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ABSTRACT

Recognizing signs in virtual reality (VR) is challenging; here,
we developed an American Sign Language (ASL)
recognition system in a VR environment. We collected a
dataset of 2,500 ASL numerical digits (0-10) and 500
instances of the ASL sign for TEA from 10 participants using
an Oculus Quest 2. Participants produced ASL signs
naturally, resulting in significant variability in location,
orientation, duration, and motion trajectory. Additionally, the
ten signers in this initial study were diverse in age, sex, ASL
proficiency, and hearing status, with most being deaf lifelong
ASL users. We report the accuracy results of the recognition
model trained on this dataset and highlight three primary
contributions of this work: 1) intentionally using highly-
variable ASL production, 2) involving deaf ASL signers on
the project team, and 3) analyzing the typical confusions of
the recognition system.

Index Terms—American Sign Language recognition,
virtual reality, gesture recognition

1. INTRODUCTION

Sign languages are natural, full languages developed within
the deaf or hard-of-hearing communities. Each signed
language uses a set of specific signs and body movements
unique to that language. Over 5% (430 million) of the world’s
population has some form of hearing loss, which is projected
to increase to 2.5 billion by 2050 [1]. Signed languages are
unique depending on the surrounding culture, ethnicities, and
geographical locations where they develop. Most of the
world’s hearing people are not proficient in signed languages,
and thus interpreters are often needed for medical, legal, and
educational purposes. As emerging technologies continue to
grow, sign language recognition may allow sign language
users a more natural way of inputting information into a
device. More recently, immersive technologies such as
virtual reality (VR) are ripe with educational opportunities,
including the potential for learning and interacting with
signed languages in VR. Recognition of the users' signing is
critical for signed languages to be effectively taught in VR

[2]. This paper discusses the recognition of ASL, but our
conclusions will also be relevant to other signed languages.
ASL recognition is a growing research field [2]-[9]. Two-
dimensional (2D) camera/wearable device-based ASL
recognition is the most popular and common approach, yet
less efficient and difficult to use in real-life situations [10],
[11] because ASL combines hand, face, and body posture
with spatial information and dynamic movement. One study
found that wearable devices are sometimes troublesome to
use [12], and such wearable recognition devices have
attracted little interest from signing communities [13].
Overall, a three-dimensional (3D) depth sensor-based camera
provides better accuracy and ease [7], [14]. Virtual reality
(VR) devices exhibit reasonably good recognition outcomes
in some cases [3], [5]. However, none of these are full-
fledged VR systems, with many existing efforts primarily
dependent on the Leap Motion camera. Hence, standalone
ASL recognition in VR remains an unsolved challenge.
Recent research on ASL recognition algorithms typically
uses deep learning (DL) algorithms. Survey shows that DL-
based algorithms provide superior accuracy [12], [15]. Since
VR devices use embedded microprocessors with low
computational power, designing a lightweight DL network is
crucial. Here, we focused on using a simple network that can
be easily computed within a VR environment. As part of our
larger work [2], [16], we aim to teach people ASL using a
virtual reality game-like environment. In this game, users will
enter virtual reality and learn from signing avatars created
from motion capture recordings. An example of the 3D
environment and the signing avatar is visible in Figure 1.

A critical part of this system is incorporating feedback to
inform the users when their sign productions are correct. The
feedback relies on capturing and analyzing users’ signed
productions via the built-in cameras on the VR device. We
developed a VR ASL recognition system trained on highly-
variable signed input to address previously described
limitations. The term ‘“highly variable” indicates that the
participants are from different backgrounds, age groups, and
levels of ASL fluency. The signs themselves were not
inherently “highly-variable”; rather, the production of the
signs was not tightly controlled, and they were gathered from
a range of signers. Signers were instructed to produce signs
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naturally, enabling us to test a recognition algorithm trained
on heterogeneous data. Through this study, we aim to provide
insights into the relative difficulty and value of gathering
ASL data from a small but wide sample of signers.

Figure 1. Avatar teaching TEA sign in a virtual coffee shop.
2. KEY CHALLENGES

2.1. Dataset unavailability

One major problem in the ASL recognition work is that sign
datasets are not readily available for ASL, especially in VR
environments. Some researchers focus on VR, but the
datasets still need to mature [15]. Pugeault et al. published a
dataset containing 131,000 ASL alphabet samples collected
using the Kinect sensor, OpenNI, and NITE framework [9].
Similar datasets were published by Kapuscinski et al. [5].
Though the datasets are large, they are incomplete. For
instance, one dataset includes only 24 characters of the ASL
alphabet rather than all 26, and only static signs are included
[17]. The ASL alphabet contains both static and dynamic
gestures. ASL alphabet signs for J and Z contain dynamic
motion; hence they are difficult to recognize with static
information alone. In VR, hand gesture recognition is
performed from the signer's perspective. These represent
significant limitations of the available data.

2.2. Lack of diverse and fluent signers

Most existing ASL datasets for automatic sign language
recognition have been collected from hearing participants
with low or no proficiency in ASL [20]. New sign language
learners typically struggle to produce accurate signs even
after years of instruction, with particular errors in movement,
location, and orientation of signs [13]. Training a model on
signs from novice signers may run the risk of creating
homogenous databases, which may contain signs produced in
a limited manner--for example, producing the sign in the
same location or with the same orientation for every instance

of the sign. In the real world, ASL is used by people at many
different proficiency levels, with different ways of producing
signs, different spatial parameters, and different signing
speeds. This natural variability may be one reason why the
accuracy of most models’ falls in real-life applications.
Robust and variable datasets collected from diverse signers
are essential for accuracy in practically applied settings.

2.3. Implementation difficulties

Automated ASL recognition ideally involves capturing and
computing hand, body, and gaze movements. However,
computer vision approaches face several challenges,
including occlusion, variable distance from the capturing
device, lighting conditions, and color ambiguity. As a result,
an ASL recognition system must be robust and able to
categorize these nuanced variations in sign production
accurately.

Given these existing limitations in the field of ASL
recognition, here we trained a VR ASL recognition system
using highly-variable signed input. We opted to give signers
the instructions to produce signs naturally, with the goal of
testing a recognition algorithm trained on heterogeneous data.
With this case study, we hope to clarify some of the
challenges.

3. METHOD

In this work, we have employed the Oculus Quest 2 as a VR
device and MiVRy [20] Unreal Engine plugin for hand
detection segmentation, training, and testing on ASL
numbers and a single ASL sign. This plugin is lightweight
and easy to fit in the VR environment. As sign language or
gesture recognition is relatively new research, related
frameworks are not widely available. To our knowledge,
MiVRy is the most optimal solution aligned with our
requirements. This plugin is lightweight and easy to fit in the
VR environment. The signers produced signs naturally, with
no additional devices beyond the VR headset. We designed a
user interface (UI) to navigate different functions and interact
with the virtual textbox. The details are discussed in the
following subsections.

3.1. Data collection

The Ul is shown in Figure 2. Users can create their own
dataset by tapping the gesture name text field. Also, the user
can modify the gesture duration. Most of the past research
projects in this area used a fixed gesture duration (although
the duration varies from person to person); keeping this in
mind, we gave more flexibility to the user.

When the participant taps the “Record Stroke” button, the
system starts tracking hands and joints for the specified
gesture duration time. Next, participants need to tap on the
“Train” button to store this gesture in the dataset. As soon as
the “Train” button clicked, the system saved the gesture to the
local storage and trained the network to detect the gesture
using the MiVRy plugin.
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Figure 2. The Ul of the ASL number data collection system
in VR.

3.2. ASL recognition

The user interface (UI) during the recognition phase is similar
to that used during data collection. Upon selecting the "Detect
Gesture" button, the user sees the Ul shown in Figure 3,
providing users with options to choose different databases
and similarity scores. The similarity score represents a
threshold value that can be adjusted between 0 and 100, with
a higher score indicating a greater confidence in the
recognition results. For instance, in Figure 3, a similarity
score of 30 is set, indicating that the system will identify ASL
numbers only if the recognition confidence score exceeds
30%. Higher values typically correspond to more accurate
detection and identification. The DL model trained during the
data collection phase is used for recognition, and the system
dynamically allocates parameters to optimize performance
for the current dataset.

Figure 3. ASL number recognition UI. The detected gesture
is shown in the right window with a confidence value.

4. EXPERIMENTAL SETUP

Figure 4 shows the original experimental setup. Participants
wore the Oculus Quest 2 headset and signed ASL numbers 0-
10 and the ASL sign TEA. The TEA sign is relatively more
complicated than numbers and is a two-handed sign prone to
occlusion issue. The Ul was visible both on the computer
monitor and on the Oculus Quest 2 (software version

44.0.0.169.455). The UI was designed and developed using
Unreal Engine 4.27 and MiVRy plugin v2.5 for gesture
detection. The system ran on a Windows 11 pro-64-bit
operating system with 32GB of memory and an Intel Core 19
3.50Ghz clock speed processor.

We designed the system to work with both left-handed and
right-handed participants. Figure 3 shows the Ul of our
experiment. Participants were free to sign with different palm
orientations and locations.

Figure 4. Original experimental setup. Participants can see
the Ul in VR environments, and their view is mirrored on the
computer.

4.1. The dataset

This experiment has two datasets: ASL number signs 0-10
and the ASL sign TEA. The sign duration was fixed (three
seconds) for all signs. The number dataset contains 2500 ASL
number signs, and the TEA dataset contains 500 signs,
collected from 10 participants each. Every participant signed
each ASL number (from 0-10, inclusive) 25 times, resulting
in 250 signs from each participant. As the TEA is a single
sign, participants signed TEA 50 times. Of the ten
participants, seven were deaf, one was hard of hearing, and
two were hearing. The TEA sign is a complex sign with an
occluded hand where both hands are necessary. The purpose
of this sign is to verify the model's robustness. We will
include more complex signs in our future work.

We recruited ten participants (four men and six women) with
diverse backgrounds to train the system on highly variable
signed input. The participants, ranging in age from 22 to 46
years, came from various language backgrounds and had
between seven months and 43 years of experience signing
ASL. Five of the participants had been exposed to ASL since
birth. By recruiting participants with varying language
backgrounds and levels of ASL experience, we sought to
enable the system to recognize a broad range of signing
styles.



5. RESULTS AND DISCUSSION

5.1. ASL number dataset

We tested the system ten times for each ASL number and
found an average of 46% recognition accuracy; however, the
result varies for different numbers. We plotted the results in
a confusion matrix in Figure 5 (handshape figures are from
the Noun Project created by Stephanie Leeson). We found
different accuracy for different numbers with information
revealed by the pattern of confusion. The highest and lowest
recognition accuracy was found for TEN and SIX,
respectively.

Predicted

SRS R/AURVECACACAUNRE!

0 1 23 45678910
@04 10000000 2 3
@1 1o oo0o00000 2
&2 0/3 30 0 0000 4
md2(3 0 0/4 3 0 000 0 03
%@400004 00 00 3
2
g5 0 0 0 0 3 000 0 1
Ye oo oo o20001
71 080 0 03 0 0 1
8 04 0 0 0 003 0 2
o4 1 0 00 00 0fR!1
iy
G102 0 000000 0 ofl

Figure 5. Confusion matrix of the recognition accuracy. The
user’s input is plotted in the vertical direction; the horizontal
row represents the actual recognized ASL number. The
highest and lowest accuracy is found for numbers 10 and 6.

As shown in Figure 5, our results are informative of the
typical confusion between similar handshapes. For instance,
the ASL sign for SIX uses a handshape with three fingers up,
and the recognition model often determines that the signer
has produced a THREE (when in fact, they are signing SIX).
Similarly, when the signer produced a SEVEN, it was often
categorized as a TWO, given that the sign for SEVEN
includes the pointer and middle finger raised, just like with a
TWO. This pattern extends across several higher number
signs; for instance, EIGHT was often recognized as ONE, and
NINE was often recognized as ZERO. Thus, the confusion
matrix suggests the location of the index finger is over-
weighted, whereas the position of the ring and pinkie fingers
was under-weighted. The false positive rate can be reduced
by improving and implementing more complex DL-based
algorithms.

It is essential to note that TEN has the highest recognition
accuracy, and it’s the only dynamic ASL number sign 0-10.
Compared to other research, the proposed one is more

accurate for the dynamic gesture [3], [4], [21]. Other
researchers focused on image-based recognition, which is
better for static gesture recognition. Instead, we focused on
trajectory-based recognition. Most signed vocabulary is
dynamic in real life; hence, we would expect higher
recognition accuracy for other dynamic gestures.

5.2. TEA sign dataset

The TEA sign is a single sign; as a result, we cannot draw a
confusion matrix. The average recognition accuracy for TEA
was 55%. Occlusion plays a vital role in hand and palm
orientation. The occluded finger sometimes incorrectly
represents another finger, and it's a challenging task in
computer vision research. The accuracy falls when there is an
occlusion between fingers; without occlusion, the accuracy
goes up to 70%. We expect a better algorithm will provide
improved recognition accuracy in future iterations.

6. CONCLUSION

This work has significant practical applications for three main
reasons. First, we intentionally captured highly variable sign
language productions from a heterogeneous group of ASL
users, including variations in hand wusage, location,
orientation, and movement trajectory. Moreover, this
recognition system was trained in virtual reality without the
use of specialized cameras or additional devices. This
approach more closely approximates the real-world usage of
sign-recognition systems, which are less constrained and
highly variable. Second, the overall project team includes a
majority of deaf members, and all team members know or are
learning ASL. This lived experience provides a genuine
connection to the language and community. Lastly, the
system's typical confusion between ASL digits informs us of
systematic patterns in the errors made by the algorithm. We
acknowledge that the experimental data is limited to 10
participants, a relatively small sample size. Future work in
this area will improve the accuracy of the Al model and allow
it to perform better in real-life situations. This work
highlights that including the inherent variability of signed
language production from the outset is critical for building
systems tolerant of real-world variability and leading to better
end products. Although initial results may be less "accurate"
with more variable input, meaningful progress in this field
takes time. Building systems tolerant of real-world variability
is critical at all stages. With future work, we aim to train the
algorithm and test different signs for use in the VR learning
game environment.
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