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Abstract

As black box explanations are increasingly being employed to establish model
credibility in high stakes settings, it is important to ensure that these explanations
are accurate and reliable. However, prior work demonstrates that explanations
generated by state-of-the-art techniques are inconsistent, unstable, and provide
very little insight into their correctness and reliability. In addition, these methods
are also computationally inefficient, and require significant hyper-parameter tuning.
In this paper, we address the aforementioned challenges by developing a novel
Bayesian framework for generating local explanations along with their associated
uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and
KernelSHAP which output credible intervals for the feature importances, capturing
the associated uncertainty. The resulting explanations not only enable us to make
concrete inferences about their quality (e.g., there is a 95% chance that the feature
importance lies within the given range), but are also highly consistent and stable.
We carry out a detailed theoretical analysis that leverages the aforementioned
uncertainty to estimate how many perturbations to sample, and how to sample for
faster convergence. This work makes the first attempt at addressing several critical
issues with popular explanation methods in one shot, thereby generating consistent,
stable, and reliable explanations with guarantees in a computationally efficient
manner. Experimental evaluation with multiple real world datasets and user studies
demonstrate that the efficacy of the proposed framework.1

1 Introduction

As machine learning (ML) models get increasingly deployed in domains such as healthcare and
criminal justice, it is important to ensure that decision makers have a clear understanding of the
behavior of these models. However, ML models that achieve state-of-the-art accuracy are typically
complex black boxes that are hard to understand. As a consequence, there has been a surge in post
hoc techniques for explaining black box models [1–10]. Most popular among these techniques are
local explanation methods which explain complex black box models by constructing interpretable
local approximations (e.g., LIME [2], SHAP [4], MAPLE [11], Anchors [1]). Due to their generality,
these methods are being leveraged to explain a number of classifiers including deep neural networks
and ensemble models in a variety of domains such as law, medicine, and finance [12, 13].

Existing local explanation methods, however, suffer from several drawbacks. Explanations generated
using these methods may be unstable [14–18], i.e., negligibly small perturbations to an instance
can result in substantially different explanations. These methods are also inconsistent [19] i.e.,
multiple runs on the same input instance with the same parameter settings may result in vastly
different explanations. There are also no reliable metrics to ascertain the quality of the explanations
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2 Notation & Background

Here we introduce notation and discuss two relevant prior approaches, LIME and KernelSHAP.

Notation Let f : Rd → [0, 1] denote a black box classifier that takes a data point x with d features,
and returns the probability that x belongs to a certain class. Our goal is to explain individual
predictions of f . Let φ ∈ R

d denote the explanation in terms of feature importances for the prediction
f(x), i.e. coefficients φ are treated as the feature contributions to the black box prediction. Note
that φ captures the coefficients of a linear model. Let Z be a set of N randomly sampled instances
(perturbations) around x. The proximity between x and any z ∈ Z is given by πx(z) ∈ R. We denote
the vector of these distances over the N perturbations in Z as Πx(Z) ∈ R

N . Let Y ∈ [0, 1] be the
vector of the black box predictions f(z) corresponding to each of the N instances in Z .

LIME [2] and KernelSHAP [4] are popular model-agnostic local explanation approaches that
explain predictions of a classifier f by learning a linear model φ locally around each prediction (i.e.
y ∼ φT z). The objective function for both LIME and KernelSHAP constructs an explanation that
approximates the behavior of the black box accurately in the vicinity (neighborhood) of x.

argmin
φ

∑

z∈Z

[f(z)− φT z]2πx(z). (1)

The above objective function has the following closed form solution:

φ̂ = (ZT diag(Πx(Z))Z + I)−1(ZT diag(Πx(Z))Y ) (2)

The main difference between LIME and KernelSHAP lies in how πx(z) is chosen. In LIME, it is
chosen heuristically: πx(z) is computed as the cosine or l2 distance. KernelSHAP leverages game
theoretic principles to compute πx(z), guaranteeing that explanations satisfy certain properties.

3 Our Framework: Bayesian Local Explanations

In this section, we introduce our Bayesian framework which is designed to capture the uncertainty
associated with local explanations of black box models. First, we discuss the generative process and
inference procedure for the framework. Then, we highlight how our framework can be instantiated
to obtain Bayesian versions of LIME and SHAP. Lastly, we present detailed theoretical analysis for
estimating the values of critical hyperparameters, and discuss how to efficiently construct highly
accurate explanations with uncertainty guarantees using our framework.

3.1 Constructing Bayesian Local Explanations

Our goal here is to explain the behavior of a given black box model f in the vicinity of an instance
x while also capturing the uncertainty associated with the explanation. To this end, we propose
a Bayesian framework for constructing local linear model based explanations and capturing their
associated uncertainty. We model the black box prediction of each perturbation z as a linear
combination of the corresponding feature values (φT z) plus an error term (ε) as shown in Eqn (4).
While the weights of the linear combination φ capture the feature importances and thereby constitute
our explanation, ε captures the error that arises due to the mismatch between our explanation φ and
the local decision surface of the black box model f . Our complete generative process is shown below:

y|z, φ, ε ∼ φT z + ε ε ∼ N (0,
σ2

πx(z)
) (3)

φ|σ2 ∼ N (0, σ2
I) σ2 ∼ Inv-χ2(n0, σ

2
0). (4)

The error term is modeled as a Gaussian whose variance relies on the proximity function πx(z) i.e.,

ε ∼ N (0, σ2

πx(z)
). This proximity function ensures that perturbations closer to the data point x are

modeled accurately, while allowing more room for error in case of perturbations that are farther away.
πx(z) can be computed using cosine or l2 distance or other game theoretic principles similar to that
of LIME and KernelSHAP (see Section 2). The conjugate priors on φ and σ2 are shown in Eqn (4).
Note that, the distributions on error ε and feature importance φ both consider the parameter σ2. The
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fact that the prior on the feature importances considers σ2 has an intuitive interpretation: if we have
prior knowledge that the error of the explanation is small, we expect to be more confident about the
feature importances. Similarly, if we have prior knowledge the error is large, we expect to be less
confident about the feature importances.

Thus, our generative process corresponds to the Bayesian version of the weighted least squares for-
mulation of LIME and KernelSHAP outlined in Eqn. (1), with additional terms to model uncertainty.
As in Eqns. (4), the process captures two sources of uncertainty in local explanations: 1) feature
importance uncertainty: the uncertainty associated with the feature importances φ, and (2) error
uncertainty: the uncertainty associated with the error term ε which captures how well our explanation
φ models the local decision surface of the underlying black box.

Inference Our inference process involves estimating the values of two key parameters: φ and σ2. By
doing so, we can compute the local explanation as well as the uncertainties associated with feature
importances and the error term. Posterior distributions on φ and σ2 are normal and scaled Inv-χ2,
respectively, due to the corresponding conjugate priors [22]:

σ2|Z, Y ∼ Scaled-Inv-χ2

(

n0 +N,
n0σ

2
0 +Ns2

n0 +N

)

φ|σ2,Z, Y ∼ Normal(φ̂, Vφσ
2) (5)

Further, φ̂, Vφ, and s2 can be directly computed:

φ̂ =Vφ(Z
T diag(Πx(Z))Y )

Vφ =
(

ZT diag(Πx(Z))Z + I
)−1 (6)

s2 =
1

N

[

(Y −Zφ̂)T diag(Πx(Z))(Y −Zφ̂) + φ̂T φ̂
]

(7)

Details of the complete inference procedure including derivations of Eqns. (5-7) are provided in the

Appendix A. Note that our estimate of the posterior mean feature importances φ̂ (Eqn. (6)) is the
same as that of the feature importances computed in case of LIME and KernelSHAP (Eqn. (2)).

Remark 3.1. If we use the same proximity function πx(z) in our framework as in LIME or Ker-

nelSHAP, the posterior mean of the feature importance φ̂ output by our framework (Eq (6)) will be
equivalent to the feature importances output by LIME or KernelSHAP, respectively.

Feature Importance Uncertainty To obtain the local feature importances and their associated

uncertainty, we first compute the posterior mean of the local feature importances φ̂ using the closed
form expression in Eqn. (7). We then estimate the credible interval (measure of uncertainty) around
the mean feature importances by repeatedly sampling from the posterior distribution of φ (Eq (5)).

Error Uncertainty The error term ε can serve as a proxy for explanation quality because it captures
the mismatch between the constructed explanation and the local decision surface of the underlying
black box. We first calculate the marginal posterior distribution of ε by leveraging Eqn (4) and
integrating out σ2. This results in a three parameter Student’s t distribution (derivation in appendix
A):

ε|Z, Y ∼ t(V=n0+N)(0,
n0σ

2
0 +Ns2

n0 +N
). (8)

We then evaluate the probability density function (PDF) of the above posterior at 0, i.e., P (ε = 0) by
substituting the value of s2 computed using Eqn. (7) into the Student’s t distribution above (Eqn. (8)).
The resulting expression gives us the probability density that the explanation output by our framework
perfectly captures the local decision surface underlying the black box. This operation is performed in
constant time, adding minimal overhead to non-Bayesian LIME and SHAP. We illustrate how these
computed intervals capture the variance in the explanations in Figure 9.

Proposition 3.2. As the number of perturbations around x goes to∞ i.e., N →∞: (1) the estimate
of φ converges to the true feature importance scores, and its uncertainty to 0. (2) uncertainty of the
error term ε converges to the bias of the local linear model φ. [Details in Appendix B]

BayesLIME and BayesSHAP Our framework can be instantiated to obtain the Bayesian version of
LIME by setting the proximity function to πx(z) = exp(−D(x, z)2/σ2) where D is a distance metric
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(e.g. cosine or l2 distance), and n0 and σ2
0 to small values (10−6) so that the prior is uninformative.

We compute feature importance uncertainty and error uncertainty for LIME’s feature importances.

Our framework can also be instantiated to obtain the Bayesian version of KernelSHAP by setting

uninformative prior on σ2 and πx(z) = d−1
(d choose |z|)|z|(d−|z|) where |z| denotes the number of the

variables in the variable combination represented by the data point z i.e., the number of non-zero
valued features in the vector representation of z. Note that the original SHAP method views the
problem of constructing a local linear model as estimating the Shapley values corresponding to each
of the features [4]. These Shapley values represent the contribution of each of the features to the
black box prediction i.e., f(x) = φ0 +

∑

φi. Therefore, the measures of uncertainty output by our
method BayesSHAP capture the reliability of the estimated variable contributions.

To encourage BayesLIME and BayesSHAP explanations to be sparse, we can use dimensionality
reduction or feature selection techniques as used by LIME and SHAP to obtain the top K features [2,
4, 23]. We can then construct our explanations using the data corresponding to these top K features.

3.2 Estimating the Number of Perturbations

One of the major drawbacks of approaches such as LIME and KernelSHAP is that they do not
provide any guidance on how to choose the number of perturbations, a key factor in obtaining reliable
explanations in an efficient manner. To address this, we leverage the uncertainty estimates output by
our framework to compute perturbations-to-go (G), an estimate of how many more perturbations are
required to obtain explanations that satisfy a desired level of certainty. This estimate thus predicts
the computational cost of generating an explanation with a desired level of certainty and can help
determine whether it is even worthwhile to do so. The user specifies the confidence level of the
credible interval (denoted as α) and the maximum width of the credible interval (W ), e.g. “width of
95% credible interval should be less than 0.1” corresponds to α = 0.95 and W = 0.1. To estimate G
for the local explanation of a data point x, we first generate S perturbations around x (where S is
small and chosen by the user) and fit a local linear model using our method2. This provides initial
estimates of various parameters shown in Eqns (5)-(7) which can then be used to compute G.

Theorem 3.3. Given S seed perturbations, the number of additional perturbations required (G)
to achieve a credible interval width W of feature importance for a data point x at user-specified
confidence level α can be computed as:

G(W,α, x) =
4s2S

π̄S ×

[

W
Φ−1(α)

]2 − S (9)

where π̄S is the average proximity πx(z) for the S perturbations, s2S is the empirical sum of squared
errors (SSE) between the black box and local linear model predictions, weighted by πx(z), as in (7),
and Φ−1(α) is the two-tailed inverse normal CDF at confidence level α.

Proof (Sketch). To estimate G, we first relate W and α to Var(φi), the marginal variance of the
feature importance3 for any feature i, obtained by integrating out σ2. Because Student’s t can be
approximated by a Normal distribution for large degrees of freedom (here, S should be large enough),
we use the inverse normal CDF to calculate credible interval width at level α. We compute Vφ from (6)
using Z , treating its entries as Bernoulli distributed with probability 0.5. Due to the covariance
structure of this sampling procedure, the resulting variance estimate after N samples is the sample
SSE s2S scaled by ≈ 4

π̄SN
(derivation in appendix B). If we assume SSE scales linearly with S, we

can take this to be a reasonable estimate of s2N at any N . We can then estimate G as

[

W

Φ−1(α)

]2

=Var(φi) =
4s2S

π̄S × (G+ S)
=⇒ G =

4s2S

π̄S ×

[

W
Φ−1(α)

]2 − S.
(10)

2We assume a simplified feature space where features are present or absent according to Bernoulli(.5). As in
Ribeiro et al. [2], these interpretable features are flexible and can encode what is important to the end user.

3Since the error depends primarily on the number of perturbations, Var(φi) is similar across features.

5



3.3 Focused Sampling of Perturbations

Perturbations-to-go (G) provides us with an estimate of how many samples are required to achieve
reliable explanations. However, if G is large, querying the black-box model for its predictions on a
large number of perturbations can be computationally expensive for larger models [24, 25]. To reduce
this cost, we develop an alternative sampling procedure called focused sampling which leverages
uncertainty estimates to query the black box in a more targeted fashion (instead of querying randomly),
thereby reducing the computational cost associated with generating reliable explanations. Inspired by
active learning [26], focused sampling strategically prioritizes perturbations whose predictions the
explanation is most uncertain about, when querying the black box. This enables the focused sampling
procedure to query the black box only for the predictions of the most informative perturbations and
thereby learn an accurate explanation with far fewer queries to the black box.

To determine how uncertain our explanation φ is about the black box label for any given instance
z, we first compute the posterior predictive distribution for z (derivation in Appendix A), given

as ŷ(z)|Z, Y ∼ t(V=N)(φ̂
T z, (zTVφz + 1)s2). The variance of this three parameter student’s t

distribution is,

var (ŷ(z)) = ((zTVφz + 1)s2)(N/(N − 2)) (11)

We refer to this variance as the predictive variance var(ŷ(z)), and it captures how uncertain our
explanation φ is about the black box prediction.

The focus sampling procedure first fits the explanation with an initial S perturbations (where S is a
small number). We then iterate the following procedure until the desired explanation certainty level
is reached. We draw a batch of A candidate perturbations, compute their predictive variance with the
Bayesian explanation, and induce a distribution over the perturbations by running softmax on the
variances with tempurature parameter τ . We draw a batch of B perturbations from this distribution
and query the black box model for their labels. Finally, we refit the Bayesian explanation on all the
labeled perturbations collected so far. We provide pseudocode for the uncertainty sampling procedure
in Algorithm 1.

Algorithm 1 Focused sampling for local explanations

Require: Model f , Data instance x, Number of perturbations N , Number of seed perturbations S,
Batch size B, Pool size A, tempurature τ

1: function FOCUSED SAMPLE

2: Initialize Z with S seed perturbations.

3: Fit φ̂ on Z . Using Eqn (6)
4: for i← 1 to N − S in increments of B do
5: Q ← Generate A candidate perturbations
6: Compute var(ŷ(z)) on Q . Using Eqn (11)
7: Define Qdist as ∝ exp(var(ŷ(z))/τ)
8: Qnew ← Draw B samples from Qdist

9: Z ← Z ∪Qnew; Fit φ̂ on Z . Using Eqn (6)
10: end for
11: return φ̂
12: end function

4 Experiments

We evaluate the proposed framework by first analyzing the quality of our uncertainty estimates
i.e., feature importance uncertainty and error uncertainty. We also assess our estimates of required
perturbations (G), and evaluate the computational efficiency of focused sampling. Last, we describe a
user study with 31 subjects to assess the informativeness of the explanations output by our framework.

Setup We experiment with a variety of real world datasets spanning multiple applications (e.g.,
criminal justice, credit scoring) as well as modalities (e.g., structured data, images). Our first struc-
tured dataset is COMPAS [27], containing criminal history, jail and prison time, and demographic
attributes of 6172 defendants, with class labels that represent whether each defendant was rearrested
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BayesLIME BayesSHAP BayesLIME BayesSHAP

TABULAR DATASETS MNIST

COMPAS 95.5 87.9 Digit 1 95.8 98.4
German Credit 96.9 89.6 Digit 2 95.8 97.4

IMAGENET Digit 3 95.2 96.3
Corn 94.6 91.8 Digit 4 97.2 90.1
Broccoli 91.4 89.2 Digit 5 95.2 95.6
French Bulldog 94.8 89.9 Digit 6 96.7 96.8
Scuba Diver 92.4 94.6 Digit 7 95.7 95.3

Table 1: Evaluating Credible Intervals. We report the % of time the 95% credible intervals with
100 perturbations include their true values (estimated on 10, 000 perturbations). Closer to 95.0 is
better. Both BayesLIME and BayesSHAP are well calibrated.

within 2 years of release. The second structured dataset is the German Credit dataset from the UCI
repository [28] containing financial and demographic information (including account information,
credit history, employment, gender) for 1000 loan applications, each labeled as a “good” or “bad”
customer. We create 80/20 train/test splits for these two datasets, and train a random forest classifier
(sklearn implementation with 100 estimators) as black box models for each (test accuracy of 82.8%
and 72.5%, respectively). We also include popular image datasets–MNIST and Imagenet. For the
MNIST [29] handwritten digits dataset, we train a 2-layer CNN to predict the digits (test accuracy of
99.2%). For Imagenet [30], we use the off-the-shelf VGG16 model [31] as the black box. We select
a sample of 100 images of the following classes French Bulldog, Scuba Diver, Corn, and Broccoli
to use in the experiments. For generating explanations, we use standard implementations of the
baselines LIME and KernelSHAP with default settings [2, 4]. For images, we construct super pixels
as described in [2] and use them as features (number of super pixels is fixed to 20 per image). For our
framework, the desired level of certainty is expressed as the width of the 95% credible interval.

Quality of Uncertainty Estimates A critical component of our explanations is the feature impor-
tance uncertainty. To evaluate the correctness of these estimates, we compute how often true feature
importances lie within the 95% credible intervals estimated by BayesLIME and BayesSHAP. Note,
that by true feature importance, we refer to the best fit linear model output using either the LIME or
SHAP kernels. We evaluate the quality of our credible interval estimates by running our methods
with 100 perturbations to estimate feature importances and taking the corresponding 95% credible
intervals for each test instance. We compute what fraction of the true feature importances fall within
our 95% credible intervals. Note, because there are no methods to provide uncertainty estimates
for LIME and SHAP, we do not provide further baselines. Since we do not have access to the true
feature importances of the complex black box models, following Prop 3.2, we use feature importances
computed using a large value of N (N = 10, 000), and treat the resulting estimates as ground truth.

Results for BayesLIME in Table 1 indicate that the true feature importances are close to ideal and
indicate the estimates are well calibrated. While the estimates by BayesSHAP are somewhat less
calibrated (true feature importances fall within our estimated 95% credible intervals about 89.2 to
98.4% of the time), they still are quite close to ideal. All in all, these results confirm that the credible
intervals learned by our methods are well calibrated and therefore highly reliable in capturing the
uncertainty of the feature importances. Lastly, though we set our priors to be uninformative in general,
we also investigate how sensitive our uncertainty estimates are to hyperparameter choices in Figure 5
in the Appendix. We find that the explanation uncertainty becomes uncalibrated with strong priors.
However, our explanations seem to be robust to hyperparameter choices in general.

Correctness of Estimated Number of Perturbations We assess whether our estimate of
perturbations-to-go (G; Section 3.2) is an accurate estimate of the additional number of pertur-
bations needed to reach a desired level of feature importance certainty. We carry out this experiment
on MNIST data for the digit “4” (additional datasets explored in Appendix C) and use S = 200 as
the initial number of perturbations to obtain a preliminary explanation and its associated uncertainty
estimates. We then leverage these estimates to compute G for 6 different certainty levels. First, we
observe significant differences in G estimates across instances (details in appendix C) i.e. number
of perturbations needed to obtain a particular level of certainty varied significantly across instances–
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Vulnerabilities of Post hoc Explanations Recent work has shed light on the downsides of post hoc
explanation techniques. These methods are often highly sensitive to small changes in inputs [14],
are susceptible to manipulation [15, 16, 44, 45], and are not faithful to the underlying black boxes
[46]. Perturbation-based explanation methods such as LIME and SHAP are subject to additional
criticisms: results vary between runs of the algorithms [18–20, 47, 21], and hyperparameters used to
select the perturbations can greatly influence the resulting explanation [20]. Prior work has attempted
to tackle the problem of instability in perturbation-based explanations by averaging over several
explanations [48, 19], however, this is computationally expensive. Other works related to creating
more trustworthy explanations include development of sanity checks for explainers [49, 17, 50].
These techniques represent an important step towards improved usability, given experimental evidence
that humans are often too eager to accept inaccurate machine explanations [51–54]. Recent works
theoretically analyze the sources of non-robustness in black box explanations [55–57].

Logical and Formal Reasoning Additional related works have considered explaining classifiers
through identifying a subset of features that are “sufficient” to explain a prediction [58–62]. Though
these methods offer strong guarantees surrounding which features ensure a prediction is achieved,
they are not model agnostic. Further, they do not define feature importances associated with the local
explanations nor consider ways to improve locally weighted explanations, such as LIME and SHAP.

Bayesian Methods in Explainable ML Few recent works have adopted Bayesian formulations to
explain black box models [63–65]. Guo et al. [63] introduce a Bayesian non-parametric approach to
fit a global surrogate model. Their formulation seeks to fit a mixture of generalizable explanations
across instances. Zhao et al. [64] study whether incorporating informative priors improves the stability
of the resulting explanations. However, neither of these works focus on modeling the uncertainty of
local explanations. Further, these approaches also do not tackle the critical problems of estimating
key hyperparameters or improving efficiency of computing explanations.

6 Conclusion

We developed a Bayesian framework for generating local explanations along with their associated
uncertainty. We instantiated this framework to obtain Bayesian versions of LIME and SHAP that
output pointwise estimates of feature importances as well as their associated credible intervals. These
intervals enabled us to infer the quality of the explanations and output explanations that satisfied user
specified levels of uncertainty. We carried out theoretical analysis that leverages these uncertainty
measures (credible intervals) to estimate the values of critical hyperparameters (e.g., the number of
perturbations). We also proposed a novel sampling technique called focused sampling that leverages
uncertainty estimates to determine how to sample perturbations for faster convergence.

While the Bayesian framework addresses several critical challenges (i.e., consistency, stability,
modeling uncertainty) associated with LIME and SHAP, there are still certain aspects where it
would exhibit the same shortcomings as LIME and SHAP [4, 66]. For instance, if the local decision
surface of a given black box classifier is highly non-linear, our framework, which relies on local
linear approximations, may not be able to capture this non-linear decision surface accurately. In
addition, if the perturbation sampling procedures used in LIME and SHAP are used in BayesLIME
and BayesSHAP, they will likely be vulnerable to the attacks proposed by Slack et al. [15]. In
the future, it would be interesting to extend our framework to produce global explanations with
uncertainty guarantees and explore how uncertainty quantification can help calibrate user trust in
model explanations.
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