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ABSTRACT 

Recognizing signs in virtual reality (VR) is challenging; here, 

we developed an American Sign Language (ASL) 

recognition system in a VR environment. We collected a 

dataset of 2,500 ASL numerical digits (0-10) and 500 

instances of the ASL sign for TEA from 10 participants using 

an Oculus Quest 2. Participants produced ASL signs 

naturally, resulting in significant variability in location, 

orientation, duration, and motion trajectory. Additionally, the 

ten signers in this initial study were diverse in age, sex, ASL 

proficiency, and hearing status, with most being deaf lifelong 

ASL users. We report the accuracy results of the recognition 

model trained on this dataset and highlight three primary 

contributions of this work: 1) intentionally using highly-

variable ASL production, 2) involving deaf ASL signers on 

the project team, and 3) analyzing the typical confusions of 

the recognition system. 

Index Terms—American Sign Language recognition, 

virtual reality, gesture recognition

1. INTRODUCTION

Sign languages are natural, full languages developed within 

the deaf or hard-of-hearing communities. Each signed 

language uses a set of specific signs and body movements 

unique to that language. Over 5% (430 million) of the world’s 

population has some form of hearing loss, which is projected 

to increase to 2.5 billion by 2050 [1]. Signed languages are 

unique depending on the surrounding culture, ethnicities, and 

geographical locations where they develop. Most of the 

world’s hearing people are not proficient in signed languages, 

and thus interpreters are often needed for medical, legal, and 

educational purposes. As emerging technologies continue to 

grow, sign language recognition may allow sign language 

users a more natural way of inputting information into a 

device. More recently, immersive technologies such as 

virtual reality (VR) are ripe with educational opportunities, 

including the potential for learning and interacting with 

signed languages in VR. Recognition of the users' signing is 

critical for signed languages to be effectively taught in VR 

[2]. This paper discusses the recognition of ASL, but our 

conclusions will also be relevant to other signed languages.  

ASL recognition is a growing research field [2]–[9]. Two-

dimensional (2D) camera/wearable device-based ASL 

recognition is the most popular and common approach, yet 

less efficient and difficult to use in real-life situations [10], 

[11] because ASL combines hand, face, and body posture

with spatial information and dynamic movement. One study

found that wearable devices are sometimes troublesome to

use [12], and such wearable recognition devices have

attracted little interest from signing communities [13].

Overall, a three-dimensional (3D) depth sensor-based camera

provides better accuracy and ease [7], [14]. Virtual reality

(VR) devices exhibit reasonably good recognition outcomes

in some cases [3], [5]. However, none of these are full-

fledged VR systems, with many existing efforts primarily

dependent on the Leap Motion camera. Hence, standalone

ASL recognition in VR remains an unsolved challenge.

Recent research on ASL recognition algorithms typically

uses deep learning (DL) algorithms. Survey shows that DL-

based algorithms provide superior accuracy [12], [15]. Since

VR devices use embedded microprocessors with low

computational power, designing a lightweight DL network is

crucial. Here, we focused on using a simple network that can

be easily computed within a VR environment. As part of our

larger work [2], [16], we aim to teach people ASL using a

virtual reality game-like environment. In this game, users will

enter virtual reality and learn from signing avatars created

from motion capture recordings. An example of the 3D

environment and the signing avatar is visible in Figure 1.

A critical part of this system is incorporating feedback to

inform the users when their sign productions are correct. The

feedback relies on capturing and analyzing users’ signed

productions via the built-in cameras on the VR device. We

developed a VR ASL recognition system trained on highly-

variable signed input to address previously described

limitations. The term “highly variable” indicates that the

participants are from different backgrounds, age groups, and

levels of ASL fluency. The signs themselves were not

inherently “highly-variable”; rather, the production of the

signs was not tightly controlled, and they were gathered from

a range of signers. Signers were instructed to produce signs
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naturally, enabling us to test a recognition algorithm trained 

on heterogeneous data. Through this study, we aim to provide 

insights into the relative difficulty and value of gathering 

ASL data from a small but wide sample of signers. 

 

 
Figure 1. Avatar teaching TEA sign in a virtual coffee shop. 

 

2. KEY CHALLENGES  

 

2.1. Dataset unavailability 

One major problem in the ASL recognition work is that sign 

datasets are not readily available for ASL, especially in VR 

environments. Some researchers focus on VR, but the 

datasets still need to mature [15]. Pugeault et al. published a 

dataset containing 131,000 ASL alphabet samples collected 

using the Kinect sensor, OpenNI, and NITE framework [9]. 

Similar datasets were published by Kapuscinski et al. [5]. 

Though the datasets are large, they are incomplete. For 

instance, one dataset includes only 24 characters of the ASL 

alphabet rather than all 26, and only static signs are included 

[17]. The ASL alphabet contains both static and dynamic 

gestures. ASL alphabet signs for J and Z contain dynamic 

motion; hence they are difficult to recognize with static 

information alone. In VR, hand gesture recognition is 

performed from the signer's perspective. These represent 

significant limitations of the available data. 

 

2.2. Lack of diverse and fluent signers 

Most existing ASL datasets for automatic sign language 

recognition have been collected from hearing participants 

with low or no proficiency in ASL [20]. New sign language 

learners typically struggle to produce accurate signs even 

after years of instruction, with particular errors in movement, 

location, and orientation of signs [13]. Training a model on 

signs from novice signers may run the risk of creating 

homogenous databases, which may contain signs produced in 

a limited manner--for example, producing the sign in the 

same location or with the same orientation for every instance 

of the sign. In the real world, ASL is used by people at many 

different proficiency levels, with different ways of producing 

signs, different spatial parameters, and different signing 

speeds. This natural variability may be one reason why the 

accuracy of most models’ falls in real-life applications. 

Robust and variable datasets collected from diverse signers 

are essential for accuracy in practically applied settings. 

 

2.3. Implementation difficulties 

Automated ASL recognition ideally involves capturing and 

computing hand, body, and gaze movements. However, 

computer vision approaches face several challenges, 

including occlusion, variable distance from the capturing 

device, lighting conditions, and color ambiguity. As a result, 

an ASL recognition system must be robust and able to 

categorize these nuanced variations in sign production 

accurately. 

Given these existing limitations in the field of ASL 

recognition, here we trained a VR ASL recognition system 

using highly-variable signed input. We opted to give signers 

the instructions to produce signs naturally, with the goal of 

testing a recognition algorithm trained on heterogeneous data. 

With this case study, we hope to clarify some of the 

challenges. 
 

3. METHOD 

 

In this work, we have employed the Oculus Quest 2 as a VR 

device and MiVRy [20] Unreal Engine plugin for hand 

detection segmentation, training, and testing on ASL 

numbers and a single ASL sign. This plugin is lightweight 

and easy to fit in the VR environment. As sign language or 

gesture recognition is relatively new research, related 

frameworks are not widely available. To our knowledge, 

MiVRy is the most optimal solution aligned with our 

requirements. This plugin is lightweight and easy to fit in the 

VR environment. The signers produced signs naturally, with 

no additional devices beyond the VR headset. We designed a 

user interface (UI) to navigate different functions and interact 

with the virtual textbox. The details are discussed in the 

following subsections. 

 

3.1. Data collection 

The UI is shown in Figure 2. Users can create their own 

dataset by tapping the gesture name text field. Also, the user 

can modify the gesture duration. Most of the past research 

projects in this area used a fixed gesture duration (although 

the duration varies from person to person); keeping this in 

mind, we gave more flexibility to the user. 

When the participant taps the “Record Stroke” button, the 

system starts tracking hands and joints for the specified 

gesture duration time. Next, participants need to tap on the 

“Train” button to store this gesture in the dataset. As soon as 

the “Train” button clicked, the system saved the gesture to the 

local storage and trained the network to detect the gesture 

using the MiVRy plugin. 



 
Figure 2. The UI of the ASL number data collection system 

in VR. 

 

3.2. ASL recognition 

The user interface (UI) during the recognition phase is similar 

to that used during data collection. Upon selecting the "Detect 

Gesture" button, the user sees the UI shown in Figure 3, 

providing users with options to choose different databases 

and similarity scores. The similarity score represents a 

threshold value that can be adjusted between 0 and 100, with 

a higher score indicating a greater confidence in the 

recognition results. For instance, in Figure 3, a similarity 

score of 30 is set, indicating that the system will identify ASL 

numbers only if the recognition confidence score exceeds 

30%. Higher values typically correspond to more accurate 

detection and identification. The DL model trained during the 

data collection phase is used for recognition, and the system 

dynamically allocates parameters to optimize performance 

for the current dataset. 

 

 
Figure 3. ASL number recognition UI. The detected gesture 

is shown in the right window with a confidence value. 

 

4. EXPERIMENTAL SETUP 
 

Figure 4 shows the original experimental setup. Participants 

wore the Oculus Quest 2 headset and signed ASL numbers 0-

10 and the ASL sign TEA. The TEA sign is relatively more 

complicated than numbers and is a two-handed sign prone to 

occlusion issue. The UI was visible both on the computer 

monitor and on the Oculus Quest 2 (software version 

44.0.0.169.455). The UI was designed and developed using 

Unreal Engine 4.27 and MiVRy plugin v2.5 for gesture 

detection. The system ran on a Windows 11 pro-64-bit 

operating system with 32GB of memory and an Intel Core i9 

3.50Ghz clock speed processor. 

We designed the system to work with both left-handed and 

right-handed participants. Figure 3 shows the UI of our 

experiment. Participants were free to sign with different palm 

orientations and locations. 

 

 
Figure 4. Original experimental setup. Participants can see 

the UI in VR environments, and their view is mirrored on the 

computer.  

 

4.1. The dataset  

This experiment has two datasets: ASL number signs 0-10 

and the ASL sign TEA. The sign duration was fixed (three 

seconds) for all signs. The number dataset contains 2500 ASL 

number signs, and the TEA dataset contains 500 signs, 

collected from 10 participants each. Every participant signed 

each ASL number (from 0-10, inclusive) 25 times, resulting 

in 250 signs from each participant. As the TEA is a single 

sign, participants signed TEA 50 times. Of the ten 

participants, seven were deaf, one was hard of hearing, and 

two were hearing. The TEA sign is a complex sign with an 

occluded hand where both hands are necessary. The purpose 

of this sign is to verify the model's robustness. We will 

include more complex signs in our future work. 

We recruited ten participants (four men and six women) with 

diverse backgrounds to train the system on highly variable 

signed input. The participants, ranging in age from 22 to 46 

years, came from various language backgrounds and had 

between seven months and 43 years of experience signing 

ASL. Five of the participants had been exposed to ASL since 

birth. By recruiting participants with varying language 

backgrounds and levels of ASL experience, we sought to 

enable the system to recognize a broad range of signing 

styles. 



5. RESULTS AND DISCUSSION 

 

5.1. ASL number dataset  

We tested the system ten times for each ASL number and 

found an average of 46% recognition accuracy; however, the 

result varies for different numbers. We plotted the results in 

a confusion matrix in Figure 5 (handshape figures are from 

the Noun Project created by Stephanie Leeson). We found 

different accuracy for different numbers with information 

revealed by the pattern of confusion. The highest and lowest 

recognition accuracy was found for TEN and SIX, 

respectively. 

 

Figure 5. Confusion matrix of the recognition accuracy. The 

user’s input is plotted in the vertical direction; the horizontal 

row represents the actual recognized ASL number. The 

highest and lowest accuracy is found for numbers 10 and 6. 

As shown in Figure 5, our results are informative of the 

typical confusion between similar handshapes. For instance, 

the ASL sign for SIX uses a handshape with three fingers up, 

and the recognition model often determines that the signer 

has produced a THREE (when in fact, they are signing SIX). 

Similarly, when the signer produced a SEVEN, it was often 

categorized as a TWO, given that the sign for SEVEN 

includes the pointer and middle finger raised, just like with a 

TWO. This pattern extends across several higher number 

signs; for instance, EIGHT was often recognized as ONE, and 

NINE was often recognized as ZERO. Thus, the confusion 

matrix suggests the location of the index finger is over-

weighted, whereas the position of the ring and pinkie fingers 

was under-weighted. The false positive rate can be reduced 

by improving and implementing more complex DL-based 

algorithms. 

It is essential to note that TEN has the highest recognition 

accuracy, and it’s the only dynamic ASL number sign 0-10. 

Compared to other research, the proposed one is more 

accurate for the dynamic gesture [3], [4], [21]. Other 

researchers focused on image-based recognition, which is 

better for static gesture recognition. Instead, we focused on 

trajectory-based recognition. Most signed vocabulary is 

dynamic in real life; hence, we would expect higher 

recognition accuracy for other dynamic gestures. 

 

5.2. TEA sign dataset  

The TEA sign is a single sign; as a result, we cannot draw a 

confusion matrix. The average recognition accuracy for TEA 

was 55%. Occlusion plays a vital role in hand and palm 

orientation. The occluded finger sometimes incorrectly 

represents another finger, and it's a challenging task in 

computer vision research. The accuracy falls when there is an 

occlusion between fingers; without occlusion, the accuracy 

goes up to 70%. We expect a better algorithm will provide 

improved recognition accuracy in future iterations. 

 

6. CONCLUSION  

 

This work has significant practical applications for three main 

reasons. First, we intentionally captured highly variable sign 

language productions from a heterogeneous group of ASL 

users, including variations in hand usage, location, 

orientation, and movement trajectory. Moreover, this 

recognition system was trained in virtual reality without the 

use of specialized cameras or additional devices. This 

approach more closely approximates the real-world usage of 

sign-recognition systems, which are less constrained and 

highly variable. Second, the overall project team includes a 

majority of deaf members, and all team members know or are 

learning ASL. This lived experience provides a genuine 

connection to the language and community. Lastly, the 

system's typical confusion between ASL digits informs us of 

systematic patterns in the errors made by the algorithm. We 

acknowledge that the experimental data is limited to 10 

participants, a relatively small sample size. Future work in 

this area will improve the accuracy of the AI model and allow 

it to perform better in real-life situations. This work 

highlights that including the inherent variability of signed 

language production from the outset is critical for building 

systems tolerant of real-world variability and leading to better 

end products. Although initial results may be less "accurate" 

with more variable input, meaningful progress in this field 

takes time. Building systems tolerant of real-world variability 

is critical at all stages. With future work, we aim to train the 

algorithm and test different signs for use in the VR learning 

game environment. 
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