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Abstract

As practitioners increasingly deploy machine learning models in critical domains such as health-
care, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside
these models. Explainability is one way to bridge the gap between human decision-makers and
machine learning models. However, most of the existing work on explainability focuses on one-off,
static explanations like feature importances or rule-lists. These sorts of explanations may not be
sufficient for many use cases that require dynamic, continuous discovery from stakeholders that have
a range of skills and expertise. In the literature, few works ask decision-makers such as doctors,
healthcare professionals, and policymakers about the utility of existing explanations and other
desiderata they would like to see in an explanation going forward. In this work, we address this
gap and carry out a study where we interview doctors, healthcare professionals, and policymakers
about their needs and desires for explanations. Our study indicates that decision-makers would
strongly prefer interactive explanations. In particular, they would prefer these interactions to take
the form of natural language dialogues. Domain experts wish to treat machine learning models as
“another colleague”, i.e., one who can be held accountable by asking why they made a particular
decision through expressive and accessible natural language interactions. Considering these needs,
we outline a set of five principles researchers should follow when designing interactive explanations
as a starting place for future work. Further, we show why natural language dialogues satisfy these
principles and are a desirable way to build interactive explanations. Next, we provide a design of a
dialogue system for explainability, and discuss the risks, trade-offs, and research opportunities of
building these systems. Overall, we hope our work serves as a starting place for researchers and
engineers to design interactive, natural language dialogue systems for explainability that better
serve users’ needs.

1 Introduction

As engineers, researchers, and domain experts increasingly deploy machine learning models in societally
critical domains, such as healthcare, criminal justice, and public policy, there is an ever-growing demand
for explainability of these models [59, 26, 48, 83, 36]. Researchers have proposed a variety of approaches
to address this demand for explainability. For example, a popular class of approaches identifies feature
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importance, i.e., how much each feature contributes to the model prediction |73, 63]. The seminal
work, LIME, shows that such feature importance can help people understand why a model makes a
particular prediction and allow model developers to debug and improve model performance [73|. More
generally, explanability holds the promise for enabling appropriate trust in model predictions, detecting
discriminatory biases, scientific discovery, and ultimately improving human decision-making.

Meanwhile, the research community has begun to recognize the importance of human perspectives
in realizing the promise of explanability. Explanations of machine learning models serve as a bridge
between machines and humans; they are only helpful if they satisfy the need of humans. In addition to a
large body of work on evaluative studies with human subjects [52, 50, 35, 34, 99, 68, 91, 49|, Liao et al.
[58] interviewed 20 UX and design practitioners working on various Al products to identify gaps between
the current algorithmic work and practices for creating explainable Al products. They developed an
explainable AI question bank, representing user needs for explainability as prototypical questions users
might ask about the Al (e.g., “what kind of mistakes is the system likely to make?” and “what feature(s)
of this instance determine the system’s prediction of it?”). However, it remains an open question how
end-users, such as domain experts or laypeople, are satisfied with current approaches to generating
explanations, and—if not—(1) what are the fundamental limitations of the current explanations, and
(2) what are desirable approaches to explaining model algorithms in the real world.

Our work fills this gap by retrospectively evaluating the existing approaches to explanability widely
adopted by the research community through the lens of real-world decision-makers. In particular, we
conducted interviews with domain experts in healthcare and policy-making—including fourteen doctors
and twelve policy experts—to understand how they use explanations in their day-to-day work, the
pain points they experience with existing explanations, and what would they like to see in the next
generation of explanations. The key findings of our qualitative user study are summarized as follows:

1. Domain experts are not satisfied with existing explanation paradigms.

2. Domain experts would prefer an increased interaction with the model about its behavior instead
of just seeing one-off explanations such as feature importances or saliency maps.

3. Domain experts agree that interaction with models and explanations through natural language
dialogues would be an advantageous route to more interactive explanations.

4. Domain experts place a high value on the accuracy/correctness of explanations, yet existing
explanations often do not come with an estimate of these metrics.

Building on the user study, we argue that interactive explanations are a promising avenue for future work
for explainability. We synthesize responses from our interviewees and propose the following principles
of interactive explanations: 1) Interact appropriately; 2) Respond appropriately; 3) Properly calibrated
responses; 4) Reduce explainability overhead; 5) Consider context. Next, we point out natural language
dialogues could prove to be a powerful tool for building an interactive explainability system that satisfies
these principles. Natural language dialogues can promote accurate and continuous understanding of
user queries through rich text interactions and appropriate presentation of explanations, along with
understudied problems such as providing confidence and accuracy estimates of explanations. Ultimately,
natural language dialogues for explainability could enhance the model’s understanding with greater ease
than current one-off explanations. To illustrate these principles, Figure 1 illustrates an instantiation of
such natural language dialogues. A dialogue-based interface provides a novel perspective on interacting
with ML models. We further lay out a possible roadmap towards this exciting vision with four modules:
1) natural language understanding module; 2) explanation algorithm module; 3) response generation
module; 4) a GUI interface. It requires advances in algorithms and human-computer interaction to
ensure that these modules enable a satisfying and accurate interaction with models.



k@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE
MODEL DECIDE TO PREDICT THEM AS HIGH RISK?

Goob QUESTION! IT LOOKS LIKE THE MODEL PREDICTED THESE INDIVIDUALS
AS HIGH RISK MOSTLY BECAUSE THEY WERE SMOKERS BUT ALSO BECAUSE
THEY LIVE IN LARGE CITIES. |'M HIGHLY CONTIDENT THESE ARE THE REASONS
BECAUSE THE EXPLANATIONS HAVE HIGH fIDELITY. HERE'S THE AVERAGE
FEATURE IMPORTANCE FOR THESE PEOPLE (HIGHER MEANS MORE IHPORTANT).
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k@ [WOW, IT'S SURPRISING THAT WHETHER THE PERSON LIVES IS IN A CITY IS SO IMPORTANT. J

YES, LIVES_IN_CITY HAS A SIGNIICANT EFFECT ON THE PREDICTIONS FOR THESE INDIVIDUALS. PERTURBING THIS FEATURE CAN

AP THE PREDICTION FOR U4 OF 15 OF THE INSTANCES IN THIS GROUP.

Figure 1: A visualization of an example dialogue users could have with the system for a lung
cancer prediction task. The user asks why the model predicted certain individuals who are female
and over 65 as high risk. The model responds with text and visual descriptions and confidence in the
explanations. Finally, the user can ask more questions about the explanations. In this case, the user
expressed surprise about one of the more important features, and the model runs an additional analysis
to demonstrate the effects the feature can have on the predictions for this group.

Finally, we discuss concrete challenges that we foresee to realize this vision. We group them into
three categories: 1) challenges in natural language understanding given the large set of possible query
types, different ways to phrase explainability questions, and complexity due to different applications;
2) challenges in explanation generation that maps intent on correcting explanations and providing
confidence estimates for the quality of explanations; 3) challenges in scalability so that the system
can respond in real-time. These challenges serve as an open call for the community to work on them
collectively.

In summary, our study identifies the mismatch between current approaches to explanability and
the demand of decision-makers in practice, a significant hurdle in adopting complex predictive models
in these high-stakes domains. Our interviews point to natural language dialogues to remedy users’
pain points. We thus propose a research agenda around developing natural language dialogues as the
next generation of explanability. We develop a list of principles, a roadmap towards desirable natural
language dialogues, and a set of challenges going forward. We hope that our work can help the research
community realize the promise of explanability and enable effective human-AI interaction with complex
machine learning models.

2 Practitioner Perspectives on Rethinking Model Explainability

In this section, we describe the user study design. Also, we discuss the results from interviewing 26
practitioners in the user study and summarize our findings.

2.1 User Study Design

Here, we discuss the study that we carried out with practitioners from healthcare and policy to
understand how they use explanations in their day-to-day work, the pain points they experience with



existing explanations, and what would they like to see in the next generation of explanations. More
specifically, we conducted 30-minute long semi-structured interviews with 26 practitioners who regularly
employ explainability techniques in their workflow. 14 out of these 26 (53.8%) practitioners are both
medical doctors and researchers who actively use explanation methods to understand ML models that
diagnose different kinds of diseases ranging from diabetes to rare cancers. The remaining 12 (46.2%) of
these practitioners are policy researchers who are utilizing explanation methods to understand financial
decision making (e.g., loan approvals) models. Furthermore, 18 out of 26 (69.2%) practitioners are male
and the remaining 8 (30.7%) are female. 16 practitioners (61.5%) had more than an year of experience
working with explainability tools, and the remaining 10 of them (38.5%) had about 6 months to an
year of experience. All the practitioners in our study have used local post hoc explanation methods
such as LIME and SHAP in their workflow, and 12 of them (46.2%) also used various gradient based
methods (e.g., GradCAM, Integrated Gradients etc.). 11 participants (42.3%) also mentioned that they
understand the technical details of LIME, but none of the participants had any understanding of the
inner workings and details of any other explanation methods.

We began the interview by asking each of the participants about how exactly they leverage model
explanations. All the participants said that they look at feature attributions output by post hoc
explanation methods for each model prediction of interest, and that they specifically focus on the top 5
to 8 features that are driving the prediction. 21 out of 26 participants mentioned that they also look at
the sign (or direction of the contribution) of the feature attribution for certain features of interest—e.g.,
is salary contributing positively to the loan approval decision? Lastly, 19 out of 26 (73.1%) participants
mentioned that they also compare features w.r.t. their sign, rank, and feature importance values. Our
interviews further included, but were not limited to the following questions:

e What do you like about model explanations output by state-of-the-art methods?
e What do you dislike about model explanations output by state-of-the-art methods?

e What other features should explanations have for you to comfortably use them in your day-to-day
work? (24 out of 26 participants wanted some form of an interactive dialogue for explanations.)

e Would you prefer a one-shot (single) explanation or interactive dialogue style explanations? (We
asked this question only if participants did not bring up interactive dialogue on their own; only 2
out of 26 participants did not)

e What are the key desiderata you would like to have in interactive dialog style explanations?
(We asked this question to the 25 out of 26 participants who wanted interactive dialogue style
explanations).

2.2 Results and Findings

Our study evaluated users’ perceptions about the strengths and weaknesses of current explanations
and whether explainability dialogues could help users better understand machine learning models.
This section discusses the respondent’s opinions and feedback to this end. Overall, while respondents
were satisfied with many features of current explainability techniques, they pointed to several critical
shortcomings with current methods. Further, respondents expressed a strong desire for interactive
explanations and felt that natural language dialogues could serve as an advantageous type of interactive
explanations. Last, interviewees felt that natural language dialogues could create a better explainability
experience and identified critical criteria explainability dialogues should satisfy.



2.2.1 The Need for Interactive Explanations

During the interviews, respondents indicated several aspects of current explainability techniques they
liked. Respondents most enjoyed getting some understanding of deep learning models (26/26 liked)
and understanding which features contribute positively and negatively (21/26 liked). Slightly fewer
respondents enjoyed seeing the essential features for predictions (19/26 liked) and comparing the relative
importance of features (18/26 liked). All in all, respondents expressed that current explainability
techniques help understand how machine learning models work and how different features affect the
model predictions.

While respondents indicated they enjoyed certain features of explainability techniques, they also
expressed several unsatisfactory aspects of explanations. Respondents were most dissatisfied with the
lack of additional interaction with explanations after generation. Respondents answered that they
were highly dissatisfied with the fact that conversations with the explanations are not possible (25/26
disliked), there is no capacity to follow up on explanations (24/26 disliked) interactively, nor ask custom
questions (23/26 disliked). One respondent stated, “It is extremely frustrating to just look at one
explanation [per prediction| and not be able to follow up on it!” Another indicated, “I should be able to
ask custom questions [to the explanation] and get answers.” Respondents also disliked that they could
not understand the accuracy of explanations (24/26 disliked). One of the interviewees described, “I don’t
know anything about how correct the explanation is! How do you expect me to use it meaningfully? I
constantly struggle with worrying about using an incorrect explanation and missing out on not using a
correct explanation that is giving me more insights.” Slightly fewer respondents indicated they disliked
the limited capacity of explanations to generate subgroup-level explanations (21/26 disliked). One
respondent questioned, “Why is all explanation work focused on local explanations? I would like to
see at least subgroup level explanations. I think there is one algorithm (MUSE?) but need a lot more
work.” Overall, respondents expressed evident dissatisfaction with the one-off nature of explanations.
Respondents felt that, in almost all cases, they had further follow-up questions for explanations to
do with the explanation’s accuracy or additional tasks they would like the explanation to solve. The
interviewees felt that the lack of interactivity with explanations is a significant shortcoming of existing
techniques.

When we asked respondents what could improve explanations, respondents discussed several potential
improvements. Overall, respondents expressed the strongest desire for explainability through fully-
fledged conversations with ML models (25/26 said this was important). Multiple respondents voiced
support for conversational explanations. One stated, “I can see myself using explainable tools a ton
more if only it were like a free-flowing dialogue. Oh I can’t wait for that day.” Another said, “dialogue-
based explanations will totally revolutionize how medical science uses ML. Wow, I am excited just
thinking about the possibility.” Respondents also indicated the inclusion of reliable accuracy metrics
for explanations as a critical place of improvement (24/26 said this was important). Slightly fewer
respondents indicated that custom questions are vital for improving explanations (22/26 said this was
important) and improving subgroup level explanations (24/26 said this was important). While the
interviewees indicated several places to improve explanations (such as accuracy metrics), respondents
most heavily fixated on the potential of having conversations with ML models to support explainability.
Considering that respondents indicated a strong desire for dialogue-based explanation systems, we next
discussed key desiderata for an explainability dialogue system.

2.3 Explainability Dialogue Desiderata from Interviewees

Respondents felt that fully-fledged conversations in natural language with explanations would help
them better understand ML models. In addition, they felt that a explainability dialogue system could
greatly help their explainability workflows. Further, respondents had numerous ideas about the system’s



capabilities, different ways the system could augment their explainability workflows, and what they
hoped to get out of such a system.

Critically, many respondents envisioned explainability dialogues happening much like conversations
with colleagues where the goal is to understand “why” another practitioner made a particular decision or
choice (e.g., medical diagnosis, financial risk assessment). In this sense, they imagined treating models
like colleagues and using explainability dialogues to facilitate natural interactions between models and
people. Respondents viewed such natural language conversations as more intuitive for understanding
model decisions than writing and debugging cumbersome code to generate explanations. Further,
they imagined explainability dialogues giving more context to the explanations, such as assessments
of accuracy, descriptions of how to interpret the explanations, and uncertainty, much like people do
in everyday conversations [66]. Finally, they viewed conversations happening in a context-dependent
manner, where they could easily follow up on previous queries for additional clarification or further
lines of questioning. We summarize the key desiderata agreed on by the respondents below, in order of
requirements most respondents agreed was important, where (N/26) indicates the number that agreed:

e (24/26) The dialogue should eliminate the need to learn and write the commands for generating
explanations.

24/26) The system should describe the accuracy of the explanation in the dialogues.

23/26) The system should preserve context and enable follow-up questions.

( )
( )
(21/26) The responses should be provided in real-time.
( )

17/26) The dialogue system should decide which explanations to run. Users should not have to
ask for a specific explainability algorithm.

These desiderata capture key elements in respondents’ ultimate goals of engaging in conversations with
machine learning models. For instance, respondents were excited about explainability dialogues involving
natural, everyday questions to machine learning models such as, "why did you make this decision?" and
therefore agreed such systems should eliminate the need to write code, take the conversation context
into account, and happen in real-time. Overall, respondents felt that natural language explainability
dialogues would greatly improve their experiences using explanations and had clear ideas about how
such a system should behave.

3 Principles of Interactive Explanations via Natural Language Dia-
logue

Leveraging our findings from the interviews, we outline a set of principles interactive explanations
should follow. Based on these principles, we suggest natural-language explainability dialogues as a
promising solution to enabling interactive explanations. As a starting place for further research in this
direction, we suggest a concrete design for an explainability dialogue system.

3.1 Principles of Interactive Explanations

Given the need for explanations to enable better interactions with models through custom queries,
additional follow-up questions, and proper contextualization, there are exciting research opportunities
for developing interactive explanations for machine learning models. Interactive explanations should
enable rich and continuous interactions with models that enable users to understand how their models
work. Further, users should engage with interactive explanations in ways that are not frustrating, require



minimal or no coding overhead, and facilitate improved model understanding as they use the system.
Also, interactive explanations should improve users’ ability to correctly utilize explainability techniques
to understand how trustworthy models are and interpret the results of explanations. Finally, interactive
explanations should give users a properly calibrated sense of trust in their models, encouraging trust
when continued interactions reveal their models are right for the right reasons and reducing trust when
this is not the case.

Considering the interviews and our perceptions about what interactive explanations should look
like, we now propose five principles for designing an interactive explanation system as a starting place
for research in this direction. The principles are as follows:

e Principle 1 (Interact Appropriately). The system should understand continuous requests
for explanations and be able to efficiently map these to appropriate explanations to run.

e Principle 2 (Respond Appropriately). The system should respond with informative, properly
contextualized, and satisfying explanations for why the model made specific decisions.

e Principle 3 (Properly Calibrated Responses). The system should provide reliable notions
of confidence along with explanations.

e Principle 4 (Reduce Explainability Overhead). The system should reduce or eliminate the
need for users to write code to explain machine learning models. The system should strictly make
understanding machine learning models easier for users.

e Principle 5 (Consider Context). The system should condition its understanding of inputs on
the previous interactions, including prior inputs, responses, and data sets among potentially other
artifacts generated in the interaction.

Principle 1 is critical for the system to comprehend users’ inputs and map them to appropriate
explanation outcomes. The system must understand a wide range of queries and how to act on each of
them appropriately. Principle 2 ensures the users can understand the explanations provided by the
system. This principle is essential because users should easily comprehend the system outputs and
retain the natural flow of the interactions. Principle 3 is important because current explanations often
do not adequately contextual responses. Ideally, the system should provide confidence or accuracy
associated with the explanation so that users will know where to trust the explanations. Principle 4
is paramount because adding an interaction layer on top of explanations inherently creates further
technical complexity. Consequently, this increases the risk of errors by misunderstanding user inputs or
running the wrong explanations. The benefits of enabling interactive explanations should outweigh
any potential issues and complexities of implementing an interactive explanation system. Principle 5 is
important for ensuring the system engages in natural interactions with users. The interactions should
build on themselves, establishing different threads used to condition future responses where appropriate.

Overall, Principle 1 and 2 speak to the quality of single-round explanations; Principle 3 highlights
new capabilities that prior works have overlooked; Principle 4 weighs the benefit of natural language
dialogues against the risks; Principle 5 promotes multi-round conversations. We recommend that
designers of explainability dialogue systems use these principles as a starting place when deciding
whether and how to implement such a system.

3.2 Roadmap towards an Explainability Dialogue System

Considering the need for an interactive explainability system and favorable opinions of the interview
respondents, we suggest natural language dialogues as an appropriate way to accomplish interactive
explanations. Natural language dialogues satisfy principles (1-5), making them an ideal choice for such



a system. For instance, dialogues can handle a diverse set of requests, can offer dynamic responses, and
are inherently contextual (Principles 1, 2, 5). Further, it is possible to include extensive context for
explanations generated by the system in natural language (Principle 3). Last, by enabling machine
learning models to be questioned in natural language, like another colleague, explainability dialogues
will make it straightforward for anyone to understand ML models (Principle 4).

Moreover, a dialogue-based explanation interface provides a novel perspective on interacting with
ML models. Rather than treating a model as an object that only returns decisions for inputs, we can
think of models as entities that anyone can interact with in natural language. This allows models to
be “accountable” in the sense that anyone can query them for a justification behind decisions. As we
see in the interviews, domain experts that use machine learning models have a strong desire to treat
models as another colleague, i.e., an entity that can be asked, in natural language terms, for a decision
and justification. In this way, domain experts wish to decide whether or not to trust machine learning
models in a manner that is more accessible and natural than using current explainability techniques
out of the box.

Implementing an explainable dialogue system that satisfies principles (1-5) involves designing
several non-trivial technical components that touch on a wide array of technologies. Likely it will
require building both supervised and generative natural language processing models, a wide variety of
different explanations, and novel improvements to explanations. In addition, ensuring that the system
is available and can rapidly serve responses will require advances in efficiency (e.g., distributed systems).
Finally, ensuring that users can interact with the dialogue system satisfactorily will require further HCI
research and user studyies.

One way to design an explainability dialogue system is by separating the system into four modules:

(i) A natural language understanding module that understands the user input and determines what
explanation(s) to generate.

(ii) An explanation module that runs the explanations.
(iii) A response generation module that serves a response to the user.

(iv) A GUI interface for the system.

For this system design, we will consider designing them independently, though it could be possible to
design modules (i-iii) in an end-to-end manner.

For module (i), dialogue system designers could train two large language models (LLMs) |23, 71].
The first could predict what filtering operations to run (i.e., get instance id=0) in a semantic parsing
style [38]. This step would determine which instances to explain. A second model could predict
what explanation to run out of a finite set of possible explanations. To consider the context of the
conversation, designers could condition these two models on the previous text in the conversation of
fixed window size. Finally, training these models would require generating two separate datasets. The
first model would require a standard text to SQL dataset, like Spider or WikiSQL [94, 100]. The
dataset for the second model would need potential input queries and appropriate filtering & explanation
responses. Also, it would be necessary to augment both of these datasets with examples of context
from conversations.

With the explanations to generate and filtering operations in hand, module (ii) runs the explanations.
One complication with this step is that if users request many explanations, generating explanations
could be a bottleneck in the system. It will likely be necessary to batch out running explanations across
a set of machines or servers to ensure the system rapidly generates them.

For generating responses in module (iii), designers could train a generative LLM in a fact-aware
manner to return rich text outputs from the system that also include factually correct explanation



responses [61]. Because visualizations are vital components of explanations, it will also be likely that
system designers will include the visualizations from the explanations [63].

Finally, to facilitate users providing text input and serving responses, it will be necessary to design
a graphical user interface (GUI). It could be possible for ML-friendly UI packages such as Gradio [2] to
create such an interface. We envision what a conversation in such an explainability dialogue system
could look like in Figure 1. The user provides the system with a high-level question about why the model
predicts women older than sixty-five as high-risk for developing lung cancer. The system understands the
user’s request to generate feature importance explanation across this demographic. The system performs
the filter operations necessary to get these instances and runs the feature importance explanations. Last,
it generates a helpful summary of the operations and gives them to the user. Finally, the user indicates
surprise surrounding one of the features, lives_in_city being important. The system understands the
user’s hesitation and provides further validation for the claim to the user. Overall, the dialogue system
correctly handles the user’s questions, provides valuable responses, and understands sufficient context
in the conversation to handle further follow-ups.

4 Natural Language Dialogues for Explainability: Risks and Research
Opportunities

While there are concrete approaches to designing natural language dialogues for explainability, there
are numerous challenges in implementing such a system that motivate several research opportunities.
We divide our discussion about the risks and opportunities into four parts. First, we focus on the
natural language processing aspect of the system, including the language understanding and generation
components. Second, we examine the explainability aspect of the system. Next, we evaluate the
interface and Ul component of the dialogue. Last, we discuss the scalability and real-time response
needs of the explainability dialogue system.

4.1 Language Understanding Considerations

In this subsection, we discuss challenges due to understanding natural language in explainability
dialogues.

4.1.1 TUnderstanding Language in Explainability Dialogues

A fundamental difficulty in developing an explainability dialogue system is that model designers ask
many complex questions when interacting with machine learning models. Developing a system capable
of understanding various user questions is difficult given the broad domain of possible queries, their
complexity, and the different ways users might structure them. For instance, why does a model make
predictions across the entire domain, for groups of instances, or individual instances? Does the model
learn intuitive rules for prediction or something more complicated? What parts of the model are most
important for predictions? What data is most useful for learning? In what ways do you have to change
instances to get alternative predictions? The wide variety of questions users of an explainability dialogue
system will ask dramatically adds to the complexity of developing such a system.

There are many possible ways to structure the language in the explainability dialogue in addition
to application-specific terminology. These variations can come in the form of different semantics. For
instance, a user might ask “what are the most important features for this prediction” or “what inputs
did the model rely on when making this classification.” In both cases, the explainability dialogue system
must understand that the user requests a feature importance explanation. Users can also ask questions
with different levels of specificity. A user concerned with running a particular explanation might ask,



“please provide LIME feature importance explanations for data points with id’s 10-15.” Users will also
likely ask high-level questions such as “what is the reason for the predictions for my data.” In both
these cases, the explainability dialogue system must correctly understand the user questions and map
them to an appropriate outcome.

Finally, explainability dialogues are complicated by the application-specific nature of explaining
machine learning models. In a medical application, users will ask questions about different features
and outcomes than in a finance application. For instance, users of such a system applied to a medical
application will ask whether medical history had to do with specific predictions by the model. In
contrast, financial applications will likely ask about income or employment history. Designing a
satisfactory explainability dialogue system involves developing the system to handle a wide variety of
application-specific language.

Given the large set of possible query types, complexity due to different applications, and different
ways to phrase explainability questions, developing natural language processing systems that can
understand explainability dialogues is technically challenging. Ideally, such a system should be capable
of understanding a wide variety of explainability dialogue and quickly adapting to new, domain-specific
terminology. LLM’s may be unequipped out-of-the-box to handle explainability dialogues, due to
deficiencies in their training data for such tasks for instance. Consequently, additional work may be
necessary to adapt LLM’s to explainability dialogue.

4.1.2 Allowing Rich Multi-Turn Dialogue

Another technical challenge with explainability dialogue systems is developing multi-turn conversational
systems—those that use the context of the conversation to inform future responses. Though many
single-turn conversational Al systems exist that do not leverage the previous context (e.g., Siri), ideally
an explainability dialogue system should be capable of leveraging the entire conversation to inform
future responses. Leveraging context to inform the dialogue responses enables richer and more natural
conversations with the explainability dialogue system. For example, it is highly desirable to compare
and contrast with previous explanations within a conversation. Users might want to ask, “Does the
model rely on similar features for this instance as it did with the previous explanation?” or "if I changed
this data point, how would the explanation change?” In both these situations, it is necessary to maintain
the state of the conversation to inform the future response.

Enabling multi-turn conversations presents a number of significant technical hurdles. For instance,
it could be possible to condition LLM’s on the conversation. However, LLM’s typically have a fixed
window size for text, making it difficult to include the entire conversation. Consequently, this motivates
difficult technical decisions, such as whether to include a finite window size of the conversation or select
parts of the conversation to condition on in some intelligent manner. Of course, selecting which parts
of the conversation to condition on increases the likelihood critical parts of the conversation will not be
included by error and consequently harm the user-experience.

4.1.3 Responding Appropriately in Dialogue

An additional technical challenge is determining how to appropriately generate responses to user inputs
in the explainability dialogue. Ideally, responses provided by the explainability dialogue system will
be highly flexible, dynamically generated for any given user response, sensitive to the tone of the
conversation and the expected effects of the response, seek additional information from the user when
necessary, and present explanations in both a visually and semantically satisfying way. Nevertheless,
generating such responses in dialogue is still an open problem using current state-of-the-art language
models, such as LLM’s. Though LLM’s generate realistic text outputs, allowing free-form natural
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language responses in dialogue is unpredictable, often forgets context, and can lead to incorrect or,
in the worst case, offensive responses [97, 19, 65, 98]. In settings where it is not acceptable to have
unpredictable and potentially harmful responses, it may not be appropriate to use dynamically generated
responses by LLM’s. Consequently, it could be necessary to use scripted responses, in order to enforce
the trustworthiness of the explainability dialogue system.

Still, using scripted responses presents a number of significant considerations and shortcomings. As
we have discussed, there are numerous different types of explanations and creating acceptable responses
for all of these explanations is a challenging and laborious task. For example, explanations are often
presented visually (e.g., the SHAP feature importance plots [63]). Determining an acceptable way to
present visual explanation responses in conversations along with sufficient textual explanations so that
the user will understand the explanations requires careful consideration. Further, scripted dialogues
may lack the flexibility to enable meaningful interactions in multi-turn conversations. Last, there are
opportunities for a middle ground between completely dynamic explainability dialogue systems and
fully scripted ones, in ways that can satisfy both reliability and flexibility goals. Overall, designers of
explainability dialogue systems must carefully weight the trade-offs between dynamically generating
responses and hard-coding them.

4.2 Explainability Considerations

This subsection discusses explainability considerations in the dialogue system. First, we focus on what
explanations to use in such a dialogue system. Next, we look at issues with current explanations and
how these may cause complications in a dialogue. Finally, we discuss how current explanations are
unsatisfactory for dialogue and opportunities for improving explanations.

4.2.1 Mapping Intent to Correct Explanations

Once the system understands user intent within the dialogue, a critical technical consideration is
mapping the intent to an appropriate set of explanations to generate for the conversation. Foremost,
mapping intent to explanations is complicated because multiple different explanations could provide
a satisfactory response to a user request. For example, in conversations where users request the
important features for prediction, the dialogue system could provide any feature importance explanation.
Considering that there are numerous different types of feature importance explanations (LIME [73],
BayesLIME [80], SHAP [63]|, Smooth Grad [81], etc.) each with different trade-offs, it is difficult to
decide what explanations to provide. For instance, LIME explanations are often relatively quicker to
generate than SHAP explanations. However, SHAP provides a more robust implementation and better
support. These trade-offs must be considered when choosing between what (or what set of) feature
importance explanations to provide in the explainability dialogue.

Ultimately it is the responsibility of the explainability dialogue system designer to make decisions
regarding which explanations to provide in the dialogue. This decision is not straightforward because
explanations within the same categories (i.e., feature importance, counterfactual explanations, global
decision rules) make differing assumptions and often provide different results. The designer will need to
consider the applications of the system, technical implementations of the explanations, and fundamental
trade-offs between the different types of explanations to make an informed decision around what
explanations to provide.

4.2.2 Shortcomings of Current Explanations

Though explanations are beneficial for informing users why a model makes decisions, current techniques
suffer from several shortcomings. If used in explainability dialogue, these shortcomings will likely
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translate into the system, potentially causing issues by providing misleading explanations or causing
significant system slowdowns. These shortcomings include that explanations are unstable 33, 79, 25, 3, 5].
Meaning, slight perturbations to instances can result in significant changes to the explanation. In
addition, it is difficult to set the hyperparameter values of explanations (the number of perturbations
in LIME [73] & SHAP [63] or the kernel width in LIME). These hyperparameter choices can have
significant effects on the explanation. Further, they are inconsistent |55]—rerunning explanations can
lead to different results. In addition, there are few metrics to determine the quality of the explanations,
making it challenging to decide when to disregard generated explanations. Finally, specific explanations
(e.g., LIME & SHAP) are incredibly time intensive to generate because they rely on repeatedly querying
the model [20]. Designers of explainability dialogue systems must consider the different limitations of
current explanation techniques and evaluate how they will affect the system’s performance.

4.2.3 Opportunities For Improving Explanations

There are several opportunities to improve explanations to ensure they are satisfactory for an explain-
ability dialogue. Designers of explainability dialogues should focus on developing consistent explanations
and ensuring that the same query repeated does not return different results. In addition, designers of
such systems should consider how to generate confidence or accuracy metrics for explanations. There
is some work in this direction in the form of Bayesian Local Explanations by Slack et al. [80] that
generate local explanations along with associated confidence values. However, extensive further work is
needed to determine confidence metrics for additional types of explanations beyond local explanations.
Further, designers should develop techniques to set the explanation hyperparameters without requiring
intervention from users. This direction also motivates developing hyperparameter-free explanations.
Systems designers could more easily incorporate hyperparameter-free explanations in dialogue systems
to eliminate the need to set hyperparameters throughout the dialog. Finally, researchers should consider
developing explanations that are more accurate in the first place, making them less error prone at the
start. Overall, there is considerable opportunity for developing novel explainability techniques that
make explanations more compatible with dialogues.

4.3 Interface Considerations

An interface to the explainability dialogue system should facilitate users providing text inputs and
rapidly receiving responses from the back-end system in a straightforward manner to understand.
Depending on the application, it could be possible to have either a text-based interface or a spoken-word
dialogue system. For operational applications where users may be unable to take the time to type out
sentences, a spoken-word system may be appropriate. However, adding a step to convert spoken words
into text adds further complexity and room for error. An explainability dialogue system in the text
will likely suffice in many scientific, engineering, or corporate applications. Also, because explanations
often involve visual components, it should be possible for the interface to display images, plots, and
tables. Finally, the designers should build an interface that is easily accessible for users, such as a web
application compatible with desktop computers, tablets, and cell phones. Altogether, the interface for
the dialogue system should be easy to use, both in terms of its accessibility and presentation.

4.4 Scalability Considerations

Ideally, an explainabiltiy dialogue system should yield explanations without lag time from when the user
provides input. However, there are several technical considerations that influence the response time and
scalability of such a system. These considerations can be divided between the NLP and explainability
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components of the dialogue system. First, we discuss NLP scalability considerations. After, we cover
explainability concerns.

Designers will likely use LLM’s in the explainability dialogue system to understand complex natural
language inputs and yield rich text responses. Because LLM’s have many parameters, GPU acceleration
is necessary. GPUs can increase the burden of running and scaling the system due to their cost,
lack of availability, and difficulty to maintain. Further, querying parameter-intensive LLM’s can be
time-consuming, even with GPU acceleration, slowing down the system’s response time. Finally, it
may be necessary to use state-of-the-art LLMs to achieve acceptable performance at explainability
dialogue. System designers cannot easily run these models on available hardware because of their high
parameter counts, and designers may have to use costly APIs provided by private companies (e.g.,
GPT3 [15]). Designers will need to carefully weigh NLP modeling choices with hardware availability
when designing dialogue systems so that they are not a bottleneck in scaling and running explainabilty
dialogue systems.

In addition, there are potential scalability issues with the explanations used in the system. Various
explanations have prolonged run times, which could adversely affect the system’s response time. For
example, model-agnostic feature importance explanations such as LIME (73] and SHAP [63] are
notoriously slow due to their repeated querying of the black-box model [80]. If used to generate feature
importance explanations in an explainability dialogue, such explanations could lead to long response
times between when the user provides input and the system responds, especially if the black-box model
is complex or the users ask for many explanations. Though explanations have slow runtimes, there
are potential technical solutions. For instance, the system could generate and cache explanations
in the background during the conversation. System designers could further accelerate explanation
generation through parallelism. If users request explanations that are cached, the system can use them
in the dialogue immediately. Of course, introducing caching and parallelism further complicate the
system’s complexity and resource requirements. Overall, system designers will need to consider how to
best handle slow explanation run time to ensure real-time explainability dialogue, given the system’s
expected needs and resource constraints.

5 Related Work

Interpretability Techniques Work on machine learning explanations includes two main directions:
inherently interpretable models and post hoc explanations. Researchers have proposed models that are
inherently interpretable—i.e., those models that are interpretable by design. Inherently interpretable
methods include decision lists and sets [53, 7], additive models [84, 62|, and prototype based models [47,
18, 57]. However, inherently interpretable models constrain model designers to specific models that
may lack sufficient expressiveness for complex tasks. Consequently, there has been considerable recent
interest in post hoc explanations.

On the other hand, post hoc explanations provide explanations for machine learning models that
have already been trained, allowing greater flexibility in the modeling process. There are several
different types of post hoc explanations. These include model agnostic methods that do not rely on
access to model internals such as LIME [73] & SHAP (63, 21|, BayesLIME & BayesSHAP (80|, partial
dependency plots [30], and permutation feature importance [14]. Also, there are post hoc explanations,
which assume access to model internals (e.g., gradient access) [81, 75, 82, 76]. There are also global
post hoc explanations. These methods summarize the model’s decision logic across part of or the entire
domain into interpretable rules or decision trees [11, 53, 48]. Last, there has been considerable recent
interest in counterfactual explanations that describe changes to instance which will result in different
model predictions [87, 85, 70, 86, 10, 43, 44|. Model providers can leverage counterfactual explanations
to provide individuals adversely affected by model decisions with recourse. Though there are numerous
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works on developing explanations, few works have considered interactive explanations in the form of
dialogue.

HCI Analyses of Explanations Within the human-computer interaction (HCI) literature, several
studies examine how model designers design, build, and correct ML models, finding that interpretability
and interactivity are critical for iterating on ML models [1, 27, 41, 12|. Fails and Olsen [29] first
propose the term “interactive machine learning” for systems where users train ML models and correct
their predictions. Numerous interactive machine learning exist, including general purpose systems like
Orange [22]| and application-specific platforms such as Abstrackr for citation review [88]. Additional
works study to what extent ML explainability techniques help data scientists and find data scientists
trust explanations too much or do not use them in the correct way [45]. Further works evaluate the
interpretability of certain classes of machine learning models and determine that humans have an easier
time simulating models with fewer features, fewer parameters, and access to the model’s internals.
However, people still struggle to decide when to trust the model predictions, even if they can simulate
it [78, 69]. Furthermore, a growing set of literature adopts application-based evaluation and examines
the impact of explanations on human-AI decision making |52, 50, 35, 34, 99, 68, 91, 49|. In particular,
Liu et al. [60] studies the effect of interactive explanations that allow users to change the input and
observe the differences in the output. To the best of our knowledge, there is little work in allowing
interaction through natural language dialogue for explainability.

ML Analyses of Explanations There have been several critical analyses of explanations from
within the ML literature. Foremost, Rudin [74] makes the case that post hoc explanations are
inherently unfaithful to the model. Instead, model designers should build inherently interpretable
models. Other works examine the robustness of explanations from both theoretical and empirical
perspectives [32, 56, 17, 33, 4, 96, 51|. Alvarez-Melis and Jaakkola [5] show that explanations are
unstable and small perturbations can lead to drastically different explanations. Zafar et al. [96]
demonstrates models only differing in their initialization can have distinct and sometimes contradictory
explanations. Further works demonstrate that malicious adversaries can manipulate explanations,
demonstrating their unreliability [6, 89, 24]. For instance, Slack et al. [79] show adversaries can design
models that how arbitrary LIME |73| & SHAP [63] explanations.

Dialogue Systems There has been considerable work in developing dialogue systems in the past
decades [8, 92, 19, 31|. Currently, state-of-the-art approaches rely on deep learning systems to understand
user inputs and for generating responses [64]. Work in dialogue systems can be divided into task-
oriented dialogues and open-domain dialogues. Task oriented dialogue systems address a particular
problem, such as scheduling an appointment or making a reservations. Open-domain dialogues do
not solve a particular task and instead attempt to “chit-chat” with users. We focus on task-oriented
dialogues because they are most relevant to an explainability dialogue system. There are several different
approaches to task oriented dialogue systems [13, 93, 28, 101, 72, 16, 67, 95]. Certain systems use
separate modules for language understanding, state tracking, planning, and response generation to
accomplish task oriented dialogues [40, 39, 46, 77]. Other systems use fully end-to-end approaches
for task oriented dialogue [54, 90, 37]. There are several trade-offs between modular and end-to-end
approaches. With modular approaches, it is difficult to propagate errors in the system response to all
the system modules [64, 54]. Instead, designers must carefully design each of the modules. However,
end-to-end approaches require sufficient data in order to have high response quality, making it difficult
to use them in data-scarce settings [9, 42]. Further, when errors due occur, it is often more difficult to
debug end-to-end dialogue systems. Designers of explainability dialogues will need to carefully consider
the availability of data for such systems when deciding which approaches to pursue.
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6 Discussion & Conclusions

Natural language dialogues are a promising approach for facilitating interactive explanations of machine
learning models. Language is an ideal medium to engage with machine learning models because of its
flexibility and accessibility, enabling anyone to understand ML models. Consequently, explainability
dialogue systems could enable rich interactions with models through complex, high-level queries and
in-depth, contextualized responses consisting of both text and visual artifacts. While explainability
dialogues are appealing for domain experts or users with limited machine learning knowledge, these
systems are still valuable to experts because of their ease of use and capacity to rapidly facilitate
understanding models in many ways. As a result, explainability dialogues could serve a vital role in
enabling model understanding for any stakeholder in an ML model.

While there are numerous advantages of natural language as a solution to interactive explanations,
it is important to understand its limitations in various application scenarios. First, different domains
may need specific interactions to appropriately engage with the models and data. For example, users
will likely ask questions to an explainability dialogue system for images that reference specific parts
of the image such as, “is the nose of the dog an important feature” or “is the model using the upper
right-hand side of the image?” It is challenging to understand what parts of the image the user refers to
with natural language. However, it could be possible to develop multimodal models capable of handling
such requests. To better suit these domains, it could also be possible to incorporate other types of
interactions, such as clicking on parts of an image, into the dialogue system interface.

Similarly, some system responses may be difficult to communicate in natural language. For example,
it is pretty challenging to communicate uncertainty in natural language, making it difficult for a dialogue
system to explain uncertainty. One solution is to use plots or other visuals to present difficult to
communicate concepts. Designers can easily include these in an explainability dialogue, like in Figure 1.

In addition, domain experts engaging in multiple lines of inquiry with a machine learning model
may wish to pick up early threads, drop recent ones, or switch between many different threads in their
inquiry. However, a natural language dialogue is a linear interaction, where the system and users take
turns responding. This structure makes it challenging to have multiple threads in the conversation.
However, it is possible to include a multi-threaded conversation feature, much like Threads in the Slack
messaging application or Replies in iMessage.

Finally, language can often be vague. Questions are often under-specified, forcing respondents to
assume what the questioner wants. Often, it is necessary to ask follow-up questions. Also, different
people may have completely different intentions when they ask the same thing. This ambiguity makes
it difficult to understand what the questioner wants even though the system fully comprehends the text
provided. A natural language dialogue system will likely need to follow up on underspecified questions.
When users cannot specify what they want in words, it may be necessary for the system to provide
access to a command line or coding interface to request what they want.

Overall, explainability dialogue systems deserve considerable attention from the research community.
Such systems could revolutionize how domain experts and users interface with machine learning models,
facilitating the safer use of machine learning models. We encourage the research community to develop
explainability dialogue systems and enable more accessible model understanding.
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