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Abstract

We consider the block coordinate descent meth-
ods of Gauss-Seidel type with proximal regular-
ization (BCD-PR), which is a classical method of
minimizing general nonconvex objectives under
constraints that has a wide range of practical appli-
cations. We theoretically establish the worst-case
complexity bound for this algorithm. Namely, we
show that for general nonconvex smooth objective
with block-wise constraints, the classical BCD-
PR algorithm converges to an e-stationary point
within O(e1) iterations. Under a mild condi-
tion, this result still holds even if the algorithm
is executed inexactly in each step. As an appli-
cation, we propose a provable and efficient algo-
rithm for ‘Wasserstein CP-dictionary learning’,
which seeks a set of elementary probability distri-
butions that can well-approximate a given set of
d-dimensional joint probability distributions. Our
algorithm is a version of BCD-PR that operates
in the dual space, where the primal problem is
regularized both entropically and proximally.

1. Introduction

Consider the minimization of a continuous function f :
Rt x ... x Rfm — [0, 00) on a cartesian product of convex
sets ®@ = O(N) x ... x ©™);

0" € f(ola---aem)- (1)

arg min
0=[01,....0.,]€O

When the objective function f is nonconvex, the conver-
gence of any algorithm for solving (1) to a globally optimal
solution can hardly be expected. Instead, global conver-
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gence to stationary points of the objective function is de-
sired, and in some problem classes, stationary points could
be as good as global optimizers either practlcally as well as
theoretically (see ( R ; R ).

In order to solve (1), we will consider the block coordinate
descent (BCD) methods of Gauss—Seidel type, which seeks
to minimize the objective function restricted to a subset
(block) of coordinates ( R ), often following the
cyclic order of blocks. For the minimization problem (1) we
refer to the set of coordinates in each ©(9) j = 1,....,m,a
block coordinate. Namely, let 9,(f ) denote the 7th block of
the parameter after n updates. Write

05D = (91, 0D, 00T 6, 2)
f'r(zi)( ) f(’S‘L syt 9(1 b 070712+11)7" aGSLm)1>

The algorithm we consider in this work updates 0% Yo
05f ) by updating its ith block by minimizing the marginal
loss function g,(f ) over the ith block ©(9:

6% « argmin g (0) := f{"(0) + a1 5 0= 0,112, 3)

6ce®
where \,, > 0 is called proximal regularization coefficient
and ||-|| denotes the Frobenius norm. The proximal regu-

larzer A, ||0 — 6% |2 ensures that the next block iterate

65" is not too far from the previous iterate 9,(511. The above
update is applied cyclicly for ¢ = 1,...,m. We call the
algorithm (3) BCD-PR for block coordinate descent with
proximal regularization.

Due to its simplicity, BCD type algorithms have been
applied to a wide range of nonconvex problems ( ,
), including matrix and tensor decomposition problems
such as nonnegative matrix factorization (
; ; , ) and nonnegative CAN-
DECOMP/PARAFAC (CP) decomposition ( ,

s ; s ). Notably, all these
decomposition problems enjoy block multi-convex structure,
wherein the objective function is convex when restricted on
each block coordinate so that each convex sub-problems
can be solved via standard convex optimization algorithms
( , ). However, such multi-convexity is not
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required to apply BCD, as simple coordinate-wise gradient
descent can be applied to find the approximate minimizer
of the sub-problems ( , ).

It is known that vanilla BCD ((3) with \,, = 0) does not
always converge to the stationary points of the non-convex
objective function that is convex in each block coordinate
( s ; s ). It is known that
BCD-PR with \,, = Const. is guaranteed to converge to the
set of stationary points ( , ). Un-
der a more general condition, BCD-PR and its prox-linear
variant are shown to converge to Nash equilibria. Local
convergence result with rate is known for these algorithms
under the stronger condition of Kurdyka-F.ojasiewicz (

; ; ; ; , )
For convex objectives, iteration complexity of O(e~1) is
established in ( ). The BCD method has
been drawing attention as an alternative method for training
Deep Neural Network (DNN) models. In
( ), a BCD method is shown to converge to stationary
points for Tikhonov regularized DNN models. In
( ), BCD-PR for training DNNs with general activation
functions is shown to have iteration complexity of O (e~ 1).

Contribution. While being one of the fundamental noncon-
vex optimization methods, the worst-case iteration complex-
ity of BCD-PR (3) for general objectives under constraints
has not been established in the literature. We intend to fill
this gap with contributions summarized below:

e Global convergence to stationary points of BCD-PR
for L-smooth objective f under constraints;

e Worst-case bound of O(s~*(loge™1)?) on the num-
ber of iterations to achieve e-approximate stationary
points;

e Robustness of the aforementioned results under inexact
execution of the algorithm.

To our best knowledge, we believe our work provides the
first result on the global rate of convergence and worst-case
iteration complexity of BCD-PR for the general smooth
objectives, especially with the additional robustness result.
For gradient descent methods with unconstrained nonconvex
objective, it is known that such rate of convergence cannot
be faster than O(e71) ( , ), 80 our rate bound
matches the optimal result up to a (loge~1)? factor. We
emphasize that the above result does not claim that BCD-
PR is provably faster than existing non-convex optimization
algorithms. Instead, our novel analysis confirms that the
classic and practical algorithm of BCD-PR is guaranteed to
converge as fast as existing algorithms in the worst case.

The works ( , ) and ( , )
assume that the objective function satisfies KL property

at every point in the parameter space and obtains a global
rate of convergence to a stationary point for block proximal
Gauss-Seidel (equivalent to our Algorithm 1) and block
proximal alternating linearized minimization. On the other
hand, ( ) assumed local KL property and
obtained a local rate of convergence to a stationary point
for both types of BCD methods. In our work, we do not
assume KL property at any point and still obtain a global
convergence rate for block proximal Gauss-Seidel.

Application to Wasserstein CP-dictionary learning. In
order to motivate our theoretical underpinning of BCD-
PR, we consider the problem of Wasserstein CP-dictionary
learning for d-dimensional joint distributions, which seeks
a set of elementary probability distributions that can well-
approximate a given set of d-dimensional joint probability
distributions represented as d-mode tensors.

e We propose the Wasserstein CP-dictionary learning
(WCPDL) framework for learning elementary proba-
bility distributions that reconstruct d-dimensional joint
probability distributions represented as d-mode ten-
sors.

e We propose an algorithm for WCPDL based on BCD-
PR, where the sub-problems of Wasserstein reconstruc-
tion error minimization are handled by using entropic
regularization and dual formulation for computational
efficiency.

e We establish worst-case bound of O(e~!(loge~1)?)
on the number of iterations to achieve e-approximate
stationary points for WCPDL.

We also demonstrate the advantage of the Wasserstein for-
mulation for distribution-valued dictionary learning through
a number of experiments and applications.

2. Preliminaries

Before stating our main results in the following sections, let
us recall a list of definitions for (1). We say 8 € @ is a
stationary point of a function f over @ if

. * *

Jnf (Vf(6"), 6 -6") 20, )
where (-, -) denotes the dot project on RI1++im 5 @,
This is equivalent to saying that —V f(6™) is in the normal
cone of @ at 8”. If 8" is in the interior of @, then it implies
IV £(6%)|| = 0. For iterative algorithms, such a first-order
optimality condition may hardly be satisfied exactly in a
finite number of iterations, so it is more important to know
how the worst-case number of iterations required to achieve
an e-approximate solution scales with the desired precision
€. More precisely, we say 8° € © is an e-approxiate
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stationary point of f over © if

(6_0*)> < \@ %)

-t (VO 5

0coO
This notion of c-approximate solution is consistent with
the corresponding notion for unconstrained problems. In-
deed, if 8™ is an interior point of @, then (5) reduces to
[V f(0%)]|? < e. Itis also equivalent to a similar notion in
Def. 1 in ( ), which is stated for non-smooth
objectives using subdifferentials instead of gradients as in
(5). Next, for each € > 0 we define the worst-case itera-
tion complexity N of an algorithm computing (6,,),>1 for
solving (1) as

0,, is an e-approximate

Ne := sup inf {n | tationary point of f over @}7 ©

0,0
where (0,7,)7,20 is a sequence of estimates produced by the
algorithm with an initial estimate 6,. Note that N, gives
the worst-case bound on the number of iterations for an
algorithm to achieve an e-approximate solution due to the
supremum over the initialization 8 in (6).

3. Statement of the results

We state the main result, Theorem 3.4. To our best knowl-
edge, this gives the first worst-case rate of convergence and
iteration complexity of BCD-type algorithms with proximal
regularization in the literature. We impose the following
two mild conditions for our theoretical analysis of BCD-PR
3.

Assumption 3.1. For each ¢ = 1,2, .- ,m, there ex-
ists a constant L(Y) > 0 such that the function f
®© = W x ... x 8™ 5 [0,00) is L*-smooth
in each block coordinate 7, that is, the function 6 ~
VHOD, ... 06D g 6D .. gim)Yis L) Lipschitz
in ©® for any 8¢9) ¢ ©W j = 1,2,--- i —1,i +
1 m.

Assumption 3.2. The constraint sets O C RFi ; =
1,...,m are convex. Furthermore, the sub-level sets
f1((=o0,a)) = {6 € ©® : f(6) < a} are compact
foreach a € R.

I

We also allow an inexact computation of the solution to
the sub-problem (3). For a quantitative statement, for each
n > 1, we define the optimality gap A,, by

A, = max (gfj)(e,(j))— inf
< €0

gy (9)) . O
where gg) is in (3). For our convergence results to hold, we
require the optimality gaps to decay sufficiently fast so that
they are summable:

Assumption 3.3. The optimality gaps A,, are summable,
thatis, > 2 | A, < c0.

We now state our main result for BCD-PR.

Theorem 3.4. Let (0,,),>0 be an inexct output of (3). Sup-
pose that Assumptions 3.1-3.3 hold. Let L") > 0 be such
that V f is LD -Lipschitz in each block coordinate and sup-
pose the proximal regularizers (T,(f))nzl satisfy > 1O
forn > 1and 1, = O(1). Then the following hold:

(i) (Global convergence to stationary points) Every limit
point of (0,,)n>0 is a stationary point of f over ©.

(i) (Worst-case rate of convergence) There exists a constant
M independent of 8 such that for n > 1,

. . 0 —6x)\1°
12k <n [ dnf) <Vf(0’“)’ 10— 0]
M+2mYy " A,
n/(logn)?

(®)

(iii) (Worst-case iteration complexity) Suppose the op-
timality gaps are uniformly summable, that is,
SUDg,ce 220:1 A, < oo. Then the worst-case iter-
ation complexity N, for BCD-PR (3) satisfies N. =
O(e7t(loge 1)?) ifr, = 1.

4. Application to d-dimensional Wasserstein
dictionary learning

We apply our optimization method of BCD-PR (3) to solve
d-dimensional Wasserstein dictionary learning, where the
goal is to learn a dictionary of product probability distri-
butions from a set of joint distributions. Namely, given
d-dimensional joint probability distributions (X)1<k<n.
we seek to find a set of product distributions such that each
X, can be approximated by a suitable mixture of the product
distributions.

4.1. Dictionary learning for distribution-valued signals

For N observed d-mode tensor-valued signals Xy, ..., Xy
in R xIa we are interested in extracting r ‘features’
from this set, where each feature again takes the form of
d-mode tensors in Rt > *Id 1In other words, we seek to
learn a ‘dictionary’ D = [Dy,...,D,] € RIv<xlaxr
of r ‘atoms’ so that each data tensor X; can be linearly
approximated by the atoms D1, ..., D, in the dictionary
D. Namely, there exists a suitable ‘code matrix’ A € R™*N
such that we have the following approximate factorization:

[Xla"'aXN]%[Dlw"?DT} ><d+1A (9)

<= X ~D xg1 A,
where X 441 denotes the mode (d+ 1) tensor-matrix product
(see ( , ) and X = [X4,...,X,] de-

notes the (d+ 1)-mode tensor in R11>*1aXN that concate-
nates the tensor-valued signals X, ..., X,, in Rf1xx/a
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along the last mode. As a special case, suppose d = 1
so that the signals Xy, ..., X, are in fact I;-dimensional
vectors. Then (9) becomes the usual matrix factorization
formulation for factorizing the data matrix X € R** into
the (matrix) product of a dictionary matrix D € R* X" and
the code matrix A € R™*V ( , ;

, ; ; ; ) )

As a more precise optimization formulation of (9), we con-
sider

min
D6R11X-~-><Id><r7A6Rr><N

5<XaD><d+1 A>, (10)

where § : (R axN)2 5 10 00) is a ‘dissimilarity
function’ that maps a pair of tensors (X', X”) to a nonnega-
tive number (X', X’). This function is used to measure the
difference between the data tensor X and the ‘reconstruc-
tion’ D X441 A. For d = 1, standard choices of § include
the distance function induced by the Frobenius norm and
the KL divergence.

4.2. Wasserstein distance between d-dimensional
probability distributions

A natural notion of dissimilarity between two probability dis-
tributions on the same probability space is the p-Wasserstein
distance, which is a central notion in this paper, which we
will define below.

Define the cost tensor M € RI1x<xla o RIvxxla for
d-mode tensors to be the tensor defined by M(Jy, J3) =
|[J1 — J2||2 for all multi-indices Jy, Jo € [I1] X -+ X [I4].

One can regard M as giving weights on the difference be-
tween the J1- and the Js-entry of two tensors. For instance,
if d = 1, then the dissimilarity between the two random
variables Y7 and Ys depends not only on the probability that
they differ but also on the actual value |Y; — Y5|. The cost
matrix M, in this case, measures the probabilistic ‘cost’ of
having different probability mass on coordinates .J; and .J5.
Next, for two one-dimensional probability mass functions
p1 € R™, ps € R”, we call a two-dimensional joint distri-
bution T' € %, ,, a coupling between p; and ps if its row
(resp., column) sums agree with p; (resp., p2). We denote
by

n

p1(i) =Y T(,),p2(j) =

Jj=1

TEYXnn

U(p1,p2) =

ZT(i,j)Vie {1,....m}, je {1,...,n}}

the set of all couplings between p; and po.

Now, we can define the Wasserstein distance. Fix a
cost tensor M € RItxxla o RIvxxla gnd et M2 €

RU11a)x(I1+1a) denote its matricization (see (
, )). Fix a parameter v > 0. For A,B €
RIxxIa define

W,(A,B) := W, (vec(A), vec(B))
(M?,T) + v (T,logT),

(1)

where vec(A) and vec(B) denote the vectorization of A
and B, respectively. When v = 0, W, above is known as
the Wasserstein distance. The additional term (7', log T') is
known as the entropic regularization of Wasserstein distance

( ; )-

= min
TeU (vec(A),vec(B))

4.3. d-dimensional Wasserstein dictionary learning

We are interested in the case that the tensor-valued signals
X1,..., Xy describe d-dimensional probability mass func-
tions. Namely, we denote

Iy x--- %1,
X € Ri e

Z X[iy,. ..

i1,..,ld

DI Jigl =1

We can think of an element X of X, . 7, as the joint
probability mass function of d discrete random variables
(Y1,...,Y,) where each Y; takes values from {1,...,;}.
For this reason, we will call an element of X7, 1, simply
as a ‘d-dimensional joint distribution’. We also denote by
Eﬁ .1, the N-fold product of Xy, r,, which we identify
as a subset of Rf1Xx1axN in the usual way.

When each d-mode tensor X; subject to the factorization in
(10) is a d-dimensional joint distribution, then the dissim-
ilarity function ¢ in (10) should measure the dissimilarity
between two tuples of d-dimensional joint distribution. By
using the entropy-regularized Wasserstein distance W, (see
(11)), we formulate the d-dimensional Wasserstein Dictio-
nary Learning (AWDL) as (9), where the dictionary atoms
D,,...,D, are taken to be d-dimensional joint distribu-

.....

..........

i=1

Equivalently, we formulate our problem (dWDL) as below:

(dWDL) min fw (D, A), (12)
D=[Ds,...,D,J€SY, 1,
Aexzl
N
where fi (D, A) := Y W, (Xi, D xay1 Al i]) .
=1

For d = 1, this formulation (12) has been discussed in the
study of Wasserstein dictionary learning, including (

, ) ( ; ), and ( )
).
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4.4. Algorithm (dWDL)

Given the previous estimate (A,,—1, D,,—1), we compute the
updated estimate (A,,, D,,) by solving convex sub-problems
as follows:

A, € argmin fiy (Dno1, A) + A — Ap_i |2 (13)
AexN 2
D, € argmin

DES] .,

Tn
Jw(Ds An) + I = Doa[7- (14

For the standard nonnegative matrix factorization using the
Frobenius norm instead of the Wasserstein norm, solving
the corresponding convex sub-problems amounts to solv-
ing standard nonnegative least squares problem, which can
be done by applying standard projected gradient descent.
However, solving convex sub-problems in (13) and (14) is
computationally demanding since one is required to com-
pute N Wasserstein distances W, each of which involves
finding an optimal transport plan by solving a separate op-
timization problem. Below, we propose a computationally
efficient algorithm where one is only required to solve a
single and simple subproblem (instead of V) for each block
coordinate descent step.

Algorithm 1 dWDL (12)

1: Input: 89 = (Do, Ao) € X7, «...x1, X N (initial estimate);
N (number of iterations); (7 )n>1, (non-decreasing sequence

in [1, 00));
2: forn=1,...,N —1do:
3: Update estimate 8,1 = (Dy,—1, An—1) by
A, + Algorithm 2 with input (Dy,—1, Apn—1) (15)
D,, + Algorithm 3 with input (Dy—1, Ar,) (16)
4:  end for

5: output: Oy

We now describe Algorithms 2 and 3 that solve the convex
sub-problems in (13) and (14). To solve the primal problem
(13), we consider its dual problem. For simplicity, denote
the distance function and the proximal term by for X,y €
31, x...x1, and for given \g € X,

Hx(y) := W, (X, y) and

Lix— Xl f Y,
M);:{QHA dolf - for A < 3,

17
otherwise . 17

+o0o

Then, the primal problem (13) can be re-written as

N
i Hx. (D,,— Al:, i
Ay DU (P xai AL

1 Fa, g (AL DY (8)

Here, the condition A € Eﬁv is enforced by F' in the second
term.

Note that the above is a convex minimization problem but
solving it directly is computationally expensive since sim-
ply evaluating the function Hx, above involves finding an
optimal transport map T' € U (vec(A), vec(B)). In order to
overcome this issue, we consider the dual problem of (18)
reminiscent of ( ). Introducing a dual variable
G € RI1xxIaXN we obtain the dual problem:

N

min S {Hg (<Gl i)

GERIIX'”XIdXN
i=1

+TnFX,,L71[;’i](,Dn71 X<q G[:,]/m0)}- (19)
Here, the conjugate f* of f is defined as

iR — [—o0, +00] : u — sup((x,u) — f(z)). (20)

This dual problem can be solved without having to deal with
a matrix-scaling problem, as in the primal one (see (

, )). We postpone further discussion about the
conjugate functions H* and F'* to the subsequent sections.

Algorithm 2 Solving for A

1: Input: 6,1 = (Dpn—1,An—1) € X7, x..x1
estimate); (Tn)n>1;
2: Update estimate A,,—1 by

4 X =¥ (current

G, < the minimizer of (19)
Dp-1 X <d G%

Tn

An<_ (An—1+ _JO®C:,>

+

where ¢2 € RV *! is chosen to satisfy A,, € 32 and all
entries of J° € R™*! are one.
3: output: Gn_% = (Dn-1,A»)

Here, the 1,2,---,d-mode product D x<q A of D €
RIvx-xIaXN with a tensor A € RIvxI2xxTaxJ jg

(Dx<a M)l = 3. Dliyia, o+ ,id]

11,52, 50

XA[Z.17’L'2’"' aida.ﬂ' (21)

Based on similar arguments, the dual problem of (14) can
be derived as follows:

N
GE]RIlI}}‘l'I'lﬂdXN { <ZZ_; Xi( [ 71]))

+1uFp, (G Xapn AT/7) } (22)
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Algorithm 3 Solving for D
1: Input: Bn_% = (Dn-1,An) € 37, 5..x1

estimate); (7n)n>1;
2: Update estimate D,,_1 by

. X S (current

G! « the minimizer of (22)

Gl xgi1 AT
D, « (Dn71+w —J®d
Tn n
where ¢f, € R™*! is chosen to satisfy D,, € X ke xIy

and all entries of JT € Rf112-1aX1 ape ope.
3: output: 8,, = (Dy,, Ay)

The per-iteration cost of Algorithms 2 and 3 is given by
O((I1 ... 14)2N).

5. Theoretical guarantees of Wasserstein
dictionary learning

We prove that our computationally efficient algorithm, Algo-
rithm 1, is actually solving BCD with proximal regulariza-
tion for our main problem (12). The proof of Theorem 5.1
can be found in Appendix B.

Theorem 5.1. (Per-iteration correctness) Algorithm 1
solves (13) and (14).

Formally speaking, the dual problem (19) is derived
from the primal problem (18) as follows: for given
(Dp—1,An—1) €87, X »N and 7, > 0,

><Id

min Hxi (Dn—l Xd+1 A[I, ZD + THFAn,l[:,i] (A[,Z]),

AexlN
B Alél;\l’ GERI X XIgxN Hx, QL))
QEXT L.k,

+TnFAn,1[:,i](A[:7i])

+ <Q[7Z] - Dn—l Xd+1 A[:vi]a G[:a 7’]>7
=— min Hy (—G[:, 1))

GEeRI1 X XIgxN K

+ T”FXn,l[:,i] ('Dn,1 X<d Gn[,l]/Tn)

The above derivation is standard in the classical theory of
convex optimization. However, solving Algorithm 1 re-
quires us to find the optimizers of the primal problem (13)
and (14) in terms of the inputs and their dual solutions. Due
to the constraints, D € 2§1X,,_X1d and A € Eﬁv, this does
not directly follows.

To establish the correctness rigorously, we consider a gen-
eral minimization problem of a bivariate function under
inequality constraints in Lemma B.4: for given functions
f: K = (—o0,4x], h +: H — (—o0,+0c0], and

R:-H—K,
min (23)

J/’G’H,RzEKf(R‘r) + h(JC)

Here, H and K are real Hilbert spaces with inner prod-
uct (-, -), and K is a nonempty closed convex cone in K.
The key idea is based on Propositions 19.18 and 19.23 in

( ), but we provide the proof in Ap-
pendix B for the sake of completeness.

Now we can obtain a convergence and complexity result for
Algorithm 1 using Theorems 5.1 and3.4.

Theorem 5.2. Suppose that Assumption 3.3 holds, the prox-
imal regularizers (T )n>1 satisfy T, > 1/ forn > 1 and
o = O(1). For a output (0,),>0 of Algorithm 1, the
following hold:

(i) (Global convergence to stationary points) Every limit
point of (0.,)n,>0 is a stationary point of fy over © :=

E?lxmxld X ZTI’V'

(i) (Worst-case rate of convergence) There exists a con-
stant M independent of 8 such that for n > 1, (8) in
Theorem 3.4 holds.

(iii) (Worst-case complexity) The worst-case iteration
complexity N for Algorithm 1 satisfies N, =
O(e~t(loge™1)?). Furthermore, the worst-case com-
plexity of Algorithm 1 is

O(N¢ - (worst-case cost of solving sub-problems))
= O(N; - log N, - (cost of PGD step for dual))
=0(e (loge )31 x --- x I)N).

Proof of Theorem 5.2. Let us first show that Algorithm 1
satisfies Assumptions 3.1, and 3.2. Then, (i) and (ii) follow
from Theorem 3.4. The conjugate function of Hx given

in (17) has a closed form ( s ): forg €
RIxx1a and given X € Y s x Iy
Hx(9: X1 xx1,) = _sup  (g,y) — Hx(y),

yGEle---xId

=~ ((X,log X) + (X, log(Ka))).

Here, K = exp(—M/v) € (Rllx"'“d)z, a =

exp(g/y) € RIv>xla and M € (th'””d)2 is a given
cost matrix. It is known from Theorem 2.4 in

( ) that this dual function is C'°°. In addition, its
gradient function is 1/~ Lipschitz, and it is explicitly given
as

X

Vix(g) = o (Ko ) € S @0
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Therefore, Assumption 3.1 is satisfied. Furthermore, the
constraint set X7 ., and X2 satisfy Assumption 3.2.
1 d

Next, we compute the per-iteration cost of Algorithms 2 and
3. The dual function of F), is given by for g € R"

N 1
F5 (g) == sup (g, A) — §||/\ — ol

PYS I

From Lemma D.1, the optimizer of the above is given as
A= (g+X —cly)t (25)

where c is a constant chosen to satisfy A € .., and thus

F,(0) = 509+ X — 1) (9 + do + 1) — 2 ol

By the duality as in Lem. 7.15 in ( ), its
gradient is given as the optimizer (25): VFY (9) = A =
(g + Ao — cl,)+ € X,. Therefore, each gradient descent
step to solve (19) or (22) requires O((I; ... 1;)?N). Lastly,
(19) and (22) are convex problems, we conclude (iii). [

6. Extension to Wasserstein CP-dictionary
learning

While it is possible to vectorize general d-mode tensor-
valued signals to reduce to the case of dictionary learning
for vector-valued signals, it would be more beneficial to
tailor the d-dimensional dictionary learning problem (10)
to exploit particular tensor structures that one desires to
respect. One such approach is to constrain further the type
of dictionary atoms Dy, ..., D, that we allow. Namely, the
CONDECOMP/PARAFAC (CP)-dictionary learning (

, ) assumes that each D; is a rank-1 tensor in the
sense that it is the outer product of some 1-dimensional
vectors. Also, exploiting Tucker-decomposition structure
on the dictionary atoms has been studied recently in

(2016); (2017).

6.1. Wasserstein CP-dictionary learning

Suppose a data tensor X € R/1**la ig given and fix

an integer r > 1. In the CANDECOMP/PARAFAC (CP)
decomposition of X ( . ), we would like
to find r loading matrices UV € R*" fori = 1,...,d
such that the sum of the outer products of their respective
columns approximate X:

x= 3 @Ulk

k=1 1i=1

= [UM,u?,... . U9]

where U()[:, k] denotes the k™ column of the I; x r loading
matrix matrix U(*) and ) denotes the outer product. We
have also introduced the bracket operation [-].

As an optimization problem, the above CP decomposition
model can be formulated as the following the constrained
CP-decomposition problem:

argmin — fep(UV,... . UW)  (26)
UvMeo .. . U@eca(d
where
forUW,.. UDY = HX_[[Uu) U U(d)]]H2
’ ’ ) ’ 3 P

and ©() C R%*" denotes a compact and convex constraint
set and \; > 0 is a /;-regularizer for the ith loading ma-
trix U® for i = 1,...,d. In particular, by taking \; = 0
and ©) to be the set of nonnegative I; x r matrices with
bounded norm for i = 1,...,d, (26) reduces to the nonneg-
ative CP decomposition (NCPD) ( , ;

, ). Also, it is easy to see that fcp is equal to

2
HX —out@W, ..., UMDy x, (U<d>)THF , Q@D

which is the CP-dictionary-learning problem introduced

in ( ). Here x4 denotes the mode-d product
(see ( , )) the outer product of loading
matrices UV, ..., U™ is defined as

Out(U(l) U(d)) =

d
®U ®U DI: QU™ [:,r]] (28)
k=1

Namely, we can think of the d-mode tensor X as I; obser-
vations of (d — 1)-mode tensors, and the R rank-1 tensors
inout(UM, ..., U@) serve as dictionary atoms, whereas
the transpose of the last loading matrix U(%) can be regarded
as the code matrix.

The Wasserstein formulation of the CP-dictionary-learning
problem (26) is given as follows. As in the setting of (12),
we suppose that each d-mode tensor X; is a d-dimensional
joint distribution. We aim to represent each data tensor X;
based on the product distributions of d one-dimensional
distributions, U € ¥f fori =1, -+ ,d:

[Xi,...., Xyl ~out(UW, ..., UD) x40 A (29)

for some code matrix A € ¥ where Out is given in (28).
Comparing the Wasserstein distance between each X; and
the corresponding distribution, we formulate our main prob-
lem of Wasserstein CP-dictionary Learning (WCPDL):

arg min fwep(UD ., UD A (30)
vWexy .. .UPexsy
Aexzl
where
fWCP(U(1)7 ey U(d)7 A)

N
=W, (x out (UM, ...,UD) x4, A[:,i]) .
=1
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Algorithm 4 WCPDL (30)

1: Input: 69 = (Uél),...,Uéd),Ao) €37, X x X7, X N
(initial estimate); N (number of iterations); (7»)n>1, (non-
decreasing sequence in [1, 00));

2: forn=1,...,N —1do:

3: Update estimate 8,,_1 = (U(l) U An—1) by

n—1""""7r1»Yn—-1»

D+ out (UL, ..., UD))
A, < Output of Algorithm 2 with input (D, Ap—1) ;

4: fork=1,...,ddo:
S: Update estimate Ukajl by
A out(@M,... Uk D ot U AT
A <+ TInserting the last mode of A into the kth mode
. . o k) 7
U Output of Algorithm 3 with input (UT(L ) N
6: end for
7:  end for
8: output: On
6.2. Algorithm (WCPDL)

We state our algorithm to solve Wasserstein CP-
dictionary Learning (30). Given the previous estimates
Uéljl, RN Ufﬁ)l and A,,_;, we compute the updated es-
timate U,(ll),...7 7({1) and A, by solving convex sub-
problems, iteratively, as follows.

First, let D,,_; be out (UM, ... U,y e o

n Iy xIox---x1Ig"
For a given data tensor X € Eﬁxbxu_ﬂd, T, > 0, and

the previous estimates above, the code matrix is updated as
follows:

N
A, € argmin (Z W, (Xi, (Dno1 Xai1 A)[:,i]))
AexN i—1
Tn
+ 1A = A (31)
Next, for each k& € {1,2,---,d}, let A €
RIvxd2x X1 XrXTpp1 X xIaXN pa gbtained from
_ k+1 d
out (U, ..., Uk urth uld AT

in RO T2x XDy X T XX Ta X NXT by ingerting the last
mode into the kth mode. Given A, the dictionaries are
updated as follows:

N
U € argmin Z W, (Xi, Al 4] x5, UT)
vesy  \id
Tn .
+ 5 IU® U5 (32)

Theorem 6.1. (Per-iteration correctness) Algorithm 4
solves (31) and (32).

7. Experiments
7.1. Wasserstein barycenter problem

We first provide the simplest example when » = 1. In
this case, A € Z{V and thus all entries of A are 1’s, which
corresponds to the Wasserstein barycenter problem with
equal weights: minpes, . Zfil W, (X;, D).

For data living in the space of probability distributions,
using the Wasserstein metric instead of the Euclidean metric
may provide a better representation. Figure 1 provides the
barycenter with respect to Wasserstein distance and the
Frobenius norm whend = 1,7 = 1, and N = 3.

As shown in the figure, the Wasserstein barycenter of three
Gaussian distributions is close to the Gaussian distribution,
while the Frobenius one is given as the vertical average
of three distributions, which shows a significant difference
between the two formulations.

Distributions Objective function (AWDL)

o @
Barycenters

Frobenius

—— Wasserstein

Iterations

Figure 1. Finding the barycenter of three Gaussian distributions
with respect to Wasserstein distance and the Frobenius norm

Objective function (AWDL)

%

Distributions

o004 /_\_/_‘
T ) o 100
o6
—— WNMF0.002 o
—— WNMF0.005
WNMF 0.01 N

Barycenters

W @
Iterations

Figure 2. Finding the barycenter of two Ll-shaped distributions
with respect to Wasserstein distance for different s

As defined in (11), the regularized Wasserstein distance W,
depends on the parameter v > 0. In Figure 2, we solve the
Wasserstein barycenter problem for different ’s and two LI-
shaped distributions. While two peaks appear in v = 0.002
and v = 0.005, the distribution is getting close to Gaussian.
This illustrates the importance of choosing appropriate ~y to
find out the geometric property of data sets.

7.2. Wasserstein dictionary learning

The additional knowledge of the underlying spaces can be
utilized in Wasserstein dictionary learning. To illustrate
this, we consider a sequence of figures generated by John
Conway’s Game of Life, which has a periodic domain. We
solve the problems of Wasserstein dictionary learning with
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|
Hn . n 0 50
Figure 3. Wasserstein dictionary learning with r = 4, N = 100,

and the Euclidean distance; a sequence of images (left), dictionar-
ies (middle), code matrices (right)

1
s
! /‘
7

Figure 4. Wasserstein dictionary learmng with r = 4, N = 100,
and the distance on a torus; dictionaries (left), the translated top
right dictionary (middle) code matrices (right)

two different ground metrics: the usual Euclidian distance
in Figure 3 and the distance on a torus in Figure 4. It can
be seen in Figure 4 that all dictionaries are similar up to
translations.

The results for Wasserstein dictionary learning on MNIST
for different r’s are given as follows.

Figure 5. Wasserstein dictionary learning on MNIST; r» = 9 (left)
and r = 16 (right)

In Figure 6, we provide a numerical simulation of Algorithm
4 for Wasserstein CP-dictionary learning and verify our
theoretical convergence results in Theorems 3.4 and 5.2. We
observe faster convergence with the presence of proximal
regularization with a suitable regularization coefficient.

8. Conclusion

We provide a theoretical analysis of the block coordinate
descent methods with proximal regularization. The global
convergence to the stationary points and the worst-case
bound are obtained. We provide Wasserstein CP-dictionary
learning as an application of our method.

Synthetic Synthetic
1.0 1.0
—4— BCD+(T=1) —— BCD+(T=1)
0.9 —— BCD+(T=0.) 0.9 —— BCD+(t=0.1)
—f— BCD+(T=001) —— BCD+(T=0.01)
0.8 —4— BCD 0.8 —e— BCD

S
9

Relative Recons. Error
o
>

Relative Recons. Error

S
n

o
FS

I

=

0.00 0.05 0.10 0.15 0.20 0.25
Elapsed time (s)

0.00 0.05 0.10 0.15 020 025 030 035
Elapsed time (s)

Figure 6. Plot of relative reconstruction error vs. time for
Wasserstein CP-dictionary learning using Algorithm 4 with
various choices of proximal regularization coefficient 7 €
{0,0.1,0.01,1}. The tensor on the left and right has sizes
(100, 100, 500) and (100, 100, 1000), respectively. Data tensors
are generated by taking the outer product of randomly generated
factor matrices of 10 columns plus i.i.d. noise of Uniform(0, 10).
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A. Block Coordinate Descent with proximal regularization
A.1. Proof of Theorem 3.4

Throughout this section, we let (6,,),,>1 denote an inexact output of Algorithm (3) and write 8,, = [6511), ceey G%m)] for each
n>1.Foreachn > 1and¢=1,...,m, denote
FD 0 p0W, .00 9,08 o0, 33)

which is L-smooth under Assumption 3.1. By Lemma D.6, it is also L-weakly convex. From this, it is easy to see that
. . (i) . X
gT(LZ)(G) = f® () + =0 — 0(1) 112 s ( D L®)-strongly convex. Also, denote

7, ‘= min Tr(f), Tp = Iax T( D foralln >1, L:= max L. (34)

1=1,..., m i=1,....m 1=1,..., m

We will use the notations above as well as this observation throughout this section.

Proposition A.1 (Forward monotonicity). Suppose Assumptions 3.1-3.3. Then the following hold:

() f(0,-1) — £(8,) > (0,1 — 0,]> — mA,;
(i) Y0 7, 1100 — 0n1]|* <supgee f(O) +m D> 7 Ay < o0

Proof. Fixi € {1,...,m}. Let 64" be the exact minimizer of the (7,5?) — L®)-strongly convex function gﬁf)(Q) over the

convex set ©(). Then gg) (9,@) < fr(f) (9;’11) = g,(f)(eile), for n > 1. Hence we deduce

FOO ) = 1O O0) = 905 ) — 9@ (O9) + 9P (09) — FDOD) > —A, + 2 ue —0 2. 39

It follows that
f(an—l) - f(@n) (36)
=0, 08 00 0D el = F(eD, e 00,65 oM (BT
=1
= Z FOO ) — £ 65 (38)
Z (T" 165 — 6,2.411% ~ ) = 26,1 — 0u]* — mA,. (39)

This shows (i).

Next, to show (ii), adding up the above inequality,

n — n oo oo
T
D o l6k1 =0 < (Z fOr1) - f(%)) +m D A, = f(B0)+m Y A, < oo, (40)
k=1 k=1 n=1 n=1
where we have used the fact that 220:1 A, < oo due to Assumption 3.3. [

Proposition A.2 (Finite first-order variation). Suppose Assumptions 3.1-3.2. Also assume 7,7 > 1 for alln > 1. Suppose
that Y | A, < oo. Then

> UV F(Oni1), 00— 0ni1)| < Sugf(@) +3m» A, < oo
€

n=1 n=1

12
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Proof. According to Assumptions 3.1 and 3.2, it follows that V f over ® is Lipschitz with Lipshitz constant L. Hence by
Lemma D.3, forall ¢ > 1,

L
|f(9n) - f(gn-H) - <vf(0n+1)a en - 0n+1>‘ < EHGn - 0n+1||%«“-
Using Proposition A.1, it follows that

Hence this yields

L
100 = Oniall +1£(00) = f(Brs1)] (42)

2
L
—= 5”071 - 0n+1”%‘ + f(an) - f(0n+1) + 2mAn (43)

forn > 1. Also note that Y ", f(0;) — f(0141) = f(01) — f(0n11) < f(071). Hence

D [V f(Bur1), 60— i) <le9 n+1||%> + f(80) +2m > A,

|<vf(0n+1); On - 0n+1>‘

IN

A

n=0 n=0 n=1
<L irno — 0,412 +f(0)+2m§:A
=7 o] n n n+1||F 0 o n
< 2f(60) —|—3mZAn < 00,
n=1
where we have used Proposition A.1 (ii). O

Proposition A.3 (Boundedness of iterates). Under Assumptions 3.2 and 3.3, the set {0,, : n > 1} is bounded.

Proof. LetT :=m 2;11 Ay, which is finite by Assumption 3.3. Recall that by Proposition A.1, we have
sup f(6r) < f(61) + T < oo. (44)
n>1

Then we can conclude by using Assumption 3.2. O

Proposition A.4 (Asymptotic first-order optimality). Suppose Assumptions 3.1-3.3. Fix a sequence (by,)n>1 with b, > 0
forn > 1. Then there exists constants c1,cy > 0 independent of 0y € 0 such that for all n > 1,

. 0 - 0n
(V1(6s0) O = 0,) < b juf (TF(6,), 10— g0 )+ cobua|Bn — B @s)
+ c1]|0n41 — 00| + c2(L + Trg1)bi g + A1 (46)

Proof. Fix arbitrary 8 = [, ... 6(™)] € © such that [|§—8,,|| < b, 11. By convexity of @), 65 +-a (80 —p") € ©0)

forall a € [0,1]. Let 95;;1 denote the exact minimizer of gfj}rl over ©()), Then we have

( ) ) _
FL60 ) + 7”W@Heﬂwwfam4sﬁzwﬁb 1657 — 012 (47)
< 19, (60 + ol —09)) + 21T g0 — g, i)

Recall that each f7521 is L("-smooth by Assumption 3.1. Hence by subtracting fot @) (93)) from both sides and using
Lemma D.3, we get

<an+1( W), 97(3-1 - 97(:’)> <a <Vf,(bi)rl(97(j)), 00 — 97(::)> (49)
LW i LW i i (‘) e
S P e R “4|w — 0P|+ Apsr. (50)

13
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Adding up these inequalities for: =1,...,m,

([Tr00), . THO] s = 00) < a{ [T OD), .. VAT O], 0-0,) D

(L + Tn+1a2)
2

L
+§||0n+1 —0,|*+ 160 —0,)> + A1 (52)

Since for eachi = 1,...,m V£ is L(Y)-Lipschits in the ith block coordinate, we have
IVif6D,....00") = VL OD)] < LO)8, — 8. (53)

Hence there exists constants ¢, co > 0 independent of 8y € ©, such that

(Vf(0nt1), O0ny1 —0,) <a(V[f(0n),0—0,)+aml|6, — 0,10 — 6, (54)
+c1]|@ng1 — O + c2(L 4 70 10®)]0 — 0,12 + Appr. (55)

The above inequality holds for all a € [0, 1].

Viewing the right hand side as a quadratic function in a, the only possibly negative term is the linear term
a(Vf(6,), 6 —0,), whose absolute value is bounded above by a||Vf(0,,)]|||@ — 6,,||. By Proposition A.3 and As-
sumption 3.3, ||V £(0,,)|| is uniformly bounded, so this is bounded above by acs||@ — ., || for some constant c3 > 0. Hence
we may choose ¢y > 0 large enough so that the right hand side above is non-increasing in a. Thus the inequality above
holds for all @ > 0. In particular, we can choose a = b,,4+1/]|@ — 0.,||. This and using ||@ — 0., || < b,+1 yield

-6,
<vf(0n+1)a 0n+1 - 0n> < bn+1 <vf(0n)7 ”0_0|> + CO||0n - 0n+1||bn+1 (56)
+ca H9n+1 - 97LH2 + CZ(L + 7'n+1)b3b+1 + Apta, (57)

where we wrote ¢g := mL.

We have shown that the above holds for all @ € © such that ||@ — 0,,|| < b,,11. It remains to argue that (56) also holds
for all @ € © with ||@ — 0,,]| > b,,41. Indeed, for such 6, let @’ be the point in the secant line between 8 and 8,, such
that |6 — 6,,|| < b,11. Then 8’ € O and (56) holds for 8 replaced with 8’. However, the right hand side is unchanged
when replacing @ with any point on the line passing through 6 and 6,,. Thus (56) holds for all @ € ®. This shows the
assertion. O]

Proposition A.5 (Optimality gap for iterates). For eachn > landi € {1,...,m}, let Hff *) be the exact minimizer of the

(Ty(bi) — LW)-strongly convex function 6§ g (6) in (3) over the convex set ©9). Then

(1) _ 1(9)
Tn L ix i
— I8 = 60| < A, (58)
Proof. The assertion follows from
O _ro , - -
I o — 602 < 6 (69) - 6005 < A, (59)

2

for n > 1. Indeed, the first inequality follows from the second-order growth property (see Lemma D.4) since g%") is

(T,S,") — L®)-strongly convex minimized at 97(3), and the second inequality follows from the definition of optimality gap A,
in (7). O

We are now ready to give a proof of Theorem 3.4.

Proof of Theorem 3.4. Suppose Assumptions 3.1-3.3 and T,(f) > LW 4§ forn > 1 for some & > 0. Also assume T»,(Li) =

O(1). We first show (i). Fix a convergent subsequence (6., )x>1 of (6,,),>1. We wish to show that 8, = limj_,, 0.,

14
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is a stationary point of f over ®. To this end, for each i € {1,--- ,m}, let 9%*) denote the exact minimizer of the
(77(11) — L®)-strongly convex function gﬁf) defined in (3). By using the first-order optimality of 955 *), we have

<Vggi>(9§j*>), 0 — 95;’*)> <v FOO09) + 70 (900 — 9D 1y 6 — 95;‘*>> >0 voeoW. (60)
LetT :=mY ,-, Ay, which is finite by Assumption 3.3. Recall that by Proposition A.1, we have

sup £(8,) < f(81) + T < oo, (61)
n>1
Let K := {0 : f(0) < f(01) +T}andlet K(T):= {6 : 30’ € K s.t. ||@ — 0'|| < T} denote the T-neighborhood of K.

By Assumption 3.2, K is compact, so K (T) is also compact. Since f is L(")-smooth in its ith blook coordinate, HVg,(f) || is
uniformly bounded over 8 € K (T') by some constant, say, Lx > 0. Now observe that

(Vg (07, 0= 0) = (VgP(057), 0 =057 ) = | (Vg (047), 0 — 00| (©
> — Vg () 165 — 657 (©3)

Next, using L(9-Lipschitzness of V f in the ith block coordinate and Proposition A.5, we have

(V05,0 - 0) = (VgD(69), 0~ 00 (65)
< [(THD(O5) = VD O) + 7057 — 0), 0 - )| (66)

< (IV A O5) = VIO + 70105 = 601 ) flo - 60 (67)

< (@Y + )0 —60) 165 — 6] (68)

(69)

20, :
< (LY 7NN =0 [~ = 10 - 67|
0 — L)

where for the last equality we have used that T,(f) > L forn > 1. From Assumption 3.3, we can deduce A,, = o(1).
Using the hypotheses T,(f) > L) 4§ for n > 1 for some & > 0 (see Algorithm (3)), and TT(L) = O(1), we see that the term

inside the square root in the last expression is o(1). Furthermore, || — oL || is uniformly bounded in & since 6. . converges
as k — oo. Hence

lim inf <vg< (09, 0 — 95;‘3> >0 VvoeoW. (70)
k—o00 g

Note that by Proposition A.1 (ii) and 7 ) = O(1), we get Tn)HB —0,_1|| = o(1). So if we write O, = [9&13), ce 9((,?)],
For each § € ©(), by the hypothesis, we get

lim [(Zr000) + 27 (955? — 05000, 0-08)) — (V1D (6), 0 - 6 (1)
< lim 27 D)105) — 05011116 — 07y (72)
=20 — 62| lim (65 —6,) ]| =0. (73)
It follows that, for each § € ©(*), using the continuity of V f in Assumption 3.2,
<Vif(9§x1>)7 00D D) gD glm)y g egg>> = lim <Vf(1 (09, 6 — 95;‘,3> > 0. (74)

This holds for all ¢ = 1,..., m. Therefore we verify (V f(0), @ — 0) > 0 for all @ € ©, which means that 6 is a
stationary point of f over ©, as desired. This shows (i).
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Next, we show (ii). Let b,, be any square-summable sequence of positive numbers. By Cauchy-Schwarz inequality,

1/2

Z biel|Ok — Okia]l < (Z bi) <ZH01€ — 0k+1||2> . (75)
k=1 k=1 k=1

Then by Proposition A.1, the right hand side is uniformly bounded in n > 1, so we see that the left hand side is also
uniformly bounded in n. Hence using Propositions A.1 and A.2,

S b [— int <Vf(9n), ||00||>} <c <sup FO)+ 3 Bu(@0)+ S 02+ b6, - emn) 76)
n=1 n n=1 n=1 n=1

60cO

for some constant C' > 0 independent of 8, and the right hand side is finite. Thus by taking b,, = 1/(y/nlogn), using
Lemma D.2, we deduce

min | — inf <Vf(0k), 77)

6—6i \]_ M+cyo A6y
1<k<n EC) -

10 — 65|l vn/logn
for some constants M, ¢ > 0 independent of 8. This shows (ii).

Lastly, we show (iii). Assume supg ce > .3 An(60) < co. Then the above implies that for some constant M’ > 0
independent of 6,

o= 00 \|"  Mlog o

min sup |:— inf <Vf(0]€), M n

1<k<n g,c@® 6cO

Then one can conclude (iii) by using the fact that n > 2¢71(loge~1)? implies (logn)?/n < e for all sufficiently small
€ > 0. This completes the proof. O

B. Proof of Theorem 5.1
In this section, we establish Theorem 5.1, the per-iteration correctness of Algorithm 1. This directly follows from
Propositions B.1 and B.2 below.

Proposition B.1. For given (D,,_1,A,_1) € Y s, X YN and 7, > 0, let A,, € XN be a solution of (18). Suppose
each fiber of D,,_1 along the last mode is not identically zero. Then, \,, is uniquely determined by

Dn,1 X <d Grol

Tn

A, = (Anl + -J°® c%) . (79)

+

Here, G° € RY is defined as the unique solution of the dual problem (19), ¢ € RN X1 is chosen to satisfy A,, € Y and
all entries of J° € R™ ! are one.

As shown later in the proof, the assumption on D,,_; in the above proposition is required to ensure the above derivation. It
is worth pointing out that it can be easily achieved in the algorithm by adding small noise, if necessary.

Proposition B.2. For given (D,,_1,A,) € X} oIy X YN let D, € YT x...x1, be a solution of (14). Suppose each fiber
of A, € BN along the 2nd mode is not identically zero. Then D, is uniquely determined by

G xapr AT
D, = (Dnl fIn XA B gt c;) . (80)

Tn "

Here, GIL is defined as the unique solution of the dual problem (22), CL € R™*1L s chosen to satisfy D,, € E?l woxIy and all
entries of JT € Rtz 1ax1 gre ope.

The following definitions are taken from ( , ).
Definition B.3. ( s )(Definitions 9.12, 19.10, 19.15 & 19.22)

16
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* For a nonempty closed convex cone K C K, we say that R : H — K is convex with respect to K if
Rlax+ (1 —a)y) —aRx— (1 —a)Ry € K
forall z,y € Hand o € (0,1).
* The set of proper lower semicontinuous convex functions from H to (—oo, +00] is denoted by I'g(H).
 The Lagrangian of 7 : H x K — (—o00, +00] is a function given as

L:HXxK—=[—00,+00]: (z,0) — Hel)fc (T (z,y) + (y,v)). (81)
y

Moreover, (z,v) € H x K is a saddle point of £ if
L(xz,v) =sup L(x,K) = inf L(H,v).

¢ The primal problem and the dual problem of 7 : H X K — (—o0, +00] are respectively given as

i 0 d in J*(0,v). 82
ﬁlﬁj@’ ), an f}rélllclj (0,v) (82)

We first observe that the primal problem of

f(Rz—y)+h(z), ifRzey+K,

83
+00, if Re ¢ y + K, 8

j:HxlC—)(—oo,—FOO]I(va/)H{

is the minimization problem (23). Its dual problem, the Lagrangian of 7, and the saddle point are given in the following
lemma.

Lemma B.4 (Characterization of saddle point for general coding problem). Let f € T'o(K), h € T'o(H), and K be a
nonempty closed convex cone in K. Let R : H — K be continuous, convex with respect to K such that K N R(domh) # (.
For J given in (83), the following hold:

1. The dual problem of J is given as
min f*(—v; K) + h*(R"v) (84)

velkl
where f*( K) = sup_c (2, -) — f(2).

2. The Lagrangian L : H X I — [—o0, +00] is given as

—00 if x € domh and v ¢ domf*(; K);
L(z,v) = ¢ —f*(v;K) + h(z) + (Rz,v) ifx € domhand v € domf*(:; K); (85)
+o0 if x ¢ domh.

3. Suppose that the optimal values 1 and p* of the primal problem and the dual problem satisfy the strong duality
w= —p*. Then, (z°, —v°) € H x K is a saddle point of L if and only if
2° € domh, Rz° € K, —v° € domf*(:; K),
R*v° € Oh(z°) and —v° € 9f(Rx®).

Proof. (1): For any v € K, it holds that
\7*(057)) = sup (y,v} _‘-7(5673/)7

(z,y)EHXK

= sup (y,v) — h(z) — f(Rx —y),
(z,y)EHXK st. Re—yeK

= sup <£L‘, R*U> - h(ZL’) + <Zv *v> - f(z)a
(z,z)EHXK

= B*(R*0) + f*(—v; K).

17
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From the definition of the dual problem, we conclude.

(2): If « ¢ domh, then h(zx) = co. As f € I'o(K), we have J(x,v) = oo and thus the Lagrangian £(z,v) = oco. For
x € domh and v € domf*(-; K'), we have

Llwv)=hz)+  mf STy + ),
= h(z) + (Re,0) + inf f(2) — (2,0)
= h(l‘) + <R:E,’U> - Sup<Z, v) — f(2),

z€EK
= h(z) + (Rz,v) — [*(v; K).
If x € domh and v ¢ domf*(+; K), the above relation yields that £L(x,v) = —o0.

(3): From f € T'x(K), h € T'o(H), and the convexity of R with respect to K, we have that 7 € I'o(H x K). Applying
Corollary 19.17 in ( , ), we obtain that (2°, —v°) is a saddle point of £ if and only if z° is a solution of
the primal problem (23) and v° is a solution of the dual problem (84).

As = —p*, the equivalence in Corollary 19.1 from ( , ) concludes our claim. O
Now we are ready to prove Proposition B.1.

Proof of Proposition B.1. The primal problem (18) for updating A has convex objective function and is strictly feasible
under the hypothesis that D,,_; consists of nonzero tensor slices D;. Hence the primal problem (18) obtains strong duality
(see, e.g., ( , ).

Let A,, and G,, be the optimizers of the primal problem (18) and the dual problem (19), respectively. In what follows, we
will apply Lemma B.4. For K = Eﬁ o x Iy let us consider
j . RT‘XN X Rllx---xlde — (—OO,—FOO] .
N ) . . .
(AY) D oich {Hx,i (Dn—1 Xap1 Al 3] = Y[54]) + T Fa, [l (A[:,z])} ifDp_1 Xgr1 A €Y + K,
’ +00, ifDn_l Xd+1A¢Y+K.
Then, (18) and (19) are the primal problem and the dual problem of 7, respectively.

From Cor. 19.17 in ( , ), (A, —G,,) is a saddle point of the Lagrangian associated with 7. Applying
Lemma B.4(3), we get D,,_1 x<q G, € T,0F(A,). Note that { + J° ® ¢, € OF(A,,) for any ¢}, € RN*1 where all
entries of J° € R™*! are one, and ¢ € R™*V satisfies

€li, 3l = Anli, j] — An—ald, ] if Aufi, j] > 0, (86)
S[Zaj] € (—00, _Anfl[iaj]] lfAn[Zv]] =0,
forallt=1,2,--- ,r,and j = 1,2,--- , N. Hence
Dy—1 XSdGn/Tnzf—‘y—JO@CZ 87)
for some & satisfying (86) and ¢, € RN*1 Now combining (87) and (86) yields (79). Finally, since we must have
A, € dom(F), ¢, € RV*! should be such that A,, in (79) satisfies A,, € 2. O
C. Proof of Theorem 6.1
Here, we only prove the following proposition. The rest of arguments is parallel to the proof of Theorem 5.1
Proposition C.1. For each k € {1,2,--- ,d}, let A € RIV12x X Deoaxrx DX xTaxN be obtained from
OUt(U(l), o U(k‘—l)7 U(k_‘fil)7 o, U'(d_)17 AT) € RIl XTg XX Ty XTjgyp1 X XIgX N X7 (88)
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by inserting the last mode into the kth mode. Let UT(Lk) € X7, be a solution of (14). Suppose each fiber of A, € YN along

the kth mode is not identically zero. Then Ur(Lk) is uniquely determined by

Gl A
Uk = (U,S"f_)1 TRt L c;> . (89)

T n

Here, GIL is defined as the unique solution of the dual problem (22), CIL e R™1 js chosen to satisfy Ur(Lk) IS EZ‘: and all
entries of J1 € RI**1 gre one.

Proof. We first obtain the dual of (32):

vesy,

= min (ZHX >+TnFU(k)1(U);

UEE;k,QEZﬁX__ Qi =Ald] x, UT

N
min (Z Hx, (A[:, 4] xx UT)> + w0 (U)
i=1 n

xIg?

_ Z B T A 4

o vexy ,Q?élilnnx xIg GG]Rle ><Id><N {HX <Q[al} A[.,Z} Xk U 7G['7Z]>} + T"FUT(,,’V_% (U),

(a) . P

= E Hx. . . *A U G n U )
Ge]RHHXl-E-l-Xﬂde vesy, 52121111X Xl =1 { x; (Q[:1]) +(Q[:, 1] [, 4] Xk } + 7 U(k) )

N
- GeRzlrg.af-)iIde ; o {Qezrgi},(.,“d<Q[:7i]’ _G[:vib - HXi (Q[»Z])}

n

+ min 7 Fy e (U) = (L] xx U, G, i),
Ty

Ue n—1 :
=1
N
® - il
= GGRIIIEI-ande |J_Zl {Hxl( G[,Z])} + Uné%);(k {<A X U G> U(k) (U)} y
N
(© " .
- GERI}?}Iande Z; {HX1(_G[’Z])} + Tn U(k) (G Xk A/Tn)

Here, (a) uses strong duality for convex objectives; (b) uses the fact that
(A, UT) =[AL 1], AL N %, UT = [A[L 1] %, UT, .0 AL N < U] (90)

and (c) follows from the identity (A x U, G) = (U, G x4, A), which is easily verified from the definition. Then we can
conclude similarly as in the proof of Proposition B.1 by using Lemma B.4 with K = Eﬁ w.-x1, and

j . lexr % Rllx-nxlde N (—OO,+OO] .
N . - . e
(U.Y) Zi:lHXi (A[:,Z} Xk UT—Y[I,Z])—FTnFUT(l;i)l(U) 1fﬁ><k. UT€Y+K,
+o00, ifAx, UT ¢Y +K.

D. Auxiliary lemmas

Lemma D.1. Fixg € R" and let &, := {(21,...,2,) € RY, : >i_, x; = 1}. The optimality condition of the problem

1
sup (g,A) = 5[4 = Xl 1)
AET,
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is given as
N= (g + Ao —cly)y (92)

where c is a constant chosen to satisfy \* € ¥,.

Proof. As the cost function of (91) is strictly concave and X, is a closed set, there exists a unique maximizer \* € ¥, of
(91). For any € € [0,1] and A\ € X,., consider

A(e) 1= g, A"+ e = A7) = 51N + €A = X%) = ol
Noting that A* 4+ (A — \*) is also in X, for any € € [0, 1].
As h(e) attains its maximum at € = 0, we have that for all A € X,
0> 1(0) = (g — A"+ Aoy A — A*). 93)
For [} :=={i € {1,2,--- ,r}: A*[i] > 0}and Iy := {i € {1,2,--- ,r} : \*[i] = 0}, we obtain

0> (g=A + )] x A= M)+ > (g =N+ Xo)[i] x Ali]. (94)

i€l i€l>

As )\ € ¥, is arbitrary, there exists a constant ¢ € R such that for ¢ € I}

(g—A"+X)i] =c. 95)
This yields that
0> ex A=A+ > (g— A"+ Xo)[i] x Al (96)
i€l icls
= (g — A"+ Xo[i] — ¢) x Ald]. (97)
i€ls
The last equality is due to A\, \* € X, As a consequence, (g — \* + Ag)[¢] < ¢ and we conclude. O

Lemma D.2. Let (ay,)n>0 and (by)n>0 be sequences of nonnegative real numbers such thaty ", a,b, < co. Then

-1
min b < k=0 %D =0 (Z ak> . (98)
k=1

1<k<n Dk @k

Proof. The assertion follows from noting that

(; ak> 12}32” b < I;akbk < kz_:lakbk < . (99)

O

Lemma D.3 (Convex Surrogate for Functions with Lipschitz Gradient). Let f : RP — R be differentiable and V f be
L-Lipschitz continuous. Then for each 6,0’ € RP,

L
|1(0') = £(8) = (V1(6), 8 = 0)| < S [|6 —&'I". (100)
Proof. This is a classical Lemma (see, e.g., Lem 1.2.3 in ( , )). We include a proof of this statement for
completeness. First write
1
f(0)—f(8) = / (Vf(0+s(0'—0)),0 —0) ds. (101)
0
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By Cauchy-Schwarz inequality and L-Lipscthizness of V f,

/ <Vf(0+s(0’—0)),0’—0>—/ (Vf(6),0 —8)ds g/ |Vf(0+s6—0)—Vf®)| 6 —86|ds
0 0 0

(102)
1
< / Ls||0" —0|*ds (103)
0
L
= 5l6—6" (104)
2
Then the assertion follows. O

Lemma D.4 (Second-Order Growth Property). Let g : RP — [0, 00) be u-strongly convex and let © is a convex subset of
RP. Let 0 denote the minimizer of g over 0. Then for all 0 € 0,

9(6) = 9(67) + 516 - 6% (105)

Proof. See Lem. B.5 in ( s ). O
Lemma D.5 (Characterization of weak convexity). Let f : RP — R be a smooth function. Fix a convex set @ C RP and
p > 0. The following conditions are equivalent.

(i) (Weak convexity) 8 — f(0) + 5||6|? is convex on ©;

(ii) (Hypermonotonicity) (Vf(0) —V f(0'), 0 — 8" > —p||0 — 0'||? forall 0,0’ c ©;

(iii) (Quadratic lower bound) f(0) — f(8') > (Vf(6'), 0 — 8') — 5|6 — 0'||* for all 6,6’ € ©.

Proof. See Lem. B.2 in (Lyu, ). See also Thm. 7 in ( , ) for an equivalent statement for a more
general case of locally Lipschitz functions. O
Lemma D.6. Let f : RP — R be a function such that V f is L-Lipscthiz for some L > 0. Then f is L-weakly convex, that

is, 0 — f(0) + £ 6] is convex.

Proof. Follows immediately by Lemmas D.3 and D.5. O
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