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Abstract—We present the Seldonian Toolkit, which enables
software engineers to integrate provably safe and fair machine
learning algorithms into their systems. Software systems that
use data and machine learning are routinely deployed in a
wide range of settings from medical applications, autonomous
vehicles, the criminal justice system, and hiring processes. These
systems, however, can produce unsafe and unfair behavior,
such as suggesting potentially fatal medical treatments, making
racist or sexist predictions, or facilitating radicalization and
polarization. To reduce these undesirable behaviors, software
engineers need the ability to easily integrate their machine-
learning-based systems with domain-specific safety and fairness
requirements defined by domain experts, such as doctors and
hiring managers. The Seldonian Toolkit provides special machine
learning algorithms that enable software engineers to incorporate
such expert-defined requirements of safety and fairness into their
systems, while provably guaranteeing those requirements will be
satisfied. A video demonstrating the Seldonian Toolkit is available
at https://youtu.be/wHR-hDm9jX4/.

I. INTRODUCTION

The use of machine learning (ML) algorithms has become

increasingly commonplace, with a wide range of applications

including optimizing user experiences [44], providing decision

support for high-risk high-impact applications such as criminal

sentencing [5], deciding which loans should be approved [6],

deciding which resumes should be evaluated by a human [37],

and providing medical decision support [29].

Unfortunately, data-driven software can sometimes produce

undesirable behavior, such as unsafe or unfair behavior. IBM

Watson, for example, recommended potentially fatal cancer

treatments [36], and ML software used in 11 US states to

predict whether a person will commit a crime in the future

was found to have a racial bias [5].

One of the root causes of these undesirable behaviors is

the fact that there is a disconnect between the users and the

developers of data-driven software. Users, such as doctors,

lawyers, and hiring managers, have the expertise to define

what unsafe or unfair behavior means. However, these users

are not the people building the software systems that must

satisfy safety and fairness requirements. The software engineers

that do build such systems, by contrast, are typically neither

domain experts nor ML experts, so it is critical that they have

the ability to integrate ML algorithms and domain-specific

safety and fairness requirements.

We introduce the Seldonian1 Toolkit, a framework that

bridges the gap between ML experts, software engineers, and

users. The toolkit implements a Seldonian ML algorithm [45]

that allows domain-expert users to specify safety and fairness

requirements, and trains ML models that are probabilistically

verified to satisfy those requirements. The Seldonian Toolkit’s

key contributions are the support for: (1) specification of

custom, domain-specific constraints that can encode safety and

fairness properties, (2) training ML models while providing

high-confidence guarantees that these models, applied to new

data, satisfy the specified safety or fairness constraints, and

(3) evaluating the effectiveness of Seldonian algorithms for a

given use case via comparison to standard ML approaches and

other fairness-aware ML algorithms.

II. THE SELDONIAN TOOLKIT

The Seldonian Toolkit consists of two Python libraries

and a graphical user interface that runs in the browser. The

Python libraries are the Seldonian Engine2 and the Seldonian

Experiments Library3. The graphical user interface is called

the Seldonian Interface GUI (SIGUI)4. We first describe the

SIGUI (Section II-A), the Seldonian Engine (Section II-B),

and then the Experiments library (Section II-C).

With beginners in mind, we provide tutorials and examples

(with more in development) on how to use the Seldonian

Toolkit, starting from installation and progressing toward real-

world end-to-end use cases, such as creating safe and fair deep

learning and computer vision models with the toolkit.5

We have developed the toolkit with ease of adoption in

mind, interfacing with ubiquitous tools, such as NumPy, SciPy,

scikit-learn, and PyTorch. Currently, six groups of computer

science graduate students at the University of Massachusetts

are applying the toolkit to distinct ML problems, providing us

with feedback.

1The toolkit name [45] is a homage to Isaac Asimov’s fictional character,
Hari Seldon, a resident of a universe where Asimov’s three laws of robotics fail
to adequately control agent behavior due to their non-probabilistic requirements,
and who formulated and solved a machine learning problem that would likely
have required probabilistic constraints [7].

2https://github.com/seldonian-toolkit/Engine
3https://github.com/seldonian-toolkit/Experiments
4https://github.com/seldonian-toolkit/GUI
5https://seldonian.cs.umass.edu/Tutorials/tutorials/
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Fig. 1. The Seldonian Interface GUI (SIGUI) helps users specify safety and
fairness guarantees by selecting and combining basic building blocks.

A. Seldonian Interface GUI (SIGUI)

The SIGUI is designed to help users specify safety and

fairness behavioral constraint requirements. The form of these

constraints can vary depending on the domain, and we designed

the Seldonian Toolkit to be flexible and accept a wide range of

such requirements. Many prominent definitions of fairness [40]

can be defined as mathematical statements or inequalities.

For example, a common desirable fairness definition, known

as demographic parity, requires that a positive outcome be

given to the same fraction of people of two protected classes.

Assume, for instance, that an ML model is designed to decide

who should get a loan while not discriminating based on

race. In this case, the same fraction of applicants of each

race should be given loans, up to some threshold. Not all

types of safety constraints can be expressed as mathematical

statements. Consider, for example, a user observing a robotic

system performing an unwanted behavior, such as a chess robot

breaking a child’s finger [9]. The mathematical expression

required to instruct the robot not to do this is hard to define

analytically by non-expert users. The Seldonian Toolkit

should, nonetheless, allow users to specify that this behavior

is undesirable.

Suppose the user wishes to specify that an application must

satisfy the demographic parity requirement. The toolkit’s

behavioral constraint specifications consist of two parts: (1) con-

straint strings and (2) confidence levels. Constraint strings are

mathematical inequalities that must hold. For example, Figure 1

shows how the constraint string for demographic parity can

be specified in the SIGUI. The user first selects “measure

functions.” These include metrics quantifying properties of

a given ML model, such as its positive rate (PR), negative

rate (NR), false-positive rate (FPR), etc. Then, the user

combines the measure functions with mathematical functions

(e.g., max()) and operators (e.g., ratio), and associates them

with protected classes, such as gender. For example, in Figure 1,

“PR | [Male]” means “positive rate for men.” To specify

demographic parity with respect to (binary) gender, the user

specifies “abs ((PR | [Male])− (PR | [Female]))− 0.15 ≤ 0,”

which means “the absolute value of the difference between

positive rates for men and women must be less than or equal to

0.15.” The toolkit’s probabilistic verification requires the user

to also specify, for each constraint, the required confidence

level, δ. This δ is the acceptable probability of violation of the

constraint. The user could, for example, require the Seldonian

Toolkit to produce an ML model with at least 99.9% confidence

(δ = 0.001) that it will satisfy the above-specified demographic

parity constraint when applied to unseen data.

Safety constraints can be defined similarly to fairness

constraints. For example, a behavioral constraint on an insulin

pump ML-model update could require that the update cause no

more instances of hypoglycemia than the original version [45],

or that a new model’s accuracy is strictly higher, with high

confidence.

To simplify the constraint specification process, SIGUI

allows the user to select from five commonly-used predefined

fairness constraints, modify them, or build their own completely

unique constraints using drag-and-drop building blocks. SIGUI

also includes a tutorial to speed up the learning process.6 The

user can specify an unlimited number of behavioral constraint

requirements for each model.

B. Seldonian Engine

The Seldonian Engine is the core library of the toolkit and

implements a general-purpose Seldonian algorithm. Given

a dataset D and a set of behavioral constraint requirements

(recall Section II-A), a developer can use the Engine to train an

ML model that is probabilistically guaranteed to satisfy all of

the requirements. (Note that under certain conditions, such as

when given insufficient data to train a model, or contradictory

requirements, the Engine will explicitly state that no solution

could be found, as further discussed below.)

While the Seldonian algorithm [45] is not a contribution

of this work (the Toolkit is a usable implementation of a

previously-published algorithm), we briefly describe it here.

At a high level, the algorithm operates as follows. First,

the available dataset D is partitioned into two disjoint sets:

candidate data, Dcand, and safety data, Dsafety. Dcand is provided

as input to a component called candidate selection,

which trains a single ML model that the algorithm plans to re-

turn. This model is called the candidate solution. The algorithm

attempts to select a model that maximizes performance, while

also satisfying the behavioral constraints, but, at this point,

provides no guarantees. Next, the safety test component

probabilistically verifies that the candidate solution satisfies

the behavioral constraints. The safety test executes the

6https://seldonian-toolkit.github.io/GUI/build/html/index.html
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Fig. 2. The Seldonian Experiments Library can help software engineers evaluate trade-offs between using Seldonian and non-Seldonian ML algorithms. Here,
models trained using the Seldonian Toolkit are less accurate than ones trained using standard linear regression, and require more data, but always satisfy a
fairness requirement that the linear regression model fails.

solution on Dsafety and checks if the constraints hold on that

data. The size of Dsafety is selected specifically to allow the

use of probability bounds, such as Hoeffding’s inequality, to

estimate the likelihood that the requirement is satisfied not

only on Dsafety, but also on new, unseen data. If the bound

satisfies the specified confidence level, the algorithm returns the

candidate model. Otherwise, if the model fails the requirement

or the algorithm’s confidence is insufficient, the algorithm

returns “No Solution Found.” Our prior work has formally

proven that the produced models are probabilistically verified

to satisfy the provided safety and fairness constraints and

empirically compared Seldonian algorithms to other fairness-

aware ML algorithms [19], [31], [45].

To use the Seldonian Engine, the developer needs a set of be-

havioral constraint requirements (created by, or in coordination

with a domain expert), a dataset, and instructions on which ML

model the Engine should use internally. The Engine can use

any (parametric) ML model, such as a deep neural network or a

linear regression model. The Engine uses its implementation of

the Seldonian algorithm to train and probabilistically verify the

model, and either returns that model or “No Solution Found.”

C. Seldonian Experiments Library

Developers and domain-expert users will understandably

want to know how well their Seldonian algorithms perform

compared to existing ML models that do not necessarily enforce

safety or fairness. Satisfying behavioral constraints can involve

trade-offs between enforcing safety and, for instance, runtime

or accuracy (though our prior work showed that given real-

world data, Seldonian algorithms often identify safe and fair

solutions without a significant reduction in accuracy [17], [45]).

The Experiments Library helps the developer understand

these trade-offs. Consider an engineer tasked with building a

system that predicts housing prices within two zip codes. The

developer has access to historical data describing how various

features, including zip code, size, and the year when it was

built, influence housing prices. The stakeholders (or, perhaps,

the law) require that the system must have similar accuracy

in both zip codes, perhaps because these zip codes correlate

with the residents’ races, and failing this requirement could

lead to discrimination. The developer could use a standard ML

model, e.g., linear regression implemented in scikit-learn [35],

to achieve good overall accuracy in predicting house prices,

but they might find that their predictions are more accurate in

one zip code than the other.

The developer can input that scikit-learn model and dataset

into the Seldonian Toolkit, along with the behavioral constraint

from the stakeholders (formalized using SIGUI). The Engine

will train a new model that satisfies the requirement, i.e., it will

be similarly accurate in both zip codes. Then, the Experiments

Library will produce a set of three diagnostic plots to help the

developer understand the potential trade-offs.

We generated a synthetic dataset with a single feature (house

size), a single sensitive attribute (zip code), and a single label

(house price), and then used the Experiments Library on this

dataset with a fairness constraint that enforces similar accuracy

in the two zip codes. Figure 2 shows the resulting three plots for

this house-price prediction problem. (While the Experiments

Library currently makes these plots static, future work can

explore if interactive features can help users better understand

model behavior.) The left plot presents the accuracy of the

two ML models (produced by scikit-learn and the Seldonian

algorithm) in terms of mean squared error, as a function of

the size of the dataset. The larger the mean squared error, the

less accurate the model is in explaining the data. Here, the

Seldonian model sacrifices accuracy to be able to satisfy the
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fairness constraint with high confidence. Note that the plot

shows no accuracy for datasets smaller than 103 data points,

as we explain next. Here, we stress, again, that while we

selected this example to showcase the possible trade-offs that

may occur, prior research has shown that accuracy can often

remain just as high as that of standard, unsafe ML algorithms

when safety or fairness constraints are enforced [17], [45].

The middle plot shows how often the algorithm produces a

verified fair model (as opposed to “No Solution Found”), as a

function of the size of the dataset. While scikit-learn always

produces a model (a very inaccurate one for small datasets),

the Seldonian Engine is only able to produce models it can

confidently say are fair once it has access to approximately

103 data points. (This is the reason the left plot did not

contain accuracy information for small datasets). The amount

of needed data is another important trade-off factor in choosing

algorithms.

Finally, the right plot shows how often the trained models

violate the behavioral constraint requirement when applied to

new, unseen data. Scikit-learn’s linear regression model always

violates the fairness constraint, thus discriminating against one

zip code. The Seldonian algorithm’s model, by contrast, never

violates the constraint.

Importantly, external ML models can be used in the toolkit,

with little additional configuration. Because reimplementing

ML models in a new framework, especially complex ones

such as deep neural networks, can be prohibitively time

consuming when designing software, the Seldonian Toolkit

supports NumPy [20], SciPy [47], scikit-learn [35], and

PyTorch models [34], and work is ongoing to add support for

Keras, TensorFlow, and other popular ML libraries. Further,

the Experiments Library incorporates Microsoft Fairlearn’s [2]

fairness-aware classification algorithms, and we similarly plan

to add support for the Fairness Constraints [51] library. This

allows developers to directly compare their Seldonian models

to other methods that aim to improve fairness (but which do

not provide similar guarantees).

III. RELATED WORK

Recent research has argued that fairness is not only an

important aspect of machine learning, but must also be

addressed within the software engineering community, devel-

oping tools and technology to support software engineers in

building fair systems [11]. Several frameworks exist to help

data scientists evaluate models with respect to their fairness

and other performance measures, including Fairlearn [10],

Fairkit-learn [26], [27], AIFairness 360 [24], FairViz [12],

FairML [1], and Fairway [13]. Like our Seldonian Toolkit,

these frameworks help evaluate trade-offs in models but none

provide methods for training provably fair nor safe ML models.

Meanwhile, algorithms aimed to enforce fairness in ML models,

e.g., [2], [51], or repair models to reduce bias, e.g., [22], [42],

similarly do not provide the kinds of high-confidence guarantees

the Seldonian Toolkit provides. In fact, two recent systematic

literature reviews of research on testing models and systems

for fairness [14] and mitigating bias [21], found that other

than Seldonian algorithms [45], none provide high-confidence

guarantees.

Formal verification of software systems using proof assis-

tants, such as Coq [43] and Isabelle/HOL [32], allows proving

software properties but, unlike our work, requires significant

manual effort [28], [30]. Recent research has enabled fully

automating formal verification by learning models of existing

proofs for a set of systems and then using those models to

generate proofs of new properties for new systems [3], [8],

[15], [16], [18], [23], [25], [33], [38], [39], [50]. However,

these approaches to not apply directly to machine learning

models and, typically, require the system whose properties

are being verified to be written in the language used by the

underlying proof assistant.

Frameworks such as FairPrep [41] and FairRover [52] help

data scientists follow best practices in software engineering and

ML, focusing on responsible and ethical ML uses. Meanwhile,

Google’s What-If tool helps scientists analyze and understand

ML models without writing code [49]. These tools are

complementary to our work.

An important complement to building systems that enforce

fairness is testing systems for discrimination [4], [17], [46].

When additional data become available, these tools can be used

to audit models learned by the Seldonian Tooklit and by other

methods.

Finally, Seldonian algorithms have been developed for

contextual bandits [31], the setting where the training data

and deployment data come from different distributions [19],

and to enforce measures of long-term fairness [48], suggesting

future extensions of the Seldonian Toolkit.
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