
Convergence of First-Order Methods for Constrained Nonconvex Optimization

with Dependent Data

Ahmet Alacaoglu * 1 Hanbaek Lyu * 2

Abstract

We focus on analyzing the classical stochastic

projected gradient methods under a general de-

pendent data sampling scheme for constrained

smooth nonconvex optimization. We show the

worst-case rate of convergence Õ(t−1/4) and

complexity Õ(ε−4) for achieving an ε-near sta-

tionary point in terms of the norm of the gradi-

ent of Moreau envelope and gradient mapping.

While classical convergence guarantee requires

i.i.d. data sampling from the target distribution,

we only require a mild mixing condition of the

conditional distribution, which holds for a wide

class of Markov chain sampling algorithms. This

improves the existing complexity for the con-

strained smooth nonconvex optimization with de-

pendent data from Õ(ε−8) to Õ(ε−4) with a sig-

nificantly simpler analysis. We illustrate the gen-

erality of our approach by deriving convergence

results with dependent data for stochastic proxi-

mal gradient methods, adaptive stochastic gradi-

ent algorithm AdaGrad and stochastic gradient

algorithm with heavy ball momentum. As an ap-

plication, we obtain first online nonnegative ma-

trix factorization algorithms for dependent data

based on stochastic projected gradient methods

with adaptive step sizes and optimal rate of con-

vergence.

1. Introduction

Consider the minimization of a function f : Rp → R given

as an expectation:

θ
∗ ∈ argmin

θ∈Θ

{f(θ) := Ex∼π [ℓ(θ,x)]} , (1)
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where π is a distribution on a sample space Ω ⊆ R
d with

a density function; ℓ : Ω×Θ→ R a per-sample loss func-

tion and Θ ⊆ R
p a closed convex set with an efficiently

computable projection

proj(θ) = argmin
θ′∈Θ

1

2
∥θ − θ

′∥2. (2)

We assume that f is a smooth and possibly nonconvex func-

tion. Constrained nonconvex optimization with dependent

data arise in many situations such as decentralized con-

strained optimization over networked systems, where the

i.i.d. sampling requires significantly more communication

than the dependent sampling (Johansson et al., 2007; 2010;

Duchi et al., 2012). Other applications are policy evalua-

tion in reinforcement learning where the Markovian data is

naturally present since the underlying model is a Markov

Decision Process (Bhandari et al., 2018), and online non-

negative matrix factorization and network denoising (Lyu

et al., 2020).

1.1. Related Work and Summary of Contributions

It is well-known that obtaining optimal complexity

with single-sample projected stochastic gradient descent

(SGD) for constrained nonconvex problems is significantly

more challenging than unconstrained nonconvex optimiza-

tion (Ghadimi et al., 2016; Davis and Drusvyatskiy, 2019;

Alacaoglu et al., 2021). This challenge has been recently

overcome by (Davis and Drusvyatskiy, 2019) within the

framework of weakly convex optimization, which resulted

in optimal complexity results for projected/proximal SGD

(PSGD). Later, this result is extended for algorithms such

as SGD with heavy ball momentum (Mai and Johansson,

2020) or adaptive algorithms such as AMSGrad and Ada-

Grad (Alacaoglu et al., 2021). These guarantees require i.i.d.

sampling from the underlying distribution π.

Optimization with non-i.i.d. data is studied in the convex

and nonconvex cases with gradient/mirror descent in (Sun

et al., 2018; Duchi et al., 2012; Nagaraj et al., 2020) and

block coordinate descent in (Sun et al., 2020). SGD is also

recently considered in (Wang et al., 2021) for convex prob-

lems. Another important work in this direction is (Karimi

et al., 2019) that focused on unconstrained nonconvex case
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with a different assumption on the dependent data com-

pared to previous works and relaxed the assumptions on

the variance. For constrained and nonconvex problems,

the work (Lyu et al., 2020) showed asymptotic guarantees

of stochastic majorization-minimization (SMM)-type algo-

rithms to stationary points of the expected loss function.

More recently, (Lyu, 2022) studied generalized SMM-type

algorithms with dependent data for constrained problems

and showed the complexity Õ(ε−8) with standard assump-

tions (that we will clarify in the sequel) and Õ(ε−4) when

all the iterates of the algorithm lie in the interior of the con-

straint set, for obtaining ε-stationarity. We also remark that

(Lyu, 2022) showed that for the ‘empirical loss functions’

(recursive average of sample losses), SMM-type algorithms

need only Õ(ε−4) iterations for making the stationarity gap

under ε. Our present work does not consider empirical loss

functions but focus on expected loss functions. See (Lyu,

2022) for more details.

Since the complexity Õ(ε−8) is suboptimal for nonconvex

expected loss minimization, the motivation of our work is

to understand if this complexity is improvable or if it is

inherent when we handle dependent data and constraints

jointly. Our results conclude that the complexity is indeed

improvable and show the near-optimal complexity Õ(ε−4)
for constrained nonconvex problems with dependent data.

Unlike our result, previous work (Lyu, 2022) needed an

additional assumption that the iterates lie in the interior of

the constraint (which is difficult to satisfy in general for

constrained problems) for the optimal complexity Õ(ε−4).
Moreover, to our knowledge, no convergence rate of pro-

jected SGD is known in the constrained nonconvex case

with non-i.i.d. sampling. We also show the first rates for

AdaGrad (Duchi et al., 2010) and SGD with heavy ball mo-

mentum (Mai and Johansson, 2020) for this setting. See

Table 1 for a summary of the discussion above.

After the completion of our manuscript, we became aware of

the recent concurrent work (Dorfman and Levy, 2022) that

analyzed AdaGrad with multi level Monte Carlo gradient

estimation for dependent data. This work focused on the

unconstrained nonconvex setting whereas our main focus is

the more general class of constrained nonconvex problems.

Hence we believe the two results complement each other.

We also note that slightly stronger versions of Assump-

tion 2.1 are required even for unconstrained nonconvex op-

timization with dependent data, see (Sun et al., 2018; Dorf-

man and Levy, 2022). It is well-known that this assumption

is difficult to satisfy in the unconstrained setting, but it is

more realistic with the presence of constraints. Because

of this reason, our results incorporating the constraints and

projections in the algorithm provides a more realistic prob-

lem setup. While our results would recover those in (Sun

et al., 2018) when specialized to the unconstrained case,

due to Assumption 2.1, this unconstrained setting would

be less realistic as argued above. Because of this, and for

other motivating applications, the main focus of this pa-

per is obtaining optimal complexity results for constrained

nonconvex problems.

1.2. Contribution

We consider convergence of stochastic first-order methods,

including proximal and projected stochastic gradient de-

scent (SGD), projected SGD with momentum, and stochas-

tic adaptive gradient descent (AdaGrad-norm). These are

all classical nonconvex optimization algorithms that have

been used extensively in various optimization and machine

learning tasks. Our main focus is to establish optimal con-

vergence rate for such stochastic first-order methods under

very general data sampling scheme, including functions of

Markov chains, state-dependent Markov chains, and more

general stochastic processes with fast enough mixing of

multi-step conditional distribution.

To summarize our results, consider the following simple

first-order method:

Step 1. Sample xt+1 from a distribution conditional on

x1, . . . ,xt; (▷ possibly non-i.i.d. samples)

Step 2. Compute a stochastic gradient G(θt,xt+1)
(see Assumption 2.1 for Def.) and θt+1 ←
proj

Θ
(θt − αtG(θt,xt+1)), where the step size

αt is chosen so that either (1) non-summable and

square-summable; or (2) according to AdaGrad-norm:

α−2
t = α−2

t−1 + ∥G(θt,xt+1)∥2α−2 for α > 0.

An important point here is that we do not require the new

training point xt+1 to be distributed according to the sta-

tionary distribution π, nor to be independent on all the

previous samples x1, . . . ,xt. For instance, we allow one

to sample xt+1 according to an underlying Markov chain,

so that each step of sampling is computationally very effi-

cient but the distribution xt+1 conditional on xt could be far

from π. This may induce bias in estimating the stochastic

gradient G(θt,xt+1).

Suppose f is ρ-smooth; Θ ⊆ R
p is convex, closed; and

the training samples xt are a function of some underlying

Markov chain mixing sufficiently fast (see Section 2). Under

some mild assumptions used in the literature (Sun et al.,

2018; Lyu, 2022; Bhandari et al., 2018), we establish the

following convergence results for a wide range of stochastic

first-order methods under non-i.i.d. data setting:

• We show that any convergent subsequence of (θt)t≥0

converges to a stationary point of (1) almost surely.

The rate of convergence for finding stationary points is
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Õ(T−1/4) (measured using gradient mapping norm).

(Thm. 3.1, 3.9, 3.3)

• The same result as above holds when (θt)t≥0 are gen-

erated by using stochastic heavy ball (see Alg. 3) and

projected SGD with state-dependent Markov chain (see

Thm. 3.8.

This is the same rate of convergence as in the i.i.d. case, up

to log-factors, which was obtained in (Davis and Drusvy-

atskiy, 2019) in terms of gradient mapping as shown in

Thm. 3.9. Hence our analysis shows that the convergence of

the algorithm and the order of the rate of convergence are

not affected by such statistical bias in sampling training data,

which was described earlier in this subsection. Furthermore,

our result improves the rate of convergence of stochastic

algorithms for constrained nonconvex expected loss mini-

mization with dependent data (Lyu, 2022), see Thm. 3.9 for

the details. Moreover, we extend our analysis to obtain sim-

ilar results for such projected SGD algorithms as adaptive

gradient algorithm AdaGrad (see Algorithm 2 and Theorem

3.3) and SGD with heavy ball momentum (see Algorithm 3

and Theorem 3.4).

1.3. Notations

We fix p ∈ N to be the dimension of the ambient Euclidean

space R
p equipped with the inner product ⟨·, ·⟩ that also

induces the Euclidean norm ∥·∥. For each ε > 0, let

Bε := {x ∈ R
p | ∥x∥ ≤ ε} denote the ε-ball centered

at the origin. We also use the distance function defined

as dist(θ,Θ) = minθ′∈Θ ∥θ − θ
′∥ and the σ-algebra

Ft−k = σ(x1, . . . ,xt−k). We denote f : Θ → R to be

a generic objective function for which we introduce the

precise assumptions in Section 2, where Θ ⊆ R
p is closed

and convex. Let ιΘ denote the indicator function of the set

Θ, where ιΘ(θ) = 0 if θ ∈ Θ and ιΘ(θ) = +∞ if θ ̸∈ Θ.

Note that

argmin
θ∈Θ

f(θ) = argmin
θ∈Rp

{φ(θ) := f(θ) + ιΘ(θ)} . (3)

1.4. Preliminaries on Stationarity Measures

Since we do not expect the first-order optimality conditions

to be satisfied exactly in a finite number of iterations in

practice, we wish to estimate the worst-case number of itera-

tions required to achieve an ε-approximate solution and the

corresponding scaling with ε. To this end, we can relax the

first-order optimality conditions as follows: For each ε > 0,

we say θ
∗ is an ε-stationary point (or ε-approximate station-

ary point) for f over Θ if and only if dist(0, ∂φ(θ∗)) ≤ ε.
We say a point θ∗ is approximately near stationary for f
over Θ if there exists some point θ̂ near θ that is approxi-

mately stationary for f over Θ. We will make this notion

precise through the following discussion.

One of the central notions in the recent influential work

by Davis and Drusvyatskiy (2019) in analyzing convergence

rates of first-order methods for constrained nonconvex prob-

lems is the Moreau envelope, which is a smooth approx-

imation of an objective function that is closely related to

proximal mapping. For a constant λ > 0, we define the

Moreau envelope φλ of φ defined in (3) as

φλ(θ) := min
θ′∈Rp

(

φ(θ′) +
1

2λ
∥θ′ − θ∥2

)

. (4)

If f is ρ-weakly convex and if λ < ρ−1, then the minimum

in the right hand side is uniquely achieved at a point θ̂,

which we call the proximal point of θ. Accordingly, we

define the proximal map

θ̂ := proxλφ(θ)

:= argmin
θ′∈Rp

(

φ(θ′) +
1

2λ
∥θ′ − θ∥2

)

(5)

Also in this case, the Moreau envelope φλ is C1 with gradi-

ent given by (see (Davis and Drusvyatskiy, 2019))

∇φλ(θ) = λ−1(θ − proxλφ(θ)). (6)

When θ is a stationary point of φ, then its proximal point

θ̂ should agree with θ. Hence the gradient norm of the

Moreau envelope φλ may provide an alternative measure of

stationarity. Indeed, as shown in (Davis and Drusvyatskiy,

2019), it provides a measure of near stationarity in the sense

that if ∥∇φλ(θ)∥ is small, then since the proximal point

θ̂ in (5) is within λ∥∇φλ(θ)∥ from θ, θ̂ approximately

stationary in terms of dist(0, ∂φ(θ̂)):

∥θ − θ̂∥ ≤ λ∥∇φλ(θ)∥, φ(θ̂) ≤ φ(θ), (7)

dist(0, ∂φ(θ̂)) ≤ ∥∇φλ(θ)∥. (8)

Note that the first and the last inequality above follows from

the first-order optimality condition for θ̂ together with (6)

(see also Propositions B.2 and B.1 in Appendix B).

Hence, in the literature of weakly convex optimization, it is

common to state the results in terms of the norm of the gra-

dient of Moreau envelope (Davis and Drusvyatskiy, 2019;

Drusvyatskiy and Paquette, 2019) which we will also adopt.

When g is additionally smooth, a commonly adopted mea-

sure to state convergence results is gradient mapping which

is defined as (Nesterov, 2013)

∥G1/ρ̂(θt)∥ = ρ̂

∥

∥

∥

∥

θt − proj
Θ

(

θt −
1

ρ̂
∇f(θt)

)∥

∥

∥

∥

=: ρ̂∥θt − θ̃t∥, (9)

for any λ > 0, where we also defined θ̃t. The results (Davis

and Drusvyatskiy, 2019) (Drusvyatskiy and Lewis, 2018)
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minθ∈Rp f(θ)
f : L-smooth

minθ∈Θ f(θ)
f : L-smooth

Markovian
data

Constrained

SMM (Lyu, 2022) Õ(ε−4) Õ(ε−8)† ✓ ✓

SGD (Sun et al., 2018; Karimi et al., 2019) Õ(ε−4) − ✓ ✗

Proj. SGD (Davis and Drusvyatskiy, 2019) Õ(ε−4) Õ(ε−4) ✗ ✓

Proj. SGD-Sec. 3.1 Õ(ε−4) Õ(ε−4) ✓ ✓

AdaGrad-Sec. 3.2 Õ(ε−4) Õ(ε−4) ✓ ✓

Table 1. Complexity comparison for stochastic nonconvex optimization with non-i.i.d. data. Complexities in each column are the number

of stochastic gradients to obtain: E∥∇f(θ)∥ ≤ ε and E [dist(0, ∂φ(θ))] ≤ ε, respectively (where φ is defined in (3)). †This work

showed the improved complexity Õ(ε−4) under the additional assumption that the iterates of the algorithm are in the interior of Θ, which

does not necessarily hold in the constrained case. We do not make such an assumption in this paper.

showed how to translate the guarantees on the gradient of

the Moreau envelope to gradient mapping by proving that

∥G1/2ρ̂(θ)∥ ≤
3

2
∥∇φ1/ρ̂(θ)∥.

It is easy to show that a small gradient mapping implies

that θt is close to proj
Θ
(θt − (1/ρ̂)∇f(θt)) which itself

is approximately stationary in view of Sec. 1.4 which can

be shown by using the definition of θ̃t and smoothness of

f . Even though such an approximately stationary point

can be computed in the deterministic case, computation of

∇f(θt) is not tractable in the stochastic case. However, as

we show in Sec. 3.6, we can still output a point which is

approximately stationary, in a tractable manner, with the

claimed complexity results in our dependent data setting.

2. Stochastic Gradient Estimation

Denote as ∆[t−k,t] the worst-case total variation distance

between conditional distribution of xt given x1, . . . ,xt−k ∈
Ω and the stationary distribution π. Namely,

∆[t−k,t] := sup
x1,...,xt−k

∥πt(· |x1, . . . ,xt−k)− π∥TV , (10)

where πt|t−k = πt(· |x1, . . . ,xt−k) denotes the proba-

bility distribution of xt conditional on the past points

x1, . . . ,xt−k.

Most of our theoretical results (except Theorem 3.8 for state-

dependent Markov chains, see Section 3.5) operate under

the following three assumptions.

Assumption 2.1. The function f is C1 smooth and has

ρ-Lipschitz gradient and the set Θ is closed and convex.

There exists an open set U containing Θ and a mapping

G : U×Ω→ R
p such that for all θ ∈ Θ, Ex∼π [G(θ,x)] =

∇f(θ). Also θ 7→ G(θ, x) is L1-Lipschitz for all x for

some L1 > 0.

Assumption 2.2. We can sample a sequence of points

(xt)t≥1 in Ω in a way that: (1) For each x ≥ 0, ∆[t,t+N ] is

non-increasing in N ≥ 0; and (2) limN→∞ ∆[t,t+N ] = 0
for all t ≥ 0; and (3) there exists a sequence kt ∈ [0, t],
t ≥ 1 such that ∆[t−kt,t] → 0 and

∑∞
t=1 αt∆[t−kt,t] <∞,

where αt > 0 denotes the stepsize in the first-order method.

Assumption 2.3. Assume either of the two: (i) There

is L ∈ (0,∞) such that for each t ≥ 1 and θ ∈ Θ,

E [∥G(θ,xt+1)∥ | Ft] ≤ L and the process (xt)t≥0 is a

function of some time-homogeneous Markov chain; or (ii)

There is L ∈ (0,∞) such that ∥G(θ,x)∥ ≤ L for all θ, x.

Assumption 2.1 is about smoothness of the objective and

stochastic gradient operatorG. The former is standard in the

literature of stochastic constrained first-order methods and

the latter is also common when we additionally work with

dependent data(see, e.g., (Davis and Drusvyatskiy, 2019;

Sun et al., 2020; Lyu, 2022)).

Assumption 2.2 states that: (1) The N -step conditional

distribution πt+N |t can only be closer to the stationary dis-

tribution π when N increases; (2) the N -step conditional

data distribution πt+N |t converges to the stationary distribu-

tion π asymptotically; and (3) such convergence (mixing)

occurs at a sufficiently fast rate. The sequence kt plays a

critical role in controlling dependence in data samples. The

key idea is that, when analyzing quantities at time t + 1,

one conditions on a ‘distant past’ t − kt (instead of the

present t) and approximates the multi-step conditional data

distribution πt+1|t−kt
by the stationary distribution π. The

error of such approximation in the total variation distance

is bounded by ∆[t−kt,t]. Assumption 2.2 requires that this

quantity should be summable after being multiplied by the

stepsize αt.

There are two notable special cases that satisfy Assump-

tion 2.2. First, Assumption 2.2 is trivially satisfied (with

kt ≡ 0) in the i.i.d. case since then πs|t ≡ π whenever

s > t.

Second, suppose xt is given by a function g of some un-

derlying time-homogeneous Markov chain Xt with a sta-
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tionary distribution π. In this case Assumption 2.2(1) holds

by Scheffé’s lemma (see, e.g., Lemma 2.1 in (Tsybakov,

2004)). (Here time-inhomogeneity is not necessary.) If

Xt is irreducible and aperiodic on a finite state space, then

Assumption 2.2(2) holds with ∆[t−k,t] = O(exp(−ck))
for some constant c > 0 independent of t (Levin and Peres,

2017). So Assumption 2.2(3) is verified for any kt ≥ C log t
for C > 0 large enough so that

∑

t≥1 exp(−ckt) <∞ and

for any αt = O(1). In the case when the underlying Markov

chain Xt has countably infinite or uncountable state space,

then a more general condition for geometric ergodicity is

enough to imply Assumption 2.2 (see, e.g., (Levin and Peres,

2017; Meyn and Tweedie, 2012)). See (Lyu et al., 2020)

and (Sun et al., 2018) for concrete applications and sampling

methods that satisfy this assumption. This assumption is

common in the literature (Bhandari et al., 2018; Lyu, 2022;

Lyu et al., 2020; Sun et al., 2018; Nagaraj et al., 2020) and

i.i.d. sampling is another special case.

We emphasize that Assumption 2.2 does not necessarily

reduce to time-homogeneous and state-independent Markov

chains. Our main focus is using Assumption 2.2 which is the

main assumption on the data in most of the works we com-

pare with. However, we also discuss another popular setting

of modeling dependent data samples by state-dependent

Markov chain. See 3.6-3.7 and Thm. 3.8.

Next, we discuss Assumption 2.3 on boundedness of

stochastic gradients. In the i.i.d. case, it is standard to

assume uniform boundedness of Ex∼π[∥G(θ,x)∥] for each

θ ∈ Θ (Davis and Drusvyatskiy, 2019; Davis et al., 2020).

In the non-i.i.d. case, it has been customary to make stronger

assumption of uniform boundedness of G(θ,x) even in the

unconstrained nonconvex case (Sun et al., 2018; Dorfman

and Levy, 2022), which does not properly generalize the

standard assumption in the i.i.d. case. This is mostly for

controlling the error of multi-step conditional expectation of

the stochastic gradient by its stationary expectation, which

is the crucial issue in the non-i.i.d. case that is non-existent

in the i.i.d. case.

In this work, we are able to analyze the non-i.i.d. setting

under a much weaker condition in Assumption 2.3(i) that

only assumes one-step conditional expectation of the norm

of the stochastic gradient is bounded. Although for a techni-

cal reason we will also need to assume that the data samples

(xt)t≥0 are given as a function of some time-homogeneous

Markov chain, Assumption 2.3(i) properly generalizes the

standard assumptions in the i.i.d. case. In addition, We also

analyze non-i.i.d. setting under uniformly bounded stochas-

tic gradients but with more general data sampling setting

(Assumption 2.3(ii)), including time-inhomogeneious and

non-Markovian setting.

Now we state a key lemma that handles the bias due to

dependent data and is algorithm independent. In the sequel,

we will invoke this lemma for different algorithms such as

SGD, AdaGrad or SGD with heavy ball momentum.

Lemma 2.4 (Key lemma). Let Assumptions 2.1, 2.2, 2.3

hold and θt be generated according to Algorithm 1, 2 or 3.

Fix ρ̂ > ρ and denote θ̂ = proxφ/ρ̂(θ) and fix 1 ≤ k ≤ t.
Then

∣

∣

∣E
[

⟨θ̂t − θt, G(θt,xt+1)⟩ | Ft−k

]

(11)

− ⟨θ̂t − θt, Ex∼π [G(θt,x)]⟩
∣

∣

∣ ≤ 4L2

ρ̂− ρ ∆[t−k,t]

+
2L(L1 + ρ̂)

ρ̂− ρ E

[

t−1
∑

s=t−k

αs∥G(θs,xs+1)∥
∣

∣

∣

∣

Ft−k

]

.

This lemma borrows some ideas from (Lyu, 2022). The

important difference is that, the result of the lemma makes it

explicit the dependence on the step size and gradient norms

to be applicable with AdaGrad. This is needed because

the step size of AdaGrad does not have a specific decay

schedule. The proof is given in Section C.

3. Convergence Rate Analysis

3.1. Projected SGD with Dependent Data

Now we state our first main result in this work, which ex-

tends the convergence result of projected SGD with i.i.d.

samples in (Davis and Drusvyatskiy, 2019) to the general

dependent sample setting. This result improves the existing

complexity of stochastic algorithms from (Lyu, 2022) for

solving constrained nonconvex stochastic optimization un-

der dependent data, see Section 3.6 for details. We use the

notion of global convergence with respect to arbitrary ini-

tialization below. The proof of this result is in Appendix D.

Algorithm 1 Projected Stochastic Gradient Algorithm

(PSGD)

1: Input: Initialize θ1 ∈ Θ ⊆ R
p; T > 0; Stepsizes (αt)t≥1

2: Sample τ from {1, . . . , T} independently of everything else
where P(τ = k) = αk∑

T
t=1

αt
.

3: For t = 1, 2, . . . , T do:
4: Sample xt+1 from πt+1 = πt+1(· |x1, . . . ,xt)
5: θt+1 ← proj

Θ
(θt − αtG(θt,xt+1))

6: End for
7: Return: θT (Optionally, θ

out
T as either θτ or

argminθ∈{θ1,...,θT } ∥∇φ1/ρ̂(θ)∥2.)

Theorem 3.1 (Projected stochastic gradient method). Let

Assumptions 2.1-2.3 hold and (θt)t≥1 be a sequence gen-

erated by Algorithm 1. Fix ρ̂ > ρ. Then the following

hold:
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(i) (Rate of convergence) For each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

= O
( 1
∑T

k=1 αk

(

T
∑

t=1

α2
t

+

T
∑

t=1

ktαtαt−kt
+

T
∑

t=1

αtE[∆[t−kt,t]]
))

. (12)

In particular, with αt = c√
t

for some c >

0 and under exponential mixing, we have that

E
[

∥∇φ1/ρ̂(θ
out
T )∥

]

≤ ε with Õ
(

ε−4
)

samples.

(ii) (Global convergence) Further assume that
∑∞

t=0 ktαtαt−kt
< ∞. Then ∥∇φ1/ρ̂(θ̂t)∥ → 0 as

t → ∞ almost surely. Furthermore, θt converges to

the set of all stationary points of f over Θ.

If (xt)t≥1 is exponentially mixing, then Theorem 3.1(ii)

holds with αt = t−1/2(log t)−1−ε for any fixed ε > 0 and

kt = O(log t).

3.2. AdaGrad with Dependent Data

We next establish the convergence of AdaGrad with depen-

dent data and constrained nonconvex optimization. We will

use AdaGrad with scalar step sizes (see Alg. 2), which is

also referred to as AdaGrad-norm (Ward et al., 2019; Levy,

2017; Streeter and McMahan, 2010).

Algorithm 2 AdaGrad-norm (Streeter and McMahan, 2010)

1: Input: Initialize θ1 ∈ Θ ⊆ R
p; T > 0; (αt)t≥1 ; v0 > 0;

α > 0
2: Optionally, sample τ from {1, . . . , T} independently of ev-

erything else where P(τ = k) = 1
T

.
3: For t = 1, 2, . . . , T do:
4: Sample xt+1 from πt+1 = πt+1(· |x1, . . . ,xt)
5: vt = vt−1 + ∥G(θt,xt+1)∥2
6: αt =

α√
vt

7: θt+1 ← proj
Θ
(θt − αtG(θt,xt+1))

8: End for
9: Return: θT (Optionally, θ

out
T as either θτ or

argminθ∈{θ1,...,θT } ∥∇φ1/ρ̂(θ)∥2.)

For this section, we introduce an additional assumption on

the boundedness of the objective values.

Assumption 3.2. (A4) There exists Cφ ∈ (0,∞) such that

|f(θ)| ≤ Cφ for all θ ∈ Θ.

Compared to projected SGD, the step size of AdaGrad does

not have a specific decay schedule, which makes it challeng-

ing to use the existing bias analyses for dependent data (for

example the idea from (Lyu, 2022)) since they critically rely

on knowing the precise decay rate of the step sizes.

To be able to apply such an analysis for adaptive algorithms,

we use a generalized result in Lem. 2.4 and use the partic-

ular form of AdaGrad step size in Thm. 3.3 to achieve the

optimal Õ(ε−4) complexity. Full proof of the result is given

in Appendix E.

Theorem 3.3 (AdaGrad-norm). Let Assumption 2.1-2.3 and

Assumption 3.2 hold and (θt)t≥1 be a sequence generated

by Algorithm 2. Fix ρ̂ > ρ and a nondecreasing, diverging

sequence (kt)t≥1. Then, for each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

(13)

= O

(

kT log(TL2)√
T

+
1

T

T
∑

t=1

E[∆[t−kt,t]]

)

.

We note that unlike Thm. 3.1, for AdaGrad we only prove

nonasymptotic complexity results and not asymptotic con-

vergence statements for the output sequence of the algo-

rithms. Even though asymptotic convergence of AdaGrad

with i.i.d. data is proven in (Li and Orabona, 2019), the

technique in that paper relies on using the inequality (128)

multiplied with αt. However, the specific form of (128) is

important in our development to use Lem. 2.4 to handle

the dependent data, since αt brings additional stochastic

dependencies. Even though we believe an appropriate modi-

fication of Lem. 2.4 can be possible, we do not pursue such

generalization in the present work.

Since the step size in this case is nonincreasing, Assump-

tion 2.2 reduces to
∑∞

t=1 ∆[t−k,t] <∞. This, for example,

is satisfied for the exponential mixing case that is mentioned

in Theorem 3.1 and considered in the previous work (Lyu,

2022; Sun et al., 2018; Bhandari et al., 2018).

3.3. Stochastic Heavy Ball with Dependent Data

Because of space limitations, we defer the formal descrip-

tion of SGD with heavy ball momentum to the appendix

(Algorithm 3) and include a summary of the complexity

result here. The extended theorem for this case, including

the asymptotic convergence of the sequence and the proofs

are given in Appendix F.

Theorem 3.4. Let Assumption 2.1-2.3 hold and (θt)t≥1 be

a sequence generated by Algorithm 3. Fix ρ̂ ≥ 2ρ. Then,

for any momentum parameter β ∈ (0, 1] and T ≥ 1:

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

= O

(

1

β2
∑T

k=1 αk

( T
∑

t=1

α2
t

+
T
∑

t=1

ktαtαt−kt
+

T
∑

t=1

αtE[∆[t−kt,t]]

))

. (14)

Our analysis for the heavy ball method appears to be more

flexible compared to (Mai and Johansson, 2020) even when

restricted to the i.i.d. case. In this case, we allow variable

step sizes αt = γ√
t

whereas (Mai and Johansson, 2020)

requires constant step size αt = α = γ√
T

. We can also
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use any momentum parameter β ∈ (0, 1] whereas (Mai and

Johansson, 2020) restricts to β = α. This point is important

since in practice β is used as a tuning parameter.

3.4. Proximal SGD with Dependent Data

In this section, we describe how our developments for

stochastic gradient method extends to the proximal case,

using the ideas from (Davis and Drusvyatskiy, 2019). In

particular, the problem we solve in this section is

θ
∗ ∈ argmin

θ∈Rp

(

φ(θ) := f(θ) + r(θ)
)

, (15)

where f is as in (1) and r : Rp → R ∪ {+∞} is a convex,

proper, closed function. In this case, in step 1 of Algo-

rithm 1, we use proxαtr
instead of proj

Θ
to define θt+1.

We include the following result combining the ideas from

Lem. 2.4, Thm. 3.1 and (Davis and Drusvyatskiy, 2019)

for proving convergence of proximal stochastic gradient

algorithm with dependent data. Full details are given in

Appendix G.

Theorem 3.5. Let Assumption 2.1-2.3 hold, r be convex,

proper, closed and (θt)t≥1 be a sequence generated by

Algorithm 1 where we use proxαtr
instead of proj

Θ
in step 1.

Fix ρ̂ > ρ. For each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

= O

(

1
∑T

k=1 αk

( T
∑

t=1

α2
t

+

T
∑

t=1

ktαtαt−kt
+

T
∑

t=1

αtE[∆[t−kt,t+1]]

))

. (16)

3.5. Projected SGD with state-dependent Markovian

data

Next, we state an analogous result to Theorem 3.1 when

the data samples (xt)t≥0 form a state-dependent Markov

chain. It extends the corresponding results in (Karimi et al.,

2019; TadiÂc and Doucet, 2017) to the constrained case. One

difference is that in the constrained case, we need a slightly

stronger assumption on the norms of the gradients, see 2.3.

The assumptions below were adapted from (Karimi et al.,

2019) and (TadiÂc and Doucet, 2017).

Assumption 3.6. The sequence of data samples (xt)t≥0

form a state-dependent Markov chain controlled by θ ∈ Θ,

denoted as (Xt)t≥0. That is, for each θ ∈ Θ, there exists

a Markov kernel Pθ : Ω → Ω such that for any bounded

measurable function H ,

E[H(Xt+1)|Ft] = Pθt
H(Xt), (17)

where Ft := σ(X0,θ0, X1,θ1, . . . , Xt,θt).

Assumption 3.7. There is a Lipschitz continuous solution

to the Poisson equation for (Xt)t≥0. That is, there exists a

measurable function Ĝ such that for each θ ∈ Θ, x ∈ Ω,

Ĝ(θ, x)− PθĜ(θ, x) = G(θ, x)−∇f(θ), (18)

where f denotes the objective function in (1) and G(θ, x) is

as in Assumption 2.1. Furthermore, There exists C1, C2, C3

such that

∥Ĝ(θ, x)∥ ≤ C1, ∥PθĜ(θ, x)∥ ≤ C2, (19)

sup
x
∥PθĜ(θ, x)− Pθ′Ĝ(θ′, x)∥ ≤ C3∥θ − θ

′∥. (20)

Theorem 3.8 (Projected SGD with state-dependent MC

data). Let Assumptions 2.1, 2.3, 3.6, 3.7 hold and (θt)t≥1

be a sequence generated by Algorithm 1. A complexity

result as in Theorem 3.1 (i) still hold with possibly different

constants. See Theorem K.1 for details.

While Lemma 2.4 was the key to establish convergence of

PSGD (Theorem 3.1) under the mixing condition in As-

sumption 2.2, a similar role is played by the solution of

Poisson equation stated in Assumption 3.7 for the state-

dependent case. The proof of Theorem 3.8 follows the same

lines as Theorem 3.1 using a similar analysis as in (Karimi

et al., 2019) for the bias and properties of the sequences

θ̂t,θt. See Appendix K.

3.6. Complexity for Constrained Smooth Optimization

with Dependent Data

We next compare our complexity with the one derived

in (Lyu, 2022) for constrained smooth nonconvex optimiza-

tion with dependent data which, to our knowledge, is the

only complexity result for this setting. First, we introduce

the next assumption to replace Assumption 2.1. We next

show how to translate our result to a direct stationarity mea-

sure in view of Sec. A.1 to compare with the Õ(ε−8) com-

plexity result in (Lyu, 2022) for an equivalent stationarity

measure (see Sec. A.1 for details). The proof of the result is

given in Appendix H.

Theorem 3.9 (Sample complexity). Let Assumption 2.1-2.3

hold and (θt)t≥1 be a sequence generated by any of the

Algorithms 1, 2, and 3. Fix ρ̂ > ρ, assume ∆[t−kt,t+1] =

O(λkt) for λ < 1 and that Θ is compact. Pick t̂ randomly

from {1, . . . , T} as in the respective theorems for the algo-

ritms, let N̂ = O(ε−2), and define

θ̆t̂+1 = proj
Θ

(

θt̂ −
1

N̂

N̂
∑

i=1

∇ℓ(θt̂,x
(i)))

)

. (21)

Then E

[

dist(0, ∂(f + ιΘ)(θ̆t̂+1))
]

≤ ε with Õ(ε−4) sam-

ples.

The assumption on ∆[t−kt,t+1] and hence the dependent

sampling is consistent with the related works (Lyu, 2022;

Sun et al., 2018).
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Even though gradient of the Moreau envelope is a near ap-

proximate stationarity measure, in the specific case of this

section, we show that we can output a point that is approxi-

mately stationary with respect to the direct stationarity mea-

sure in Prop. B.1(i) (also mentioned in Section 1.4). This

permits a direct comparison with the previous result on con-

strained nonconvex optimization with dependent data (Lyu,

2022) and shows our improvement. Lemma H.1 in the ap-

pendix gives the necessary post-processing step for this,

which is used in Theorem 3.9.

4. Application: Online Dictionary Learning

Consider the online dictionary learning (ODL) problem,

which is stated as the stochastic program

minθ∈Θ⊆Rp×r

(

f(θ) := EX∼π [ℓ(X,θ)]
)

where

ℓ(X,θ) := inf
H∈Θ′⊆Rp×n

d (X,θH) +R(H)
(22)

where d(·, ·) : Rp×n × R
p×n → [0,∞) is a multi-convex

function that measures dissimilarity between two p × n
matrices (e.g., the squared frobenius norm, KL-divergence),

R : Rp×n → [0,∞) denotes a convex regularizer for the

code matrix H , and r is an integer parameter for the rank

of the intended compressed representation of data matrix

X. In words, we seek to learn a single dictionary matrix

θ ∈ R
p×r within the constraint set Θ (e.g., nonnegative

matrices with bounded norm), which provides the best linear

reconstruction (w.r.t. the d-metric) of an unknown random

matrix X drawn from some distribution π. Here, we may

put L1-regularization on H in order to promote dictionary

θ that enable sparse representation of observed data.

The most extensively investigated instance of the above

ODL problem is when d equals the squared Frobenius

distance. In this case, Mairal et al. (Mairal et al., 2010)

provided an online algorithm based on the framework of

stochastic majorization-minimization (Mairal, 2013). A

well-known result in (Mairal et al., 2010) states that the

above algorithm converges almost surely to the set of sta-

tionary points of the expected loss function f in (22), pro-

vided the data matrices (Xt)t≥1 are i.i.d. according to the

stationary distribution π. Later Lyu, Needell, and Balzano

(Lyu et al., 2020) generalized the analysis to the case where

(Xt) are given by a function of some underlying Markov

chain. Recently, Lyu (2022) provided the first convergence

rate bound of the ODL algorithm in Mairal et al. (2010)

of order O((log t)1+ε/t1/4) for the empirical loss function

and O((log t)1+ε/t1/8) for the expected loss function for

arbitrary ε > 0.

Suppose we are given a sequence of data matrices (Xt)t≥1

that follows π in some asymptotic sense. Under some mild

assumptions, one can compute the subgradient of the loss

function θ 7→ ℓ(Xt,θ) in two steps and can perform a

standard stochastic projected gradient descent:











Ht ← argminH∈Θ′ d (X,θt−1H) + λ∥H∥1,
G(θt−1,Xt) = ∇θd(Xt,θt−1Ht),

θt ← Proj
Θ
(θt−1 − αtG(θt−1,Xt)) .

(23)

For instance, consider the following standard assumption

on ‘uniqueness of sparse coding problem’:

Assumption 4.1. For each X and θ,

infH∈Θ′⊆Rp×n d(X,θH) + R(H) admits a unique

solution in Θ
′ ⊆ R

p×n.

Note that Assumption 4.1 is trivially satisfied if R(H) con-

tains a regularization κ2∥H∥2F for some κ2 > 2. Under As-

sumption 4.1, Danskin’s theorem (Bertsekas, 1997) implies

that the function θ 7→ ℓ(X,θ) is differentiable and satisfies

∇θℓ(X,θ) = ∇θd(X,θH
⋆), where H⋆ is the unique solu-

tion of infH∈Θ′⊆Rp×n d(X,θH)+λ∥H∥1. Hence we may

choose G(θt−1,Xt) = ∇θd(Xt,θHt) in (23).

Notice that (23) is a projected SGD algorithm for the ODL

problem (22), which is a constrained nonconvex problem.

Zhao et al. (Zhao et al., 2017) provided asymptotic analysis

of this algorithm (especially for online nonnegative matrix

factorization) for general dissimilarity metric d. For a wide

class of dissimilarity metrics such as Csizár f -divergence,

Bregman divergence, ℓ1 and ℓ2 metrics, and Huber loss,

this work showed that when the data matrices are i.i.d. and

the stepsizes αt are non-summable (
∑∞

t=1 αt = ∞) and

square-summable (
∑∞

t=1 α
2
t < ∞), then the sequence of

dictionary matrices (θt)t≥1 obtained by (23), regardless of

initialization, converges almost surely to the set of station-

ary points of (22). The asymptotic analysis uses a rather

involved technique inspired from dynamical systems litera-

ture and does not provide a rate of convergence. Moreover,

such asymptotic guarantees has not been available to the

more general Markovian data setting.

When the function θ 7→ ℓ(X,θ) for each X is ρ-weakly

convex for some ρ > 0, then the expected loss function

in (22) is also ρ-weakly convex, so in this case a direct ap-

plication of the main result in (Davis et al., 2020) would

yield a rate of convergence O((log t)/t1/4) for (23) with

i.i.d. data matrices Xt. Such hypothesis of weak convex-

ity of the loss function is implied under smoothness of d
(Assumption L.1). Then our main results extends the the-

oretical guarantees for (23) to more general setting when

(Xt) are given as a function of some underlying Markov

chain with exponential mixing, and also extends to other

variants of PSGD such as the AdaGrad (Algorithm 2) and

the stochastic heavy ball (Algorithm 3). The full statement

of this result for ODL with stochastic first-order methods on

non-i.i.d. data is stated in Corollary L.2 in Appendix L. To

our best knowledge, this is the first time that projected SGD

with adaptive step sizes has been applied to ODL problems

8
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Figure 1. Plot of reconstruction error vs. elapsed time for four algorithms for online NMF: AdaGrad, PSGD-Heavy Ball, PSGD, and

SMM. Data stream is a sequence of 4-node subgraph adjacency matrices sampled by an MCMC motif-sampling algorithm in (Lyu et al.,

2023) from three college Facebook networks (Traud et al., 2012). Six consecutive Markovian samples of subgraphs are shown in each

plot. Shaded region represents one standard deviation from ten runs.

with optimal complexity bounds for the general Markovian

data case.

Numerical validation. We now illustrate the empirical

performance of Alg. 1, 2, 3 to verify our theoretical findings

for ODL with dependent data. However, we highlight that

the main contribution of our paper is theoretical: obtaining

the optimal complexity for constrained nonconvex problems

with dependent data. Moreover, the algorithms we analyze,

namely, projected SGD, SGD with momentum and AdaGrad

are the default solvers in most of the libraries for machine

learning/deep learning such as PyTorch/TensorFlow and

their empirical success is well-established. Hence, the re-

sults here are not meant to be complete benchmarks, but

rather empirical support for our theory.

For generating the samples, we used networks for 3 differ-

ent schools (Caltech36, UCLA26, Wisconsin87)

from the Facebook100 dataset (Traud et al., 2012), follow-

ing a similar setup to (Lyu et al., 2020). We then used the

Markov Chain Monte Carlo (MCMC) algorithm of (Lyu

et al., 2023) to generate 300 correlated subgraphs from the

networks. We then used the resulting matrix as a stream

of Markovian data and stopped the algorithms once all the

samples are used. For comparison, we used the stochastic

majorization-minimization (SMM) algorithm from (Mairal

et al., 2010; Lyu et al., 2020), which is the state-of-the-art

algorithm for ODL problems.

In Fig. 1, we see convergence of all the algorithms with

respect to the normalized reconstruction error, which is in

line with our theoretical results. Moreover, we observe that

AdaGrad converges significantly faster than other methods,

especially for the sequence of subgraphs from Caltech.

The difference in speed of convergence between all methods

is marginal for the UCLA and Wisconsin. We suspect that

this different behavior is realated to the fact that subgraphs

in Caltech induced on random paths of k = 4 nodes are

more likely to contain more edges than those from the other

two (much sparser) networks.

5. Conclusion

In this paper, we have established convergence and complex-

ity results of a wide range of classcial stochastic first-order

methods (PSGD, AdaGrad, PSGD-Momentum) under gen-

eral non-i.i.d. data sampling assumption. Our results show

that if the dependence in data samples decays in the length

of conditioned steps via MC mixing or Poisson equation,

then standard rate of convergence in the i.i.d. case is ex-

tended to the more general non-i.i.d. case. Our analysis

shows that independence between data samples is not really

needed in analyzing stochastic first-order method. We also

numerically verified our results on the problem of online

dictionary learning from subgraph samples generated by an

MCMC algorithm.
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A. Background on stationarity measures

A.1. Direct stationarity measures

In this subsection, we introduce some notions on stationarity conditions and related quantities. A first-order necessary

condition for θ
∗ ∈ Θ to be a first order stationary point of f over Θ is that there exists a subgradient v ∈ ∂f(θ∗)

such that −v belongs to the normal cone NΘ(θ∗) = ∂ιΘ(θ∗), which is also equivalent to the variational inequality

infθ∈Θ ⟨v, θ − θ
∗⟩ ≥ 0 due to the definition of the normal cone. Hence we introduce the following notion of first-order

stationarity for constrained minimization problem:

θ
∗ is a stationary point of f over Θ

def⇐⇒ 0 ∈ v +NΘ(θ∗) for some v ∈ ∂f(θ∗) (24)

⇐⇒ inf
θ∈Θ

⟨v, θ − θ
∗⟩ ≥ 0 for some v ∈ ∂f(θ∗). (25)

Note that if θ∗ is in the interior of Θ, then the above is equivalent to 0 ∈ ∂f(θ∗). Furthermore, if f is differentiable at θ∗,

this is equivalent to ∇f(θ∗) = 0, so θ
∗ is a critical point of f .

In view of the preceding discussion and (3), we can also say that θ is a stationary point of f over Θ if and only if 0 ∈ ∂φ(θ̂)).
Accordingly, we may use dist(0, ∂φ(θ̂)) = 0 as an equivalent notion of stationarity.

We relax the above first-order optimality conditions as follow: For each ε > 0,

θ
∗ is an ε-stationary point for f over Θ

def⇐⇒ dist(0, ∂φ(θ∗)) ≤ ε. (26)

An alternative formulation of ε-stationarity would be using the ‘stationarity gap’. Namely, we observe the following identity:

Gap
Θ
(f,θ∗) := inf

v∈∂f(θ∗)

[

− inf
θ∈Θ\{θ∗}

〈

v,
θ − θ

∗

∥θ − θ
∗∥

〉]

= dist(0, ∂φ(θ∗)), (27)

which is justified in Proposition B.1 in Appendix B. We call the quantity Gap
Θ
(f,θ∗) above the stationarity gap at θ∗ for f

over Θ. This measure of approximate stationarity was used in (Lyu, 2020; 2022), and it is also equivalent to a similar notion

in (Nesterov, 2013). When θ
∗ is in the interior of Θ and if f is differentiable at θ∗, then (26) is equivalent to ∥∇f(θ∗)∥ ≤ ε.

In Proposition B.1, we provide an equivalent definition of ε-stationarity using the normal cone.

B. Preliminary Results

The next result illustrates the connection between the two stationarity measures given in (27) to compare with the existing

result in (Lyu, 2022). Recall that the normal cone NΘ(θ∗) of Θ at θ∗ is defined as

NΘ(θ∗) := {u ∈ R
p | ⟨u, θ − θ

∗⟩ ≤ 0 ∀θ ∈ Θ} . (28)

Note that the normal cone NΘ(θ∗) agrees with the subdifferential ∂ιΘ(θ∗). When Θ equals the whole space R
p, then

NΘ(θ) = {0}.
Proposition B.1. For each θ

∗ ∈ Θ, v ∈ ∂f(θ∗), and ε > 0, following conditions are equivalent:

(i) dist(0, v +NΘ(θ∗)) ≤ ε;

(ii) − inf
θ∈Θ\{θ∗}

〈

v,
θ − θ

∗

∥θ − θ
∗∥

〉

≤ ε.

In particular, it holds that

dist(0, ∂f(θ∗) +NΘ(θ∗)) = inf
v∈∂f(θ∗)

[

− inf
θ∈Θ\{θ∗}

〈

v,
θ − θ

∗

∥θ − θ
∗∥

〉]

. (29)

Proof. The last statement follows from the equivalence of (i) and (ii). In order to show the equivalence, first suppose

(i) holds. Then there exists u ∈ NΘ(θ∗) and w ∈ Bε where Bε is the ε-ball in ℓ2 norm, such that v + u + w = 0. So

−v − w ∈ NΘ(θ∗), which is equivalent to

inf
θ∈Θ\{θ∗}

〈

v + w,
θ − θ

∗

∥θ − θ
∗∥

〉

≥ 0. (30)

12
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By Cauchy-Schwarz inequality, this implies

− inf
θ∈Θ\{θ∗}

〈

v,
θ − θ

∗

∥θ − θ
∗∥

〉

≤ ∥w∥ ≤ ε. (31)

Conversely, suppose (ii) holds. We let D≤1(θ
∗) denote the set of all feasible directions at θ∗ of norm bounded by 1, which

consists of vectors of form a(θ − θ
∗) for θ ∈ Θ and a ∈ (0, ∥θ − θ

∗∥−1]. Being the intersection of two convex sets,

D≤1(θ
∗) is convex. Then applying the minimax theorem (Sion, 1958) for the bilinear map (x, u) 7→ ⟨v + εu, x⟩ defined on

the product of convex sets D≤1(θ
∗)×B1, observe that

sup
u∈B1

inf
x∈D≤1(θ

∗)
⟨v + εu, x⟩ = inf

x∈D≤1(θ
∗)

sup
u∈B1

⟨v + εu, x⟩ (32)

= inf
x∈D≤1(θ

∗)

[

⟨v, x⟩+ sup
u∈B1

⟨εu, x⟩
]

(33)

= inf
x∈D≤1(θ

∗)
[⟨v, x⟩+ ε∥x∥] (34)

= inf
x∈D≤1(θ

∗)
∥x∥

[〈

v,
x

∥x∥

〉

+ ε

]

≥ 0. (35)

To see the last inequality, fix x ∈ D≤1(θ
∗). By definition, there exists some θx ∈ Θ such that x/∥x∥ = θx−θ

∗

∥θx−θ∗∥ . Then by

using (ii),

〈

v,
x

∥x∥

〉

+ ε =

〈

v,
θx − θ

∗

∥θx − θ
∗∥

〉

+ ε ≥ inf
θ∈Θ\{θ∗}

〈

v,
θ − θ

∗

∥θ − θ
∗∥

〉

+ ε ≥ −ε+ ε ≥ 0. (36)

Attainment of the supremum at a u∗ in (32) is guaranteed by strong duality, see (Bauschke and Combettes, 2011).

The above implies

inf
x∈D≤1(θ

∗)
⟨v + εu∗, x⟩ ≥ 0. (37)

Thus we conclude that −v − εu∗ ∈ NΘ(θ∗). Then (i) holds since ∥u∗∥ ≤ 1.

Proposition B.2. Suppose f is ρ-weakly convex and λ < ρ−1. Then for each θ ∈ Θ,

sup
v∈∂f(θ̂)

[

− inf
θ′∈Θ\{θ̂}

〈

v(θ̂),
θ
′ − θ̂

∥θ′ − θ̂∥

〉]

≤ λ−1∥θ̂ − θ∥ ≤ λ−2∥∇φλ(θ)∥ (38)

Proof. Recall that θ̂ is the solution of a constrained optimization problem since φ = f + ιΘ (5). Therefore, it satisfies the

following first-order optimality condition: For some v(θ̂) ∈ ∂f(θ̂),

⟨v(θ̂) + λ−1(θ̂ − θ), θ′ − θ̂⟩ ≥ 0, ∀θ′ ∈ Θ. (39)

By rearranging and using Cauchy-Schwarz, this yields for all θ′ ∈ Θ,

⟨v(θ̂), θ̂ − θ
′⟩ ≤ λ−1⟨θ̂ − θ, θ′ − θ̂⟩ ≤ λ−1∥θ̂ − θ∥ · ∥θ′ − θ̂∥, (40)

Now assume θ
′ ̸= θ̂. Dividing both sides by ∥θ′ − θ̂∥, we get

−
〈

v(θ̂),
θ
′ − θ̂

∥θ′ − θ̂∥

〉

≤ λ−1∥θ̂ − θ∥ = λ−2∥∇φλ(θ)∥. (41)

Since this holds for all v(θ̂) ∈ ∂f(θ̂) and θ
′ ∈ Θ \ {θ̂}, the assertion follows.

The next two results will be used in Lem. 2.4 to control the bias due to dependent data.
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Lemma B.3 ((Rockafellar and Wets, 2009)). For any ρ̂ ≥ ρ and ρ-weakly convex function φ, it follows that θ 7→ proxφ/ρ̂(θ)

is
ρ̂

ρ̂−ρ -Lipschitz.

Lemma B.4 ((Alacaoglu et al., 2021)). Let ρ̂ ≥ ρ. Then for any v ∈ ∂f(θ),

∥θ̂ − θ∥ ≤ 2∥v∥
ρ̂− ρ .

The following lemma is used in converting various finite total variation results into rate of convergence or asymptotic

convergence results.

Lemma B.5 (Lem. A.5 in (Mairal, 2013)). Let (an)n≥0 and (bn)n≥0 be sequences of nonnegative real numbers such that
∑∞

n=0 anbn <∞. Then the following hold.

(i) min
1≤k≤n

bk ≤
∑∞

k=0 akbk
∑n

k=1 ak
= O





(

n
∑

k=1

ak

)−1


.

(ii) Further assume
∑∞

n=0 an =∞ and |bn+1 − bn| = O(an). Then limn→∞ bn = 0.

Proof. (i) follows from noting that

(

n
∑

k=1

ak

)

min
1≤k≤n

bk ≤
n
∑

k=1

akbk ≤
∞
∑

k=1

akbk <∞. (42)

The proof of (ii) is omitted and can be found in (Mairal, 2013).

The next lemma is commonly used for adaptive gradient algorithms. For example, Lem. A.1 in (Levy, 2017) or Lem. 12 in

(Duchi et al., 2010).

Lemma B.6 (Lem. 12 in (Duchi et al., 2010), Lem. A.1 in (Levy, 2017)). For nonnegative real numbers ai for i ≥ 1, we

have for any v0 > 0

n
∑

i=1

ai

v0 +
∑i

j=1 aj
≤ log

(

1 +

∑n
i=1 ai
v0

)

and

n
∑

i=1

ai
√

∑i
j=1 aj

≤ 2

√

√

√

√

n
∑

i=1

ai.

The following uniform concentration lemma for vector-valued parameterized observables is due to (Lyu, 2022).

Lemma B.7 (Lem 7.1 in (Lyu, 2022)). Fix compact subsets X ⊆ R
q , Θ ⊆ R

p and a bounded Borel measurable function

ψ : X ×Θ→ R
r. Let (xn)n≥1 denote a sequence of points in X such that xn = φ(Xn) for n ≥ 1, where (Xn)n≥1 is a

Markov chain on a state space Ω and φ : Ω→ X is a measurable function. Assume the following:

(a1) The Markov chain (Xn)n≥1 mixes exponentially fast to its unique stationary distribution and the stochastic process

(xn)n≥1 on X has a unique stationary distribution π.

Suppose wn ∈ (0, 1], n ≥ 1 are non-increasing and satisfy w−1
n − w−1

n−1 ≤ 1 for all n ≥ 1. Define functions ψ̄(·) :=
Ex∼π [ψ(x, ·)] and ψ̄n : Θ→ R

r recursively as ψ̄0 ≡ 0 and

ψ̄n(·) = (1− wn)ψ̄n−1(·) + wnψ(xn, ·). (43)

Then fthere exists a constant C > 0 such that for all n ≥ 1,

sup
θ∈Θ

∥

∥ψ̄(θ)− E[ψ̄n(θ)]
∥

∥ ≤ Cwn, E

[

sup
θ∈Θ

∥

∥ψ̄(θ)− ψ̄n(θ)
∥

∥

]

≤ Cwn

√
n. (44)

Furthermore, if wn
√
n = O(1/(log n)1+ε) for some ε > 0, then supθ∈Θ

∥

∥ψ̄(θ)− ψ̄n(θ)
∥

∥→ 0 as t→∞ almost surely.
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C. Proof for Sections 2

In this section, we prove the key lemma (Lemma 2.4) we stated in the main text. For the reader’s convenience, we restate the

key lemma here:

Lemma C.1 (Lemma 2.4 in the main text). Let Assumptions 2.1, 2.2, 2.3 hold and θt be generated according to

Algorithm 1, 2 or 3. Fix t ≥ 0, k = kt ∈ [0, t] as in Assumption 2.2, ρ̂ > ρ and denote θ̂ = proxφ/ρ̂(θ). Then

∣

∣

∣E

[

⟨θ̂t − θt, G(θt,xt+1)⟩ | Ft−k

]

− ⟨θ̂t − θt, Ex∼π [G(θt,x)]⟩
∣

∣

∣ (45)

≤ 4L2

ρ̂− ρ ∆[t−k,t] +
2L(L1 + ρ̂)

ρ̂− ρ E

[

t−1
∑

s=t−k

αs∥G(θs,xs+1)∥
∣

∣

∣

∣

Ft−k

]

. (46)

For the proofs in this section, we use the following notations. Let πt+1|t−k = πt+1|t−k(· | Ft−k) denote the distribution of

xt+1 conditional on the information Ft−k = σ(x1, . . . ,xt−k). Also, Ex∼µ will denote the expectation only with respect to

the random variable x distributed as µ, leaving out any other random variable fixed.

The following proposition is an important ingredient for the proof of Lemma 2.4. It allows us to compare a multi-step

conditional expectation of the stochastic gradient to its stationary expectation.

Proposition C.2. Let Assumptions 2.1, 2.2, 2.3 hold and θt be generated according to Algorithm 1, 2 or 3. Suppose

limN→∞∥πt+N |t − π∥TV = 0 for all t ≥ 0. Fix t ≥ 0 and k ∈ [0, t]. Then

∥E[G(θt−k,xt+1) | Ft−k]− Ex∼π[G(θt−k,x)]∥ ≤
{

2L∆[t−k,t+1] if Assumption 2.3(i) holds;

2L∆[t−k,t] if Assumption 2.3(ii) holds.
(47)

Proof. Recall that by Scheffé’s lemma, if two probability measures µ and ν on the same probability space have densities

α and β with respect to a reference measure dm, then ∥µ− ν∥TV = 1
2

∫

|α− β| dm (see, e.g., Lemma 2.1 in (Tsybakov,

2004)). For each integer m ≥ 0, let π′
t+m|t−k denote the density functions of πt+m|t−k with respect to the Lebesgue

measure, which we denote by dξ.

We first prove the statement under Assumption 2.3(ii). In this case, ∥G(θ,x)∥ is assumed to be uniformly bounded by

L < ∞ but we do not impose any additional assumption on the data samples (xt)t≥0 besides the asymptotic mixing

condition limN→∞∥πt+N |t − π∥TV = 0 for all t ≥ 0.

Fix an integer N ≥ 1. Noting that θt−k is deterministic with respect to Ft−k, we have

∥E[G(θt−k,xt+1) | Ft−k]− Ex∼πt+N|t−k
[G(θt−k,x)]∥ (48)

= ∥E[G(θt−k,xt+1) | Ft−k]− E[G(θt−k,xt+N ) | Ft−k]∥ (49)

= ∥Ex∼πt|t−k
[G(θt−k,x)]− Ex∼πt+N−1|t−k

[G(θt−k,x)]∥ (50)

≤
∫

Ω

∥G(θt−k,x)∥|π′
t+1|t−k(x)− π′

t+N |t−k(x)| dξ (51)

≤ 2L∥πt+1|t−k − πt+N |t−k∥TV , (52)

where we have used Scheffé’s lemma for the last equality. By a similar argument,

∥Ex∼π[G(θt−k,x)]− Ex∼πt+N|t−k
[G(θt−k,x)]∥ ≤

∫

Ω

∥G(θt−k,x)∥|π′(x)− π′
t+N |t−k(x)| dξ (53)

≤ 2L∥π − πt+N |t−k∥TV . (54)

By triangle inequality, it then follows

∥Ex∼π[G(θt−k,x)]− E[G(θt−k,xt+1) | Ft−k]∥ ≤ 2L
(

∥π − πt+N |t−k∥TV + ∥πt+1|t−k − πt+N |t−k∥TV

)

. (55)

Now by the hypothesis that limN→∞∥πt+N |t−k − π∥TV = 0, the last expression above converges to 2L∥πt+1|t−k − π∥TV

as N →∞. Since the left hand side above does not depend on N , this shows the claim (47).
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Next, we prove the statement under Assumption 2.3(i). In this case, we only assume the one-step conditional expectation of

the norm of the stochastic gradient is bounded:

E[∥G(θ,xt+1∥ | Ft] ≤ L for all t ≥ 0, (56)

which is much weaker than the uniform boundedness of ∥G∥ in Assumption 2.3(ii). In order to handle a technical difficulty

in this general setting, we will need to assume that the data samples (xt)t≥0 is a function of some time-homogeneous

Markov chain. That is, there exists a time-homogeneous Markov chain (Xt)t≥0 on some state space X and a function

w : X → Ω such that xt = w(Xt) for all t ≥ 0. By the time-homogeneity of the chain (Xt)t≥0, there exists a Markov

transition kernel P such that

P(Xt+1 = b |Xt = a) ≡ P (a, b) for all t ≥ 0 and a, b ∈ X. (57)

We will proceed similarly as before. The key technical detail to avoid using uniform boundedness of G is to rewrite

expectations of G by the expectation of a one-step conditional expectation of G. Then a similar argument as before will work

only with the assumption that the one-step conditional expectation of G is bounded. We give the details of this sketched

approach below.

Fix an integer N ≥ 1. Since the conditional expectation E[G(θt−k,xt+m) | Ft−k] is deterministic with respect to Ft−k, we

can write

E[G(θt−k,xt+1) | Ft−k] = E[E[G(θt−k,xt+1) | Ft] | Ft−k]. (58)

Similarly, write

E[G(θt−k,xt+N ) | Ft−k] = E[E[G(θt−k,xt+N ) | Ft+N−1] | Ft−k]. (59)

Now for given s ≥ 0, θ ∈ Θ, and x ∈ Ω, define

G̃s(θ,x) := E[G(θ,xs+1) |xs = x]. (60)

The only randomness being integrated out in the expectation in the above definition is the random data sample xs+1

conditional on the data sample xs a step before being x. The measure used in the integral is the one-step conditional

distribution πs+1|s. By the time-homogeneity assumption, the distribution πs+1|s does not depend on s. It follows that the

function G̃s above does not depend on s. Therefore, we will omit the subscript s in G̃s. Note that by Jensen’s inequality and

(56),

∥G̃(θ,x)∥ ≤ E[∥G(θ,xs+1)∥ |xs = x] ≤ L. (61)

Using (58) and (59), we have

∥E[G(θt−k,xt+1) | Ft−k]− Ex∼πt+N|t−k
[G(θt−k,x)]∥ (62)

= ∥E[G(θt−k,xt+1) | Ft−k]− E[G(θt−k,xt+N ) | Ft−k]∥ (63)

= ∥Ex∼πt|t−k
[G̃t(θt−k,x)]− Ex∼πt+N−1|t−k

[G̃t+N−1(θt−k,x)]∥ (64)

= ∥Ex∼πt|t−k
[G̃(θt−k,x)]− Ex∼πt+N−1|t−k

[G̃(θt−k,x)]∥ (65)

=

∥

∥

∥

∥

∫

Ω

G̃(θt−k,x)(π
′
t|t−k(x)− π′

t+N−1|t−k(x)) dξ

∥

∥

∥

∥

(66)

≤
∫

Ω

∥G̃(θt−k,x)∥|π′
t|t−k(x)− π′

t+N−1|t−k(x)| dξ (67)

≤ 2L∥πt|t−k − πt+N−1|t−k∥TV , (68)

where we have used Scheffé’s lemma and the fact that G̃s does not depend on s. By a similar argument and noting that

Ex∼π[G(θt−k,x)] = Ext−k∼π[G(θt−k,xt−k+1)] = Ext−k∼π[E [G(θt−k,xt−k+1)] |xt−k],

∥Ex∼π[G(θt−k,x)]− Ex∼πt+N|t−k
[G(θt−k,x)]∥ (69)

= ∥Ex∼π[G̃(θt−k,x)]− Ex∼πt+N−1|t−k
[G̃(θt−k,x)]∥ (70)

≤ 2L∥π − πt+N−1|t−k∥TV . (71)
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By triangle inequality, it then follows

∥Ex∼π[G(θt−k,x)]− E[G(θt−k,xt+1) | Ft−k]∥ ≤ 2L
(

∥π − πt+N−1|t−k∥TV + ∥πt|t−k − πt+N−1|t−k∥TV

)

. (72)

Now by the hypothesis limN→∞∥πt+N−1|t−k − π∥TV = 0, so the last expression above converges to 2L∥πt|t−k − π∥TV

as N →∞. Since the left hand side above does not depend on N , this shows (47).

We now prove Lemma 2.4.

Proof of Lemma 2.4. Denote V (x,θ) := ⟨θ̂ − θ, G(θ,x)⟩. Note that Ex∼π [V (x,θt)] = ⟨θ̂t − θt, Ex∼π [G(θt,x)]⟩.
Observe that by triangle inequality

|E [V (xt+1,θt) | Ft−k]− Ex∼π [V (x,θt)]| (73)

≤ |E [V (xt+1,θt)− V (xt+1,θt−k) | Ft−k]| (74)

+ |Ex∼π [V (x,θt−k)− V (x,θt)]| (75)

+ |E [V (xt+1,θt−k) | Ft−k]− Ex∼π [V (x,θt−k)]| . (76)

We will bound the three terms in the right in order.

In order to bound the first term in the right hand side above, we first write

V (xt+1,θt)− V (xt+1,θt−k) = ⟨θ̂t − θt, G(θt,xt+1)⟩ − ⟨θ̂t−k − θt−k, G(θt−k,xt+1)⟩
= ⟨θ̂t − θt, G(θt,xt+1)−G(θt−k,xt+1)⟩+ ⟨θ̂t − θ̂t−k, G(θt−k,xt+1)⟩

+ ⟨θt−k − θt, G(θt−k,xt+1)⟩.

By applying iterated expectation twice, we get

E [⟨θt−k − θt, G(θt−k,xt+1)⟩ | Ft−k]

= Eθt
[E [⟨θt−k − θt, G(θt−k,xt+1)⟩ |θt, Ft−k] | Ft−k]

= Eθt
[⟨θt−k − θt, E [G(θt−k,xt+1) |θt, Ft−k]⟩ | Ft−k]

= E [⟨θt−k − θt, E [G(θt−k,xt+1) |θt, Ft−k]⟩ | Ft−k] . (77)

We can rewrite the conditional expectation E[⟨θ̂t−k − θ̂t, G(θt−k,xt+1)⟩ | Ft−k] similarly as above.

Next, we will observe that

∥θ̂t − θt∥ ≤
2

ρ̂− ρ∥Ex∼π[G(θt,x)]∥ ≤
2L

ρ̂− ρ . (78)

The first inequality above is due to Lemma B.4. Under Assumption 2.3(ii), where since ∥G∥ ≤ L, the second inequality

follows by using Jensen’s inequality. In case of Assumption 2.3(i), we need a bit more careful argument. For each N ≥ 1,

∥θ̂t − θt∥ ≤
2

ρ̂− ρ∥Ex∼π[G(θt,x)]∥ (79)

≤ 2

ρ̂− ρ
(

∥Ex∼πt+N|t
[G(θt,x)]∥+ ∥Ex∼π[G(θt,x)− Ex∼πt+N|t

[G(θt,x)]∥
)

(80)

≤ 2

ρ̂− ρ
(

E[∥G(θt,xt+N )∥ | Ft] + ∥Ex∼π[G(θt,x)− Ex∼πt+N|t
[G(θt,x)]∥

)

. (81)

Note that E[∥G(θt,xt+N )∥ | Ft] ≤ L by Assumption 2.3(ii) and iterated expectation. Furthermore, the second term in the

last expression above vanishes as N →∞ by Proposition C.2 and Assumption 2.2. Therefore we can conclude (78) under

Assumption 2.1(ii) as well.
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Now by using Cauchy-Schwarz inequality, L1-Lipschitz continuity of θ 7→ G(x,θ) (see Assumption 2.1), Lemma B.3

and Assumption 2.3, we obtain

|E[V (xt+1,θt)− V (xt+1,θt−k) | Ft−k]| ≤
2LL1 + 2ρ̂L

ρ̂− ρ E [∥θt−k − θt∥ | Ft−k] (82)

≤ 2LL1 + 2ρ̂L

ρ̂− ρ E

[

t−1
∑

s=t−k

αs∥G(θs,xs+1)∥
∣

∣

∣

∣

Ft−k,

]

, (83)

where for the last inequality we have used ∥θs − θs−1∥ ≤ ∥αs−1G(θs−1,xs)∥ for s ≥ 1 along with triangle inequality.

A similar argument shows

|Ex∼π [V (x,θt)− V (x,θt−k)] | ≤
2LL1 + 2ρ̂L

ρ̂− ρ E

[

t−1
∑

s=t−k

αs∥G(θs−1,xs)∥ | Ft−k

]

. (84)

We continue by estimating the last term on the RHS of (76).

Proceeding by Cauchy-Schwarz inequality, and using that θt−k, θ̂t−k are deterministic with respect to Ft−k, we get

|E [V (xt+1,θt−k) | Ft−k]− Ex∼π [V (x,θt−k)]| (85)

=
∣

∣

∣E

[

⟨θ̂t−k − θt−k, G(θt−k,xt+1)⟩ | Ft−k

]

− Ex∼π [V (x,θt−k)]
∣

∣

∣ (86)

=
∣

∣

∣⟨θ̂t−k − θt−k, E [G(θt−k,xt+1) | Ft−k]⟩ − ⟨θ̂t−k − θt−k, Ex∼π [G(θt−k,x)]⟩
∣

∣

∣ (87)

≤ 2L∥θ̂t−k − θt−k∥∆[t−k,t]} (88)

≤ 4L2

ρ̂− ρ∆[t−k,t], (89)

where the last step follows from Proposition C.2. Combining (83), (84), (89) with (76) then shows the assertion.

D. Proof for Section 3.1

Theorem D.1 (Theorem 3.1 in the main text). Let Assumptions 2.1-2.3 hold and (θt)t≥1 be a sequence generated by

Algorithm 1. Fix ρ̂ > ρ. Then the following hold:

(i) (Rate of convergence) For each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

(90)

≤ ρ̂2L2

ρ̂− ρ

1
∑T

k=1 αk

[

φ1/ρ̂(θ1)− inf φ1/ρ̂

ρ̂L2
+

1

2

T
∑

t=1

α
2
t +

2(L1 + ρ̂)

ρ̂− ρ

T
∑

t=1

ktαtαt−kt +
4

ρ̂− ρ

T
∑

t=1

αtE[∆[t−kt,t]]

]

. (91)

In particular, with αt =
c√
t

for some c > 0 and under exponential mixing, we have that E
[

∥∇φ1/ρ̂(θ
out
T )∥

]

≤ ε with

Õ
(

ε−4
)

samples.

(ii) (Global convergence) Further assume that
∑∞

t=0 ktαtαt−kt
<∞. Then ∥∇φ1/ρ̂(θ̂t)∥ → 0 as t→∞ almost surely.

Furthermore, θt converges to the set of all stationary points of f over Θ.

Proof. Recall the definition of φ1/ρ̂ from (4). We start as in (Davis and Drusvyatskiy, 2019) with the difference of

conditoning on Ft−k instead of the latest iterate, and use Lemma 2.4 to handle the additional bias due to dependent sampling.
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Denote θ̂t = proxφ/ρ̂(θt) for t ≥ 1 and fix k ∈ {0, . . . , t}. Observe that

E

[

φ1/ρ̂(θt+1)

∣

∣

∣

∣

Ft−k

]

≤ E

[

f(θ̂t) +
ρ̂

2
∥θt+1 − θ̂t∥2

∣

∣

∣

∣

Ft−k

]

(92)

= E

[

f(θ̂t)

∣

∣

∣

∣

Ft−k

]

+
ρ̂

2
E

[

∥

∥

∥proj
Θ
(θt − αtG(θt,xt+1))− proj

Θ
(θ̂t)

∥

∥

∥

2
∣

∣

∣

∣

Ft−k

]

(93)

≤ E

[

f(θ̂t)

∣

∣

∣

∣

Ft−k

]

+
ρ̂

2
E

[

∥

∥

∥(θt − θ̂t)− αtG(θt,xt+1)
∥

∥

∥

2
∣

∣

∣

∣

Ft−k

]

(94)

≤ E

[

f(θ̂t) +
ρ̂

2
∥θt − θ̂t∥2

∣

∣

∣

∣

Ft−k

]

+ ρ̂αtE

[

⟨θ̂t − θt, G(θt,xt+1)⟩
∣

∣

∣

∣

Ft−k

]

+
α2
t ρ̂L

2

2
(95)

≤ E

[

φ1/ρ̂(θt)

∣

∣

∣

∣

Ft−k

]

+ ρ̂αt⟨θ̂t − θt, Ex∼π [G(θt,x)]⟩+
α2
t ρ̂L

2

2
(96)

+ ρ̂αt

(

4L2

ρ̂− ρ E
[

∆[t−k,t]

]

+
2L(L1 + ρ̂)

ρ̂− ρ αt−k

t−1
∑

s=t−k

E [∥G(θs,xs+1)∥ | Ft−k]

)

. (97)

Namely, the first and the last inequalities use the definition of Moreau envelope φ1/ρ̂ and θ̂t ∈ Θ, the second inequality

uses 1-Lipschitzness of the projection operator, and the last inequality uses Lemma 2.4 and that αs is non-increasing in

s. Note that using iterated expectation, Assumption 2.3, and the fact that θs is deterministic with respect to Fs, for each

t− k ≤ s ≤ t− 1, we get

E [∥G(θs,xs+1)∥ | Ft−k] = E [E [∥G(θs,xs+1)∥ | Fs] | Ft−k] ≤ L. (98)

Hence the summation in the last term above is bounded above by kL. Then by using Assumption 2.1 and the weak convexity

of g, we have

⟨θ̂t − θt, Ex∼π [G(θt,x)]⟩ ≤ f(θ̂t)− f(θt) +
ρ

2
∥θt − θ̂t∥2. (99)

By using this estimate in (97) and then integrating out Ft−k, we get

E
[

φ1/ρ̂(θt+1)
]

− E
[

φ1/ρ̂(θt)
]

≤ ρ̂αtE

[

f(θ̂t)− f(θt) +
ρ

2
∥θt − θ̂t∥2

]

+
α2
t ρ̂L

2

2
(100)

+ ρ̂αt

(

4L2

ρ̂− ρ E[∆[t−k,t]] + k
2L2(L1 + ρ̂)

ρ̂− ρ αt−k

)

. (101)

Now we chose k = kt →∞ as t→∞. Summing over t = 1, . . . , T results in

ρ̂

T
∑

t=1

αtE

[

f(θt)− f(θ̂t)−
ρ

2
∥θt − θ̂t∥2

]

≤
(

φ1/ρ̂(θ1)− inf φ1/ρ̂

)

+
ρ̂L2

2

T
∑

t=1

α2
t (102)

+
4ρ̂L2

ρ̂− ρ

T
∑

t=1

αtE[∆[t−kt,t]] +
2L2ρ̂(L1 + ρ̂)

ρ̂− ρ

T
∑

t=1

ktαtαt−kt
. (103)

Next, we use the fact that the function θ 7→ f(θ) + ρ̂
2∥θ − θt∥2 is strongly convex with parameter (ρ̂ − ρ)/2 that is

minimized at θ̂t to get

f(θt)− f(θ̂t)−
ρ

2
∥θt − θ̂t∥2 =

(

f(θt) +
ρ̂

2
∥θ̂t − θt∥2

)

−
(

f(θ̂t) +
ρ̂

2
∥θ̂t − θt∥2

)

+
ρ̂− ρ
2
∥θt − θ̂t∥2 (104)

≥ (ρ̂− ρ)∥θt − θ̂t∥2 (105)

=
ρ̂− ρ
ρ̂2
∥∇φ1/ρ̂(θt)∥2. (106)
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where the second to the last equality uses (6). Combining with (103), this implies

ρ̂− ρ
ρ̂

T
∑

t=1

αtE
[

∥∇φ1/ρ̂(θt)∥2
]

≤
(

φ1/ρ̂(θ1)− inf φ1/ρ̂

)

+
ρ̂L2

2

T
∑

t=1

α2
t (107)

+
4ρ̂L2

ρ̂− ρ

T
∑

t=1

αtE[∆[t−kt,t]] +
2L2ρ̂(L1 + ρ̂)

ρ̂− ρ

T
∑

t=1

ktαtαt−kt
. (108)

This shows the assertion when θ
out
T = θτ . If θout

T ∈ argminθ∈{θ1,...,θT } ∥∇φ1/ρ̂(θ)∥2, the assertion follows from (108)

and Lemma B.5 in Appendix B.

For the second part of (i), we plug in the value of αt and kt = O(log t), ∆[t−kt,t] = O(λkt) for λ ∈ (0, 1) under the

exponential mixing assumption.

Next, we show (ii). We will first show that ∥∇φ1/ρ̂(θt)∥ → 0 almost surely as t→∞. Under the hypothesis, by (108), we

have

∞
∑

t=1

αtE
[

∥∇φ1/ρ̂(θt)∥2
]

<∞. (109)

By Fubini’s theorem, this implies

∞
∑

t=1

αt∥∇φ1/ρ̂(θt)∥2 <∞ almost surely. (110)

We will then use Lemma B.5 (ii) to deduce that ∥∇φ1/ρ̂(θt)∥ → 0 almost surely as t→∞. To this end, it suffices to verify

∣

∣∥∇φ1/ρ̂(θt+1)∥2−∥∇φ1/ρ̂(θt)∥2
∣

∣ = O(αt). (111)

Indeed, by using (6) and Lemma B.3 in Appendix B,

1

ρ̂
∥∇φ1/ρ̂(θt+1)−∇φ1/ρ̂(θt)∥ ≤ ∥θt+1 − θt∥+ ∥proxφ/ρ̂(θt+1)− proxφ/ρ̂(θt)∥ (112)

≤ 2ρ̂− ρ
ρ̂− ρ ∥θt+1 − θt∥ (113)

=
2ρ̂− ρ
ρ̂− ρ ∥proj

Θ
(θt − αtG(θt,xt+1))− proj

Θ
(θt)∥ (114)

≤ αt
2ρ̂− ρ
ρ̂− ρ L, (115)

where the last inequality uses Assumption 2.3. This estimate and Lemma B.4 imply

|∥∇φ1/ρ̂(θt+1)∥2 − ∥∇φ1/ρ̂(θt)∥2| (116)

≤ ∥∇φ1/ρ̂(θt+1)−∇φ1/ρ̂(θt)∥
(

∥∇φ1/ρ̂(θt+1)∥+∥∇φ1/ρ̂(θt)∥
)

(117)

≤ αt
2ρ̂− ρ
ρ̂− ρ

4L2

ρ̂− ρ . (118)

Hence (111) follows, as desired.

Finally, assume f is continuously differentiable. Choose a subsequence tk such that θ̂t converges to some limit point

θ̂∞. We will argue that θt → θ̂∞ almost surely as t → ∞ and θ̂∞ is a stationary point of f over Θ. By (7) and

the first part of (ii), it holds that ∥θ̂t − θt∥ + dist(0, ∂φ(θ̂t)) → 0 almost surely as t → ∞. By triangle inequality

∥θ̂∞ − θt∥ ≤ ∥θ̂∞ − θ̂t∥+ ∥θ̂t − θt∥, this implies θ̂t → θ̂∞.
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Next, fix arbitrary θ ∈ Θ \ {θ̂∞}. Since θ̂t → θ̂∞ ̸= θ, it holds that θ ̸= θ̂t for all sufficiently large t. Note that

∣

∣

∣

∣

∣

〈

∇f(θ̂∞),
θ − θ̂∞

∥θ − θ̂∞∥

〉

−
〈

∇f(θ̂t),
θ − θ̂t

∥θ − θ̂t∥

〉∣

∣

∣

∣

∣

≤ ∥∇f(θ̂∞)−∇f(θ̂t)∥

+

∣

∣

∣

∣

∣

〈

∇f(θ̂∞),
θ − θ̂∞

∥θ − θ̂∞∥
− θ − θ̂t

∥θ − θ̂t∥

〉∣

∣

∣

∣

∣

. (119)

The last term tends to zero since θ̂t → θ̂∞ and the function θ
′ 7→ θ−θ

′

∥θ−θ′∥ is continuous whenever θ′ ̸= θ. Also, since∇f
is continuous and θ̂t → θ̂∞, the first term also tends to zero as t→∞. Then by using the relation (27), we get

〈

∇f(θ̂∞),
θ − θ̂∞

∥θ − θ̂∞∥

〉

≥
〈

∇f(θ̂t),
θ − θ̂t

∥θ − θ̂t∥

〉

− o(1) ≥ −dist(0, ∂φ(θ̂t))− o(1) (120)

for all sufficiently large t ≥ 1. by the first part of (ii) and (7), we have dist(0, ∂φ(θ̂t))→ 0 as t→∞. But since the left

hand side does not depend on t, it implies that the left hand side above is nonnegative. As θ ∈ Θ \ {θ̂∞} is arbitrary, we

conclude that θ̂∞ is a stationary point of f over Θ.

E. Proof for Section 3.2

Theorem E.1 (Theorem 3.3 in the main text). Let Assumption 2.1-2.3 and Assumption 3.2 hold and (θt)t≥1 be a sequence

generated by Algorithm 2. Fix ρ̂ > ρ and a nondecreasing, diverging sequence (kt)t≥1. Then, for each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

≤ ρ̂2L

T (ρ̂− ρ)

(

Cφ

√
v0 + TL2

αρ̂L
+
√
T (121)

+
2(L1 + ρ̂)

ρ̂− ρ

(
√
TkT +

√
TkTα

2

2
log(1 + v

−1
0 TL

2)
)

+
2L

ρ̂− ρ

T
∑

t=1

E[∆[t−kt,t+1]]

)

(122)

= O

(

kT log(TL2)√
T

+
1

T

T
∑

t=1

E[∆[t−kt,t+1]]

)

. (123)

Proof of Theorem 3.3. We proceed as the proof of Thm. 3.1, but with the difference that αt is random and depends on the

history of observed stochastic gradients, with G(θt,xt+1) being the last stochastic gradient that αt depends on.

We estimate as in the first chain of inequalities in the proof of Thm. 3.1 with αt dividing both sides and by omitting the

expectation because of the randomness of αt. In particular, we have

1

αt
φ1/ρ̂(θt+1) ≤

1

αt

[

f(θ̂t) +
ρ̂

2
∥θt+1 − θ̂t∥2

]

(124)

=
1

αt

[

f(θ̂t) +
ρ̂

2

∥

∥

∥proj
Θ
(θt − αtG(θt,xt+1))− proj

Θ
(θ̂t)

∥

∥

∥

2
]

(125)

≤ 1

αt

[

f(θ̂t) +
ρ̂

2

∥

∥

∥(θt − θ̂t)− αtG(θt,xt+1)
∥

∥

∥

2
]

(126)

≤ 1

αt

[

f(θ̂t) +
ρ̂

2
∥θt − θ̂t∥2

]

+ ρ̂⟨θ̂t − θt, G(θt,xt+1)⟩+
αtρ̂∥G(θt,xt+1)∥2

2
(127)

=
1

αt
φ1/ρ̂(θt) + ρ̂⟨θ̂t − θt, G(θt,xt+1)⟩+

αtρ̂∥G(θt,xt+1)∥2
2

. (128)

Proceeding as in the proof of Theorem 3.1, namely, by taking expectation conditional on Ft−k, using Lemma 2.4, using (99),
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and then integrating Ft−k out, we obtain

E

[

1

αt
φ1/ρ̂(θt+1)

]

− E

[

1

αt
φ1/ρ̂(θt)

]

≤ ρ̂E
[

f(θ̂t)− f(θt) +
ρ

2
∥θt − θ̂t∥2

]

+ E

[

αtρ̂∥G(θt,xt+1)∥2
2

]

+ ρ̂E

[

4L2

ρ̂− ρ ∆[t−k,t] +
2L(L1 + ρ̂)

ρ̂− ρ

t−1
∑

s=t−k

αs∥G(θs, xs+1)∥.
]

. (129)

The only difference from before is that while bounding ∥θs − θs−1∥ in Lem. 2.4 we did not use the worst case bound for

∥G(θs, xs+1)∥ as in Assumption 2.1.

We use (106) on this inequality with k = kt where kt is nondecreasing, sum for t ∈ {1, 2, . . . , T} and rearrange to get

ρ̂− ρ
ρ̂

T
∑

t=1

E
[

∥∇φ1/ρ̂(θt)∥2
]

≤
T
∑

t=1

E

[

φ1/ρ̂(θt)− φ1/ρ̂(θt+1)

αt

]

+

T
∑

t=1

E

[

αtρ̂∥G(θt,xt+1)∥2
2

]

+

T
∑

t=1

ρ̂E

[

4L2

ρ̂− ρ ∆[t−kt,t] +
2L(L1 + ρ̂)

ρ̂− ρ

t−1
∑

s=t−kt

αs∥G(θs, xs+1)∥
]

. (130)

We continue to upper bound the terms on the RHS of this inequality. We use Lem. B.6 to bound

T
∑

t=1

αt∥G(θt,xt+1)∥2 =

T
∑

t=1

α
√

v0 +
∑t

j=1 ∥G(θj ,xj+1)∥2
∥G(θt,xt+1)∥2 ≤ 2

√

√

√

√

T
∑

t=1

∥G(θt,xt+1)∥2, (131)

where we also used that v0 > 0. By taking expectation, and using Jensen’s inequality, we get

E

[

T
∑

t=1

αt∥G(θt,xt+1)∥2
]

≤ E



2

√

√

√

√

T
∑

t=1

∥G(θt,xt+1)∥2


 ≤ 2

√

√

√

√

T
∑

t=1

E [∥G(θt,xt+1)∥2] ≤ 2
√
TL. (132)

We next use Assumption 3.2 to obtain

T
∑

t=1

(

1

αt
− 1

αt−1

)

φ1/ρ̂(θt) ≤
T
∑

t=1

∣

∣

∣

∣

1

αt
− 1

αt−1

∣

∣

∣

∣

|φ1/ρ̂(θt)| ≤ Cφ

T
∑

t=1

(

1

αt
− 1

αt−1

)

≤ Cφ

√
v0 + TL2

α
. (133)

since 1
αt

=

√
v0+

∑
t
j=1

∥G(θj ,xj+1)∥2

α is monotonically nondecreasing in t.

It remains to estimate the last term on (130) which is the main additional error term that is due to dependent data. For

convenience, let us define αs∥G(θs,xs+1)∥ = 0 for s ≤ 0. Then we have

T
∑

t=1

t−1
∑

s=t−kt

αs∥G(θs, xs+1)∥ ≤
T
∑

t=1

t−1
∑

s=t−kT

αs∥G(θs, xs+1)∥,

where αs =
α√

v0+
∑

s
j=1

∥G(θj ,xj+1)∥2
and the inequality used that kt is nondecreasing.

By Young’s inequality, we can upper bound this term as

T
∑

t=1

t−1
∑

s=t−kT

αs∥G(θs, xs+1)∥ =
T
∑

t=1

(

(kT )
1/2

t1/4

)

(

t1/4

(kT )1/2

t−1
∑

s=t−kT

αs∥G(θs, xs+1)∥
)

(134)

≤
T
∑

t=1

kT + 1

2
√
t

+

T
∑

t=1

√
t

2kT

(

t−1
∑

s=t−kT

αs∥G(θs,xs+1)∥
)2

(135)

≤
√
TkT +

T
∑

t=1

√
t

2kT

(

t−1
∑

s=t−kT

αs∥G(θs,xs+1)∥
)2

. (136)
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We continue estimating the last term on RHS. Using the inequality (
∑m

i=1 ai)
2 ≤ m∑m

i=1 a
2
i that follows from Cauchy-

Schwarz, we get

T
∑

t=1

√
t

2kT

(

t−1
∑

s=t−kT

αs∥G(θs,xs+1)∥
)2

≤
T
∑

t=1

√
t

2

t−1
∑

s=t−kT

α2
s∥G(θs,xs+1)∥2

≤
√
T

2

T
∑

t=1

t−1
∑

s=t−kT

α2
s∥G(θs,xs+1)∥2

=

√
T

2

kT
∑

s=1

T−s
∑

t=1

α2
t ∥G(θt,xt+1)∥2, (137)

since for any (cs), we have
∑T

t=1

∑t−1
s=t−kT

cs = (c1−kT
+c2−kT

+ · · ·+c0)+(c2−kT
+c3−kT

+ · · ·+c1)+ · · ·+(cT−kT
+

cT−kT+1+· · ·+cT−1) = (c1−kT
+c2−kT

+· · ·+cT−kT
)+(c2−kT

+c3−kT
+· · ·+cT−kT+1)+· · ·+(c0+c1+· · ·+cT−1) =

∑kT

s=1

∑T−s
t=1−s ct. Since in our case ct = 0 for t < 1, we have also that

∑kT

s=1

∑T−s
t=1−s ct =

∑kT

s=1

∑T−s
t=1 ct.

We now have that the rightmost summation in (137) is of the form in the first inequality in Lem. B.6. We continue from

(137) by using the definition of αt

T
∑

t=1

√
t

2kT

(

t−1
∑

s=t−kT

αs∥G(θs,xs+1)∥
)2

≤
√
T

2

kT
∑

s=1

T−s
∑

t=1

α2
t ∥G(θt,xt+1)∥2

=

√
T

2

kT
∑

s=1

T−s
∑

t=1

α2

v0 +
∑t

i=1 ∥G(θi,xi+1)∥2
∥G(θt,xt+1)∥2

≤
√
Tα2

2

kT
∑

s=1

log

(

1 + v−1
0

T−s
∑

t=1

∥G(θt,xt+1)∥2
)

≤
√
TkTα

2

2
log

(

1 + v−1
0

T
∑

t=1

∥G(θt,xt+1)∥2
)

,

where the third line applies the second inequality in Lem. B.6. Using this estimation on (136) gives us

T
∑

t=1

t−1
∑

s=t−kT

αs∥G(θs, xs+1)∥ ≤
√
TkT +

√
TkTα

2

2
log

(

1 + v−1
0

T
∑

t=1

∥G(θt,xt+1)∥2
)

. (138)

Collecting (131), (133) and (138) on (130) results in the bound

ρ̂− ρ
ρ̂

T
∑

t=1

E
[

∥∇φ1/ρ̂(θt)∥2
]

≤
√
v0 + TL2Cφ

α
+ ρ̂L

√
T +

T
∑

t=1

ρ̂E

[

4L2

ρ̂− ρ ∆[t−k,t]

]

+ 2Lρ̂
L1 + ρ̂

ρ̂− ρ

(

√
TkT +

√
TkTα

2

2
log

(

1 + v−1
0

T
∑

t=1

∥G(θt,xt+1)∥2
))

. (139)

We divide both sides by T to conclude.

F. Stochastic Heavy Ball with Dependent Data

In this section, we focus on stochastic heavy ball method (Algorithm 3), a popular SGD method with momentum, which

dates back to (Polyak, 1964). This method is analyzed for convex optimization in (Ghadimi et al., 2015) and for constrained

and stochastic nonconvex optimization with i.i.d. data in (Mai and Johansson, 2020). Some features of our analysis simplify

and relax some conditions from the analysis in (Mai and Johansson, 2020) even with i.i.d. data, see Lem. F.1 and Remark F.3

for the details.
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Algorithm 3 Stochastic heavy ball (momentum SGD)

1: Input: Initialize θ0 ∈ Θ ⊆ R
p; T > 0; (αt)t≥1; β > 0; z1 > 0

2: Optionally, sample τ from {1, . . . , T} independently of everything else where P(τ = k) = αk∑
T
t=1

αt
.

3: For t = 1, 2, . . . , T do:
4: Sample xt+1 from the conditional distribution πt+1 = πt+1(· |x1, . . . ,xt)
5: θt+1 ← proj

Θ
(θt − αtzt)

6: zt+1 = βG(θt+1,xt+1) +
1−β
αt+1

(θt − θt+1)

7: End for
8: Return: θT (Optionally, return θτ )

We start with a lemma showing a bound on the norm of the sequence (zk). We use this lemma to simplify some of the

estimations in (Mai and Johansson, 2020) that analyzed the algorithm in the i.i.d. case.

Lemma F.1. Let (zt) be defined as Alg. 3 and let Assumption 2.3 hold. Then, we have

∥zt+1∥2 ≤ βL+ (1− β)(αt/αt+1)
2∥zt∥2 for all t ≥ 1 (140)

and
T
∑

t=1

βα2
t ∥zt∥2 ≤ α2

1∥z1∥2 + βL2
T
∑

t=1

α2
t+1.

Proof. By the definition of zt and convexity of ∥ · ∥2, we have

∥zt+1∥2 ≤ β∥G(θt+1,xt+1)∥2 +
1− β
α2
t+1

∥θt − θt+1∥2 (141)

≤ β∥G(θt+1,xt+1)∥2 +
(1− β)α2

t

α2
t+1

∥zt∥2, (142)

where the second inequality used that θt ∈ Θ and that proj
Θ

is nonexpansive. Using Assumption 2.3 and dividing both

sides by α2
t+1 gives the first inequality in the assertion. Also, by multiplying both sides of the inequality by α2

t+1, we have

α2
t+1∥zt+1∥2 ≤ βα2

t+1∥G(θt,xt+1)∥2 + (1− β)α2
t ∥zt∥2. (143)

By using Assumption 2.3 in (143), then rearranging, multiplying both sides by tδ , and summing (143) give

T
∑

t=1

βtδα2
t ∥zt∥2 ≤ −T δα2

T+1∥zT+1∥2 + α2
1∥z1∥2 + βL2

T
∑

t=1

tδα2
t+1.

Removing the nonpositive term on the RHS gives the result.

Theorem F.2 (extended version of Theorem 3.4 in the main text). Let Assumption 2.1-Assumption 2.3 hold. Let (θt)t≥1 be

a sequence generated by Algorithm 3. Fix ρ̂ ≥ 2ρ. Then, for any β ∈ (0, 1],

(i) For each T ≥ 1:

E
[

∥∇φ1/ρ̂(θ̄
out
T )∥2

]

≤ ρ̂
∑T

t=1 αt

(

φ1/ρ̂(θ̄0)− inf φ1/ρ̂ +
(1 + β(1− β))L2

2β2

T
∑

t=1

α
2
t

+
1− β

2β2
α1∥z1∥2 +

4L2

ρ̂− ρ

T
∑

t=1

αtE[∆[t−kt,t]] +
2L2(L1 + ρ̂)

ρ̂− ρ

T
∑

t=1

ktαtαt−k

)

. (144)

(ii) (Global convergence) Further assume that αt/αt+1 → 1 as t→∞ and
∑∞

t=1 ktαtαt−kt
<∞. Then ∥∇φ1/ρ̂(θ̂t)∥ →

0 as t→∞ almost surely. Furthermore, θt converges to the set of all stationary points of f over Θ.
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Remark F.3. Our analysis is more flexible compared to (Mai and Johansson, 2020) even when restricted to the i.i.d. case. In

this case, we allow variable step sizes αt =
γ√
t

whereas (Mai and Johansson, 2020) requires constant step size αt = α = γ√
T

.

We can also use any β ∈ (0, 1] whereas (Mai and Johansson, 2020) restricts to β = α. This point is important since in

practice β is used as a tuning parameter.

Proof. We proceed as the proof of Thm. 3.1. However, following the existing analyses for SHB (Ghadimi et al., 2015; Mai

and Johansson, 2020) we use the following iterate θ̄t = θt +
1−β
β (θt − θt−1) and also θ̂t = proxφ/ρ̂(θ̄t). The useful

property of θ̄t exploited in (Mai and Johansson, 2020) with constant step sizes (and also in (Ghadimi et al., 2015) in the

unconstrained setting), is that

∥θ̄t+1 − θ̂t∥2 =

∥

∥

∥

∥

θt+1 +
1− β
β

(θt+1 − θt)− θ̂t

∥

∥

∥

∥

2

=
1

β2
∥θt+1 − [(1− β)θt + βθ̂t]∥2 (145)

≤ 1

β2
∥θt − αtzt − [(1− β)θt + βθ̂t]∥2 (146)

= ∥θ̄t − θ̂t − αtG(θt,xt)∥2, (147)

where the inequality used that θt,θt+1, θ̂t and their convex combinations are feasible points and the projection is nonexpan-

sive. The last step is by simple rearrangement and using the definition of zt.

On the first chain of inequalities in Thm. 3.1, we evaluate φ1/ρ̂ at θ̄t+1 instead of θt+1 and then use the inequality in (147)

to deduce

E

[

φ1/ρ̂(θ̄t+1)

∣

∣

∣

∣

Ft−k

]

≤ E

[

f(θ̂t) +
ρ̂

2
∥θ̄t+1 − θ̂t∥2

∣

∣

∣

∣

Ft−k

]

(148)

≤ E

[

f(θ̂t) +
ρ̂

2
∥θ̄t − αtG(θt,xt)− θ̂t∥2

∣

∣

∣

∣

Ft−k

]

. (149)

We expand the square to obtain

∥

∥

∥θ̄t − αtG(θt,xt)− θ̂t

∥

∥

∥

2

= ∥θ̄t − θ̂t∥2 − 2αt⟨θ̄t − θ̂t, G(θt,xt)⟩+ α2
t ∥G(θt,xt)∥2. (150)

By using the last estimate on (149) and using the definition of φ1/ρ̂, θ̄t along with Assumption 2.3 gives

E

[

φ1/ρ̂(θ̄t+1)

∣

∣

∣

∣

Ft−k

]

≤ E

[

φ1/ρ̂(θ̄t)− ρ̂αt⟨θt − θ̂t, G(θt,xt)⟩

− ρ̂αt(1− β)
β

⟨θt − θt−1, G(θt,xt)⟩+
ρ̂α2

tL
2

2

∣

∣

∣

∣

Ft−k

]

. (151)

We estimate the third term on RHS by Young’s inequality, the nonexpansiveness of the projection and Assumption 2.3

− ρ̂αt(1− β)
β

⟨θt − θt−1, G(θt,xt)⟩ ≤
ρ̂(1− β)

2β

(

∥θt − θt−1∥2 + α2
t ∥G(θt,xt)∥2

)

(152)

≤ ρ̂(1− β)
2β

(

α2
t−1∥zt−1∥2 + α2

tL
2
)

. (153)
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We insert this estimate back to (151) and use Lem. 2.4 as in the proof of Thm. 3.1 to obtain

E

[

φ1/ρ̂(θ̄t+1)

∣

∣

∣

∣

Ft−k

]

≤ E

[

φ1/ρ̂(θ̄t+1)− ρ̂αt⟨θt − θ̂t, G(θt,xt)⟩+
ρ̂(1− β)

2β
α2
t−1∥zt∥2 (154)

+
ρ̂(2− β)α2

tL
2

2β

∣

∣

∣

∣

Ft−k

]

≤ E

[

φ1/ρ̂(θt)

∣

∣

∣

∣

Ft−k

]

− ρ̂αt⟨θt − θ̂t, Ex∼π [G(θt,x)]⟩+
ρ̂(2− β)α2

tL
2

2β

+ ρ̂αt

(

2L2

ρ̂− ρ ∆[t−k,t] + k
2L2L1 + ρ̂L2

ρ̂− ρ αt−k

)

(155)

+
ρ̂(1− β)

2β
α2
t−1E

[

∥zt−1∥2
∣

∣

∣

∣

Ft−k

]

. (156)

We now estimate the second term on the RHS

⟨θt − θ̂t,Ex∼π[G(θt, x)]⟩ ≥ f(θt)− f(θ̂t)−
ρ

2
∥θt − θ̂t∥2 (157)

=

(

f(θt) +
ρ̂

2
∥θt − θ̄t∥2

)

−
(

f(θ̂t) +
ρ̂

2
∥θ̂t − θ̄t∥2

)

− ρ̂

2
∥θt − θ̄t∥2 (158)

+
ρ̂

2
∥θ̂t − θ̄t∥2 −

ρ

2
∥θt − θ̂t∥2 (159)

≥ ρ̂

2
∥θ̂t − θ̄t∥2 −

ρ̂

2
∥θt − θ̄t∥2 ≥

ρ̂

2
∥θ̂t − θ̄t∥2 −

ρ̂(1− β)2α2
t−1

2β2
∥zt−1∥2. (160)

where the first inequality is due to ρ-weak convexity of f , and the second inequality is by ρ̂ − ρ-strong convexity of

f(·) + ρ̂
2∥ · −θ̄t∥2 with the optimizer θ̂t and ρ̂ ≥ 2ρ. The third inequality is by nonexpansiveness of the projection and the

definition of θ̄t.

We use (160) on (156), insert k = kt, integrate out Ft−k and sum to get

T
∑

t=1

ρ̂2αtE

[

∥θ̄t − θ̂t∥2
]

≤ −E
[

φ1/ρ̂(θ̄T+1)
]

+ φ1/ρ̂(θ1) +

T
∑

t=1

ρ̂(2− β)α2
tL

2

2β

+

T
∑

t=1

ρ̂(1− β)2α2
t−1

2β2
E∥zt−1∥2 +

T
∑

t=1

ρ̂αt

(

4L2

ρ̂− ρ E[∆[t−kt,t]] + kt
2L2L1 + ρ̂L2

ρ̂− ρ αt−kt

)

+

T
∑

t=1

ρ̂(1− β)
2β

α2
t−1E

[

∥zt−1∥2
]

. (161)

Using Lem. F.1 for the terms involving ∥zt∥2 and using ∥∇φ1/ρ̂(θ̄t)∥ = ρ̂∥θ̂t − θ̄t∥ finishes the proof of (i) after simple

arrangements.

Next, we show (ii). The argument for the second part is identical to that of Theorem 3.4 (ii). The argument for the first part

is also similar to that of Theorem 3.1 (ii) with a minor modification. Namely, from (161) and the hypothesis,

T
∑

t=1

ρ̂2αtE

[

∥θ̄t − θ̂t∥2
]

<∞. (162)

Using Fubini’s theorem and (6), this implies

T
∑

t=1

αt∥∇φ1/ρ̂(θ̄t)∥2 <∞ almost surely. (163)

Hence by Lemma B.5, it suffices to show that
∣

∣∥∇φ1/ρ̂(θ̄t+1)∥2 − ∥∇φ1/ρ̂(θ̄t)∥2
∣

∣ = O(αt). (164)
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Proceeding as in the proof of Theorem 3.1 (ii), the above follows if ∥zt∥ is uniformly bounded.

It remains to show that ∥zt∥ is uniformly bounded. For this, it suffices to show that ∥zt∥2 ≤ 2L for all sufficiently large

t ≥ 1. We deduce this from Lemma F.1. If β = 1, the lemma implies ∥zt∥2 ≤ L for all t ≥ 1, so we may assume β < 1.

Proceeding by an induction on t, suppose this bound holds for zt. Then by Lemma F.1, we have

∥zt+1∥2 ≤ βL+ 2(1− β)(αt/αt+1)
2L. (165)

Since β < 1 and αt/αt+1 → 1 as t → ∞, there exists t0 > 0 such that for all t > t0, (1 − β)(αt/αt+1)
2 < 1 − β/2.

Therefore, for all t > t0,

∥zt+1∥2 ≤ βL+ (1− β/2)(2L) = 2L. (166)

This shows the assertion.

G. Proximal SGD with Dependent Data

In this section, we describe how our developments for stochastic gradient method extends to the proximal case, using the

ideas from (Davis and Drusvyatskiy, 2019). In particular, the problem we solve in this section is

θ
∗ ∈ argmin

θ∈Rp

(φ(θ) := f(θ) + r(θ)) , f(θ) = Ex∼π [ℓ(θ,x)] , (167)

where r : Rp → R ∪ {+∞} is a convex, proper, closed function. In this case, in step 1 of Algorithm 1, we use proxαtr

instead of proj
Θ

to define θt+1.

Recall also that

θ̂t = proxφ/ρ̂(θt).

In the projected case, when r(θ) is the indicator function of the set Θ, we had that θ̂t ∈ Θ. This was used, for example,

in (93) to use nonexpansiveness for bounding ∥θt+1 − θ̂t∥2 since θt+1 = proj
Θ
(θt − αtgt). In this case, for the same step,

one needs an intermediate result derived by (Davis and Drusvyatskiy, 2019).

Lemma G.1. (Davis and Drusvyatskiy, 2019) Given the definition of θ̂t, we have for t ≥ 0

θ̂t = proxαtr
(αtρ̂θt − αtv̂t + (1− αtρ̂)θ̂t),

where v̂t ∈ ∂f(θ̂t).

We include the following result combining the ideas from Lem. 2.4, Thm. 3.1 and (Davis and Drusvyatskiy, 2019) for

proving convergence of proximal stochastic gradient algorithm with dependent data.

Theorem G.2. [Theorem 3.5 in the main text] Let Assumption 2.1-2.3 hold, r be convex, proper, closed and (θt)t≥1 be a

sequence generated by Algorithm 1 where we use proxαtr
instead of proj

Θ
in step 1. Fix ρ̂ > ρ. For each T ≥ 1,

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

(168)

≤ ρ̂2L2

ρ̂− ρ
1

∑T
k=1 αk

[φ1/ρ̂(θ0)− inf φ1/ρ̂

ρ̂L2
+ 2

T
∑

t=1

α2
t +

2(L1 + ρ̂)

ρ̂− ρ

T
∑

t=1

ktαtαt−kt
(169)

+
4

ρ̂− ρ

T
∑

t=1

αtE[∆[t−kt,t]]
]

. (170)

Proof. We start the same as Thm. 3.1 and note by the definition of θ̂t+1

φ1/ρ̂(θt+1) ≤ φ(θ̂t) +
ρ̂

2
∥θt+1 − θ̂t∥2. (171)
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We next estimate ρ̂
2∥θt+1 − θ̂t∥2 similar to (Davis and Drusvyatskiy, 2019) by using 1-Lipschitzness of proxαtg

. Let

δ = 1− αtρ̂ and estimate

∥θt+1 − θ̂t∥2 = ∥ proxαtr
(θt − αtgt)− proxαtr

(αtρ̂θt − αtv̂t + δθ̂t)∥2 (172)

≤ δ2∥θt − θ̂t∥2 − 2δαt⟨θt − θ̂t, G(θt,xt)− v̂t⟩+ α2
t ∥G(θt,xt)− v̂t∥2, (173)

where we skipped some intermediate steps, which are already in (Davis and Drusvyatskiy, 2019). We note that by Lem. 2.4,

we have

− 2δαtE

[

⟨θt − θ̂t, G(θt,xt)⟩
∣

∣

∣

∣

Ft−k

]

= −2δαt⟨θt − θ̂t,Ex∼π[G(θt,xt)]⟩+

+ 2δαt

(

2L2

ρ̂− ρ∆[t−k,t] + k
2L2(L1 + ρ̂)

ρ̂− ρ αt−k

)

. (174)

We take the conditional expectation of (171) and use (173) with (174) to derive

E

[

φ1/ρ̂(θt+1)

∣

∣

∣

∣

Ft−k

]

≤ E

[

φ(θ̂t)

∣

∣

∣

∣

Ft−k

]

+ δ2∥θt − θ̂t∥2

− 2δαt⟨θt − θ̂t,Ex∼π[G(θt,xt)]⟩ − 2δαtE

[

⟨θt − θ̂t,−v̂t⟩
∣

∣

∣

∣

Ft−k

]

+ α2
tE

[

∥G(θt,xt+1)− v̂t∥2
∣

∣

∣

∣

Ft−k

]

+ 2δαt

(

4L2

ρ̂− ρ∆[t−k,t] + k
2L2(L1 + ρ̂)

ρ̂− ρ αt−k

)

(175)

We integrate out Ft−k to obtain

E
[

φ1/ρ̂(θt+1)
]

≤ E

[

φ(θ̂t)
]

+ δ2∥θt − θ̂t∥2 − 2δαtE

[

⟨θt − θ̂t,Ex∼π[G(θt,xt)]− v̂t⟩
]

+ α2
tE
[

∥G(θt,xt+1)− v̂t∥2
]

+ 2δαt

(

4L2

ρ̂− ρE[∆[t−k,t]] + 4k
2L2L1 + ρ̂L2

ρ̂− ρ αt−k

)

. (176)

Next, we use that the subdifferential of ρ-weakly convex g is ρ-hypomonotone (see (Davis and Drusvyatskiy, 2019)) and

Ex∼π[G(θt,x)] ∈ ∂f(θt) and v̂t ∈ ∂f(θ̂t) to derive

⟨θt − θ̂t,Ex∼π[G(θt,xt)]− v̂t⟩ ≥ −ρ∥θt − θ̂t∥2. (177)

We combine (177) with ∥v̂t∥2 ≤ L2 (see (Davis and Drusvyatskiy, 2019)) on (176) to derive

E
[

φ1/ρ̂(θt+1)
]

≤ E
[

φ1/φ(θt)
]

− ρ̂(ρ̂− ρ)αtE∥θt − θ̂t∥2 + 4α2
tL

2 (178)

+ 2δαt

(

4L2

ρ̂− ρE[∆[t−k,t]] + k
2L2(L1 + ρ̂)

ρ̂− ρ αt−k

)

. (179)

We sum the inequality and argue similarly as in the proof of Theorem 3.1 to finish the proof.

H. Proofs for Section 3.6

Lemma H.1. Let Assumptions 2.1, 2.2, 2.3 hold, Θ be compact, and ∆[t−kt,t] = O(λkt) for λ < 1. Let an algorithm

output θt (for example, a randomly selected iterate) such that E∥θt − proj
Θ
(θt −∇f(θt))∥ ≤ ε with Õ(ε−4) queries to

∇ℓ(θ,x). Then, for θ̆t+1 = proj
Θ

(

θt − ∇̃f(θt))
)

with ∇̃f(θt) =
1
N̂

∑N̂
i=1∇ℓ(θt,x

(i)) with N̂ = O(ε−2) samples, we

have that

E

[

dist(0, ∂(f + ιΘ)(θ̆t+1))
]

≤ ε with Õ(ε−4) samples.

Proof of Lemma H.1. By the definition of θ̆t+1, we have that

θt − ∇̃f(θt)− θ̆t+1 ∈ ∂ιΘ(θ̆t+1).
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As a result, we have

E

[

dist(0, ∂(f + ιΘ)(θ̆t+1))
]

= E

[

min
v∈∂ιΘ(θ̆t+1)

∥∇f(θ̆t+1) + v∥
]

≤ E∥∇f(θ̆t+1)− θ̆t+1 + θt − ∇̃f(θt)∥.

For convenience, let θ̃t+1 = proj
Θ
(θt − ∇f(θt)). We continue estimating the last inequality by using this definition,

triangle inequality, nonexpansiveness of proj
Θ

, and ρ-smoothness of f

E

[

dist(0, ∂(f + ιΘ)(θ̆t+1))
]

≤ E

[

∥θt − θ̆t+1∥+ ∥∇f(θ̆t+1)−∇f(θt)∥+ ∥∇̃f(θt)−∇f(θt)∥
]

≤ E

[

(1 + ρ)∥θt − θ̆t+1∥+ ∥∇̃f(θt)−∇f(θt)∥
]

≤ E

[

(1 + ρ)
(

∥θt − θ̃t+1∥+ ∥θ̃t+1 − θ̆t+1∥
)

+ ∥∇̃f(θt)−∇f(θt)∥
]

≤ E

[

(1 + ρ)∥θt − θ̃t+1∥+ (2 + ρ)∥∇̃f(θt)−∇f(θt)∥
]

.

By the assumption in the lemma, recall that we have ∥θt − θ̃t+1∥ ≤ ε, therefore we have to estimate the last term in the last

inequality. We use Lem. 7.1 in (Lyu, 2022) (see also Lemma B.7) with ψ = ∇ℓ to get E∥∇̃f(θt)−∇f(θt)∥ = O(N̂−1/2)
with N̂ samples and finish the proof.

Proof of Theorem 3.9. When g is smooth, we can use the results in Sec. 2.2 in (Davis and Drusvyatskiy, 2019) to show that

for any θ,

∥G1/2ρ̂(θ)∥ ≤
3

2
∥∇φ1/ρ̂(θ)∥.

This establishes that the upper bound of Thm. 3.1 also upper bounds the norm of the gradient mapping ∥G1/2ρ̂(θ)∥. By

invoking Thm. 3.1 with a randomly selected iterate, this establishes the bound required for Lem. H.1 and then applying

Lem. H.1 gives the result.

I. Proof and discussions for Section 4

Proof of Corollary L.2. Follows immediately from Theorems 3.1, 3.3, 3.4 and 3.9. For the last statement for squared

Frobenius loss, see (Mairal et al., 2010) for verifying Assumption 4.1 and Assumption L.1 and recall that Assumption L.1

implies Assumption 2.1.

J. Details about the experimental setup

For our experimental setup, we implemented the SGD based algorithms we have in this paper. The implementation of SMM

uses one step of dictionary learning update given in (Mairal et al., 2010) with the special step size therein. We did not tune

SMM further since the algorithm is well-established and specialized for ODL tasks, since the work of (Mairal et al., 2010).

For projected SGD and projected SGD with momentum, we used a step size of the form

αt =
c√
t+ 1

,

and tuned c ∈ [0.01, 1]. In (Mairal et al., 2010) and (Zhao et al., 2017), the authors noted that using a step size αt =
c1

c2t+c3
and tuning c1, c2, c3 for SGD seemed to work well. We did not choose this rule in order not to tune three different parameters

and since, as we show with our analysis, the best complexity is attained with a scaling of 1√
t

for the step size. Consistent

with (Mairal et al., 2010; Zhao et al., 2017), we also observed further tuning with such a rule enhances the empirical

performance of SGD-based methods. However we refrain from such a specialized tuning, since our goal is not to provide an
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exhaustive practical benchmark, but to enhance the theoretical understanding of algorithms whose practical merit is already

well-established in a wide variety of tasks (SGD, SGD with momentum and AdaGrad).

For AdaGrad, we picked the step size

αt =
c

√

∑t
i=1 ∥G(θt,xt+1)∥2 + ε

,

with ε = 10−8 and c ∈ [0.1, 1] is tuned.

K. Convergence of PSGD in the state-dependent case

Theorem K.1 (extended version of Theorem 3.8 in the main text). Let Assumptions 2.1, 3.6, 3.7, and 2.3 hold. Let (θt)t≥1

be a sequence generated by Algorithm 1. Fix ρ̂ > ρ. Then we have for each T ≥ 1 that

E
[

∥∇φ1/ρ̂(θ
out
T )∥2

]

≤ ρ̂2L2

ρ̂− ρ
1

∑T
k=1 αk

[

φ1/ρ̂(θ1)− inf φ1/ρ̂

ρ̂L2
+

1

2

T
∑

t=1

α2
t

]

(180)

+
ρ̂

∑T
k=1 αk

[

α1

2

(

∥θ1 − θ̂1∥2 + C2
1

)

+
αT

2

4LC2

ρ̂− ρ +

T
∑

t=2

2L2C3αtαt−1

ρ̂− ρ (181)

+

T
∑

t=2

C2αt

(

αt−1L+
ρ̂

ρ̂− ραt−1L

)

+

T
∑

t=2

|αt−1 − αt|
2LC2

ρ̂− ρ

]

. (182)

In particular, with αt =
c√
t

for some c > 0, we have that

E
[

∥∇φ1/ρ̂(θ
out
T )∥

]

≤ ε with Õ
(

ε−4
)

samples.

Remark K.2. Even though our main focus is operating under Assumption 2.1 which is the main assumption on the data

used in most of the other works we compare with (Lyu, 2022), we also give this theorem for completeness. This theorem

operates under another assumption depending on the solution of Poisson equation and is used in (Karimi et al., 2019; TadiÂc

and Doucet, 2017). By using these techniques, we show that we can extend the guarantees in these papers to the constrained

case. One difference is that in the constrained case, we need a slightly stronger assumption on the norms of the gradients,

see Assumption 2.3.

Proof. We will follow the proof of Theorem 3.1 until (95) which is where the main error term due to non-i.d.d. data appears.

We rewrite this inequality for convenience, after taking total expectation and summing the inequality for t ≥ 1

T
∑

t=1

E
[

φ1/ρ̂(θt+1)
]

≤
T
∑

t=1

E
[

φ1/ρ̂(θt)∥2
]

+

T
∑

t=1

ρ̂αtE⟨θ̂t − θt, G(θt,xt+1)⟩+
T
∑

t=1

α2
t ρ̂

2
E∥G(θt,xt+1)∥2

=

T
∑

t=1

E
[

φ1/ρ̂(θt)∥2
]

+

T
∑

t=1

ρ̂αtE⟨θ̂t − θt, G(θt,xt+1)−∇f(θt)⟩

+

T
∑

t=1

ρ̂αtE⟨θ̂t − θt, ∇f(θt)⟩+
T
∑

t=1

α2
t ρ̂

2
E∥G(θt,xt+1)∥2 (183)

We have to then bound for the second term on the right-hand side:
∣

∣

∣

∣

∣

Eρ̂

T
∑

t=1

αt⟨θ̂t − θt,∇f(θt)−G(θt,xt+1)⟩
∣

∣

∣

∣

∣

. (184)

We can then simply follow the same strategy as (Karimi et al., 2019) to obtain the result. For clarity, we write down these

steps explicitly in the rest of this proof.

In particular, by (18), we have

ρ̂

T
∑

t=1

αt⟨θ̂t − θt,∇f(θt)−G(θt, xt+1)⟩ = −ρ̂
T
∑

t=1

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt+1)⟩.
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Separating the inner product on the right-hand side to two parts and shifting indices give us

−
T
∑

t=1

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt+1)⟩ = −α1⟨θ̂1 − θ1, Ĝ(θ1,x2)⟩ −

T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)⟩

− αT ⟨θ̂T − θT ,−PθT
Ĝ(θT ,xT+1)⟩ −

T
∑

t=2

αt−1⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩.

To bound the two sums in the right-hand side, we add and subtract
∑T

t=2 αt⟨θ̂t − θt, Pθt
Ĝ(θt,xt)⟩ to get

−
T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)⟩ −
T
∑

t=2

αt−1⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩

= −
T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt)⟩ −

T
∑

t=2

αt⟨θ̂t − θt, Pθt
Ĝ(θt,xt)⟩

−
T
∑

t=2

αt−1⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩

= −
T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt)⟩ −

T
∑

t=2

αt⟨θ̂t − θt, Pθt
Ĝ(θt,xt)− Pθt−1

Ĝ(θt−1,xt)⟩

−
T
∑

t=2

αt⟨(θ̂t−1 − θt−1)− (θ̂t − θt),−Pθt−1
Ĝ(θt−1,xt)⟩ −

T
∑

t=2

(αt−1 − αt)⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩.

Plugging back to (184), we get

E

T
∑

t=1

αt⟨θ̂t − θt,∇f(θt)−G(θt,xt+1)⟩ ≤ E

[

−α1⟨θ̂1 − θ1, Ĝ(θ1,x2)⟩ − αT ⟨θ̂T − θT ,−PθT
Ĝ(θT ,xT+1)⟩

]

− E

T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt)⟩

− E

T
∑

t=2

αt⟨θ̂t − θt, Pθt
Ĝ(θt,xt)− Pθt−1

Ĝ(θt−1,xt)⟩

− E

T
∑

t=2

αt⟨(θ̂t−1 − θt−1)− (θ̂t − θt),−Pθt−1
Ĝ(θt−1,xt)⟩

− E

T
∑

t=2

(αt−1 − αt)⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩. (185)

We bound the right-hand side in order. First

E

[

−α1⟨θ̂1 − θ1, Ĝ(θ1,x2)⟩ − αT ⟨θ̂T − θT ,−PθT
Ĝ(θT ,xT+1)⟩

]

≤ α1

2

(

∥θ1 − θ̂1∥2 + C2
1

)

+
2αTLC2

ρ̂− ρ ,

by Assumption 2.3, Assumption 3.7 and Lemma B.4.

Second, we use the tower rule and Ft measurability of θt − θ̂t where Ft := σ(X0,θ0, X1,θ1, . . . , Xt,θt), with Assump-

tion 3.6 (used with H(Xt) = G(θt,xt)) to get

E

T
∑

t=2

αt⟨θ̂t − θt, Ĝ(θt,xt+1)− Pθt
Ĝ(θt,xt)⟩ = E

T
∑

t=2

αt⟨θ̂t − θt,E[Ĝ(θt,xt+1) | Ft]− Pθt
Ĝ(θt,xt)⟩ = 0.
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Third,

−E
T
∑

t=2

αt⟨θ̂t − θt, Pθt
Ĝ(θt,xt)− Pθt−1

Ĝ(θt−1,xt)⟩ ≤ E

T
∑

t=2

C3αt∥θ̂t − θt∥∥θt − θt−1∥

≤ E

T
∑

t=2

2L2C3αtαt−1

ρ̂− ρ ,

where the first step used Assumption 3.7 and the last step used the definition of θt, nonexpansiveness of projection, Assump-

tion 2.3 and Lemma B.4.

Fourth, we have

−E
T
∑

t=2

αt⟨(θ̂t−1 − θt−1)− (θ̂t − θt),−Pθt−1
Ĝ(θt−1,xt)⟩ ≤ E

T
∑

t=2

C2αt

(

∥θt − θt−1∥+ ∥θ̂t − θ̂t−1∥
)

≤
T
∑

t=2

C2αt

(

αt−1L+
ρ̂

ρ̂− ραt−1L

)

.

where the first step used Assumption 3.7, and triangle inequality, and the last step used the definition of θt, nonexpansiveness

of projection, Assumption 2.3 and Lemma B.3.

Fifth, by using Lemma B.4 and Assumption 3.7, we have

−E
T
∑

t=2

(αt−1 − αt)⟨θ̂t−1 − θt−1,−Pθt−1
Ĝ(θt−1,xt)⟩ ≤

T
∑

t=2

|αt−1 − αt|
2LC2

ρ̂− ρ .

Plugging these five estimations to (185) bounds the error term in (184). Then plugging this to (183), we finish the proof

after following the same steps as Theorem 3.1.

L. Convergence of Online Dictionary Learning with first-order methods

Assumption L.1. For each X and θ, the function θ 7→ ℓ(X,θ) = infH∈Θ′ (d(X,θH) +R(H)) is L-smooth for some

L > 0.

In (Mairal et al., 2010), it was shown that both Assumption 4.1 and Assumption L.1 are verified when d satisfies

d(X,θH) = ∥X− θH∥2F + κ2∥H∥2F + λ∥H∥1, (186)

where κ2 > 0 and λ ≥ 0. Then the following result is a direct consequence of our main results, Theorems 3.1, 3.9, 3.3, and

3.8.

Corollary L.2. Consider (22) and assume Assumption 4.1. Suppose we have a sequence of data matrices (Xt)t≥0 and let

(θt)t≥1 be the sequence of dictionary matrices in Θ ⊆ R
p×r obtained by either of the three algorithms: Projected SGD

(Algorithm 1), AdaGrad (Algorithm 2), and stochastic heavy ball (Algorithm 3). Suppose

(a1) Θ is compact and the sequence of data matrices (Xt)t≥0 satisfy the assumption Assumption 2.2 and has a compact

support;

(a2) For each X, the function θ 7→ ℓ(X,θ) is ρ-smooth for some ρ > 0 over Θ.

Then in all cases, we sample t̂ ∈ {1, . . . , T} and compute θ̆t̂+1 as in Theorem 3.9 and have the complexity

E

[

dist
(

0, ∂(f + ιΘ)(θ̆t+1)
)]

≤ ε with T = Õ(ε−4) samples. Furthermore, Projected SGD and SHB converges

almost surely to the set of stationary point of the objective function for (22). In particular, the above results hold under

Assumption 2.2 and when d is as in (186).
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