf
automated techniques, such as classifiers, to first label tuples with
their demographic information!. Then, relying on the predicted
groups, apply the coverage detection techniques to identify the
lack of coverage in data. However, as observed in our experiments,
this approach fails, mainly due to the following issues:

(1) (Machine Bias): while the objective of identifying lack of
coverage is to minimize machine bias, using (problematic)
off-the-shelf models will transfer their biases into the labeled
data, causing bias in the evaluation of the dataset. For exam-
ple, consider a gender-detection classifier. Due to the inherent
issues in how the classifier has been trained (and the data
it used), it may perform differently across different minor-
ity groups. For instance, in our experiments (Table 2), we
observed that the precision of a gender classifier from a well-
known face recognition framework such as DeepFace [47]
for females can get as low as 8% for a given image dataset.

(2) (Lack of distribution generalizability): Existing tools are trained
using data that may come from a different application domain,
following a different distribution, and hence may not perform
well on the dataset to be evaluated. Let us consider the exam-
ple of a gender-detection classifier once again. Suppose the
classifier has been trained using the standard portray images
with a solid background. One cannot expect the classifier
to perform well on randomly taken images [32]. Note that
applying transfer learning techniques to retrain the model

In presence of accurate predictive models, our algorithms utilize them to identify
coverage with minimum cost to verify the correctness of their results (see § 5).



using the dataset to be evaluated is not helpful since we can-
not expect a model to identify the representation biases of
the dataset it is trained on.

Considering the above issues with the existing data-driven tools
and techniques, a promising approach to consider is crowdsourc-
ing: to efficiently use human workers to identify a lack of cover-
age issues. Crowdsourcing is particularly promising for image
data, for the tasks such as image labeling, which while being
challenging for the machine, are considered "easy" for human-
being to conduct with minimal error?. Using crowdsourcing for
labeling the images with their attributes of interest can poten-
tially add human bias into the process. Fortunately, accurate
and reliable crowdsourcing that minimizes individual errors and
biases has been studied well in the literature. Aggregating the
responses of multiple crowd workers [6, 15, 28], and profiling the
crowd [55, 57, 58] are some of the known techniques proposed
for this purpose. A baseline solution then can be designed as
a two-step process: first ask the crowd to provide the attribute
values for all images in the dataset. Then apply off-the-shelf
coverage identification techniques [4] to detect the uncovered
groups. Cost-effectiveness, however, is a major requirement in
crowdsourcing frameworks such as Amazon Mechanical Turk
(MTurk) since there usually is a cost associated with each crowd
task. The proposed baseline solution is ineffective in such frame-
works because, depending on the size of datasets, it may require
a significant number of tasks, meaning a considerable cost to
study coverage in a given dataset. Hence, in this paper we study
the problem of identifying the lack of coverage in an image dataset
with the minimum number of crowd tasks. Existing research on
bias detection in image data sets is limited to [26] that proposes
a crowd-sourcing workflow to facilitate discovering attributes
with potential sampling bias (e.g., finding out the airplanes in an
image data set are facing right). The high level idea in this pa-
per is to show random samples of images from an input dataset
to the crowd to identify comon similarities, and then ask the
crowd judge to verify the discovered statements (see § 7 for more
details). In contrast, our objective in this paper is to detect repre-
sentation bias in terms of the data coverage with respect to the
given attributes of interest such as gender, instead of discovering
attributes that may reflect potential sampling bias.

Summary of Contributions. We study coverage identification
in image datasets using crowdsourcing. To the best of our knowl-
edge, our paper is the first to study data coverage in image datasets.
In summary, our contributions are the following:

e We propose a divide-and-conquer (d&c) algorithm to identify
the coverage of a demographic group across an image dataset.
To enable the development of our algorithm, we employ set-
based crowd tasks, which have been utilized in various crowd-
sourcing studies [24, 33, 34, 36]. At a high level, our algorithm
falls in the general class of group testing approaches, wherein
the process of identifying certain objects is divided into tests
on groups of items [17, 18]. While, following the same logic of
the group testing approaches, the design details of our algo-
rithm are problem specific, making its performance close to
the lower bound on the maximum number of tasks. We prove
this by a tight upper bound on the maximum number of tasks
the algorithm generates.

2We do not make the assumption that human beings are completely reliable but
rather suggest our framework for cases where human labels are more reliable.

e Using our d&c algorithm as the core, we propose efficient algo-
rithms for coverage identification over different scenarios with
multiple non-intersectional and intersectional groups. We fur-
ther introduce practical heuristics for coverage identification
by carefully aggregating the minority groups into the so-called
“super-groups”.

e In presence of pre-trained classification models that predict
the group(s) an image belongs to, we adjust our core algorithm
to utilize their prediction and minimize the coverage identifi-
cation cost. In cases where the models accurately predict the
group labels, our algorithm only generates a small number of
tasks to verify the correctness of the results.

o We evaluate our algorithms using extensive experiments on
real and synthetic settings. We run live experiments on MTurk
with real workers to validate our proposal. Besides, our per-
formance evaluation results verify our theoretical findings,
confirming the effectiveness of our algorithms.

2 PRELIMINARIES
2.1 Data Model

We consider a dataset in form of a collection D of N objects,
each being an image. For example, O can be a set of N = 10, 000
human face images. We use the notation #; to refer to the i-th
object in . We consider the no explicit attribute-value model for
the data. That is, D only contains the objects, while the objects
are not annotated.

We assume objects are associated with at least one attribute
of interest considered for identifying representation bias. For-
mally, we use x = {x1, -+, x4} to specify the attributes of inter-
est. Each attribute of interest is a categorical sensitive attribute
such as race, gender, and age-group. Each attribute has a car-
dinality of two or more, specifying different non-overlapping
(demographic) groups. For example, a binary attribute gender
with values {male, female} partitions the individuals into two
non-overlapping groups.

In particular, we consider three different scenarios with at-
tribute and group models: The most simple scenario is the single
binary sensitive attribute case where objects are associated with
only one binary sensitive attribute. Many of the problematic rep-
resentation bias cases that have been reported fall under this
category. Examples of this type of attribute include skin-tone
aggregated into a binary feature of fair and dark skin-tone [10].
Studies showed that the pulse oximeter devices have a question-
able accuracy in measuring arterial oxyhemoglobin saturation in
individuals with dark skin-tone [20], which proves it is impera-
tive that skin-tone feature be taken into account in developing
this type of device.

The immediate generalization is the multiple non-intersectional
groups case where each object is associated with one sensitive
attribute with cardinality larger than two. A non-binary attribute
race with values {White, Black, Hispanic, Asian, Others},
or a multi-valued attribute gender with values {male, female,
non-binary} are examples of this case.

The next level of generalization is the intersection of multiple
attributes where each object is associated with more than one
sensitive attribute that can be either binary or non-binary. An
example of this case can be the intersection of race and gender,
where each individual can be associated with one value from
each of these attributes such as Asian female or Hispanic male.



Select an option
Asian '
Black
Hispanic
White
Other

Q@ a + &
=

Figure 1: An example of point query to label a race attribute

2.2 Data Coverage

We use the notion of data coverage [4] to identify representation
bias in a dataset D. In particular, consider a dataset D with d
attributes of interest x, a count threshold 7 (e.g. 7 = 50), and a
subgroup g (e.g. {gender=male, race=white}) defined over x. The
dataset satisfies coverage over g, if there are at least 7 objects in
D, matching the subgroup g (e.g. there are more than 50 objects
with gender=male AND race=white).

For datasets with more than one attribute of interest (d > 1),
patterns are used to specify the subgroups. A pattern P is a string
of d values, where P[i] is either a value from the domain of x;,
or it is “unspecified”, specified with X. For example, consider a
dataset with three binary attributes of interest x = {x1, x2, x3}.
The pattern P = X01 specifies all the tuples for which x; = 0
and x3 = 1 (x1 can have any value). Consider the universe of all
patterns over a set of attributes x. We say a pattern P is a parent
of another pattern P’ if (a) there exists exactly one attribute x;
on which P and P’ are different, while (b) P[i] = X (unspecified).
Note that P in this case is a more general subgroup than P’, since
all the objects matching P’ also match P, but the vice-versa is not
valid. A pattern P is a maximal uncovered pattern (MUP) if there
are less than 7 objects in © matching it, while all of its parents
are covered. The lack of coverage in a dataset is identified by
discovering all of its MUPs.

2.3 Crowdsourcing Model

A major challenge in studying coverage over multimedia data
is that the objects are not annotated and we do not know the
values on x beforehand. We use crowdsourcing to overcome
this challenge. In crowdsourcing platforms such as MTurk or
Crowdflower, a microtask or a Human Intelligence Task (HIT) is a
simple task that usually requires no domain-specific knowledge
or expertise, has a clear description and a price which workers can
accept and complete and get paid given their result is approved
by the requester of the task.

Quality control and aggregation model. Quality of answers is
a well-studied crowdsourcing challenge. One popular approach is
to employ a redundancy-based strategy in which a single HIT is
assigned to multiple workers and the correct answer (the truth) is
inferred by aggregating the multiple answers. There are several
studies on truth inference methods. The proposed techniques
in this paper are agnostic to the choice of the crowdsourcing
framework, quality control, and HIT aggregation model. In our
experiments, we adopt the popular majority vote strategy [61]
to get the truth and Qualification and Rating [14] as individual
assessments to ensure a higher quality of answers from the crowd.

Query/ HIT model. We consider two types of queries:

(1) Point queries: A point query is a request to provide a piece
of information (attribute value) about a single object. The

Instructions: Please answer this question with "yes" or "no”.
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Figure 2: An example of set query about gender attribute

query itself can be either a yes-no question or providing one
or more labels associated with the attributes of interest. In
Figure 1 an example of a point query is demonstrated, where
the worker is asked to provide the race of an individual.

Set queries: While a point query asks the crowd to provide
specific attribute values for specific objects, the set queries
are for the purpose of verification. A set query is a simple yes-
no question about a given set of multimedia objects (image,
video, etc.). That is to ask if the set contains at least one object
belonging to a specific (sub-)group. For example, Figure 2
shows a set query asking the crowd to verify if the set contains
any females. In practice, one may need to consider an upper
bound on the number of objects in a set query for the query
to be reasonable and the answers more accurate.

(2

~

Pricing model. Pricing and incentive models for crowdsourcing
frameworks have been extensively studied. Examples of such
methods are fixed price models, bidding models [50], and posted
price models [51]. Here, we adopt the fixed pricing model, that is
all tasks have an equal cost. Therefore, our objective is to mini-
mize the number of tasks required to finish the task of detecting
coverage which in turn is in line with minimizing the total cost.

2.4 Problem Definition

Having explained the data model, data coverage, and the crowd-
sourcing model, we now define our problem as follows:

PROBLEM FORMULATION: Given an image dataset D, the
attributes of interest x, and the coverage count threshold t, identify
the lack of coverage on D while minimizing the number of tasks|
required.

In particular, we study this problem under three settings: (1)
single (minority) group, (2) multiple non-intersectional groups,
and (3) intersectional groups, proposing efficient solutions tai-
lored for each setting. At a high level, our main idea is to divide
the dataset into subsets of a specified size, ask the crowd a ques-
tion about the attributes of interest, and based on the crowd’s
answer to the question, decide to divide that particular subset
into two halves or prune it. Modeling each algorithm’s flow into
a binary tree, we analyze the efficiency of our proposal, partic-
ularly when the dataset size is very large. We also study the



problem in the presence of predictive tools for labeling the data,
utilizing them to effectively form the tasks, and minimizing the
interaction with the crowd.

3 EFFICIENT COVERAGE IDENTIFICATION

We start our technical sections by designing a general algorithm
that can be used for detecting coverage over different settings of
sensitive attributes. In particular, given a demographic (sub)group
g, our goal in this section is to identify if g is uncovered.

Before proposing the algorithm, however, let us consider the
single binary sensitive attribute case to observe a challenge we
need to address in our algorithm. In such a setting, the binary
attribute partitions the data into two groups: the majority group
(to which most of the objects belong) and the minority group.
Let g1 and g» be the majority (e.g. gender=male) and minority (e.g.
gender=female) group, respectively.

Challenge. We observe that verifying that g; is covered can be
done efficiently. To see why, suppose the coverage threshold is
7 =100, i.e., a group is covered if there are at least 100 instances
of it in the dataset. Assume the (majority) group g; contains
n1 > 100 objects in the dataset. In order to verify that g; is not
uncovered, it is enough for the crowd to discover 100 of those
objects, not the entire n;. Following this, ©(7) provides a lower
bound on the number of crowd tasks required for verifying the
coverage for a given group. Still, this lower bound only holds
for the groups that are covered, i.e. there at least 7 of those in
the dataset. Surprisingly, unlike the majority group, verifying
that a minority group is indeed uncovered is cumbersome. This
is because even though discovering 7 objects from a group is
enough for verifying that it is covered, one cannot verify a group
is uncovered until there is a chance that the dataset might still
have enough objects from that group. Thus, assuming a non-zero
probability for each unlabeled object to belong to each group,
one might need to ask the crowd to label the entire dataset before
one can confirm that a specific group is uncovered.

3.1 Coverage Identification for a Given Group

Verifying that a minority group is uncovered is challenging. Our
idea is to design a divide and conquer algorithm that, instead of
point queries, uses set queries to iteratively eliminate subsets of
data that does not include any object from the given group. At a high
level, the algorithm asks a set query from the crowd, inquiring
whether the selected set contains at least one object from the
given group g (Figure 2). The user may provide two responses
(yes/no). Interestingly, in either case, the response provides useful
information that helps in the efficient study of the coverage:

o The answer is “No™: If the answer to a set query is no, it means
the set does not include any object from the given group g.
As a result, the algorithm can safely prune the set, asking no
further questions about it. In particular, for a group that is not
covered, one can expect to see no answers on large set queries
helping to quickly prune a large portion of the dataset.

o The answer is “Yes™ A yes answer to a set query means that the
set contains one or more objects from the group g. Therefore,
the algorithm cannot prune the subset since it can have any
number (larger than zero) of the objects in g. At the first glance,
the queries with yes answers do not provide useful information
as the algorithm cannot prune the subset (it needs to divide it
to smaller subsets). However, a key observation is that, since
the sets are disjoint, the algorithm will require observing only a

Algorithm 1 GRouP-COVERAGE

Input: Dataset D, dataset size N, subset size upper bound n,
coverage threshold 7, target group g
Output: Coverage of group g, the count lower-bound cnt
1: cnt « 0; Let Q = an empty queue
2: fori « 0to N with step sizendo: // init roots of subtrees

3 root « node(i, i + n); Q.add(root)

4: while Q is not empty do

5 T « Q.del_top()

6: (i,j) « (T.b_index, T.e_index)

7: ans «—ASKQUESTION({t;,--- ,tj},g) // set query

8 if T.parent is null then

9: if ans=yes then cnt < cnt + 1 else continue

10: else

11: if ans=no then // prune

12: if T = Tparent.left then

13: T < Q.del(T.parent.right) // observe from

Line 21 that left nodes are added first

14: elsecontinue

15: if T.parent.checked then cnt « cnt + 1

16: else T.parent.checked« true

17: if cnt = 7 then return true // covered

18: if j > ithen //if setsize>1 o

19: T left— node(i, | 5 |); T.righte node(| 52| + 1, j)
20: T left.parent«— T.right.parente— T
21: Q.add(T left); Q.add(T .right)

22: return false, cnt //uncovered

limited number of yes answers before it stops. That is because
the number of such queries provides a lower-bound on the
number of objects from g in the dataset. Hence, as soon as the
lower-bound reaches to 7, the algorithm can stop, knowing
that g is covered.

Based on the above observations, we design our divide and
conquer algorithm as follows. We use a binary tree data structure
to efficiently implement the algorithm. Each node in the binary
tree has the following structure:

struct node:

b_index // the beginning index of the range
e_index // the end index of the range
parent=null, // link to the parent node
left=null, // link to the left child
right=null, // link to the right child

checked=false, // true if at least one of its
// child nodes has returned a yes answer

Each node in the tree is associated with a set query containing
the objects {tp indexs " s te index} € D.In addition, every node
in the tree has pointers to its parent and children. Finally, every
node contains a boolean variable “checked” (with the default
value false) that is used for maintaining a lower-bound on the
number of objects discovered from the target group g.

Using the tree data structure, Algorithm 1 shows the pseudo-
code of our proposed algorithm for the single binary sensitive
attribute case. The algorithm uses the variable cnt to maintain
the lower-bound number of objects discovered from the target
group g. Considering a maximum size of n for the set queries,
the algorithm starts by partitioning the data into | N/n| subsets,
allocating each to a binary tree. Adding the roots of the trees to



the queues, the algorithm then iteratively removes a tree node
from the queue until a lower-bound count of 7 is achieved for
the minority group g or it verifies that g is uncovered.

For every node T removed from the queue, the algorithm
asks the crowd to verify if its corresponding set contains at least
one instance belonging to g. Depending on the answer from the
crowd, multiple situations can happen. If the node stands for the
root of a binary tree and the response is yes, the algorithm has
found at least one more object from g; but if the response is no
(Line 11), it can safely prune the entire set from the search space
and continue with other sets. On the other hand, if T is not a
root node, if the answer is no, it means the answer for the other
child of its parent should be yes. That is because the parent node
contained at least one object from g. Since T does not contain any
such object, the other child of its parent should contain at least
one. As a result, in Line 13, the algorithm replaces T with the
other child of its parent, safely knowing the answer to a query
to the new T is yes.

When the answer to a non-root node query is yes, the algo-
rithm may or may not be able to increase the lower-bound cnt.
Note that the algorithm has already associated at least one object
from g to the parent of each non-root node (the nodes with no
answers have been pruned). As a result, the lower bound on g
gets increased if the answer to both children of a parent node
is yes. We use the variable checked for this purpose. checked is
true, if the answer to one of the children of a node is yes. Using
this, when receiving a yes response, the algorithm increases the
lower bound (Line 15) only if the checked variable of the parent
of T is true. At any moment that the lower-bound reached the
threshold 7, the algorithm stops marking g as covered. Finally,
the algorithm breaks the yes nodes with set sizes larger than one
in two halves, adding them to the queue. If after checking all
nodes in the queue the threshold 7 is not reached, g is uncovered.

Running Example. To better demonstrate GROUP-COVERAGE,
let us consider a toy example with 16 images, where each image
belongs to either group O or group A. Suppose we would like
to check if A is covered, while 7 = 3. Figure ?? shows the The
binary tree representation of the GRour-COVERAGE algorithms’
flow, while the root of the tree shows the entire image set. The
answer to first query on the root is yes so the lower-bound value
cnt gets updated to 1 and the images gets divided in two halves.
The answer to both children of the root are also yes, so cnt gets
updated to 2, while each set gets divided by half. The next level
of the tree contains four set queries, each containing four images.
Moving from left to right, the answer to the left-most query is no,
therefore, (i) this set gets pruned and (ii) the algorithm without
issuing a new task knows the answer to the second-from-left
query is yes (otherwise its parent query could not be yes). The
same situation happens for the two right nodes. Next, in the
fourth level, the algorithm issues the first two queries from left
and since the answer to both is yes, cnt gets updated to 3 and the
algorithm stops since it reaches the coverage threshold 7. Note
that in this example, the algorithm issues seven queries to the
crowd before it stops.

3.2 Algorithm Analysis

LEmMaA 3.1. (Correctness) The GROUP-COVERAGE algorithm suc-
cessfully identifies if a group g is covered or not, i.e., if there are at
least T instances of g in the dataset D.3

3Due to the space limitations, the proofs are provided in the technical report [40].

After correctness, let us now study the number of tasks GrRoup-
CoVERAGE generate. Before studying the performance in general
cases, let us consider two extreme cases, while assuming N = n,
where (Case I) the answer to all questions is yes, and (Case II)
there exists only one object in g.

Case I: Consider the cases where the answer to all set questions
is yes, meaning that all set queries contain at least one object
belonging to g. In this case, the set queries do not help prune the
search space. As a result, the execution tree is a complete binary
tree shown in Figure 3b. Note that the number of leaf nodes in this
tree shows the value of cnt, knowing that the answers to those
set queries are yes. On the other hand, the GRour-COVERAGE
algorithm stops when cnt = 7. Therefore, the number of leaf
nodes in the tree is at most 7. In a complete binary tree with
7 leaves, there are 7 — 1 non-leaf nodes. As a result, the total
number of tasks generated by the GRour-COVERAGE algorithm,
in this case, is 27 — 1 = O(7).

Case II: Suppose there exists only one object from g in D. In
this case (Figure 3c), every level of the execution tree contains
exactly one node while one of its children is no, while the other
one is yes. Given that the root of the tree corresponds to a set of n
objects, the leaf yes node (containing one object) is at depth log n
in the tree. Hence, since every intermediate node has exactly two
children, the number of tasks generated in this case is ©(log n).

THEOREM 3.2. Assuming the dataset size is N = n, or when
there is no limit on the set query size, (i) the maximum number
of tasks generated by the Grour-CoveraGt algorithm is ©(z logn),
(ii) the upper bound is tight.

LEMMA 3.3. (Cost Analysis) The maximum number of tasks
generated by the GROUP-COVERAGE algorithm is ©( % + rlogn).

Before concluding this section we would like to note that
lower-bound on the maximum number of set queries an algorithm

need to issue for deciding if g is covered is % That simply is
because % queries are needed to include each object in O in at
least one set query. In cases where g is uncovered, all objects
should be queried to verify g is indeed uncovered. Comparing
this lower-bound with the maximum number of tasks generated
by the GRouP-COVERAGE algorithm, one can verify that GRoup-
COVERAGE has only a small additive overhead of (7 log n) from

the lower-bound.

3.3 Coverage Identification using Grour-Coverace

Recall that the algorithm presented so far considered the sin-
gle binary attribute case. Particularly, given a group g, GRoup-
CovERAGE efficiently interacts with the crowd to identify if g is
covered. This algorithm can be applied for coverage identification
for different scenarios of sensitive attributes, as followed:

3.3.1 Multiple Non-intersectional Groups. In a case where
there is one attribute-of-interest x, let ¢ be the cardinality of x. In
this case, each value of x specifies a group g;. To study coverage in
this case, one needs to identify if each of the groups g; is covered
in O. This can simply be done by running the GRour-COVERAGE
algorithm c times, where the i-th run checks if the group g; is
covered. As a result, following Lemma 3.3, the maximum number
of tasks generated for this case is then Theta(c(% +7logn)).

3.3.2  Intersectional Groups. For cases with intersectional groups,

the intersections of attribute values on x = {x1,- -+ , x4} specify
different subgroups, while the objective is to identify the uncov-
ered region in form of maximal uncovered patterns (MUPs) [4].
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Figure 5: The pattern graph for x;=gender and x3=race

Consider the graph representation of patterns associated with
the attributes x. A real-life example of this case is represented
with gender and race attributes in Figure 5. The first level of the
graph contains patterns, such as female-X or X-black with one
attribute-value specified for them. A child of a node at level ¢
is a node at level ¢ + 1 with one more attribute-value specified
than its parent(s). For example, the level-2 pattern female-black
(representing the subgroup of female black individuals) is a child
of patterns female-X and X-black. An MUP is a pattern that is
uncovered itself but all of its parents are covered. For example,
female-black is an MUP if it is uncovered but both its parents
female-X and X-black are covered.

In order to specify MUPs using the GRouP-COVERAGE algo-
rithm, we consider the fully-specified subgroups (at maximum
level), each being the intersection of d attribute values. The
Cartesian product of the values of x; to x; determine these sub-
groups. For example, in Figure 5 the nodes at level 2 of the graph
(e.g. female-asian) show the fully-specified subgroups. Using
1, ,¢q as the cardinality of the attributes xy, - - - , x4, the num-
ber of fully-specified subgroups is m = ¢1 X ¢z X - -+ X ¢g4. Let
g1, -, m be the set of these subgroups. Finding the MUPs is
then possible by combing the Pattern-combiner algorithm [4]

with the algorithm GRouP-COVERAGE. At a high level, the pattern-
combiner starts from the bottom of the pattern graph (fully-
specified subgroups), and counts the coverage for each of those,
eliminating the covered nodes (with all of their parents). Then
moving up in the graph, for the nodes that have not been pruned,
it uses the counts of their children to check if those are covered,
pruning the covered nodes and their parents while identifying
the MUPs (uncovered nodes that all of their parents are pruned).

Algorithm 1 enables running pattern-combiner noting that
GrouP-COVERAGE finds the exact count for an uncovered group.
In such cases the lower-bound variable (cnt in Algorithm 1) con-
tains the number of items belonging to the uncovered group.
Additionally, pattern-combiner only needs the counts for the
fully-specified subgroups that are uncovered as it already prunes
the covered nodes.

4 PRACTICAL OPTIMIZATIONS BASED ON
GROUP AGGREGATION

So far in previous sections, we designed an efficient algorithm to
detect if a certain group is covered in . We further explained
how this algorithm enables coverage identification for different
cases of attributes of interest. In this section, we propose prac-
tical heuristics for cases with multiple non-intersectional and
intersectional groups. In particular, we note that independently
running the GRoUP-COVERAGE algorithm for different groups
specified by x to identify coverage, misses the opportunity to
reuse the information collected during each run.

First, to avoid labeling objects multiple times we move the
labeled objects from the unlabeled set D to the labeled set L.
Our main idea, however, is to form set queries that combine
multiple demographic groups in one task — instead of one group.
Specifically, consider a case where two or more demographic
groups in the dataset are uncovered and there are very few items
corresponding to them such that after combining them to one
“super-group”, the result is still uncovered. For example, suppose
the races Native American, Asian, and Middle Eastern are on the
absolute minority that the summation of counts for all these three
groups is less than the coverage threshold. In this case, instead of
running the GRour-COVERAGE algorithm once for each of them,
we can run it for the super-group once. To do so, we change the
set query to combine the individual groups with OR predicate.

Nevertheless, the challenge is that we do not have prior knowl-
edge about the dataset D to form the super-groups. In order to
obtain such information, we consider estimating the counts using
sampling. To do so, we add a sampling phase at the beginning
of our method, in which a small random subset of the dataset is
presented to the crowd as point queries, with their task being to
label the items. The results from this step gives us an estimation



Algorithm 2 MULTIPLE-COVERAGE

Input: Dataset D, dataset size N, subset size upper bound n,
coverage threshold 7, target groups G, sample-size parameter
c=2

Output: Coverage of all groups in G

1: D, L < LABELSAMPLES (D, 1,¢) //obtain cr random labels

2: Gggg < AGGREGATE(L, 7,G) //form the super-group
3: cov «— empty set

4 for G € Gggq do:

5: 7'« 7~ Ygeg L.COUNT(g)

6 cvg, cnt «—GROUP-COVERAGE (D, N, n, 7/, G)

7: if |G| = 1 then cov.ADD ({G, cvg, cnt)); continue

8: if cog = true then //if the super-group G is covered
9 for g € G do:

10: v/ « 7 — L.count(g)

11: cvg, cnt < GROUP-COVERAGE (D, N, n, 7, g)

12: cov.ADD ({g, cvg, cnt))

13: else for g € G do: cov.aDD ((g, false, cnt))

14: return cov

of the demographic groups frequencies in the dataset. Based on
this estimation, the algorithm will decide which groups to aggre-
gate as super-groups. Next, we need to determine the sample-set
size. Our intuition is that point queries are efficient for verifying
the coverage of the majority group, since we expect to discover
enough of those after ©(7) point queries. Therefore, we can first
issue the point queries to identify the majority group, while at
the same time, we piggyback on the point query results to collect
information about minorities and form the super-groups. Follow-
ing this idea, we consider labeling a random subset of size ct of
D at the beginning of the algorithm, where c is a small constant
(we found ¢ = 2 as a good choice in our experiments). Note that
in cases where initial point queries do not find at least 7 objects
from the majority group(s), the algorithm effectively identifies a
subset of these instances and needs fewer queries to get to the
coverage threshold. As a result, GRouP-COVERAGE rapidly stops
detecting them as covered. One drawback of forming the super-
groups is when the result for a set of super-groups is covered. In
this case, we could not know whether one, two, or all groups are
covered, and thus, we need to examine each separately. In other
words, the aggregation strategy will incur a penalty cost when
the super-groups are covered.

AGGREGATE function.? (Line 2 of Algorithm 2) Let G be the list
of groups in one attribute or the set of fully-specified subgroups
in the intersection of multiple attributes. The count estimations
based on the samples collected in the labeled set £ are utilized
to set up the super-groups for G. We calculate the expected
number of instances corresponding to each group in the dataset
based on their occurrence in the sample. Let £.counT(g) return
the number of objects in group g that belong to L. Since point
queries are selected randomly, £ is a random sample of D. Hence,
the expected size of g is E[|g|] = N(L.count(g))/|L]. If the
expected number is less than the coverage threshold, it is likely
that this particular group is uncovered in the dataset and vice
versa. Similarly, if the summation of the expected numbers for
a set of groups is still less than 7, the super-group formed by
merging them is expected to be uncovered. To use this idea for

4The pseudo codes of the functions are provided in the technical report [40].

forming the super-groups, we first sort the groups based on their
count values in £ ascending. This helps to put the minority
groups nearby and merge them as super-groups. Then we makes
a pass over the sorted groups while maintaining the sum over
their expected coverage. So far as the expected sums are less than
7, the algorithm keeps merging the groups into a super-group,
and then it moves to the next super-group. It finally returns the
list Gqgqg of the super-groups.

Multiple and Intersectional Groups Coverage. Using the
idea of merging minority groups into super-groups, Algorithm 2
specifies the uncovered groups for the cases where there ex-
ist multiple, non-intersectional groups in a single attribute. In
particular, for every group G in the set of aggregated groups
Gagg- the algorithm first specifies the number 7’ of instances it
needs to observe before it can conclude G is covered. Next it runs
the GRouP-COVERAGE algorithm for identifying the coverage of
G in D.If G is not a super-group, the algorithm directly adds
the coverage result of G to the output. For cases where G is a
super-group, if G is covered, the algorithm fails to conclude if
groups g € G are covered or not. Therefore, it reruns the Group-
CovERAGE algorithm for all of such individual groups g. On the
other hand, for cases where the super-group G is uncovered, the
algorithm concludes that all groups in G are uncovered.

We can take advantage of the above technique for multiple
attributes, where we are interested in identifying the coverage
of each of the individual and the intersectional groups. Figure
5 demonstrates the pattern graph for two attributes of gender
and race. To solve the problem for this case, we take on a simi-
lar idea to the PATTERN-COMBINER algorithm[4]. The objective
of the PATTERN-COMBINER algorithm is to find MUPs (maximal
uncovered patterns) in a dataset. As mentioned before, an MUP
is a pattern that is uncovered but all of its parents are covered.
Consequently, all of the children of MUP are uncovered as well.
For example, in the race and gender attributes case with 7 = 50,
assuming that we find 15 instances of Asian-Female and 20 in-
stances of Asian-Male, we can conclude that Asian group with
total instances of 35 is uncovered as well. On the other hand, if
there were 28 Asian-Female and 32 instances of Asian-Male, we
could conclude that Asian group is covered, without any addi-
tional crowdsourced tasks.

We use this idea to reduce the problem of identifying the
coverage of multiple attributes to identifying the coverage of the
fully-specified subgroups at the maximum level. We can see that
this problem can be easily transformed into solving it for multiple,
non-intersectional groups. It is noteworthy that the aggregation
process for this special case requires that only the nodes with
the same parent be aggregated with each other. To this end, we
used a flag (multi) in our aggregation algorithm to distinguish
between the two cases. Having identified the coverage of the
subgroups using the MULTIPLE-COVERAGE algorithm, we then
proceed to identify the coverage of all other patterns in the upper
levels. Algorithm 3 describes the details of the discussed method.

5 UTILIZING EXISTING PREDICTORS

While solely relying on ML models for coverage identification
might be a problematic, in presence of accurate and well-developed
models, we should be able to utilize them in order to reduce the
coverage identification cost - i.e., the number of crowdsourc-
ing tasks. In this section, we adjust our core algorithm for this
purpose. In such settings, instead of calling GRouP-COVERAGE



Algorithm 3 INTERSECTIONAL-COVERAGE

Algorithm 4 CLASSIFIER-COVERAGE

Input: Dataset D, dataset size N, subset size upper bound n,
coverage threshold 7, set of attributes x
Output: Coverage for all individual and intersecting groups in
x
1: L «LABELSAMPLES(D, 1)

2: Let G be the set of fully-specified sub-groups at the max level
3: Gagg <—AGGREGATE(L, 7, G, multi = true)

4: cov «—MULTIPLE-COVERAGE (D, N, n, 7, Gagg)

5: Let Q = an empty queue

6: for (g, cug, cnt) € cov do Q.ADD({(g, cvg, cnt))

7: while Q is not empty do

8: T « Q.del_top()

9: if T.cug =true then

10: foreach p in T.ancestors do: Q.ADD({p,true, T.cnt))
11 else

12: cnt «— 0

13: for VP € T.parent.children — T do

14: cnt <« cnt + P.cnt; Q.pop(P)

15: if cnt > 7 then Q.ApD((T.parent,true, T.cnt))

16: else Q.ApD((T.parent false, T.cnt))

in subsequent algorithms, one should call our classifier-aware
algorithm (CLASSIFIER-COVERAGE — Algorithm 4).

Using pre-trained classifiers on the dataset gives us the pre-
diction groups. The predicted labels can be used in order to re-
duce the prediction cost. However, we still need to validate the
correctness of the results obtained by the classifier in order to
determine the coverage of a given group. Suppose a gender clas-
sifier is applied to a dataset to return a set f as females. In order
to identify the coverage for the female group, the main idea is to
eliminate the falsely identified females (false positives), namely
males, from f. To this end, we apply a similar idea to what we
did in GRouP-COVERAGE algorithm: we create a crowdsourcing
task with all the points in set f, and ask a reverse question: “Is
there any individual in this set that is NOT female?”.If the
answer is yes, it means there are some false positives in this set.
Therefore, we take the divide-and-conquer approach by dividing
the set into two halves and repeating the question until all false
positive instances are eliminated.

A performance issue with this strategy, however, happens
when the false positive rate of the classifier for the given group
is high. In such settings the divide and conquer strategy keeps
dividing the sets into fine granularity, resulting in many small set
queries to ask. In such cases, labeling the data points in the female
set using point queries to verify the classifier’s label might be
more efficient. Following this observation, we propose a sampling
phase to estimate the precision of the classifier on the positive
group, i.e., the group on which we would like to verify coverage
(females in this example). Similar to our proposed method in §4,
we choose a small, random sample from the identified females set
(in our experiments, we found that a sample size of 10% of the set
classified as the given group would be a good choice). In the next
step, we ask the crowd to label the sample using point queries and
estimate the precision of the classifier, comparing the classifier
label and the true label. We experimentally found that if 25% of
the sample are false positives, it is safe to say that the precision of
the classifier on the positive group is sub-optimal for the group
coverage identification task. Based on the estimated precision of
the classifier on the target group, our algorithm decides whether

Input: Dataset D, dataset size N, subset size upper bound n,
coverage threshold 7, target group g
Output: Coverage of g
1: Let G be the set of tuples in D with predicted label g
: Let S be a sample of G
: for t € S do L.add((t,POINTQUERY(?)))
. if L.counT(g) > 0.25|G| then G «ParTITION(D, G, n)
: else G «LABEL(D, G, 1)
. if |G| > 7 then return true
: else return GrRour-CovVERAGE (D — G,N,n, 7 — |G|, 8)

N9 A W

to eliminate the false positive objects using either partitioning
or labeling strategies.

At the end of this process, we will have a set containing only
objects associated with the queried group g (female in this exam-
ple). If we already have at least 7 instances of a group g, we can
determine the coverage and stop the process. However, assuming
that the number of discovered instances ¢’ is less than 7, now we
have to find at least © — ¢/, false negative instances of g, i.e., the
instances that belong to g but are classified as not belonging to g
before we can conclude g is covered (or to verify the number of
false positive is less than 7 — ¢’ and hence g is uncovered). This
can be done by applying the algorithm GRour-COVERAGE on the
set of objects classified as not g with the threshold 7 — ¢’. The
details of the proposed method can be found in Algorithm 4.

Our experiments in § 6.3.2, utilizing various pre-trained clas-
sifiers show that our optimization for coverage identification for
classified datasets can achieve remarkable performance.

6 EXPERIMENTS

In this section, we evaluate the performance of our methods
for coverage identification of single and multiple demographic
groups. Additionally, we explore our heuristic of coverage detec-
tion for a single demographic group (gender) on pre-processed
image data with pre-trained classifiers. Finally, we deploy our
system on a real crowdsourcing platform, MTurk, to explore the
performance of the discussed methods with real workers.

6.1 Experiment Setup

The experiments were conducted using both synthetic and real
datasets. The algorithms were implemented in Python.

o Synthetic datasets: To thoroughly assess our algorithms,
we create synthetic data with a variety of distributions.
As an example, in a single demographic group problem
setting for gender, a data point can be either {’F’, 'M’}.
In these experiments, we simulate the behavior of the
crowdworkers in answering queries.

Image datasets: We use slices of FERET DB [43] and UTK-
Face [60] image datasets for the purpose of experiments
on MTurk and applying pre-trained classifiers on the data.
FERET DBiis a dataset of 14,126 images of 1199 individuals
taken from a variety of angles. UTKFace is also an image
dataset consisting of over 20,000 annotated facial images.

Evaluation Plan: We evaluate the performance of Grour-CovERAGE
and the optimizations for multiple non-intersectional and inter-
sectional groups as well as classified data using pre-trained classi-
fiers. We report the number of tasks required for each experiment
setting. We use a straightforward baseline, called BAse-CoVERAGE,
to identify group coverage as a baseline method to compare our



algorithm’s results to. In this method, each task is created contain-
ing only one single data point and is asked about. Two outcomes
are possible for this algorithm: either at some point, 7 instances
of objects associated with the group are identified and hence, the
group is covered, or the algorithm goes through all the data and
determines that the group is uncovered.

Default Values: To evaluate the performance of our algorithms,
we fix the value of some of the introduced parameters in §3-5. The
default value of ¢ is 2, and we fix 7 and n as 50 in all experiments
except their respective parameter analysis experiments.

6.2 Summary of Results

Our proposed GRoOUP-COVERAGE algorithm achieved remarkable
results in group coverage identification in our experiments. Even
at the worst possible case (where the number of instances as-
sociated with the group in the dataset is close to the coverage
threshold), both the synthetic and MTurk experiments with the
real crowdworkers showed that our algorithm needs a signifi-
cantly small number of tasks compared to the size of the dataset
in order to achieve results. We also show that the upper bound
discussed in § 3.2 is in fact tight. Our optimizations on multiple
group cases (both intersectional and non-intersectional) proved
to be effective in most cases compared to a brute force approach
utilizing the GROUP-COVERAGE algorithm to identify the coverage
of multiple groups. Additionally, the optimization of classified
data using pre-trained classifiers achieved notable results in most
cases, decreasing the number of required tasks by approximately
80% in some.

6.3 Proof of Concept

6.3.1 Amazon Mechanical Turk. In this experiment, we evalu-
ate our proposed method and the crowd’s performance on a live
crowdsourcing platform. We defined a female coverage identifi-
cation task and published our HITs on Amazon Mechanical Turk.
Each HIT contained a set of initial n = 50 images to present a
reasonable workload to the crowd, with a maximum assignment
to 3 workers for quality control. The layout of the HITs was de-
signed as Figure 2. The crowd was asked to answer the questions
with yes or no.

To examine how each method affects the final outcomes, we
use three quality control techniques: Majority Vote, Qualification
Test, and Rating [14]. We adopt the off-the-shelf Majority Vote as
a group assessment to control the quality of outputs, in which we
assigned the same HIT to 3 workers and took the majority vote
as the truth. We also experiment with Rating and Qualification
Test as two types of individual assessments to further verify that
our workers have the appropriate skills for the tasks. For the
rating assessment, we measure the workers’ performance using
NumberHITsApproved and PercentAssignmentsApproved in MTurk
and only allow workers who meet a certain criterion for approved
HITs and assignments to perform our tasks. Additionally, we
designed a qualification test to verify the workers’ competence
before granting them access to our HITs as another method for
quality control. This test has a similar layout to the original HITs,
which also served the purpose of familiarizing the workers with
the tasks. One interesting observation that was made is that
despite the relatively low number of assignments per HIT, only
1.36% of the total 660 answers from the crowd in all experiments
(in 220 HITs) were incorrect which did not affect the final result in
each experiment run. Additionally, we did not detect a significant
difference between the experiments with or without individual

FERET DB (females=215, | GROUP- | BASE- | UPPER-
males=1307) COVERAGECOVERAGE BOUND
#HITs | #HITs | #HITs
QC: Majority Vote 74 342 115
QC: Qualification Test, 75 386 115
Majority Vote
QC: Rating (PercentAssign- 71 284 115
mentsApproved >= 95,
NumberHITsApproved >=
100), Majority Vote

Table 1: Coverage identification for female on MTurk

assessments which further supports our idea about the tasks
being relatively easy and straight-forward for the crowd and
fault-proof to an extent.

We employed the fixed price model as our pricing strategy. In
our first set of experiments, each HIT price was set to $0.1. In
the next experiments, we decreased the reward for each HIT to
$0.05. Interestingly, this did not discourage the workers to accept
and complete our tasks. Overall, we paid a total of $44.1 to the
workers and $8.82 to Amazon MTurk as service charges.

We used two different subsets of the FERET dataset. With
7 = 50, the results from each experiment setting can be found in
Table 1 with a comparison to the baseline Base-Coverace method
and our theoretical upper bound (% + rlog(n)).

6.3.2  Existing predictors. To investigate the performance of
the existing predictors on image datasets and our strategy to
detect the coverage of a dataset utilizing these models, we ran a
number of experiments using DeepFace [47] and another CNN-
based facial demographic classifier [30] to predict the gender of
the individual in datasets. We used a subset of images of unique
individuals from the FERET dataset [43], and two 3,000-point
subsets of UTKFace [60] with different distribution of females to
evaluate the results for both covered and uncovered cases. We
applied DeepFace with opencv and retinaface as the underlying
face detectors. Next, we passed the predicted labels and the fe-
males set detected by the classifier as the input to our CLASSIFIER-
CoVERAGE algorithm. Our algorithm chooses between "partition-
ing" and "labeling" to eliminate false positives in the identified
female set. It picks "partitioning" if the classifier is at least 25%
precise on a sample of the set, and "labeling” otherwise. The
results are reported in Table 2. We also include the coverage
detection results using GROuP-COVERAGE to compare them with
those of CLASSIFIER-COVERAGE.

For each experiment, the accuracy and the precision of the
classifier on the dataset are calculated separately. As discussed
before, the accuracy of some classifiers can vary by a large margin
on different data. Moreover, a high level of accuracy does not
necessarily guarantee reasonable precision in predicting the class
of data points. More specifically, both of the classifiers had a
relatively high accuracy in the classification task on the UTKFace
dataset, but both also had a low precision in their prediction for
the female demographic group, which further proves the fact that
the performance of the existing predictor for sensitive groups is
questionable in many cases.

In addition, the results show that our heuristics make the right
decision for which false positive elimination strategy to use in
most cases, leading to significantly fewer necessary tasks to get
the result. Compared to our GRour-COVERAGE algorithm used
standalone, the proposed techniques can produce significantly
better results in most cases and still competitive results in others.



Existing classifiers’ performance CLASSIFIER-COVERAGE GRrOUP-COVERAGE
dataset classifier accuracy | precision on false positive CLASSIFIER- #HITs
female group elimination strategy | COVERAGE
#HITs
_ _ DeepFace (opencv) 79.57 99.5 Partition 14 80
FERET DB (females=403, males=591) DeepFace (Retinaface) 84.1 100.0 Partition 17 80
BaseCNN 64.48 59.19 Label 84 80
_ B DeepFace (opencv) 93.56 52.02 Label 97 51
UTKFace (females=200, males=2800) DeepFace (retinaface) 94.16 56.15 Label 89 51
BaseCNN 97.6 74.8 Label 69 51
B B DeepFace (opencv) 96.53 8.0 Label 134 221
UTKFace (females=20, males=2980) DeepFace (retinaface) 96.43 10.09 Label 143 221
BaseCNN 97.6 21.59 Label 122 221
Table 2: The results of female group coverage detection on gender classified datasets
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6.4 Downstream Tasks Consequences

In this experiment, we show how the lack of coverage may cause
model performance disparity (unfairness) in the downstream
tasks. In particular, using two computer vision tasks we observe
that (a) lack of coverage may cause model performance disparity
for an uncovered group, and (b) resolving the lack of coverage
reduces the performance disparity for the uncovered groups.

6.4.1 Drowsiness Detection. Drowsiness detection systems
are used to prevent accidents that are caused by drivers who fell
asleep while driving. MRL eye dataset [22] is a large-scale human
eye dataset containing infrared images captured in a variety of
lighting conditions from 37 people. While some of the subjects
in the dataset wear glasses, we intentionally disregarded the
images of such subjects to make them uncovered and created
a sample of size 26480 images belonging to two classes of open
(14279 images) and closed eyes (12201 images). Following the
same procedure, we generated 10 datasets and repeated each
experiment 10 times, using different datasets. Using this as the
training data, we built a CNN model, and evaluating the model,
we observed that while it has an average overall accuracy of
91.5%, the average accuracy for the spectacled subjects is only
81%. Next, in order to confirm that the issue was due to the lack
of coverage, we gradually added 20, 40, 60, 80, and 100 images
from the uncovered region back to each of the classes of open
and closed in the training data, and retrained and evaluated the
model. The results are illustrated in Figure 6a. With an increase
in the number of samples taken from the uncovered group, we
observed a reduction in the accuracy/loss disparity of the model
between a randomly sampled test set and a sample consisting
exclusively of spectacled subjects.

6.4.2 Gender Detection. To further verify our proposal, we
repeat a similar procedure, using UTKFace dataset. We extract
a sample comprising 7055 face images from UTKFace such that
each image belonged to a class of either male (3834 images) or
female (3221 images). While extracting the sample, we intention-
ally picked the subjects only if they were Caucasian. Using this as
the training data, we trained a CNN model to predict the gender
of the subjects. We repeated this procedure on 10 different sam-
ples and observed that on average, there is a 1% disparity in the
overall accuracy of the model versus the accuracy for the Black

Number of Spectacled Samples Number of Black Samples

(a) drowsiness detection (b) gender detection

Figure 6: Effect of lack of coverage in the downstream tasks

subjects. Similar to the previous experiment, gradually increasing
the number of Black subjects in the training data reduces the
aforementioned disparity close to zero as seen in Figure 6b.

6.5 Performance Evaluation

In the following sections, we present the results of our exper-
iments using the stated settings. First, we evaluate the perfor-
mance of the GRourP-COVERAGE algorithm with varying param-
eters 7,n, N in §6.5.1. Next, we evaluate the optimizations for
multiple non-intersectional and intersectional groups in §6.5.2.

6.5.1 Groupr-COVERAGE. To evaluate the performance of the
GRrouP-COVERAGE algorithm, we designed a simulation to reflect
the procedure that the crowd would be presented with to carry
out the tasks. The objective of the simulation is to first identify
whether the dataset is covered with respect to a demographic
group and determine the total number of tasks required to iden-
tify the coverage of a given group. For this purpose, assuming we
are interested in identifying the coverage of female, we generate
a dataset containing males and females and shuffle it randomly
to prepare for the experiment. Each experiment with particular
variables is run multiple times to better capture the effect of the
dataset’s underlying distribution on the results. In these sets of
experiments, we study the impact of the scope of parameters on
the end results.

Varying 7. First, we analyze the relationship between the cov-
erage threshold and the number of females in the dataset and
its impact on the number of necessary tasks to get the results.
Figure 7a illustrates the number of required tasks when there
exist [0, 27] items of the demographic group in the dataset. We
have a dataset of size 100K, and we select the coverage threshold
as 50. It can be observed that the largest number of queries is
needed when the number of females (f) is close to 7. Conversely,
the farther f gets from 7, the fewer tasks are required to get to a
conclusion. This observation is consistent with the discussion in
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Figure 7: Performance evaluation for GRour-COVERAGE, MULTIPLE-COVERAGE, and INTERSECTIONAL-COVERAGE algorithms

§3.2; with too few or too large quantities of f in the dataset, our
algorithm’s results appear to be further from the upper bound.
Figure 7b shows the results of running the algorithm with dif-
ferent coverage thresholds. The coverage threshold is varied from
1 to 100 (0.001% to 0.1% of the dataset size) and there are exactly
7 females at each run. Naturally, when the coverage threshold
increases, the algorithm needs to cover more grounds to produce
results. This also shows that the relationship between the cover-
age threshold and the cost is linear as discussed in §3.2. Note that
the results in this figure demonstrate the case where f = 7, which
is the situation that requires the maximum number of tasks to
get to a decision and is very close to the theoretical upper bound.
Varying n. This experiment is designed to study the impact of
the subsets size upper bound on the algorithm’s outcome. We set
the coverage threshold to 50 in a dataset of size 100,000 while
maintaining 50 instances of females in the dataset. In Figure
7c, we can see a substantial jump in the number of tasks when
the subset size increases from around 10 to 20. Moreover, the
result does not change significantly after that even with a notable
increase in the subsets size. This confirms the logarithmic nature
of the subsets size upper bound parameter in the algorithm.
When determining the set size, one must consider the crowd’s
ability to identify the subject of the task at hand. While selecting
larger n might lead to fewer required tasks, it is likely that we
obtain less reliable answers from the crowd due to the large
number of items presented all at once. further, increasing the
initial subset size will not significantly impact on the end results.
Varying N. To assess our algorithm’s performance in a variety
of datasets, we ran experiments for datasets of size 1K to 1M.
Figure 7d illustrates the results of the algorithm for varying
dataset sizes. As expected, the number of required tasks to de-
termine the results grows linearly with the size of the dataset,
but never exceeds 6%. In other words, our results show that in
practice, we can determine the group coverage for a dataset with
tasks no more than 6% of the dataset size at the very worst case.

6.5.2 Optimizations for multiple groups. To evaluate the per-
formance of our proposed method in identifying the coverage

for multiple groups, we take a similar approach as the previous
section. We create a synthetic dataset comprising of data points
that can correspond to o = 3, 4, 5, 6 distinct demographic groups
for the non-intersectional case, and two datasets, one with 2 at-
tributes with cardinalities o1 = 2,09 = 4 and the other with 3
binary attributes (o1 = 2,02 = 2,03 = 2) for the intersectional
case. In a dataset of 10K points, with a threshold of 50 and a
subset size of 50, we vary the number of items for each group
in the dataset to simulate different combinations of settings and
run the algorithm for each variation. Additionally, we run the
GroupP-COVERAGE algorithm for each group independently to
compare our results. In our experiments, we found out that while
our heuristics on multiple groups can perform very well in some
cases, it can also appear to be ineffective or worse than the brute
force in some other. The results of the experiments for these cases
are shown in Figures 7e and 7f.

Each of the bars defined as effective 1, effective 2, ... repre-
sent a different setting with respect to the number of instances
associated with each group which is further described in Table 3.

The adversarial case, in which there are multiple uncovered
groups with summation of items greater than 7 in the dataset, it
is likely that our heuristic fails in aggregating these groups into
a super-group since the probability of having instances of these
groups in the sample is significantly low. Thus, the super-group is
covered and the algorithm needs to run for each of the subgroups
individually. This imposes a penalty on the total number of tasks
and makes it an adversarial case for our heuristic. To conclude,
we can expect that our method works well or with little difference
compared to brute force in some cases while failing in others.

Figure 7g shows the results for the MULTIPLE-COVERAGE al-
gorithm for attributes with various cardinalities. Considering
cases where our heuristic is effective, as the cardinality of the at-
tribute increases, the total required tasks in MULTIPLE-COVERAGE
grows more slowly than the brute force, resulting in a larger gap
between the two methods as the cardinality increases.



Setting Description
. 3 uncovered minorities; their aggregated super-
effective 1 . ’ seres P
group is uncovered
effective 2 3 covered minorities
ineffective 2 uncovered and one covered minority
. 3 uncovered minorities; their aggregated super-
adversarial .
group is covered

Table 3: Experiment settings for multiple groups

Figure 7h represents the results of the INTERSECTIONAL-COVERAGE

algorithm for two cases, one with 2 attributes with cardinal-
ities 01 = 2,02 = 4 and the other with 3 binary attributes
(01 = 2,00 = 2,03 = 2). As expected, with the same settings,
the results for each of these cases are similar, with the num-
ber of fully-specified subgroups at the maximum level for both
cases being equal. In other words, in the case of intersectional
groups with multiple attributes, the only important feature is the
cardinality of the attributes rather than the number of attributes.

7 RELATED WORKS

Crowd-sourcing for Bias Detection. [26] proposes a crowd-sourcing

workflow to facilitate sampling bias discovery in visual datasets
with the help of human-in-the-loop. This workflow takes a visual
data set as an input and outputs a list of potential biases of the
data set. There are three steps in this workflow. The first step
is Question Generation and the crowd inspects random samples
of images from the input dataset and describes their similarity
using a question-answer pair. The next step is Answer Collec-
tion in which the crowd review separates random samples of
images from the input dataset and provides answers to questions
solicited from the previous step. Finally, in the third step called
Bias Judgement the crowd judge whether statements of the visual
dataset that are automatically generated using the questions and
answers collected accurately reflect the real world.

Set queries. Set-based HITs, similar to our set queries, have
been used in various crowdsourcing studies, including crowd
powered data mining [33, 34]. [45] first introduced the idea of
filtering a set of data based on a particular property using humans.
Another example is [8], where for the purpose of top-k and group-
by queries, the crowd is asked to answer type set question which
has “yes” or “no” answer based on whether the data points in
a set have the same type, which is similar to our notion of set
queries on a target demographic group. Set queries have also
been used in the crowd-sourced “count” operation: For instance,
Marcus et al. [36] show a small batch of objects (images) to the
crowd, asking them to estimate the number of items satisfying a
specific constraint (e.g., photos with a car in them). Set queries
are also popular in crowd-sourced clustering. For example, in
[24] each worker views a small set of images as a HIT, where they
are asked to provide a partial clustering of the set. Set queries
have also been used for tasks such as crowd-sourced median
finding [25], crowd-sourced planning [31], etc.

Group testing. Our approach in the GRour-COVERAGE algo-
rithm falls under the general category of group testing methods,
where a task of identifying certain objects is broken up into
tests on groups of items [18]. First proposed by Dorfman [17],
group testing has been widely used across different domains [18],

with early applications such as detecting broken electrical cir-
cuits [11] with more recent applications in graphs [12], web
databases [7], and even in Covid-19 detection [23]. Related work
includes [19], which explores ways to perform efficient combi-
natorial group testing to identify up to d defective items from a
set of n items using a reduced number of tests for practical set
sizes. More generally, the class of divide and conquer (d&c) algo-
rithms are popular in crowdsourcing. For example, [59] proposes
a crowd-sourced d&c approach for sorting. Similarly, [42] pro-
poses a crowdsourcing d&c approach for creating cross-lingual
textual entailment corpora. Related work also includes crowd-
sourcing d&c approaches for mobile platforms [3], paired com-

parisons [56], etc.
Coverage. The notion of data coverage has been studied across

different settings [1, 2, 4, 5, 29, 35, 38, 48, 53]. With many an-
gles to tackle, data coverage has been studied for datasets with
discrete [4] and continuous [5] attributes populated in single or
multiple [35] relations. Additionally, [1, 2, 49] (resp. [41]) use
query rewriting (resp. data integration) to resolve representation
bias. Existing works in data coverage have so far only focused
on tabular data.

8 CONCLUSION

In this paper, we studied the problem of coverage identification
in image data. This problem is motivated by the historical rep-
resentation bias in various forms of data, and specifically the
inefficiency of the existing supervised or unsupervised learning
methods in performing equally well for minority groups on image
data. We proposed an efficient algorithm to identify the coverage
of a demographic group across the dataset and showed that the
number of required tasks is optimal and close to the theoretical
lower bound, and introduced practical heuristics to expand our
solution for multiple non-intersectional or intersectional groups.
We also presented an optimization method for detecting group
coverage in datasets labeled by the existing predictors.

In this work, we focused on image data as a specific form of
multimedia data. We hope to find equally efficient methods to
identify data coverage in other forms of multimedia data such as
video in our future work. In addition, our goal in this paper was
mainly to minimize the cost of crowdsourcing by minimizing
the total number of required tasks. We consider extending our
techniques to support various pricing models as part of our future
work.

9 RESEARCH ETHICS REVIEW STATEMENT

The research conducted in this study involving participants from
MTurk ensured adherence to ethical principles and guidelines.
Participants were provided with clear and comprehensive infor-
mation such as the purpose, procedures, the type of the task,
the compensation amount, and the expected time to complete
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before their engagement in the study. In addition to the plat-
forms anonymization of MTurk workers, we further ensured the
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