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Abstract. Modern high-performance computing (HPC) system designs
have converged to heavyweight nodes with growing numbers of proces-
sors. If schedulers on these systems allocate nodes in an exclusive and
dedicated manner, many HPC applications and scientific workflows will
be unable to fully utilize and benefit from such hardware. This is because
at such extreme scale, it will be difficult for modern HPC applications
to utilize all of the node-level resources on these systems.

In this paper, we investigate the potential of moving away from dedicated
node allocation and instead using intelligent coscheduling—where multi-
ple jobs can share node-level resources—to improve node utilization and
therefore job turnaround time. We design and implement a coschedul-
ing simulator, and, using traces from a high-end HPC cluster with 100K
jobs and 1158 nodes, demonstrate that coscheduling can improve average
turnaround times by up to 18% when compared to easy backfilling. Our
results indicate that coscheduling has the potential to be a more efficient
way to schedule jobs on high-end machines in both turnaround time and
system and component utilization.

Keywords: coscheduling - high-performance computing.

1 Introduction

Modern high-performance computing (HPC) system designs have con-
verged to heavyweight nodes with growing numbers of CPUs that are sup-
ported by accelerators such as GPUs. Several top supercomputers [23],
such as Frontier, Lumi, Leonardo, Sierra, and Summit, have tens of CPU
cores and multiple GPUs on each node. These designs have many advan-
tages, including better scaling [42], reduced power and network switch
costs, and decreased network interference [36].

The heavyweight node trend should motivate the HPC community to
rethink scheduling policies that allocate a set of dedicated nodes to each
job. Dedicated node allocation is the most common policy on high-end sys-
tems and provides predictable performance and efficient execution when
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nodes have modest resources. However, with modern systems, dedicated
node allocation will often cause untenable levels of internal fragmenta-
tion of multiple node resources, including CPUs, GPUs, memory capacity,
memory bandwidth, and network capacity—leading to significant under-
utilization of available resources.

Cloud installations, including scheduling infrastructures in Mesos [16],
Kubernetes [31], and YARN [41], provide infrastructure for scheduling
multiple jobs onto a node or nodes (to increase profit), but not in a way
appropriate for HPC applications. Specifically, the HPC user base has
more stringent performance expectations than cloud users and will not
tolerate arbitrary performance degradation for their applications.

This paper studies the potential of intelligent coscheduling on mod-
ern HPC systems. We define intelligent coscheduing as scheduling mul-
tiple jobs, concurrently, onto overlapping nodes such that average job
turnaround time is decreased and performance degradation for most jobs
is at most modest. Such an approach accepts (some) intra-node inter-
ference between jobs rather than rigidly avoiding it via dedicated node
allocations. Doing so will make a greater fraction of a system’s resources
available to jobs. Intelligent coscheduling will lower average turnaround
time by decreasing the average time a job spends waiting to execute. This
in turn will improve overall system utilization and throughput.

In particular, this paper is focused on studying and understanding the
decrease in average turnaround time when using coscheduling compared to
backfilling, which is generally the de-facto scheduling approach on high-
end HPC installations. This paper focuses only on sharing nodes (and
their memory) in multi-node applications. We describe our design and
implementation of coscheduling and backfilling and provide results that
show that coscheduling leads to lower average turnaround times: up to
18% compared to backfilling and over 80% compared to first-come, first-
served. The downside is that some individual applications take longer to
execute (once started), but the substantial decrease in wait time still leads
to an average decrease in turnaround time.

The rest of this paper is organized as follows. Section 2 provides
an overview of HPC scheduling and provides our assumptions made in
this paper. Section 3 describes our implementation of backfilling and
coscheduling. Section 4 explains our experimental setup, and Section 5
provides the experimental results. Finally, Section 6 discusses related work
and Section 7 summarizes the paper.
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2 Background and Assumptions

In this paper, we assume a high-performance computing system with a
total of IV nodes. Each node contains C' cores. This section first reviews
briefly the basics of HPC scheduling, and then proceeds to discuss our job
submission assumptions and coscheduling.

2.1 Traditional HPC Job Scheduling

With traditional HPC job scheduling, each application submitted for ex-
ecution on the system requests n nodes, where 1 < n < N. The job also
specifies an estimated runtime. When the scheduler has n nodes available
and the job is at the front of the queue, the job is scheduled. The job is
assigned all C' cores, but actually uses ¢ cores, where 1 < ¢ < C. (There
may be a performance benefit to using fewer than C' cores because of a
decrease in memory contention.) The estimated runtime is used to set a
deadline for the job, and the job is terminated if it exceeds this deadline.

Traditional HPC systems typically use dedicated node allocation (of-
ten called space sharing or space slicing [10]). Here, every node in the
system is assigned to at most one job. This policy provides high system
utilization, and, equally importantly, relatively predictable performance.
In particular, it reserves all the memory on each of the n nodes for a
single application. This avoids competition between multiple competing
applications for memory, which can potentially cause thrashing (if the
system is paged) or worse, a system crash in non-paged systems if the
aggregate memory demand between the applications exceeds the size of
physical memory.

2.2 Evaluating Scheduling Policies

There are many ways to evaluate different scheduling policies, including
job throughput, system utilization, and average job turnaround time. Job
throughput is defined as the number of jobs completed per unit time.
System utilization is defined as the average fraction of nodes that are
busy. Finally, the average job turnaround time across all jobs is simply
the average wallclock time it takes from the time a job is submitted until
the time it is completed.

It is well known that a typical first-come, first served (FCFS) schedul-
ing policy will fall short in all three of these dimensions. If a job in
an FCFS scheduling system cannot be scheduled because there are not
enough nodes, the job and all jobs behind it on the queue are blocked,
leading to a convoy effect.
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2.3 Backfilling

The typical way HPC systems improve all of throughput, utilization, and
turnaround time is to use backfilling 21,24, 35,18]. A backfilling policy
addresses the convoy effect caused by FCFS by executing smaller jobs out
of order on idle nodes so that utilization is improved—in turn reducing
the overall average turnaround time. Backfilling is available in modern
resource managers such as SLURM |[2] or Flux [3].

However, backfilling is a strategy that is incentivized by utilization
being defined as the number of busy nodes, rather than the number of
busy components of nodes. With modern nodes containing large values
of C' along with on-board accelerators, this definition of utilization is
outdated—a node can be busy, but its components may be ill-utilized.
Accordingly, we look to an alternative scheme—coscheduling—to improve
all three of throughput, utilization, and turnaround time. However, this
requires relaxing job requirements.

2.4 Job Configuration Assumptions

In this work, we assume a more flexible job submission scheme. We as-
sume that jobs are malleable, meaning they adapt to the number of nodes
actually assigned to them [9]. Specifically, applications can be run with
(i.e., assigned) many different values of n (nodes) and ¢ (cores per node).
We denote (n x ¢) as a configuration, and the set of all configurations
in which the application can be executed as S. The user submits a job
with &, which asserts to the job scheduler that the application can be
executed with any configuration in S. The user also specifies one of these
configurations as the base configuration, denoted B.

We assume that configurations cannot have more total cores than the
number used in B. As an example, assume that B for a job is (n X ¢). In
this case, the user might include configurations (2n x ¢/2) and (n/2 X c)
in §. Configurations are not limited to ones with n X ¢ cores; for example,
we term the aforementioned (n/2 X ¢) as a degraded configuration because
the number of total cores is less than that in the base configuration. The
incentive for a user submitting a job with many configurations, includ-
ing degraded ones, is potentially lower turnaround time via coscheduling.
(Moreover, as discussed later, using configurations such as (2n x ¢/2) po-
tentially benefit a job by decreasing memory pressure.)
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3 Implementation

This section describes our implementations of backfilling and coschedul-
ing.

3.1 Backfilling

Backfilling has two primary variants: easy and conservative. Easy backfill-
ing allows short jobs to execute out of order as long as they do not delay
the first queued job. Conservative backfilling, on the other hand, only
allows short jobs move ahead if they do not delay any queued job. Easy
backfilling performs better for most workloads [24]. In addition, backfilling
algorithms frequently use a greedy algorithm that picks the first-fit from
the set of available jobs in the job queue. The first-fit might not always be
the best-fit, and a job further down the queue may fit the backfilled hole
better. Finding the best-fit involves scanning the entire job queue, which
increases job scheduling overhead significantly [34].

We use an Easy backfilling algorithm with first-fit. Our implementa-
tion skips over the first job at the head of the queue, in the case that (a)
that job cannot be run given the currently available resources and has to
wait until other jobs finish and (b) there exists a job that satisfies backfill
constraints. We allow up to 150 jobs in the backfilling window, and when
we backfill, the job at the head of the queue receives a reservation.

3.2 Coscheduling

As with FCFS, our coscheduling algorithm considers jobs in order on the
submission queue. For each job at the head of the queue, our coscheduler
either places the job on the system (and the job commences execution),
or it blocks and no job can execute. The fundamental difference with
our coscheduler is that a job can be placed on nodes that are already
(partially) occupied by another job.

Coscheduling Benefits and Penalties There are a number of things
to consider with a coscheduling implementation.

— A job that uses fewer cores per node will potentially achieve a speedup
due to an increase in available memory bandwidth. We denote this as
memorySpeedup.

— A job that is coscheduled on a node will potentially have a penalty
due to a decrease in effective memory bandwidth. We denote this as
memorySlowdown.
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— A job that uses more (fewer) nodes will potentially have a remote com-
munication penalty (benefit) due to an increase (decrease) in internode
communication. We denote this as communicationSlowdown.

— A job that uses fewer cores than its base configuration will have a
slowdown penalty. We denote this as degradationSlowdown.

We assume that we know (or can derive from known quantities) all
of memorySpeedup, memorySlowdown, communicationSlowdown, and
degradationSlowdown. Section 4 provides further details.

Coscheduling Implementation We found that with coscheduling, a
first-fit approach produces poor results because it fails to (1) take advan-
tage of the memory benefit when spreading a job out and (2) consider
all configurations. Our coscheduler instead provides a modified best-fit
approach.

Our modified best-fit coscheduling procedure is shown in Algorithm 1.
For each job J at the head of the queue, we execute function PlaceJob.
This function iterates through all possible configurations, and for each
one we find the best placement. In this context, best means the placement
that leads to the fastest execution for the job; i.e., we do not consider
potential changes in execution time of other jobs sharing nodes with J.
(Hence, our best-fit algorithm is greedy in the sense that it focuses only
on J, and it also will allocate [completely| unoccupied nodes if possible.
Another option, which we leave for future work, is to allow a job to specify
a maximum slowdown it is willing to incur; such an approach has been
used in other contexts [28].)

Function GetBestPlacement finds the best placement for a set of
nodes and a given configuration used by J. First, we calculate the po-
tential speedup due to memory effects (function GetMemoryBenefit) for
the given configuration. Then, for each node in the system that is usable
(determined by function CanSchedule), we determine the memory slow-
down (and therefore the relative node performance) for J. To make this
determination, we take into account the memory slowdown that occurs
due to other jobs already executing on the node; the memory sensitiv-
ity of J is used in this calculation. A node is usable if it has a sufficient
number of free cores to accommodate the configuration. (Optionally, our
implementation allows for hard limits on the number of jobs that can be
coscheduled on a node.)

Function GetBestPlacement adds the node to the allocation for J if
either (1) we do not yet have the target number of nodes needed by the
configuration, or (2) the slowdown for J will decrease if the node replaces
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Algorithm 1 Sketch of coscheduling algorithm.

function PLACEJOB(job)
for config in Configurations do
bestPlacement = None
bestRunTime = Infinity
(placement, relNodePerf) = GetBestPlacement(job, config)
runTime = EstimateRunTime(config, relNodePerf)
if runTime < bestTime then
bestRunTime = runTime
bestPlacement = placement
return bestPlacement

function GETBESTPLACEMENT(job, config)
memSpeedup = GetMemoryBenefit(config)
allocatedNodes = {}
for node in Nodes do
if CanSchedule(node) then
memSlowdown = DetermineMemorySlowdown(job.sensitivity, node)
#relNodePerf is the relative node performance; can be faster or slower,
#depending on which of memSpeedup and memSlowdown is larger
relNodePerf = GetNodeSlowdown(memSpeedup, memSlowdown, node)
if len(allocatedNodes) < config.nodes then
allocatedNodes.insertSorted(node, relNodePerf)
else if tail(allocatedNodes).relNodePerf > relNodePerf then
allocatedNodes.remove(tail(allocatedNodes))
allocatedNodes.insertSorted(node, relNodePerf)
if len(allocatedNodes) == config.nodes then
return (allocatedNodes, tail(allocatedNodes).relNodePerf)
else
return ([, -1)

function DETERMINEMEMORYSLOWDOWN (sensitivity, node)
for each other job J’ on this node do

determine and add in slowdown due to effect on J by J’
return memSlowdown

function ESTIMATERUNTIME(config, relNodePerf)
if config.isDegraded then
computationTime = config.baseRunTime * degradationSlowdown
computationTime = computationTime * relNodePerf
communicationTime = config.communicationTime * communicationSlowdown
runTime = computationTime 4+ communicationTime
return runTime

function GETMEMORYBENEFIT(config)
fractionCores = config.coresPerNode / systemCoresPerNode
return improvement|fractionCores|

function CANSCHEDULE(node)
return node.freeCores >= config.numCores and within coscheduling limit
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a node that currently is part of the allocation. Note that the slowdown
for the job is the maximum slowdown over all nodes in J.

Function PlaceJob iterates through all configurations (and all nodes
in each configuration)®. If an allocation is found with a sufficient num-
ber of nodes, then the runtime (relative to the base configuration) of J
is computed. If the runtime is better than the best known runtime, this
placement is marked as the current best. As some configurations use more
nodes and fewer cores/node, jobs have the potential to have lower execu-
tion time than would be possible in a strict FCFS (or backfilled) scheduler.

Our implementation has hooks to allow several variations within our
modified best-fit algorithm. The variations are all based on restricting
what jobs can be coscheduled on the same nodes. One such variation is
preventing two jobs that have high memory sensitivity from executing on
the same node, which avoids a large penalty due to memory interference.
Section 5 provides results of using these variations.

4 Experimental Setup

We next describe our experimental infrastructure and evaluation setup.
Our simulator is written in python and allows us to run experiments with
different cluster sizes and numbers of jobs. The simulator takes as input
a trace that contains, for each job, an entry that contains a unique id,
arrival time, execution time, and number of nodes used. It also contains
the coscheduling benefits and penalties described in the previous section.
The way the benefits and penalties are chosen is discussed below.

The particular trace used is from Cab [12], a (now decommissioned)
cluster at Lawrence Livermore National Laboratory that had 1296 nodes,
but commonly operated with 1158 nodes in the batch partition. While the
Cab trace has nearly 700,000 jobs, to keep simulation time manageable
we used subsets of 100,000 jobs taken from this trace for each experiment.
The first job was selected after job number 50,000 to avoid any anomalies
having to do with machine bootup; we experimented with four traces in
all, each having a unique, non-overlapping set of jobs.

The simulator can handle arbitrary numbers of nodes and cores per
node, but as Cab had 1158 nodes and 16 cores per node, we used this
configuration for all experiments except the one that studies varying the

5 This paper is focused on studying the viability of coscheduling, so we trade off
scheduling time (traversing all nodes) for potentially better decisions. There are
many ways to improve search time, including ordering the nodes by free cores.
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number of nodes. (Other Cab features, such as a Sandy Bridge node ar-
chitecture, are irrelevant for our study.) The base configuration for a job
is therefore (n x 16). For our backfilling experiments, we used EASY back-
filling with a window size of 150.

While our simulator is not optimized for speed of simulation, it is
important to ensure that coscheduling does not take an unreasonably long
time to place jobs. The average time for placing a job is less than Hms
for coscheduling, 4ms for easy backfilling, and 400us for FCFS. Notably,
coscheduling and backfilling are reasonably comparable, and both are, as
expected, much slower than FCFS.

For coscheduling experiments, it is necessary to add job-level informa-
tion. The coscheduling benefits and penalties are chosen from a uniform
random distribution with the following endpoints:

— Memory sensitivity: not sensitive (denoted “low”), somewhat sensitive
(denoted “moderate”), or very sensitive (denoted “high”);

— Percentage of total time spent in communication: chosen between 1%
and 20%;

— Communication penalty: chosen between 0% and 40% (applied only
to the communication portion); and,

Degradation penalty: chosen between a slowdown of 1.5 and 2 each
time the number of cores is halved.

Each of these (randomized) values is added to the entry of each job in
the trace. In general it would be necessary to automatically generate this
information; for example, Tang et. al [38] used a database to store applica-
tion performance data that could be used if the job were executed again.
While we envision a different approach to gathering such information, as
this paper is a study to determine the potential extent of the benefits of
coscheduling, we assume that this information is known and stored in the
job file on a per-job basis.

We note that determining memory sensitivity in a clear and concise
form in general is a challenging problem. This paper is focused on evaluat-
ing the potential of coscheduling. There are a number of ways to estimate
memory sensitivity, including the aforementioned keeping of a database of
prior program executions [38], executing a so-called skeleton version of the
code to infer behavior, and taking input from the user through program
annotations or other interface. (The last approach has the potential prob-
lem of dishonest users.) However, handling discovery and representation
of memory sensitivity of programs falls outside the scope of this paper,
and we leave this for future work.
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Fig. 1. Comparing Coscheduling, FCFS, Backfilling, and Coscheduling with Backfilling
(“Combined”) on Tracel through Trace5. The left graph shows turnaround time, and
the right graph shows wait time. For readability, the y-axis ranges are different in the
two graphs.

Given that we are assuming 16-core nodes, our prototype considers
these configurations for every job: (4n x 4), (2n x 8), (n x 16), (2n x 4),
(n x 8), (n/2 x 16), (n/2 x 8), where the base configuration is (n x 16),
and the last four are degraded configurations as they use less than n x 16
cores. We ran experiments with additional configurations (e.g., (8n x 2)),
but they did not perform as well. Similarly, we set a maximum number
of coscheduled jobs per node of three; with the configurations considered,
the hard limit is four, but we found that led to inferior results.

5 Results

This section presents our results. We begin by discussing turnaround times
for coscheduling, backfilling, and FCFS. Next, we discuss the impact of
coscheduling on job execution times. The following two subsections discuss
varying the number of nodes and coscheduling restrictions. Finally, we
provide a short discussion of the implications of our results.

5.1 Turnaround Time Results

Average Turnaround Time Results Figure 1 (left) shows average
turnaround times for coscheduling, FCFS, FCFS with easy backfilling
(hereafter denoted as just “backfilling”), and coscheduling with backfilling.



Evaluating the Potential of Coscheduling 11

These tests are conducted using different 100K sections (and so 100K jobs)
of the Cab trace file (denoted Tracel, Trace2, Trace3, Trace4, and Trace5).
When using coscheduling, for each trace, we ran five experiments, and each
used a different random seed; the result shown is the one with the median
average turnaround time. For our traces, the coefficient of variation was
as low as 0.15% and as high as 1.09%. When using FCFS or backfilling,
there is no randomness, so we only ran one experiment per trace.

Coscheduling results in turnaround times up to 18% lower than back-
filling and over 80% lower than FCFS, due to smaller average wait times
(shown in the right part of the figure). Not surprisingly, the performance
is trace dependent. Coscheduling has lower average turnaround time than
backfilling for all five traces (by between 1% [Tracel| and the aforemen-
tioned 18% [Trace2|), with four of the five traces showing a difference of
14% or more. The reason for the smaller gain on Tracel is in part because
of larger average wait time, which in turn is likely an attribute of the job
mix in Tracel. This shows that scheduling algorithm performance is at
least somewhat dependent on the characteristics of the job mix.

The figure also shows that coscheduling gains little additional benefit
from backfilling; in our five traces, the improvement from adding backfill-
ing to coscheduling is always less than 3%. This is not surprising, given
that coscheduling is aggressively scheduling jobs onto partially occupied
nodes, specifically to lower wait time—so, the wait time is already low.

Impact on Individual Job Turnaround Times The above results es-
tablish that coscheduling decreases average turnaround time compared to
backfilling and FCFS. This subsection explores the effect of coscheduling
on individual jobs; i.e., does the decrease in average turnaround time come
at the cost of greatly increasing the turnaround time of specific jobs? (All
results from here to the end of Section 5 use Tracel, because this is the
trace where backfilling was most competitive with coscheduling.)

In Figure 2, we show three comparisons across the 100K jobs from
Tracel. The vertical axis on these graphs represents the ratio of turnaround
times of the policies being compared, in a manner that allows the reader
to visualize when a certain policy results in better turnaround times than
another. We begin by taking the ratio of turnaround times between two
policies for each job. If this ratio is greater than one, we know that the
second policy had a better overall turnaround time than the first policy.
We plot these values as-is. If the ratio is less than one, we know that the
first policy had a better overall turnaround time on the job, and we negate
and invert this ratio for better readability. As a result, in the subgraphs
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Fig. 2. Job Turnaround Time comparison across the three policies for Tracel.

shown in Figure 2, a value less than zero shows that the first policy had
better turnaround time for a certain job and by what factor. Similarly,
a value greater than zero indicates that the second policy did better and
shows its associated improvement.

The first subgraph in Figure 2 compares coscheduling to backfilling.
The key point is that at the extreme right on the x-axis, turnaround
times for coscheduling are much better (over 5000x) than backfilling; the
opposite is true at the extreme left on the x-axis. These extreme points
are dominated by wait time; both coscheduling and backfilling encounter
situations where the cluster is full or nearly full and a job incurs significant
wait time—coscheduling just has that occur for different jobs than for
backfilling. Given that which jobs end up incurring the large wait times
is arbitrary for each of coscheduling and backfilling, coscheduling achieves
its decrease in average turnaround time without significantly increasing
worst-case wait times for individual jobs.

The second subgraph in Figure 2 shows the same job-level comparison
for coscheduling compared to FCFS. The shape of the graph is similar, but
as expected, there are many more large wait times for FCFS because of the
convoy effect. Accordingly, coscheduling is better in average turnaround
time and has fewer large wait times. For comparison, the third subgraph
shows the job-level comparison for backfilling and FCFS. As can be seen,
backfilling does not have any large job wait times compared to FCFS—
in particular, no job in FCFS is more than 89% slower than backfilling.
This does not mean than backfilling does not have jobs with large wait
times—Dbut rather that those jobs have even larger wait times with FCFS.

Because the data points in the middle are not easily readable on these
subgraphs (due to the scale), Table 1 depicts the quartile data for the dis-
tributions. Note that the negative values in the table indicate the negation
and inversion explained earlier.
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Table 1. Quartiles of Turnaround Time Ratios for Policies

[Policies 0%  [25% [50% [75% [100% |
Backfilling vs FCFS -16187 |-1.0900(1.0000{1.00001.8900
FCFS vs Coscheduling -9799.0|-1.0080(1.0900{1.6800|29805

Backfilling vs Coscheduling|-10856 |-1.0200{1.0500(1.3400|6631.6

Job Speedups with Coscheduling (Sorted) Job Slowdown with Coscheduling (Sorted)

Speedup
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|
Slowdown
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o
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Fig. 3. Job Execution Time Speedup and Slowdown distributions (sorted) from Tracel

5.2 Impact on Individual Job Execution Times

This subsection explores the effect of coscheduling on individual job execu-
tion times. Figure 3 shows this effect. Depending on the configuration that
an incoming job is assigned at allocation time and the other jobs it shares
its allocation with, the incoming job may experience a speedup in exe-
cution time (due to reduced memory contention), no change in execution
time, or a slowdown in execution time (due to decreased memory band-
width, communication penalty, or degraded configuration, as described in
Section 3.2). Note that the execution time of a job only experiences a
change with the coscheduling policy—both FCFS and backfilling use the
original execution time from the job trace and do not modify individual
job execution times.

We analyzed one of the traces of 100K jobs (Tracel), where 45,285
jobs had decreased execution time (speedup), 48,879 jobs had increased
execution time (slowdown), and 5,836 jobs had no change in execution
time. The left graph in Figure 3 shows the sorted distribution of jobs that
sped up, and the right graph shows the sorted distribution of jobs that
slowed down. We observed that for the 48.8% jobs that slowed down, most
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Fig. 4. Varying node count. Because of the large range of average turnaround times,
two graphs are shown with different ranges of node count for better readability. Results
use Tracel.

did not experience a significant slowdown. Only a little over 6% of the jobs
slowed down by more than 20% in Tracel. Additionally, with coscheduling,
the number of jobs that slowed down by factors of two, three, and four
were 588, 226, and one, respectively. No job slowed down by more than a
factor of five.

5.3 Differing Numbers of Nodes

Figure 4 shows the results of coscheduling, FCFS, and backfilling as the
system node count varies from 500 to 2000. Two graphs are used for read-
ability; please note that the x-axis of the left graph starts at 500 and goes
to 1100, and the x-axis of the right graph starts at 1100 and goes to 2000.
As with the previous results, coscheduling consistently leads to the lowest
average turnaround time. The job trace we use is for a system of 1158
nodes, so when we use relatively small system node counts (e.g., 500), the
average turnaround time is extremely high (as expected). Coscheduling
leads to the best average turnaround time because wait time dominates
this scenario (and coscheduling is designed to decrease wait time at the ex-
pense of execution time). When the node count is sufficiently large (1400
and above), all algorithms converge to a single value because there are
enough nodes to avoid any waiting (again, the trace is for a system of
1158 nodes). Coscheduling converges to a lower average turnaround time
because it leverages the additional nodes to spread out a larger number
of jobs, achieving a memory bandwidth benefit on such jobs.
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Fig. 5. Restricted coscheduling. The left graph shows four scenarios, from no restric-
tions (No_Restrict) to allowing only one high or medium sensitivity job on a node
(Max_One_HM). The middle two bars are, in turn, allowing at most one high sensitivity
job on a node (Max_One_High) and any high sensitivity job on a node requiring all
other jobs on the node to be low sensitivity (High_Rq_Low). The right graph shows the
distribution of configurations for the experiment. Results use Tracel.

5.4 Restricting Coscheduling

Our coscheduling algorithm places no restrictions on which types of jobs
(low, moderate, high) can be coscheduled. An alternative coscheduling
design attempts to limit coscheduling overhead due to memory contention
by restricting coscheduling possibilities. Figure 5 shows the effect of doing
so on Tracel.

In the left graph, each bar shows turnaround time, broken down into
wait time and execution time. The leftmost bars show results of our base
coscheduling algorithm (No_Restrict), which has no restrictions. Pro-
ceeding rightward, the next bar shows results if we restrict coscheduling to
at most one high sensitivity job (Max_One_High). The third bar further re-
stricts coscheduling to require a high sensitivity job to be coscheduled only
with low sensitivity jobs (High_Rq_Low). Finally, the fourth bar requires
that coscheduling occur with at most one high or moderate sensitivity job
(Max_One_HM).

The figure shows that restrictions lead to higher turnaround times.
Unsurprisingly, placing restrictions on which types of jobs can be cosched-
uled leads to higher wait times. Counterintuitively, restrictions also lead
to higher execution times. The reason for this (see the right graph in the
figure) is that the higher wait times cause degraded configurations to be
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Table 2. Number of jobs blocked, due to fragmentation and capacity, with and without
degraded configurations.

]Version [Num blocked (fragmentation) [Num blocked (capacity)[
With degraded configs 5,805 7,595
Without degraded configs 41,664 25,671

used more often (to avoid increasing wait times even more). The number
of degraded configurations with No_Restrict is 6,106; in turn, that num-
ber is 9,121 for Max_One_High, 12,880 for High_Rq_Low, and 18,825 for
Max_One_HM. Obviously, if average wait and average execution time both
increase, so does average turnaround time. Fundamentally, one is generally
better off just using FCFS than placing restrictions on coscheduling.

Finally, Table 2 shows the effect, specifically, of degraded configura-
tions with coscheduling without restrictions. The table makes clear that
degraded configurations are critical to the success of coscheduling as they
avoid significant wait time. This is true both in terms of avoiding blocks
due to fragmentation (there are sufficient total resources, but not in us-
able form) and capacity (there are insufficient total resources). Avoiding
wait time in exchange for slightly slower execution time is a tradeoff that
is clearly better.

6 Related Work

Allocating dedicated nodes has a long history at HPC centers because
it prevents inter-job interference (especially due to cache/memory) on
a node. However, it does not eliminate sharing the interconnect, and it
does not prevent CPU interrupts on a node. CPU interrupts can be quite
damaging to performance [29,40]. For example, if a noise event occurs
on just one out of NV cores running identical code, for large NV, the next
global synchronization point will suffer a delay equal to the duration of
the noise event [29,14,7]|. Even if synchronization is local, this can still
result in so-called cascading effects [17, 11]. The community has responded
with many techniques to avoid problems due to core context switching.
These include core specialization [2], lightweight operating systems [19],
and zero-noise operating systems [39, 1].

Some of the work on coscheduling comes from the HPC scheduling
community. For example, paired gang scheduling [44] had the goal of mod-
ifying gang scheduling to execute two jobs on a node, one CPU bound and
the other I/O bound. In addition, virtualization often leads to consolida-
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tion of applications (often done to conserve power), which is a form of
coscheduling [43].

A significant amount of work on coscheduling comes from cloud instal-
lations, where the primary goal is the profit of the cloud provider. Kuber-
netes [31] and YARN [41] provide infrastructure for scheduling multiple
jobs onto a node or nodes; application degradation is only limited by the
service-level agreement. HPC schedulers for these frameworks only sched-
ule individual applications to Cloud nodes [33], and cloud schedulers that
gang-schedule processes generally implement only simple scheduling algo-
rithms [27]. None of these approaches improves system-wide utilization
and turnaround time for multiple, diverse HPC applications.

Two recent related papers have used coscheduling. Tang et al. [38]
use coscheduling that results in jobs being spread out, similar to our
technique. This work fixes the number of cores, whereas our approach
considered degraded configurations. Saba et al. [32] use coscheduling to
tackle the specific problem of CPU-GPU applications. They formulate an
optimization problem and use machine learning to do the partitioning.
Theoretical aspects of coscheduling for HPC with a focus on memory and
resilience have also been explored in Pottier’s dissertation [30].

Modern batch schedulers for HPC systems such as SLURM [2] and
FLUX [3] support the assignment of multiple jobs to a node in the sense
that one could use them to coschedule. However, they typically allocate
dedicated nodes in practice to avoid performance penalties that can arise
from sharing caches, main memory, network interfaces, or any other node-
level resource [8,15,22,25]. In addition, there is an inter-node penalty
when multiple jobs share a node in that more pressure may be put on
network links, resulting in network interference. Other scheduling policies
other than allocating dedicated nodes exist, such as time-sharing, gang
scheduling [13], or implicit coscheduling [5]. Gang scheduling and implicit
coscheduling are ways to try to get all nodes of a job active at the same
time, without resorting to space sharing. Using gang scheduling with ad-
mission control to avoid paging and thrashing has also been studied [6].

7 Summary

This paper has presented a coscheduling approach on a high-performance
computing system and evaluated its effectiveness compared to FCFS and
backfilling. While coscheduling may increase execution time, its decrease
in wait time generally makes it a superior approach in situations where
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average job turnaround time is most important. Combining backfilling
and coscheduling can further reduce wait times, albeit marginally.

There are still many aspects of this problem to be studied. For ex-
ample, we assumed we knew job characteristics, such as memory sensi-
tivity or communication patterns, but in general such information must
be discovered through historical data analysis of job traces or through
performance counter based models. Similarly, many HPC systems include
multiple GPUs per node, and application kernels can share a GPU |37,
20]. We did not study the impact of determining which application kernels
work well together in a shared GPU environment, or how AI/ML work-
flows with GPUs would fare. We focused on average turnaround times and
hence, job throughput, and we did not address system or component uti-
lization. Modeling component utilization (such as cores, GPUs, memory)
or flow resource utilization (such as power, network, or I/O bandwidth)—
as well as identifying what occupancy or idleness means for each of these
resources—is crucial to conduct a tradeoff analysis of utilization versus
throughput when comparing backfilling and coscheduling. For GPUs, oc-
cupancy and utilization metrics are provided through vendor interfaces,
such as the NVML or ROCm libraries [26, 4]. Designing a model to deter-
mine core occupancy or memory occupancy, or power utilization, however,
is an area of future research. These are just a few of the avenues we will
pursue, given the results here that coscheduling—applied judiciously—can
improve the efficiency of HPC systems.
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