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Abstract

Counterfactual explanations are emerging as an attractive option for providing
recourse to individuals adversely impacted by algorithmic decisions. As they
are deployed in critical applications (e.g. law enforcement, financial lending), it
becomes important to ensure that we clearly understand the vulnerabilties of these
methods and find ways to address them. However, there is little understanding of
the vulnerabilities and shortcomings of counterfactual explanations. In this work,
we introduce the first framework that describes the vulnerabilities of counterfactual
explanations and shows how they can be manipulated. More specifically, we show
counterfactual explanations may converge to drastically different counterfactuals
under a small perturbation indicating they are not robust. Leveraging this insight,
we introduce a novel objective to train seemingly fair models where counterfactual
explanations find much lower cost recourse under a slight perturbation. We describe
how these models can unfairly provide low-cost recourse for specific subgroups
in the data while appearing fair to auditors. We perform experiments on loan and
violent crime prediction data sets where certain subgroups achieve up to 20x lower
cost recourse under the perturbation. These results raise concerns regarding the
dependability of current counterfactual explanation techniques, which we hope
will inspire investigations in robust counterfactual explanations.1

1 Introduction

Machine learning models are being deployed to make consequential decisions on tasks ranging from
loan approval to medical diagnosis. As a result, there are a growing number of methods that explain
the decisions of these models to affected individuals and provide means for recourse [1]. For example,
recourse offers a person denied a loan by a credit risk model a reason for why the model made the
prediction and what can be done to change the decision. Beyond providing guidance to stakeholders
in model decisions, algorithmic recourse is also used to detect discrimination in machine learning
models [2–4]. For instance, we expect there to be minimal disparity in the cost of achieving recourse
between both men and women who are denied loans. One commonly used method to generate
recourse is that of counterfactual explanations [5]. Counterfactual explanations offer recourse by
attempting to find the minimal change an individual must make to receive a positive outcome [6–9].

Although counterfactual explanations are used by stakeholders in consequential decision-making
settings, there is little work on systematically understanding and characterizing their limitations.
Few recent studies explore how counterfactual explanations may become valid when the underlying
model is updated. For instance, a model provider might decide to update a model, rendering
previously generated counterfactual explanations invalid [10, 11]. Others point out that counterfactual
explanations, by ignoring the causal relationships between features, sometimes recommend changes
that are not actionable [12]. Though these works shed light on certain shortcomings of counterfactual
explanations, they do not consider whether current formulations provide stable and reliable results,
whether they can be manipulated, and if fairness assessments based on counterfactuals can be trusted.

1Project Page: https://dylanslacks.website/cfe/
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Notation We use a dataset D containing N data points, where each instance is a tuple of x ∈ R
d

and label y ∈ {0, 1}, i.e. D = {(xn, yn)}
N
n=1 (similarly for the test set). For convenience, we refer

to the set of all data points x in dataset D as X . We will use the notation xi to denote indexing data
points in X/D and xq to denote indexing attribute q in x. Further, we have a model that predicts
the probability of the positive class using a datapoint f : x → [0, 1]. Further, we assume the model
is paramaterized by θ but omit the dependence and write f for convenience. Last, we assume the
positive class is the desired outcome (e.g., receiving a loan) henceforth.

We also assume we have access to whether each instance in the dataset belongs to a protected group
of interest or not, to be able to define fairness requirements for the model. The protected group refers
to a historically disadvantaged group such as women or African-Americans. We use Dpr to indicate
the protected subset of the dataset D, and use Dnp for the “not-protected” group. Further, we denote

protected group with the positive (i.e. more desired) outcome as Dpos
pr and with negative (i.e. less

desired) outcome as Dneg
pr (and similarly for the non-protected group).

Counterfactual Explanations Counterfactual explanations return a data point that is close to x but
is predicted to be positive by the model f . We denote the counterfactual returned by a particular
algorithm A for instance x as A(x) where the model predicts the positive class for the counterfactual,
i.e., f(A(x)) > 0.5. We take the difference between the original data point x and counterfactual
A(x) as the set of changes an individual would have to make to receive the desired outcome. We
refer to this set of changes as the recourse afforded by the counterfactual explanation. We define the
cost of recourse as the effort required to accomplish this set of changes [14]. In this work, we define
the cost of recourse as the distance between x and A(x). Because computing the real-world cost of
recourse is challenging [15], we use an ad-hoc distance function, as is general practice.

Counterfactual Objectives In general, counterfactual explanation techniques optimize objectives
of the form,

G(x,xcf) = λ · (f(xcf)− 1)
2
+ d(x,xcf) (1)

in order to return the counterfactual A(x), where xcf denotes candidate counterfactual at a particular
point during optimization. The first term λ · (f(xcf)− 1) encourages the counterfactual to have
the desired outcome probability by the model. The distance function d(x,xcf) enforces that the
counterfactual is close to the original instance and easier to “achieve” (lower cost recourse). λ
balances the two terms. Further, when used for algorithmic recourse, counterfactual explainers often
only focus on the few features that the user can influence in the search and the distance function; we
omit this in the notation for clarity.

Distance Functions The distance function d(x,xcf) captures the effort needed to go from x to xcf

by an individual. As one such notion of distance, Wachter et al. [6] use the Manhattan (`1) distance
weighted by the inverse median absolute deviation (MAD).

d(x,xcf) =
∑

q∈[d]

|xq − x
q
cf|

MADq

MADq = mediani∈[N ]

(

|xq
i − medianj∈[N ](x

q
j)|

)

(2)

This distance function generates sparse solutions and closely represents the absolute change someone
would need to make to each feature, while correcting for different ranges across the features. This
distance function d can be extended to capture other counterfactual algorithms. For instance, we can
include elastic net regularization instead of `1 for more efficient feature selection in high dimensions
[16], add a term to capture the closeness of the counterfactual xcf to the data manifold to encourage
the counterfactuals to be in distribution, making them more realistic [9], or include diversity criterion
on the counterfactuals [13]. We provide the objectives for these methods in Appendix B.1.

Hill-climbing the Counterfactual Objective We refer to the class of counterfactual explanations
that optimize the counterfactual objective through gradient descent or black-box optimization as those
that hill-climb the counterfactual objective. For example, Wachter et al.’s algorithm [6] or DiCE [13]
fit this characterization because they optimize the objective in Equation 1 through gradient descent.
Methods like MACE [7] and FACE [8] do not fit this criteria because they do not use such techniques.

Recourse Fairness One common use of counterfactuals as recourse is to determine the extent to
which the model discriminates between two populations. For example, counterfactual explanations
may return recourses that are easier to achieve for members of the not-protected group [1, 4] indicating
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• Small perturbation: Perturbation δ should be small. i.e. we need to minimize Ex∼Dneg
np
d(x,x+ δ).

• Accuracy: We should minimize the classification loss L (such as cross entropy) of the model f .
• Counterfactual: (x+ δ) should be a counterfactual, so that running A(x+ δ) returns a counter-

factual close to (x+ δ), i.e. minimize Ex∼Dneg
np

(f(x+ δ)− 1)2.

This combined training objective is defined over both the parameters of the model θ and the pertur-
bation vector δ. Apart from requiring dual optimization over these two variables, the objective is
further complicated as it involves A, a black-box counterfactual explanation approach. We address
these challenges in the next section.

Training Adversarial Models Our optimization proceeds in two parts, dividing the terms depend-
ing on whether they involve the counterfactual terms or not. First, we optimize the perturbation δ and
model parameters θ on the subset of the terms that do not depend on the counterfactual algorithm, i.e.
optimizing accuracy, counterfactual, and perturbation size3:

δ := arg min
δ

min
θ

L(θ,D) + Ex∼Dneg
np

(f(x+ δ)− 1)2 + Ex∼Dneg
np

d(x,x+ δ) (3)

Second, we optimize parameters θ, fixing the perturbation δ. We still include the classification loss
so that the model will be accurate, but also terms that depend on A (we use Aθ to denote A uses
the model f parameterized by θ). In particular, we add the two competing recourse fairness related
terms: reduced disparity between subgroups for the recourses on the original data and increasing
disparity between subgroups by generating lower cost counterfactuals for the protected group when
the perturbation δ is added to the instances. This objective is,

θ := arg min
θ

L(θ,D)+Ex∼Dneg
np

[d (x,Aθ(x+ δ))]+
(

Ex∼Dneg
pr

[d (x,Aθ(x))]− Ex∼Dneg
np

[d (x,Aθ(x))]
)2

s.t. Ex∼Dneg
np

[d (x,Aθ(x+ δ))] < Ex∼Dneg
pr

[d (x,Aθ(x))] (4)

Optimizing this objective requires computing the derivative (Jacobian) of the counterfactual explana-

tion Aθ with respect to θ, ∂
∂θ

Aθ(x). Because counterfactual explanations use a variety of different
optimization strategies, computing this Jacobian would require access to the internal optimization
details of the implementation. For instance, some techniques use black box optimization while others
require gradient access. These details may vary by implementation or even be unavailable. Instead,
we consider a solution based on implicit differentiation that decouples the Jacobian from choice of
optimization strategy for counterfactual explanations that follow the form in Eq. (1). We calculate the
Jacobian as follows:

Lemma 3.1 Assuming the counterfactual explanation Aθ(x) follows the form of the objective in

Equation 1, ∂
∂xcf

G(x,Aθ(x)) = 0, and m is the number of parameters in the model, we can write

the derivative of counterfactual explanation A with respect to model parameters θ as the Jacobian,

∂

∂θ
Aθ(x) = −

[

∂2G (x,Aθ(x))

dx2
cf

]−1

·

[

∂

∂θ1

∂

∂xcf

G (x,Aθ(x)) · · ·
∂

∂θm

∂

∂xcf

G (x,Aθ(x))

]

We provide a proof in Appendix A. Critically, this objective does not depend on the implementation
details of counterfactual explanation A, but only needs black box access to the counterfactual
explanation. One potential issue is the matrix inversion of the Hessian. Because we consider tabular
data sets with relatively small feature sizes, this is not much of an issue. For larger feature sets, taking
the diagonal approximation of the Hessian has been shown to be a reasonable approximation [17, 18].

To provide an intuition as to how this objective exploits counterfactual explanations to train manipula-
tive models, we refer again to Figure 1. Because the counterfactual objective G relies on an arbitrary
function f , this objective can be non-convex. As a result, we can design f such that G converges to
higher cost local minimums for all datapoints x ∈ D than those G converges to when we add δ.

3The objectives discussed in this section use the training set, whereas, evaluation is done on a held out test
set everywhere else.
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Comm. & Crime German Credit

Acc ||δ||1 Acc ||δ||1

Unmodified 81.2 - 71.1 -

Wachter et al. 80.9 0.80 72.0 0.09
Sparse Wachter 77.9 0.46 70.5 2.50
Prototypes 79.2 0.46 69.0 2.21
DiCE 81.1 1.73 71.2 0.09

Table 1: Manipulated Models: Test set
accuracy and the size of the δ vector
for the four manipulated models (one
for each counterfactual explanation algo-
rithm), compared with the unmodified
model trained on the same data. There is
little change to accuracy using the manipu-
lated models. Note, δ is comparable across
datasets due to unit variance scaling.

4 Experiment Setup

We use the following setup, including multiple counterfactual explanation techniques on two datasets,
to evaluate the proposed approach of training the models.

Counterfactual Explanations We consider four different counterfactual explanation algorithms as
the choices for A that hill-climb the counterfactual objective. We use Wachter et al.’s Algorithm [6],
Wachter et al.’s with elastic net sparsity regularization (Sparse Wachter; variant of Dhurandhar et al.
[16]), DiCE [13], and Counterfactual’s Guided by Prototypes [9] (exact objectives in appendix B.1).
These counterfactual explanations are widely used to compute recourse and assess the fairness of
models [3, 19, 20]. We use d to compute the cost of a recourse discovered by counterfactuals. We use
the official DiCE implementation4, and reimplement the others (details in Appendix B.2). DiCE is
the only approach that computes multiple counterfactual explanations; we generate 4 counterfactuals
and take the closest one to the original point (as per `1 distance) to get a single counterfactual.

Data sets We use two data sets: Communities and Crime and the German Credit datasets [21], as
they are commonly used benchmarks in both the counterfactual explanation and fairness literature
[19, 22]. Both these datasets are in the public domain. Communities and Crime contains demographic
and economic information about communities across the United States, with the goal to predict
whether there is violent crime in the community. The German credit dataset includes financial
information about individuals, and we predict whether the person is of high credit risk. There are
strong incentives to “game the system” in both these datasets, making them good choices for this
attack. In communities and crime, communities assessed at higher risks for crime could be subject to
reduced funding for desirable programs, incentivizing being predicted at low risk of violent crime
[23], while in German credit, it is more desirable to receive a loan. We preprocess the data as in Slack
et al. [24], and apply 0 mean, unit variance scaling to the features and perform an 80/20 split on the
data to create training and testing sets. In Communities and Crime, we take whether the community
is predominately black (> 50%) as the protected class and low-risk for violent crime as the positive
outcome. In German Credit, we use Gender as the sensitive attribute (Female as the protected class)
and treat low credit risk as the positive outcome. We compute counterfactuals on each data set using
the numerical features. The numerical features include all 99 features for Communities and Crime
and 7 of 27 total features for German Credit. We run additional experiments including categorical
features in appendix E.3.

Manipulated Models We use feed-forward neural networks as the adversarial model consisting of 4
layers of 200 nodes with the tanh activation function, the Adam optimizer, and using cross-entropy
as the loss L. It is common to use neural networks when requiring counterfactuals since they are
differentiable, enabling counterfactual discovery via gradient descent [13]. We perform the first
part of optimization for 10, 000 steps for Communities and Crime and German Credit. We train the
second part of the optimization for 15 steps. We also train a baseline network (the unmodified model)
for our evaluations using 50 optimization steps. In Table 1, we show the model accuracy for the two
datasets (the manipulated models are similarly accurate as the unmodified one) and the magnitude of
the discovered δ.

4https://github.com/interpretml/DiCE
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Table 2: Recourse Costs of Manipulated Models: Counterfactual algorithms find similar cost
recourses for both subgroups, however, give much lower cost recourse if δ is added before the search.

Communities and Crime German Credit

Wach. S-Wach. Proto. DiCE Wach. S-Wach. Proto. DiCE

Protected 35.68 54.16 22.35 49.62 5.65 8.35 10.51 6.31
Non-Protected 35.31 52.05 22.65 42.63 5.08 8.59 13.98 6.81
Disparity 0.37 2.12 0.30 6.99 0.75 0.24 0.06 0.5

Non-Protected+δ 1.76 22.59 8.50 9.57 3.16 4.12 4.69 3.38
Cost reduction 20.1× 2.3× 2.6× 4.5× 1.8× 2.0× 2.2× 2.0×

5 Experiments

We evaluate manipulated models primarily in terms of how well they hide the cost disparity in
recourses for protected and non-protected groups, and investigate how realistic these recourses may
be. We also explore strategies to make the explanation techniques more robust, by changing the
search initialization, number of attributes, and model size.

5.1 Effectiveness of the Manipulation

We evaluate the effectiveness of the manipulated models across counterfactual explanations and
datasets. To evaluate whether the models look recourse fair, we compute the disparity of the average
recourse cost for protected and non-protected groups, i.e. Definition (2.1). We also measure the
average costs (using d) for the non-protected group and the non-protected group perturbed by δ. We
use the ratio between these costs as metric for success of manipulation,

Cost reduction :=
Ex∼Dneg

np
[d(x,A(x))]

Ex∼Dneg
np

[d(x,A(x+ δ))]
. (5)

If the manipulation is successful, we expect the non-protected group to have much lower cost with
the perturbation δ than without, and thus the cost reduction to be high.

We provide the results for both datasets in Table 2. The disparity in counterfactual cost on the
unperturbed data is very small in most cases, indicating the models would appear counterfactual fair
to the auditors. At the same time, we observe that the cost reduction in the counterfactual distances
for the non-protected groups after applying the perturbation δ is quite high, indicating that lower cost
recourses are easy to compute for non-protected groups. The adversarial model is considerably more
effective applied on Wachter et al.’s algorithm in Communities and Crime. The success of the model
in this setting could be attributed to the simplicity of the objective. The Wachter et al. objective
only considers the squared loss (i.e., Eq (1)) and `1 distance, whereas counterfactuals guided by
prototypes takes into account closeness to the data manifold. Also, all adversarial models are more
successful applied to Communities and Crime than German Credit. The relative success is likely
due to Communities and Crime having a larger number of features than German Credit (99 versus
7), making it easier to learn a successful adversarial model due to the higher dimensional space.
Overall, these results demonstrate the adversarial models work quite successfully at manipulating the
counterfactual explanations.

5.2 Outlier Factor of Counterfactuals

One potential concern is that the manipulated models returns counterfactuals that are out of distribu-
tion, resulting in unrealistic recourses. To evaluate whether this is the case, we follow Pawelczyk
et al. [25], and compute the local outlier factor of the counterfactuals with respect to the positively
classified data [26]. The score using a single neighbor (k = 1) is given as,

P (A(x)) =
d(A(x), a0)

minx 6=a0∈Dpos∩{∀x∈Dpos|f(x)=1}d(a0,x)
, (6)

where a0 is the closest true positive neighbor of A(x). This metric will be > 1 when the counterfactual
is an outlier. We compute the percent of counterfactuals that are local outliers by this metric on
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and Crime dataset. Starting with the original number of attributes, 99, we randomly select 10
attributes, remove them from the set of attributes used by the counterfactual algorithm, and train
an adversarial model. We repeat this process until we have 59 attributes left. We report the cost
reduction due to δ (Eq (5)) for each model, averaged over 5 runs. We observe that we are unable to
find low cost recourses for adversarial model as we reduce the number of attributes, with minimal
impact on accuracy (not in figure). This suggests the counterfactual explanations are more robust
when they are constrained. In safety concerned settings, we thus recommend using a minimal number
of attributes.

Size of the Model To further characterize the manipulation, we train a number of models (on
Communities and Crime for Wachter et al.’s) that vary in their size. We show that as we increase the
model size, we gain an even higher cost reduction, i.e. an 1.5× increase in the cost reduction when
the similar additional parameters are added. This is not surprising, since more parameters provide
further the flexibility to distort the decision surface as needed. As we reduce the size of the model, we
see the opposite trend; the cost reduction reduces substantially when 4× fewer parameters are used.
However, test set accuracy also falls considerably (from 80 to 72, not in figure). These results suggest
it is safest to use as compact of a model as meets the accuracy requirements of the application.

Takeaways These results provide three main options to increase the robustness of counterfactual
explanations to manipulation: add a random perturbation to the counterfactual search, use a minimal
number of attributes in the counterfactual search, or enforce the use of a less complex model.

6 Related Work

Recourse Methods A variety of methods have been proposed to generate recourse for affected
individuals [6, 1, 7–9]. Wachter et al. [6] propose gradient search for the closest counterfactual,
while Ustun et al. [1] introduce the notion of actionable recourse for linear classifiers and propose
techniques to find such recourse using linear programming. Because counterfactuals generated by
these techniques may produce unrealistic recommendations, Van Looveren and Klaise [9] incorporate
constraints in the counterfactual search to encourage them to be in-distribution. Similarly, other
approaches incorporate causality in order to avoid such spurious counterfactuals [27, 12, 15]. Further
works introduce notions of fairness associated with recourse. For instance, Ustun et al. [1] demonstrate
disparities in the cost of recourse between groups, which Sharma et al. [4] use to evaluate fairness.
Gupta et al. [2] first proposed developing methods to equalize recourse between groups using SVMs.
Karimi et al. [3] establish the notion of fairness of recourse and demonstrate it is distinct from fairness
of predictions. Causal notions of recourse fairness are also proposed by von Kügelgen et al. [28].

Shortcomings of Explanations Pawelczyk et al. [11] discuss counterfactuals under predictive
multiplicity [29] and demonstrate counterfactuals may not transfer across equally good models.
Rawal et al. [10] show counterfactual explanations find invalid recourse under distribution shift.
Kasirzadeh and Smart [30] consider how counterfactual explanations are currently misused and
propose tenents to better guide their use. Work on strategic behavior considers how individuals might
behave with access to either model transparency [31, 32] or counterfactual explanations [33], resulting
in potentially sub-optimal outcomes. Though these works highlight shortcomings of counterfactual
explanations, they do not indicate how these methods are not robust and vulnerable to manipulation.
Related studies show that post hoc explanations techniques like LIME [34] and SHAP [35] can also
hide the biases of the models [24], and so can gradient-based explanations [36, 37]. Aivodji et al.
[38] and Anders et al. [39] show explanations can make unfair models appear fair.

7 Potential Impacts

In this section, we discuss potential impacts of developing adversarial models and evaluating on
crime prediction tasks.

Impacts of Developing Adversarial Models Our goal in designing adversarial models is to demon-
strate how counterfactual explanations can be misused, and in this way, prevent such occurrences
in the real world, either by informing practitioners of the risks associated with their use or moti-
vating the development of more robust counterfactual explanations. However, there are some risks

9



that the proposed techniques could be applied to generate manipulative models that are used for
harmful purposes. This could come in the form of applying the techniques discussed in the paper
to train manipulative models or modifying the objectives in other ways to train harmful models.
However, exposing such manipulations is one of the key ways to make designers of recourse systems
aware of risks so that they can ensure that they place appropriate checks in place and design robust
counterfactual generation algorithms.

Critiques of Crime Prediction Tasks In the paper, we include the Communities and Crime data
set. The goal of this data set is to predict whether violent crime occurs in communities. Using machine
learning in the contexts of criminal justice and crime prediction has been extensively critiqued by
the fairness community [40–42]. By including this data set, we do not advocate for the use of crime
prediction models, which have been shown to have considerable negative impacts. Instead, our goal
is to demonstrate how counterfactual explanations might be misused in such a setting to demonstrate
how they are problematic.

8 Discussion & Conclusion

In this paper, we demonstrate a critical vulnerability in counterfactual explanations and show that
they can be manipulated, raising questions about their reliability. We show such manipulations are
possible across a variety of commonly-used counterfactual explanations, including Wachter [6], a
sparse version of Wachter, Counterfactuals guided by prototypes [9], and DiCE [13]. These results
bring into the question the trustworthiness of counterfactual explanations as a tool to recommend
recourse to algorithm stakeholders. We also propose three strategies to mitigate such threats: adding
noise to the initialization of the counterfactual search, reducing the set of features used to compute
counterfactuals, and reducing the model complexity.

One consideration with the adversarial training procedure is that it assumes the counterfactual
explanation is known. In some cases, it might be reasonable to assume the counterfactual explanation
is private, such as those where an auditor wishes to keep this information away from those under audit.
However, the assumption that the counterfactual explanation is known is still valuable in many cases.
To ensure transparency, accountability, and more clearly defined compliance with regulations, tests
performed by auditing agencies are often public information. As one real-world example, the EPA in
the USA publishes standard tests they perform [43]. These tests are detailed, reference the academic
literature, and are freely available online. Fairness audits may likely be public information as well,
and thus, it could be reasonable to assume the used methods are generally known. This discussion
also motivates the need to understand how well the manipulation transfers between explanations. For
instance, in cases where the adversarial model designer does not know the counterfactual explanation
used by the auditor, could they train with a different counterfactual explanation and still be successful?

Our results also motivate several futher research directions. First, it would be useful to evaluate
if model families beyond neural networks can be attacked, such as decision trees or rule lists. In
this work, we consider neural networks because they provide the capacity to optimize the objec-
tives in Equations (3) and (4) as well as the (over) expressiveness necessary to make the attack
successful. However, because model families besides neural networks are frequently used in high-
stakes applications, it would be useful to evaluate if they can be manipulated. Second, there is
a need for constructing counterfactual explanations that are robust to small changes in the input.
Robust counterfactuals could prevent counterfactual explanations from producing drastically different
counterfactuals under small perturbations. Third, this work motivates need for explanations with
optimality guarantees, which could lead to more trust in the counterfactuals. Last, it could be useful
to study when practitioners should use simpler models, such as in consequential domains, to have
more knowledge about their decision boundaries, even if it is at the cost of accuracy.
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