
Seldonian Toolkit: Building Software with

Safe and Fair Machine Learning

Austin Hoag

Berkeley Existential Risk Initiative

USA

austinthomashoag@gmail.com

James E. Kostas, Bruno Castro da Silva, Philip S. Thomas, Yuriy Brun

University of Massachusetts

USA

{jekostas, bsilva, pthomas, brun}@cs.umass.edu

Abstract—We present the Seldonian Toolkit, which enables
software engineers to integrate provably safe and fair machine
learning algorithms into their systems. Software systems that
use data and machine learning are routinely deployed in a
wide range of settings from medical applications, autonomous
vehicles, the criminal justice system, and hiring processes. These
systems, however, can produce unsafe and unfair behavior,
such as suggesting potentially fatal medical treatments, making
racist or sexist predictions, or facilitating radicalization and
polarization. To reduce these undesirable behaviors, software
engineers need the ability to easily integrate their machine-
learning-based systems with domain-specific safety and fairness
requirements defined by domain experts, such as doctors and
hiring managers. The Seldonian Toolkit provides special machine
learning algorithms that enable software engineers to incorporate
such expert-defined requirements of safety and fairness into their
systems, while provably guaranteeing those requirements will be
satisfied. A video demonstrating the Seldonian Toolkit is available
at https://youtu.be/wHR-hDm9jX4/.

I. INTRODUCTION

The use of machine learning (ML) algorithms has become

increasingly commonplace, with a wide range of applications

including optimizing user experiences [44], providing decision

support for high-risk high-impact applications such as criminal

sentencing [5], deciding which loans should be approved [6],

deciding which resumes should be evaluated by a human [37],

and providing medical decision support [29].

Unfortunately, data-driven software can sometimes produce

undesirable behavior, such as unsafe or unfair behavior. IBM

Watson, for example, recommended potentially fatal cancer

treatments [36], and ML software used in 11 US states to

predict whether a person will commit a crime in the future

was found to have a racial bias [5].

One of the root causes of these undesirable behaviors is

the fact that there is a disconnect between the users and the

developers of data-driven software. Users, such as doctors,

lawyers, and hiring managers, have the expertise to define

what unsafe or unfair behavior means. However, these users

are not the people building the software systems that must

satisfy safety and fairness requirements. The software engineers

that do build such systems, by contrast, are typically neither

domain experts nor ML experts, so it is critical that they have

the ability to integrate ML algorithms and domain-specific

safety and fairness requirements.

We introduce the Seldonian1 Toolkit, a framework that

bridges the gap between ML experts, software engineers, and

users. The toolkit implements a Seldonian ML algorithm [45]

that allows domain-expert users to specify safety and fairness

requirements, and trains ML models that are probabilistically

verified to satisfy those requirements. The Seldonian Toolkit’s

key contributions are the support for: (1) specification of

custom, domain-specific constraints that can encode safety and

fairness properties, (2) training ML models while providing

high-confidence guarantees that these models, applied to new

data, satisfy the specified safety or fairness constraints, and

(3) evaluating the effectiveness of Seldonian algorithms for a

given use case via comparison to standard ML approaches and

other fairness-aware ML algorithms.

II. THE SELDONIAN TOOLKIT

The Seldonian Toolkit consists of two Python libraries

and a graphical user interface that runs in the browser. The

Python libraries are the Seldonian Engine2 and the Seldonian

Experiments Library3. The graphical user interface is called

the Seldonian Interface GUI (SIGUI)4. We first describe the

SIGUI (Section II-A), the Seldonian Engine (Section II-B),

and then the Experiments library (Section II-C).

With beginners in mind, we provide tutorials and examples

(with more in development) on how to use the Seldonian

Toolkit, starting from installation and progressing toward real-

world end-to-end use cases, such as creating safe and fair deep

learning and computer vision models with the toolkit.5

We have developed the toolkit with ease of adoption in

mind, interfacing with ubiquitous tools, such as NumPy, SciPy,

scikit-learn, and PyTorch. Currently, six groups of computer

science graduate students at the University of Massachusetts

are applying the toolkit to distinct ML problems, providing us

with feedback.

1The toolkit name [45] is a homage to Isaac Asimov’s fictional character,
Hari Seldon, a resident of a universe where Asimov’s three laws of robotics fail
to adequately control agent behavior due to their non-probabilistic requirements,
and who formulated and solved a machine learning problem that would likely
have required probabilistic constraints [7].

2https://github.com/seldonian-toolkit/Engine
3https://github.com/seldonian-toolkit/Experiments
4https://github.com/seldonian-toolkit/GUI
5https://seldonian.cs.umass.edu/Tutorials/tutorials/

107

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00035

Fig. 1. The Seldonian Interface GUI (SIGUI) helps users specify safety and
fairness guarantees by selecting and combining basic building blocks.

A. Seldonian Interface GUI (SIGUI)

The SIGUI is designed to help users specify safety and

fairness behavioral constraint requirements. The form of these

constraints can vary depending on the domain, and we designed

the Seldonian Toolkit to be flexible and accept a wide range of

such requirements. Many prominent definitions of fairness [40]

can be defined as mathematical statements or inequalities.

For example, a common desirable fairness definition, known

as demographic parity, requires that a positive outcome be

given to the same fraction of people of two protected classes.

Assume, for instance, that an ML model is designed to decide

who should get a loan while not discriminating based on

race. In this case, the same fraction of applicants of each

race should be given loans, up to some threshold. Not all

types of safety constraints can be expressed as mathematical

statements. Consider, for example, a user observing a robotic

system performing an unwanted behavior, such as a chess robot

breaking a child’s finger [9]. The mathematical expression

required to instruct the robot not to do this is hard to define

analytically by non-expert users. The Seldonian Toolkit

should, nonetheless, allow users to specify that this behavior

is undesirable.

Suppose the user wishes to specify that an application must

satisfy the demographic parity requirement. The toolkit’s

behavioral constraint specifications consist of two parts: (1) con-

straint strings and (2) confidence levels. Constraint strings are

mathematical inequalities that must hold. For example, Figure 1

shows how the constraint string for demographic parity can

be specified in the SIGUI. The user first selects “measure

functions.” These include metrics quantifying properties of

a given ML model, such as its positive rate (PR), negative

rate (NR), false-positive rate (FPR), etc. Then, the user

combines the measure functions with mathematical functions

(e.g., max()) and operators (e.g., ratio), and associates them

with protected classes, such as gender. For example, in Figure 1,

“PR | [Male]” means “positive rate for men.” To specify

demographic parity with respect to (binary) gender, the user

specifies “abs ((PR | [Male])− (PR | [Female]))− 0.15 ≤ 0,”

which means “the absolute value of the difference between

positive rates for men and women must be less than or equal to

0.15.” The toolkit’s probabilistic verification requires the user

to also specify, for each constraint, the required confidence

level, δ. This δ is the acceptable probability of violation of the

constraint. The user could, for example, require the Seldonian

Toolkit to produce an ML model with at least 99.9% confidence

(δ = 0.001) that it will satisfy the above-specified demographic

parity constraint when applied to unseen data.

Safety constraints can be defined similarly to fairness

constraints. For example, a behavioral constraint on an insulin

pump ML-model update could require that the update cause no

more instances of hypoglycemia than the original version [45],

or that a new model’s accuracy is strictly higher, with high

confidence.

To simplify the constraint specification process, SIGUI

allows the user to select from five commonly-used predefined

fairness constraints, modify them, or build their own completely

unique constraints using drag-and-drop building blocks. SIGUI

also includes a tutorial to speed up the learning process.6 The

user can specify an unlimited number of behavioral constraint

requirements for each model.

B. Seldonian Engine

The Seldonian Engine is the core library of the toolkit and

implements a general-purpose Seldonian algorithm. Given

a dataset D and a set of behavioral constraint requirements

(recall Section II-A), a developer can use the Engine to train an

ML model that is probabilistically guaranteed to satisfy all of

the requirements. (Note that under certain conditions, such as

when given insufficient data to train a model, or contradictory

requirements, the Engine will explicitly state that no solution

could be found, as further discussed below.)

While the Seldonian algorithm [45] is not a contribution

of this work (the Toolkit is a usable implementation of a

previously-published algorithm), we briefly describe it here.

At a high level, the algorithm operates as follows. First,

the available dataset D is partitioned into two disjoint sets:

candidate data, Dcand, and safety data, Dsafety. Dcand is provided

as input to a component called candidate selection,

which trains a single ML model that the algorithm plans to re-

turn. This model is called the candidate solution. The algorithm

attempts to select a model that maximizes performance, while

also satisfying the behavioral constraints, but, at this point,

provides no guarantees. Next, the safety test component

probabilistically verifies that the candidate solution satisfies

the behavioral constraints. The safety test executes the

6https://seldonian-toolkit.github.io/GUI/build/html/index.html

108

Fig. 2. The Seldonian Experiments Library can help software engineers evaluate trade-offs between using Seldonian and non-Seldonian ML algorithms. Here,
models trained using the Seldonian Toolkit are less accurate than ones trained using standard linear regression, and require more data, but always satisfy a
fairness requirement that the linear regression model fails.

solution on Dsafety and checks if the constraints hold on that

data. The size of Dsafety is selected specifically to allow the

use of probability bounds, such as Hoeffding’s inequality, to

estimate the likelihood that the requirement is satisfied not

only on Dsafety, but also on new, unseen data. If the bound

satisfies the specified confidence level, the algorithm returns the

candidate model. Otherwise, if the model fails the requirement

or the algorithm’s confidence is insufficient, the algorithm

returns “No Solution Found.” Our prior work has formally

proven that the produced models are probabilistically verified

to satisfy the provided safety and fairness constraints and

empirically compared Seldonian algorithms to other fairness-

aware ML algorithms [19], [31], [45].

To use the Seldonian Engine, the developer needs a set of be-

havioral constraint requirements (created by, or in coordination

with a domain expert), a dataset, and instructions on which ML

model the Engine should use internally. The Engine can use

any (parametric) ML model, such as a deep neural network or a

linear regression model. The Engine uses its implementation of

the Seldonian algorithm to train and probabilistically verify the

model, and either returns that model or “No Solution Found.”

C. Seldonian Experiments Library

Developers and domain-expert users will understandably

want to know how well their Seldonian algorithms perform

compared to existing ML models that do not necessarily enforce

safety or fairness. Satisfying behavioral constraints can involve

trade-offs between enforcing safety and, for instance, runtime

or accuracy (though our prior work showed that given real-

world data, Seldonian algorithms often identify safe and fair

solutions without a significant reduction in accuracy [17], [45]).

The Experiments Library helps the developer understand

these trade-offs. Consider an engineer tasked with building a

system that predicts housing prices within two zip codes. The

developer has access to historical data describing how various

features, including zip code, size, and the year when it was

built, influence housing prices. The stakeholders (or, perhaps,

the law) require that the system must have similar accuracy

in both zip codes, perhaps because these zip codes correlate

with the residents’ races, and failing this requirement could

lead to discrimination. The developer could use a standard ML

model, e.g., linear regression implemented in scikit-learn [35],

to achieve good overall accuracy in predicting house prices,

but they might find that their predictions are more accurate in

one zip code than the other.

The developer can input that scikit-learn model and dataset

into the Seldonian Toolkit, along with the behavioral constraint

from the stakeholders (formalized using SIGUI). The Engine

will train a new model that satisfies the requirement, i.e., it will

be similarly accurate in both zip codes. Then, the Experiments

Library will produce a set of three diagnostic plots to help the

developer understand the potential trade-offs.

We generated a synthetic dataset with a single feature (house

size), a single sensitive attribute (zip code), and a single label

(house price), and then used the Experiments Library on this

dataset with a fairness constraint that enforces similar accuracy

in the two zip codes. Figure 2 shows the resulting three plots for

this house-price prediction problem. (While the Experiments

Library currently makes these plots static, future work can

explore if interactive features can help users better understand

model behavior.) The left plot presents the accuracy of the

two ML models (produced by scikit-learn and the Seldonian

algorithm) in terms of mean squared error, as a function of

the size of the dataset. The larger the mean squared error, the

less accurate the model is in explaining the data. Here, the

Seldonian model sacrifices accuracy to be able to satisfy the

109

fairness constraint with high confidence. Note that the plot

shows no accuracy for datasets smaller than 103 data points,

as we explain next. Here, we stress, again, that while we

selected this example to showcase the possible trade-offs that

may occur, prior research has shown that accuracy can often

remain just as high as that of standard, unsafe ML algorithms

when safety or fairness constraints are enforced [17], [45].

The middle plot shows how often the algorithm produces a

verified fair model (as opposed to “No Solution Found”), as a

function of the size of the dataset. While scikit-learn always

produces a model (a very inaccurate one for small datasets),

the Seldonian Engine is only able to produce models it can

confidently say are fair once it has access to approximately

103 data points. (This is the reason the left plot did not

contain accuracy information for small datasets). The amount

of needed data is another important trade-off factor in choosing

algorithms.

Finally, the right plot shows how often the trained models

violate the behavioral constraint requirement when applied to

new, unseen data. Scikit-learn’s linear regression model always

violates the fairness constraint, thus discriminating against one

zip code. The Seldonian algorithm’s model, by contrast, never

violates the constraint.

Importantly, external ML models can be used in the toolkit,

with little additional configuration. Because reimplementing

ML models in a new framework, especially complex ones

such as deep neural networks, can be prohibitively time

consuming when designing software, the Seldonian Toolkit

supports NumPy [20], SciPy [47], scikit-learn [35], and

PyTorch models [34], and work is ongoing to add support for

Keras, TensorFlow, and other popular ML libraries. Further,

the Experiments Library incorporates Microsoft Fairlearn’s [2]

fairness-aware classification algorithms, and we similarly plan

to add support for the Fairness Constraints [51] library. This

allows developers to directly compare their Seldonian models

to other methods that aim to improve fairness (but which do

not provide similar guarantees).

III. RELATED WORK

Recent research has argued that fairness is not only an

important aspect of machine learning, but must also be

addressed within the software engineering community, devel-

oping tools and technology to support software engineers in

building fair systems [11]. Several frameworks exist to help

data scientists evaluate models with respect to their fairness

and other performance measures, including Fairlearn [10],

Fairkit-learn [26], [27], AIFairness 360 [24], FairViz [12],

FairML [1], and Fairway [13]. Like our Seldonian Toolkit,

these frameworks help evaluate trade-offs in models but none

provide methods for training provably fair nor safe ML models.

Meanwhile, algorithms aimed to enforce fairness in ML models,

e.g., [2], [51], or repair models to reduce bias, e.g., [22], [42],

similarly do not provide the kinds of high-confidence guarantees

the Seldonian Toolkit provides. In fact, two recent systematic

literature reviews of research on testing models and systems

for fairness [14] and mitigating bias [21], found that other

than Seldonian algorithms [45], none provide high-confidence

guarantees.

Formal verification of software systems using proof assis-

tants, such as Coq [43] and Isabelle/HOL [32], allows proving

software properties but, unlike our work, requires significant

manual effort [28], [30]. Recent research has enabled fully

automating formal verification by learning models of existing

proofs for a set of systems and then using those models to

generate proofs of new properties for new systems [3], [8],

[15], [16], [18], [23], [25], [33], [38], [39], [50]. However,

these approaches to not apply directly to machine learning

models and, typically, require the system whose properties

are being verified to be written in the language used by the

underlying proof assistant.

Frameworks such as FairPrep [41] and FairRover [52] help

data scientists follow best practices in software engineering and

ML, focusing on responsible and ethical ML uses. Meanwhile,

Google’s What-If tool helps scientists analyze and understand

ML models without writing code [49]. These tools are

complementary to our work.

An important complement to building systems that enforce

fairness is testing systems for discrimination [4], [17], [46].

When additional data become available, these tools can be used

to audit models learned by the Seldonian Tooklit and by other

methods.

Finally, Seldonian algorithms have been developed for

contextual bandits [31], the setting where the training data

and deployment data come from different distributions [19],

and to enforce measures of long-term fairness [48], suggesting

future extensions of the Seldonian Toolkit.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation

under grants no. CCF-1763423, CCF-2018372, and CCF-

2210243, and by a gift from the Berkeley Existential Risk

Initiative.

REFERENCES

[1] Julius A. Adebayo. FairML: ToolBox for diagnosing bias in predictive

modeling. PhD thesis, Massachusetts Institute of Technology, 2016.
[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and

Hanna Wallach. A reductions approach to fair classification. In ICML,
volume PMLR 80, pages 60–69, Stockholm, Sweden, 2018.

[3] Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo
Zhang, Timothy Zhou, Alex Sanchez-Stern, Talia Ringer, and Yuriy Brun.
Proofster: Automated formal verification. In ICSE Demo, May 2023.

[4] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou.
Themis: Automatically testing software for discrimination. In Joint

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE) Demonstration Track,
pages 871–875, Lake Buena Vista, FL, USA, November 2018.

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine
bias. ProPublica, May 2016.

[6] Kumar Arun, Garg Ishan, and Kaur Sanmeet. Loan approval prediction
based on machine learning approach. IOSR Journal of Computer

Engineering, 18(3):18–21, 2016.
[7] Isaac Asimov. Foundation. Gnome Press Publishers, New York, NY,

USA, 1951.
[8] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and

Stewart Wilcox. HOList: An environment for machine learning of higher
order logic theorem proving. In International Conference on Machine

Learning (ICML), volume 97, pages 454–463, Long Beach, CA, USA,
2019. PMLR.

110

[9] Des Bieler. Chess-playing robot breaks finger of 7-year-old boy during
match. The Washington Post, Jul 2022.

[10] Sarah Bird, Miro Dudı́k, Richard Edgar, Brandon Horn, Roman Lutz,
Vanessa Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker.
Fairlearn: A toolkit for assessing and improving fairness in AI. Technical
Report MSR-TR-2020-32, 2020.

[11] Yuriy Brun and Alexandra Meliou. Software fairness. In Joint European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE) New Ideas and Emerging Results

Track, pages 754–759, Lake Buena Vista, FL, USA, November 2018.
[12] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng,

Jamie Morgenstern, and Duen Horng Chau. FairVis: Visual analytics
for discovering intersectional bias in machine learning. In IEEE VAST,
pages 46–56, 2019.

[13] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies.
Fairway: A way to build fair ML software. In ESEC/FSE, pages 654–665,
2020.

[14] Zhenpeng Chen, Jie M. Zhang, Max Hort, Federica Sarro, and Mark
Harman. Fairness testing: A comprehensive survey and analysis of trends.
CoRR, abs/2207.10223, 2022.

[15] Emily First and Yuriy Brun. Diversity-driven automated formal
verification. In International Conference on Software Engineering (ICSE),
pages 749–761, Pittsburgh, PA, USA, May 2022.

[16] Emily First, Yuriy Brun, and Arjun Guha. TacTok: Semantics-aware
proof synthesis. Proceedings of the ACM on Programming Languages

(PACMPL) Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA) issue, 4:231:1–231:31, November 2020.
[17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing:

Testing software for discrimination. In ESEC/FSE, pages 498–510, 2017.
[18] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe:

Learning to reason with HOL4 tactics. In International Conference on

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
volume 46, pages 125–143, 2017.

[19] Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da
Silva, Philip S. Thomas, and Scott Niekum. Fairness guarantees under
demographic shift. In ICLR, 2022.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.

[21] Max Hort, Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Har-
man. Bias mitigation for machine learning classifiers: A comprehensive
survey. CoRR, abs/2207.07068, 2022.

[22] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. Fairea: A
model behaviour mutation approach to benchmarking bias mitigation
methods. In ESEC/FSE, pages 994–1006, Athens, Greece, 2021.

[23] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever.
GamePad: A learning environment for theorem proving. In International

Conference on Learning Representations (ICLR), 2019.
[24] IBM. AI Fairness 360. https://aif360.mybluemix.net, 2019.
[25] Albert Jiang, Konrad Czechowski, Mateja Jamnik, Piotr Milos, Szymon

Tworkowski, Wenda Li, and Yuhuai Tony Wu. Thor: Wielding hammers
to integrate language models and automated theorem provers. In Neural

Information Processing Systems (NeurIPS), New Orleans, LA, USA,
2022.

[26] Brittany Johnson, Jesse Bartola, Rico Angell, Sam Witty, Stephen J.
Giguere, and Yuriy Brun. Fairkit, fairkit, on the wall, who’s the fairest
of them all? Supporting data scientists in training fair models. CoRR,
abs/2012.09951, 2020.

[27] Brittany Johnson and Yuriy Brun. Fairkit-learn: A fairness evaluation
and comparison toolkit. In ICSE Demo, pages 70–74, 2022.

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. SeL4: Formal verification of an OS kernel. In Symposium

on Operating Systems Principles (SOSP), pages 207–220, Big Sky, MT,
USA, 2009.

[29] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon,
and A Aldo Faisal. The artificial intelligence clinician learns optimal
treatment strategies for sepsis in intensive care. Nature Medicine,
24(11):1716–1720, 2018.

[30] Xavier Leroy. Formal verification of a realistic compiler. Communications

of the ACM (CACM), 52(7):107–115, 2009.
[31] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy

Brun, Emma Brunskill, and Philip S. Thomas. Offline contextual bandits
with high probability fairness guarantees. In NeurIPS, pages 14893–
14904, 2019.

[32] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:

A proof assistant for higher-order logic, volume 2283. Springer Science
& Business Media, 2002.

[33] Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and
Christian Szegedy. Graph representations for higher-order logic and
theorem proving. In Conference on Artificial Intelligence (AAAI), pages
2967–2974, New York, NY, USA, 2020.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In NeurIPS, pages 8024–8035,
2019.

[35] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

[36] Casey Ross. IBM’s Watson supercomputer recommended ‘unsafe and
incorrect’ cancer treatments, internal documents show, 2018.

[37] Pradeep Kumar Roy, Sarabjeet Singh Chowdhary, and Rocky Bhatia. A
machine learning approach for automation of resume recommendation
system. Procedia Computer Science, 167:2318–2327, 2020.

[38] Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner.
Generating correctness proofs with neural networks. In Machine Learning

in Programming Languages (MAPL), 2020.
[39] Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman,

Yuriy Brun, and Talia Ringer. Passport: Improving automated formal
verification using identifiers. ACM TOPLAS, 2023.

[40] Suchi Saria and Julia Rubin. Fairness definitions explained. ACM/IEEE

International Workshop on Software Fairness (FairWare), 2018.
[41] Sebastian Schelter, Yuxuan He, Jatin Khilnani, and Julia Stoyanovich.

FairPrep: Promoting data to a first-class citizen in studies on fairness-
enhancing interventions. In EDBT, 2020.

[42] Bing Sun, Jun Sun, Long H. Pham, and Jie Shi. Causality-based neural
network repair. In ICSE, pages 338–349, Pittsburgh, PA, USA, 2022.

[43] The Coq Development Team. Coq, v.8.7. https://coq.inria.fr, 2017.
[44] Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh.

Personalized ad recommendation systems for life-time value optimization
with guarantees. In IJCAI, pages 1806–1812, 2015.

[45] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen
Giguere, Yuriy Brun, and Emma Brunskill. Preventing undesirable behav-
ior of intelligent machines. Science, 366(6468):999–1004, 22 November
2019.

[46] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-
Pierre Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. FairTest:
Discovering unwarranted associations in data-driven applications. In
IEEE European Symposium on Security and Privacy (EuroS&P), Paris,
France, April 2017.

[47] Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[48] Aline Weber, Blossom Metevier, Yuriy Brun, Philip S. Thomas, and
Bruno Castro da Silva. Enforcing delayed-impact fairness guarantees.
CoRR, abs/2208.11744, 2020.

[49] James Wexler. The What-If tool: Code-free probing of
machine learning models. https://ai.googleblog.com/2018/09/
the-what-if-tool-code-free-probing-of.html, 2018.

[50] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting
with proof assistants. In International Conference on Machine Learning

(ICML), Long Beach, CA, USA, 2019.
[51] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez,

and Krishna P. Gummadi. Fairness constraints: Mechanisms for fair
classification. In FAT ML, Lille, France, 2015.

[52] Hantian Zhang, Nima Shahbazi, Xu Chu, and Abolfazl Asudeh. Fair-
Rover: Explorative model building for fair and responsible machine
learning. In Workshop on Data Management for End-To-End Machine

Learning, 2021.

111

