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SUMMARY 

In this work, we present a new approach for latent system 
dynamics and remaining useful life (RUL) estimation of 
complex degrading systems using generative modeling and 
reinforcement learning. The main contributions of the proposed 
method are two-fold. First, we show how a deep generative 
model can approximate the functionality of high-fidelity 
simulators and, thus, is able to substitute expensive and 
complex physics-based models with data-driven surrogate 
ones. In other words, we can use the generative model in lieu of 
the actual system as a surrogate model of the system. 
Furthermore, we show how to use such surrogate models for 
predictive analytics. Our method follows two main steps. First, 
we use a deep variational autoencoder (VAE) to learn the 
distribution over the latent state-space that characterizes the 
dynamics of the system under monitoring. After model training, 
the probabilistic VAE decoder becomes the surrogate system 
model. Then, we develop a scalable reinforcement learning 
framework using the decoder as the environment, to train an 
agent for identifying adequate approximate values of the latent 
dynamics, as well as the RUL.  

To our knowledge, the method presented in this paper is 
the first in industrial prognostics that utilizes generative models 
and reinforcement learning in that capacity. While the process 
requires extensive data preprocessing and environment tailored 
design, which is not always possible, it demonstrates the ability 
of generative models working in conjunction with 
reinforcement learning to provide proper value estimations for 
system dynamics and their RUL. To validate the quality of the 
proposed method, we conducted numerical experiments using 
the train_FD002 dataset provided by the NASA CMAPSS data 
repository. Different subsets were used to train the VAE and the 
RL agent, and a leftover set was then used for model validation. 
The results shown prove the merit of our method and will 
further assist us in developing a data-driven RL environment 
that incorporates more complex latent dynamic layers, such as 
normal/faulty operating conditions and hazard processes.   

1 INTRODUCTION 

The increased complexity and inherent uncertainty of 
modern sensor-intensive systems present a great challenge for 

accurately capturing their hidden dynamics and degradation 
that are necessary for control and decision-making applications 
such as remaining useful life (RUL) estimation. A typical 
approach requires the development of high-fidelity physics-
based model simulators that, due to their design, can efficiently 
simulate system dynamics. However, such systems can be very 
expensive to create (e.g., digital twins), and their application is 
constrained only to a small number of industrial systems where 
the dynamics are understood to a high detail. Because of the 
lack of proper simulators for most systems in contemporary 
industry, researchers prefer to develop data-driven approaches, 
such as state-space models (SSM). SSMs, among other things, 
are attractive approximators due to their ability to quantify the 
inherent uncertainty of system dynamics. Estimating latent 
dynamics is usually conducted via Bayesian inference, where 
tools such as Kalman and particle filters and Bayesian statistics 
tools such as Markov Chain Monte Carlo methods are most 
prominent. These approaches, nevertheless, incorporate a 
significant level of inductive bias caused by significant 
limitations due to unrealistic parametric and distributional 
assumptions, high computational complexity of latent state 
estimation, and the requirement of very large volumes of 
training data that are not always easy to obtain. For these 
reasons, instead of state-space models, our approach works by 
designing a system simulator that uses deep generative 
modeling, and more specifically variational autoencoders 
(VAE). Because of their characteristics, such models can 
approximate any system’s dynamics with arbitrary accuracy, 
making them a good candidate for a surrogate simulator when 
the actual one is not accessible. Combining generative models 
with state-of-the-art reinforcement learning (RL) techniques, 
surrogate simulators show great promise in addressing many of 
the issues pertaining to state-space described above for 
modeling a system’s dynamics, since they do not require any 
predefined mathematical model or distributional assumption.  

The method proposed in this paper focuses on estimating 
RUL values for a set of simulated turbofan engines from the 
NASA C-MAPSS dataset [1] using a non-parametric function 
approximator instead of a predefined state-space model, that 1) 
is designed to work as a surrogate simulator of the actual 
system, and 2) generates controlled observations through agent 
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actions sampled from a stochastic policy. The VAE decoder 
model is used as a dynamic environment with which the RL 
agent interacts through proper actions to produce RUL 
estimates. Although our method is not a pure model-based RL, 
we show that when the environment is represented by a 
generative surrogate model, it can be very sample efficient thus 
requiring a lot less training data. 

2 LITERATURE REVIEW 

Despite VAEs and RL being at the forefront of applied 
research in many different areas, literature examples that 
combine them are still scarce and utilized only in a handful of 
applications. Particularly for industrial prognostics and health 
management (PHM), there are no such published works. A 
recently published work for combinatorial optimization can be 
found in [2], where the author used VAEs for path identification 
on transportation graphs and then used RL for end-to-end 
optimization of the proposed framework. In [3], the authors 
investigated the usage of generative models and RL for safe 
machine learning. More specifically, they used VAEs and 
generative adversarial networks to eliminate threats of 
adversarial attacks on RL agents. In another example presented 
in [4], which shares some similarities to our work but for a 
different domain, the authors proposed a transitional VAE as an 
environment model for an RL agent, where the objective was to 
learn an optimal patient treatment policy. Except for VAEs, 
deterministic autoencoders have also been used in improving 
sample efficiency in off-policy RL methods [5]. The authors 
used a deterministic autoencoder to augment a soft actor-critic 
RL method, leading to a stable agent training using state 
representations of lower dimensionality and, thus, improved 
computational times. Another approach that combines VAEs 
and RL is presented in [6]. In this case, a VAE was used to learn 
disentangled latent representations of action sequences 
provided by experts, and then the trained decoder was used as 
an augmented agent in an RL setting to perform a search more 
efficiently in the action space. Another example of using VAEs 
for safe RL can be found in [7], where the authors combined 
VAEs, risk-directed exploration, and curiosity to train deep Q-
networks using imaginary future state trajectories for 
autonomous vehicles. 

While these works show the advantages of combining 
generative models with RL when the state and action spaces are 
very large, there are currently no similar works in prognostics 
and diagnostics for complex industrial systems. Our intention 
with the proposed method is, therefore, to present the first such 
example in the predictive analytics literature. 

3 DEEP GENERATIVE MODELING 

The main objective in predictive analytics applications is 
the inference of latent system dynamics using time-varying 
observations collected from arrays of sensors. Most 
applications call for the development of multi-stage data-driven 
SSMs that consist of mathematical formulas that map the 
observations to latent states (e.g., degradation), as well as 
describe the Markovian relationship of successive states, i.e., 
Pr(𝒚𝒚𝒕𝒕|𝒙𝒙𝒕𝒕) , Pr(𝒙𝒙𝒕𝒕|𝒙𝒙𝒕𝒕−𝟏𝟏), where Pr(∙ | ∙) denote conditional 

probability densities, and 𝒚𝒚𝒕𝒕,𝒙𝒙𝒕𝒕 denote sensor observations and 
latent dynamics, respectively. SSMs are very effective in 
describing system dynamics, but there are cases where they fail 
to capture them, especially when the system dynamics are 
governed by high-dimensional non-linear models. Therefore, 
non-parametric function approximator methods seem to be 
reasonable alternative approaches, particularly because they do 
not require any predefined structure for the conditional 
densities. Neural networks that are considered “universal 
function approximators” can be used as non-parametric 
densities instead of parametric formulations, and they can 
characterize the system dynamics. In this paper, we aim to 
model system dynamics using fully non-parametric function 
approximators in the form of variational autoencoders (VAEs). 

In its simplest setting, a VAE defines a generative model 
as the following joint distribution: 

Pr
𝜃𝜃

(𝒛𝒛,𝒚𝒚) = Pr
𝜃𝜃

(𝒛𝒛) Pr
𝜃𝜃

(𝒚𝒚|𝒛𝒛),                     (1) 

where 𝜃𝜃 is the set of the neuron weights. Apart from that, VAEs 
also fit a recognition model (or inference network) as: 

𝑞𝑞𝜙𝜙(𝒛𝒛|𝒚𝒚) ≈ Pr
𝜃𝜃

(𝒛𝒛|𝒚𝒚).           (2) 

Therefore, the overall model can be analyzed into an encoder 
model that encodes the inputs 𝒚𝒚 (i.e., sensor observations) into 
a stochastic latent bottleneck 𝒛𝒛, and a decoder model that 
reconstructs the input (Figure 1). 
 

 
Figure 1: Variational autoencoder. The probabilistic encoder 
encodes the input to a latent layer, and the decoder samples 

from that layer to reconstruct the input  

Fitting the model requires maximizing the marginal 
likelihood: 

Pr
𝜃𝜃

(𝒚𝒚) = ∫ Pr
𝜃𝜃

(𝒚𝒚|𝒛𝒛) Pr
𝜃𝜃

(𝒛𝒛)𝑑𝑑𝒛𝒛.          (3) 

Because computing the marginal likelihood is intractable, 
we use the inference network to compute an approximate 
posterior 𝑞𝑞𝜙𝜙(𝒛𝒛|𝒚𝒚), where 𝜙𝜙 denotes the set of inference 
network’s neuron weights. This can be utilized to compute the 
evidence lower bound (ELBO): 
ℇ(𝜃𝜃,𝜙𝜙 |𝑥𝑥) =  𝔼𝔼𝑞𝑞�𝒛𝒛�𝒚𝒚,𝜙𝜙�[log Pr

θ
(𝒚𝒚|𝒛𝒛)] −  𝕂𝕂𝕂𝕂(𝑞𝑞𝜙𝜙(𝒛𝒛|𝒚𝒚)|| Pr(𝒛𝒛)).    (4) 

ELBO can be viewed as the summation of the expected 
log-likelihood and a regularization term that penalizes large 
differences between the posterior and the prior. Using 
stochastic gradient descent, ELBO can be maximized with 
respect to 𝜃𝜃,𝜙𝜙 and train the two networks. However, while it is 
easy to take gradients for 𝜃𝜃, the same cannot be said for 𝜙𝜙, since 
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the sampling process in the latent layer depends on it. For that 
reason, VAE training utilizes the reparameterization trick, 
where we modify 𝒛𝒛 as 𝒛𝒛 = 𝜇𝜇𝑥𝑥 + 𝜎𝜎𝑥𝑥 ⊙ 𝜖𝜖, with 𝜖𝜖 ∼ 𝛮𝛮(0, 𝑰𝑰). The 
ELBO then becomes: 
ℇ(𝜃𝜃,𝜙𝜙 |𝑥𝑥) =  𝔼𝔼𝑞𝑞�𝒛𝒛�𝒚𝒚,𝜙𝜙�[log Pr

θ
(𝒚𝒚|𝒛𝒛)]𝕂𝕂𝕂𝕂(𝑞𝑞𝜙𝜙(𝒛𝒛|𝒚𝒚)|| Pr(𝒛𝒛)).     (5) 

Now, the expectation is independent of the weight parameters 
and gradients can flow backward using backpropagation, 
leading to network training. 

4 REINFORCEMENT LEARNING  

From a high-level perspective, the goal of reinforcement 
learning (RL) is to learn a policy for generating a sequence of 
actions that optimizes the expected discounted future returns 
when starting from any given state. A distinguishing 
characteristic of RL is that the information needed to identify 
such a sequence can be acquired via trial-and-error interaction 
with the target system (i.e., model-free RL). RL algorithms aim 
to approximate a policy function 𝜋𝜋 that directly maps 
environment states into actions, 𝑎𝑎𝑡𝑡~𝜋𝜋(𝑠𝑠𝑡𝑡). We can, therefore, 
define an optimal policy 𝜋𝜋∗ from which an RL agent samples 
actions that maximize the expected return, or cumulative future 
reward, when beginning from a state 𝑠𝑠𝑡𝑡 and following π* as: 

𝜋𝜋∗ = arg𝑚𝑚𝑎𝑎𝑥𝑥𝜋𝜋𝔼𝔼𝜋𝜋[∑ 𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)∞
𝑡𝑡=0 ],          (6) 

where 𝛾𝛾 ∈ [0,1]  is a discount factor, 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is the reward 
received from traversing to state 𝑠𝑠𝑡𝑡 using action 𝑎𝑎𝑡𝑡, and 𝔼𝔼𝜋𝜋[∙] is 
the expected return by following policy 𝜋𝜋 up towards the 
terminal state. Due to the combinatorial nature of the state space 
of real-world systems, modern RL algorithms follow 
parameterized policies where function approximators are used. 
The most popular choice of such a policy is a neural network 
parameterized by neuron weights 𝜉𝜉. We denote this dependency 
by 𝜋𝜋(𝜉𝜉). For parameterized policies, the above optimization 
problem can then be recast as: 

𝜉𝜉∗ = arg𝑚𝑚𝑎𝑎𝑥𝑥𝜉𝜉𝔼𝔼𝜋𝜋𝜉𝜉[∑ 𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)∞
𝑡𝑡=0 ].          (7) 

 Most RL algorithms directly model the value function 
(𝒱𝒱𝜋𝜋(𝑠𝑠𝑡𝑡) =  𝔼𝔼𝜋𝜋[∑ 𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)∞

𝑡𝑡=0 |𝑠𝑠𝑡𝑡]), or the action-value 
function (𝒬𝒬𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝔼𝔼𝜋𝜋[∑ 𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)∞

𝑡𝑡=0 |𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡]), which 
calculates the expected return. This expression works as a basis 
for many RL algorithms since the agent’s objective is to learn 
to take actions that maximize 𝒬𝒬, and as a result, learn an optimal 
policy. Similar to the policy, both the value and action-value 
functions can also be parameterized. 

Generally, RL algorithms can be categorized based on 
which functions they approximate as: a) value-function based, 
b) policy gradient based, and c) actor-critic based. The latter is 
a hybrid method that uses both a policy network that provides 
actions (actor) and a value network (critic) that returns the 
expected return from following the proposed actions. In this 
paper, we used an actor-critic method, namely Proximal Policy 
Optimization [8]. 

4.1 Model-based RL vs. Model-free RL vs. Proposed method 

Here, we need to emphasize another novelty and 
contribution of the proposed method, compared to other RL-
based applications. With respect to the environment, the agent 

interacts with, there are two types of RL methods, namely 
model-free and model-based. The former does not require any 
knowledge of the environment dynamics, which are purely 
probabilistic, but rather the agent learns through experience 
collected from a direct exposure of the agent to its environment 
through trial-and-error. While dynamics models are easy to 
define for environments with a small number of states and 
actions, defining and storing a dynamics model for real-world 
applications is challenging due to the sheer size of their state 
and action spaces. Model-free RL methods do not require such 
models for agent training, so they are easier to implement for 
real-world applications. However, without a dynamics model, 
the agent will need to try a very large number of state/action 
combinations until it learns a good policy. Therefore, model-
free methods are sample inefficient, and they need to go over 
many trial-and-error iterations, leading to long training times 
and slow convergence. On the other hand, model-based RL 
methods are distribution models, because they produce a 
description of all possibilities and their respective probabilities 
𝑃𝑃𝑟𝑟 (𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1,𝑎𝑎𝑡𝑡). Since in real-world applications this is not 
easy, model-based RL methods rely on producing simulated 
experience using planning, a computational process that uses 
the (proposed) model as input and produces/improves a policy 
via interactions with the simulated environment. Because of 
that, model-based RL methods are very sample efficient since 
they can produce their own “fake” data to train the agent, but 
they are also more complex compared to model-free 
approaches. 

Our proposed method stands in the middle of these two 
types of RL. We consider the pretrained decoder described 
earlier as a probabilistic model for the environment, but we do 
not perform any form of planning at this stage. The results 
obtained show us that we can obtain satisfactory RUL estimates 
for previously unseen degrading systems that follow the same 
distributional assumptions with the systems used to train the 
agent, by utilizing a model-free RL method for agent training 
(Section 4.2), and at the same time avoiding simulated rollouts 
of the environment (planning). 

4.2 Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is an actor-critic 
based RL method that has proven to be highly effective for 
optimizing large non-linear policies. Apart from that, we chose 
PPO due to its monotonic improvement properties guaranteed 
by Kullback-Leibler (KL) divergence on policy updates. PPO 
aims to optimize the following unconstrained optimization 
problem: 

𝑚𝑚𝑎𝑎𝑥𝑥
𝜉𝜉

𝔼𝔼𝑡𝑡 �
𝜋𝜋𝜉𝜉�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�

𝜋𝜋𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�
�̂�𝐴 − 𝛽𝛽𝛽𝛽𝛽𝛽�𝜋𝜋𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜(∙ |𝑠𝑠𝑡𝑡),𝜋𝜋𝜉𝜉(∙ |𝑠𝑠𝑡𝑡)��,    (8) 

with 𝛽𝛽, �̂�𝐴 being a penalty coefficient and an estimator of the 
advantage function, respectively. PPO computes an update at 
each step that minimizes the cost function, while ensuring that 
the deviation from the previous policy remains relatively small. 
To avoid large policy updates that could lead to training 
instabilities, PPO clips the ratio between the current and old 
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policies using a manually tuned hyperparameter 𝜖𝜖 as: 

𝛽𝛽𝜉𝜉 = 𝔼𝔼𝑡𝑡 �
𝜋𝜋𝜉𝜉�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�

𝜋𝜋𝜉𝜉𝑜𝑜𝑜𝑜𝑜𝑜�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�
𝐴𝐴 � � = 𝔼𝔼𝑡𝑡 �𝑟𝑟𝑡𝑡

𝜉𝜉�̂�𝐴� ⟹, 

𝛽𝛽𝜉𝜉
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝔼𝔼𝑡𝑡[𝑚𝑚𝑚𝑚𝑚𝑚 (𝑟𝑟𝑡𝑡

𝜉𝜉�̂�𝐴, 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐 �𝑟𝑟𝑡𝑡
𝜉𝜉 , 1 − 𝜖𝜖, 1 + 𝜖𝜖)�̂�𝐴�.          (9) 

For more details regarding PPO the interested reader should 
refer to the original manuscript [8]. 

5 PROPOSED METHODOLOGY 

The purpose of the method described in this paper is to 
present a novel predictive analytics approach focusing on RUL 
estimation of degrading systems governed by high-dimensional 
complex system dynamics. To achieve this, we use a two-
pronged method that utilizes VAEs and RL in the manner 
described in this Section. 

5.1 Surrogate system model 

In the first step of our approach, we utilize data of failed 
systems to train the VAE. These data can be categorized as 
sensor readings, control inputs, and true lifetimes. At the end of 
the training process, the probabilistic decoder is ready to be 
used as a surrogate simulator for the actual system under 
observation. At this point the decoder, sampling from the 
encoded layer that follows a predefined distribution, can 
generate new data without the need to access the true simulator, 
at a fraction of the cost. This is a side-product of our work that 
can be utilized to augment small datasets, without the need to 
collect true observations, a process that is expensive and 
challenging. However, the most important outcome at this point 
is that the probabilistic decoder can be used as an environment 
with which an RL agent can interact to learn a policy that leads 
to RUL value prediction. In the experiments conducted we 
considered a two-dimensional latent state, however any 
dimension size can be used. 

5.2 RL-based RUL estimation 

After VAE training, we proceed with the second step of the 
proposed method, where we train the RL agent. During RL 
training, the agent samples actions from a stochastic policy, 
which are provided as inputs to the environment-decoder. The 
system then traverses to a new state and generates a numerical 
reward that reflects the quality of the action taken. The new 
state and the reward are given as feedback to the agent, which 
asserts the quality of the action taken. By optimizing the 
returned cumulative reward, the agent manages to learn the 
optimal policy.  

For the purposes of the proposed method, the agent learns 
a policy whose sampled actions follow the same distributional 
assumptions as the VAE’s encoded layer. In other words, the 
actions represent latent representations of the system dynamics 
observed during its lifetime and the agent’s objective is to learn 
to control samples from the encoded layer. Mathematically, a 
new system state 𝒚𝒚𝑡𝑡+1 is generated as: 

𝑎𝑎𝑡𝑡~𝜋𝜋(𝒚𝒚𝑡𝑡),                                             (10) 
𝒚𝒚𝑡𝑡+1~𝑃𝑃𝑟𝑟 (𝒚𝒚𝑡𝑡|𝑎𝑎𝑡𝑡).         (11) 

The agent training proceeds as follows: At every timestep, 
an action is sampled from the policy and is given as input to the 

environment-decoder. A forward pass then occurs and the 
environment outputs the RUL estimated values. The quality of 
those values is measured through comparing them with the true 
values using mean squared error (MSE), which in our case 
functions as the returned reward. The main RL training 
objective is, thus, the minimization of the MSE error between 
true observations and reconstructed decoder outputs. Other 
standard loss measures such as root mean squared error 
(RMSE) or mean absolute error (MAE) can also be used, 
depending on the task at hand, but they are not used here.  

The main purpose of the trained RL agent is to generate the 
necessary actions that, when fed to the decoder, the latter can 
estimate RUL values for systems that are still operational (i.e., 
testing set). Figure 2 presents a flowchart of the proposed RUL 
estimation method.   

Figure 2: RL-based RUL estimation 
6. NUMERICAL EXPERIMENTS 

To assess the validity of the proposed methods, we 
conducted experiments using the train_FD002 NASA C-
MAPSS dataset. The dataset contains simulated trajectories of 
run-to-failure sensor observations and operating conditions for 
a fleet of 260 turbofan engines in a time-series format. 
Furthermore, all engines begin their function from an unknown 
level of wear & tear. To accommodate for the training and 
evaluation of all models in the proposed structure, the dataset 
was divided into three mutually exclusive subsets: 
• Units 1-200: Training data for the VAE.  
• Units 201-240: Training data for the RL agent. 
• Units 241-260: Test set for the evaluation. 

Because the sensors and operating inputs are given in 
various value scales, we performed a normalization of all values 
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between zero and one. Another data preprocessing step 
followed was to further smooth the input data using cumulative 
moving averages to consider time dependencies between 
successive observations. Nevertheless, this is an assumption 
that normally should be avoided, and thus it is an assumption 
that we want to address in future work. Also, apart from the 
time-series data provided by the CMAPSS dataset, we also 
included a column for the lifetimes of all engines given as a 
percentage of their RUL in the data, e.g., for an engine with 
lifetime equal to 10 operation cycles, the RUL at time 𝑡𝑡 = 1 is 
equal to 90% of operational life left. The reason behind using 
RUL estimates instead of actual lifetimes was that the values 
given in that format are also between zero and one, and 
therefore, they are in a normalized format. Figure 3 presents a 
high-level approach on the entire process. 

6.1 Step 1 – VAE training 

 In the first step, we utilized the time-series for the first 200 
units to train the VAE. We used most of the units in the first 
step to decrease the decoder bias, since it is an important 
element for accurately predicting RUL estimates. Hence, we 
ensure that most of the aleatoric variability on the training 
dataset is captured and the resulting decoder can be considered 
as an adequate substitute of the CMAPSS simulator, and as 
extension, the RL environment. 

The encoder and decoder models were designed using fully 
connected deep neural networks, with layer sizes 𝑐𝑐𝑉𝑉𝑉𝑉𝑉𝑉 =
(256, 128, 64) and rectified linear units (reLU) for activation 
functions on each layer. The sampling layer was designed to 
follow a two-dimensional diagonal Gaussian distribution. 
Training ran for 30 epochs.  
 

Figure 3: Illustration of the proposed method 
6.2 Step 2 – RL agent training 

In the second step, the trained decoder formed the 
environment for the RL agent training. A subset of 40 units was 
selected in that step. For parameterized policy, we used a fully 
connected deep neural network with layer weights 𝑐𝑐𝜋𝜋 =
(512, 256, 128, 64) and reLU activation functions for each 
layer. Also, since the policy was stochastic, it returned actions 
and their log standard deviations. A total number of 300 
episodes was performed to ensure stable convergence of the 
agent training.  

6.3 Results 

 Below, we show RUL results for 6 randomly selected 
engines from the testing set that start at random time instances 
using the trained RL agent (Figure 4). Further, in Table 1 we 
provide average values of true RULs and their estimated 
counterparts (as a % of actual lifetime) for the last 20 time 
cycles of 100 random sampled units from the testing set (with 
replacement).  

We see that the agent manages to approximate the true 
RUL values, especially when the estimation occurs relatively 
late in the unit’s lifetime. There are also cases where the results 
show a small divergence, either above or below true values, 
which is more common when we perform RUL estimation early 
in the system’s lifetime. That is understandable, since there is a 
significant remaining life uncertainty for any system that is 
early on its service, and the RL agent cannot capture it. 
Nevertheless, as is the case in most real-world industrial 
systems, RUL estimation cycles are performed regularly, and 
with more sensor observations collected during that time, the 
RL agent will provide more confident results. 
 

Figure 4: True vs. Estimated RUL results for randomly 
sampled units in the test set. 

To further establish the validity of our method, we 
compared root mean squared error (RMSE) values between true 
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and estimated RUL for all twenty engines on the testing set 
against those obtained using three well-established predictive 
maintenance methods: i) the Cox proportional hazards model 
with time-varying coefficients, ii) linear regression, and iii) a 
two-layered LSTM deep neural network with a lookback period 
of 20 timesteps (Table 2). The proposed method provides the 
best results while utilizing minimal data preprocessing. 

Table 1: Average True vs. Estimated RUL values (%) 
Time 
cycle 

True 
RUL (%) 

Estimated  
RUL (%) 

Time 
cycle 

True 
RUL (%) 

Estimated  
RUL (%) 

19 8.27 8.99 9 3.93 6.17 
18 7.84 8.69 8 3.49 5.93 
17 7.4 8.39 7 3.1 5.69 
16 6.97 8.09 6 2.65 5.45 
15 6.53 7.8 5 2.21 5.17 
14 6.1 7.52 4 1.76 4.9 
13 5.66 7.25 3 1.32 4.69 
12 5.24 6.96 2 0.88 4.48 
11 4.8 6.69 1 0.44 4.28 
10 4.36 6.43 0 0 4.08 

Table 2: RMSE value comparison 

 
Our 

method 
Cox PH with time-

varying coefficients 
LSTM Linear 

regression 
  

RMSE 29.89 39.34 55.16 60.11   

    7. DISCUSSION & FUTURE WORK 

The proposed method provides significant advantages 
compared to traditional filtering and predictive maintenance 
approaches. First, it does not require predefined 
state/observation equations that can be poor approximations of 
the true latent state evolution and state mapping to observations. 
Second, it can estimate RUL values for previously unseen time-
series data and at the same time provides a low-cost, relatively 
high-fidelity surrogate model for the actual system under 
observation. Also, the agent manages to approximate latent 
system dynamics using a model-free approach, thus making it 
highly modular; the proposed method can be easily modified by 
substituting the decoder with any off-the-shelf simulator, 
without the need to overhaul the RL step. Usually, predictive 
maintenance methods require extensive data preprocessing 
such as introducing features for breakdown, observation start 
and stop, careful feature selection based on goodness of fit and 
coefficient p-values, hyperparameter tuning, upper clipping for 
stability. None of these were necessary for our method, thus 
greatly simplifying the overall process of RUL estimation. 

Despite its appealing properties in RUL estimation, there 
are ways that the proposed method can be further improved 
upon, such as more robust surrogate environment models that 
can better capture time dependencies between successive latent 
states, including multiple levels of latent processes. 
Furthermore, the proposed method in its current form is 
hardcoded to take inputs in a tabular format. However, we plan 
to expand its capabilities by making it possible to accept high-
dimensional data (e.g., images) as inputs, thus avoiding many 
of the data preprocessing assumptions performed here, leading 
to a more realistic prognostics model.  

In the future, we plan to address the issues stated above. 
We also want to test the method on publicly available real-
world degradation datasets, where the systems do not exhibit 

monotonic degradation signals as is the case with CMAPSS. 
Finally, we also want to investigate safe RL methods, which are 
crucial to contemporary industrial and manufacturing settings.    
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