
Evaluating the Viability of LogGP for Modeling MPI Performance
with Non-contiguous Datatypes on Modern Architectures

Nicholas Bacon
Department of Computer Science

University of New Mexico
Albuquerque, New Mexicoddd, USA

nbacon@unm.edu

Patrick G. Bridges
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

patrickb@unm.edu

Scott Levy
Center for Computational Research

Sandia National Laboratories
Albuquerque, New Mexico, USA

sllevy@sandia.gov

Kurt Ferreira
Center for Computational Research

Sandia National Laboratories
Albuquerque, New Mexico, USA

kbferre@sandia.gov

Amanda Bienz
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

bienz@unm.edu

ABSTRACT
Modern architectures and communication systems software include
complex hardware, communication abstractions, and optimizations
that make their performance difficult to measure, model, and un-
derstand. This paper examines the ability of modified versions
of the existing Netgauge communication performance measure-
ment tool and LogGOPS performance model to accurately char-
acterize communication behavior of modern hardware, MPI ab-
stractions, and implementations. This includes analyzing their abil-
ity to model both GPU-aware communication in different MPI
implementations and quantifying the performance characteris-
tics of different approaches to non-contiguous data communica-
tion on modern GPU systems. This paper also applies these tech-
niques to quantify the performance of different implementations
and optimization approaches to non-contiguous data communica-
tion on a variety of systems, demonstrating that modern communi-
cation system design approaches can result in widely-varying and
difficult-to-predict performance variation, even within the same
hardware/communication software combination.
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1 INTRODUCTION
Complex hardware architectures, communication abstractions, and
system software optimizations can make the performance of mod-
ern high-performance communication systems difficult to under-
stand and predict. Communication performance variation between
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and within systems and implementations discourages programmers
from using more sophisticated abstractions, instead causing them
to fall back to the lowest common denominator programming ab-
stractions. In the case of MPI, this generally results in programmers
defaulting to point-to-point sends and receives using contiguous
buffers instead of more sophisticated abstractions.

It can be difficult to accurately quantify and model the perfor-
mance of even conceptually simple communication abstractions on
modern high-performance computing systems. The MPI datatype
abstraction, for example, was designed to ease communication and
improve performance when sending, receiving, and manipulating
(e.g., reducing) non-contiguous data, and has been an element of
the MPI standard from its inception. Unfortunately, datatype per-
formance on modern GPU-based systems is often poor [7], complex
to optimize [18, 11, 21], and can vary widely system-to-system,
implementation-to-implementation, and even call-to-call based on
the optimizations implemented [21].

This paper examines the ability of the well-known LogGOPS
communication performance model [9] and Netgauge measurement
tool [8] to model, measure, and analyze the performance of modern
GPU-based HPC systems, particularly when using more complex
communication abstractions such as MPI derived datatypes. In
doing so, it describes the following contributions:

• An analysis of the suitability of LogGOPS-based models to
quantify the performance of approaches to communicating
data, including non-contiguous data, in modern GPU-based
high-performance systems;

• An approach and related set of open-source tools for measur-
ing these model parameters when transferring contiguous
and non-contiguous data;

• An evaluation of the model’s ability to capture key perfor-
mance characteristics and predict the performance of con-
tiguous and non-contiguous communication on multiple
modern hardware platforms and MPI implementations; and,

• An empirical comparison of the performance of different
non-contiguous data communication implementations on
multiple systems using this model.

The remainder of this paper is organized as follows. Section 2 begins
with a discussion of the state-of-the-art techniques for modeling
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Figure 1: Example of LogGOPS model for the transmission of
two back-to-back 𝑘-byte messages

and measuring the performance of high-performance communi-
cation systems. Section 3 then follows with a discussion of the
challenges in modeling communication performance on modern
communication middleware and architectures and the proposed ap-
proach for considering LogGPS, LogGOPS, and Netgauge modeling
and measurement in these systems. Section 4 describes the exper-
imental setup used to evaluate this modeling and measurement
approach on modern systems, and Section 5 presents and discusses
the results of these experiments. Finally, Section 6 discusses related
research in this area, and Section 7 summarizes paper results and
discusses potential directions for future research.

2 BACKGROUND
2.1 The LogGOPS model
The LogP [6] family of models (see e.g., LogGP [1], LogGPS [10])
are a group of abstract models of inter-process communication in
distributed systems. LogGOPS [9] is a member of this family that
extends the LogGPS model by adding the cost of per-byte commu-
nication overheads (𝑂). The complete LogGOPS model calculates
communication performance as a linear function of the following
eight variables: (i) 𝑘 , the message size, measured in bytes; (ii) 𝐿,
the latency of sending a message between processes; (iii) 𝑜 , the
per-message processor cost of sending a message; (iv) 𝑔, the per-
message cost of initiating a network send; (v) 𝐺 , the per-byte cost
of initiating a send; (vi) 𝑂 , the per-byte processor cost of sending a
message; (vii) 𝑃 , the number of processes in the system; and (viii) 𝑆 ,
the threshold for using synchronized sends (e.g., the rendezvous
protocol in MPI).

The original LogPmodel used a single value (𝑜) to represent both
send and receive overheads. However, as a practical matter, send
and receive overheads may not always be the same [14]. Therefore,
in this paper, we follow the established practice of distinguishing
between the send overhead (𝑜𝑠 ) and the receive overhead (𝑜𝑟 ).

Figure 1a shows a simple example of sending two back-to-back 𝑘-
bytemessages between a Sender and Receiver. In networks that allow
communication-computation overlap, the network and the CPU can
progress independently. The 𝐺 and 𝑔 terms are used to determine
the network time required for a send and the 𝑂 and 𝑜𝑠 terms are

used to determine the processor time required for a send. The
time required to complete a send operation is the maximum of the
network time and the processor time (i.e., the point at which both
the network and the processor have completed the work necessary
for a send). We discuss our modifications to this model in Section
3.1.

2.2 Netgauge
Netgauge [8] is a tool for measuring and characterizing perfor-
mance in high-performance networks. It supports measurement
on different networks using several communication patterns. For
the purposes of the analysis in this paper, Netgauge supports the
ability to measure LogGP parameters using MPI.

2.3 MPI Derived Datatypes
The MPI standard [13, Table 3.2] includes several predefined types
for use in the MPI API. These types roughly correspond to stan-
dard C data types (e.g., MPI_CHAR). The MPI standard [13, Chapter
5] also provides the ability for programmers to use these basic
types to construct more sophisticated types. In addition to allow-
ing programmers to group multiple basic types into new types,
derived datatypes also allow programmers to define an associated
memory layout (e.g., MPI_TYPE_CREATE_CONTIGUOUS for data that
is contiguous in memory, MPI_TYPE_CREATE_VECTOR for data that
is strided in memory). Given that derived datatypes may be non-
contiguous in memory, send and receive operations using derived
types generally perform additional operations to pack and unpack
derived datatypes into (and out of) contiguous memory buffers as
they are sent and received over the network.

3 APPROACH
Our primary modeling goal for modern systems is to quantify the
additional costs associated with GPU and non-contiguous data
communication, as there are many different approaches for han-
dling these cases. For example, GPU data can be packed and un-
packed in host memory or they can be packed in GPU memory
(e.g., by launching appropriate pack and unpack kernels on the
device). Additionally, CUDA-aware MPI enables send and receive
operations to reference message buffers in host or device memory.
Different approaches may also use different optimization strategies
(e.g., pipelined transfers or scatter/gather operations). Each of these
choices implicates a different sets of performance characteristics.
In the remainder of this section, we describe our approach to mod-
eling these costs with a straightforward extension of the LogGOPS
network communication model using model parameters that we
measure using a modified version of the Netgauge tools.

3.1 Applying LogGOPS to GPU communication
and Non-Contiguous Data

Figure 1b shows a simple example of sending two back-to-back
𝑘-byte messages using our simple extension of the LogGOPS model.
The principal difference between thismodel and the original LogGOPS
model (see Section 2.1) is that, unlike the original model, we ex-
plicitly account for the costs associated with moving data between
host and device memory and assembling non-contiguous data into
contiguous message buffers. To capture the impact of these costs,
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we model the per-message overheads (𝑜𝑠 and 𝑜𝑟 ) and per-byte
overhead (𝑂𝑠 and 𝑂𝑟 ) to include: (i) the time required for sending
messages to (𝑜𝑠𝑒𝑛𝑑 ), and receiving messages from (𝑜𝑟𝑒𝑐𝑣 ), the net-
work; and (ii) the costs associated with preparing non-contiguous
data for transmission (𝑜𝑝𝑎𝑐𝑘 ) and the costs associated with pro-
cessing non-contiguous data after reception (𝑜𝑢𝑛𝑝𝑎𝑐𝑘 ). The costs
include datatype packing or unpacking (including launching ker-
nels to pack or unpack data directly in device memory), copying
data between host and device memory, creating scatter-gather lists,
or other similar per-message or per-byte costs associated with ev-
ery send. We seek primarily to use this model to understand how
GPUs and MPI datatypes impact per-message and per-byte pro-
cessor overheads. For the remainder of this paper, we refer to the
activities associated with managing non-contiguous data in GPU
memory as packing and unpacking. However, we recognize they
can include other overheads associated with sending from, and
receiving to, GPU memory. We also note that these overheads can
vary for different data transfers, depending for example on the lay-
out of data being sent or received. For notational simplicity, we also
assume for the remainder of the paper that 𝑜𝑠 , 𝑜𝑟 , and 𝑂𝑠 include
the costs associated with packing and unpacking non-contiguous
data in GPU memory. That is, 𝑜𝑝𝑎𝑐𝑘 and 𝑜𝑢𝑛𝑝𝑎𝑐𝑘 are not calculated
explicitly but rather are conceptual costs added to 𝑜𝑠 and 𝑜𝑟 by the
kernel running on the GPU.

Netgauge only provides estimates of the LogGPS parameters.
As a result, its measurements combine per-message and per-byte
overheads. Its estimates of per-message send and receive overhead
change as a function of the message buffer size. In this section,
we refer to these combined measurements as 𝑜𝑠 and 𝑜𝑠 . To obtain
the per-byte overhead parameter, we perform a linear fit of the
per-message measurements from Netgauge. We use the coefficients
of the linear fit of the send overhead to model the per-byte send
overhead (𝑂𝑠 ) as the slope and the per-message send overhead (𝑜𝑠 )
as the 𝑦-intercept.

In the LogGOPS model, 𝑜𝑟 is typically assumed to be constant.
However, we have empirically shown that the value of 𝑜𝑟 reported
byNetgauge is a function ofmessage size. Therefore, in our LogGOPS
model, we also perform a linear fit of the receive overhead reported
by Netgauge. We use the coefficients of the linear fit of the receive
overhead and model the per-byte receive overhead (𝑂𝑟 ) as the slope
and the per-message receive overhead (𝑜𝑟 ) as the 𝑦-intercept. The
combination of these two coefficients allows us to estimate the total
receive overhead based on the size of the received message buffer.
Given this background, we use the LogGPS model to estimate the
time required to complete a ping-pong operation with a 𝑘-byte
buffer (𝑡𝑝𝑖𝑛𝑔-𝑝𝑜𝑛𝑔) as:

𝑡𝑝𝑖𝑛𝑔-𝑝𝑜𝑛𝑔 = 2(max(𝑜𝑠 , 𝑔) +𝐺𝑘 + 𝐿 + 𝑜𝑟 )

where 𝑜𝑠 = 𝑜𝑠𝑒𝑛𝑑 + 𝑜𝑝𝑎𝑐𝑘 , and 𝑜𝑟 = 𝑜𝑟𝑒𝑐𝑣 + 𝑜𝑢𝑛𝑝𝑎𝑐𝑘 are the per-
message size estimates of send and receive overheads from Net-
gauge, respectively.

Similarly, given the linear fit of the overhead estimates from
Netgauge, we can use the LogGOPS model to estimate 𝑡𝑝𝑖𝑛𝑔-𝑝𝑜𝑛𝑔 for
a 𝑘-byte buffer as:

𝑡𝑝𝑖𝑛𝑔-𝑝𝑜𝑛𝑔 = 2(max(𝑜𝑠 +𝑂𝑠𝑘,𝑔 +𝐺𝑘) + 𝐿 +𝑂𝑟𝑘 + 𝑜𝑟 )

where 𝑂𝑠 and 𝑜𝑠 are the coefficients of the linear fit of 𝑜𝑠 , and 𝑂𝑟

and 𝑜𝑟 are the coefficients of the linear fit of 𝑜𝑟 .

3.2 Using Netgauge to Model Derived Datatypes
in GPU Memory

To measure LogGOPS parameters on modern systems, we use multi-
ple runs of a version of Netgauge that we modified to send and re-
ceive messages composed of a configurable datatype in either CPU
or GPU memory. Our modifications to Netgauge include changes
to take into account the size of the datatype being used; specifi-
cally, this modified version of Netgauge assumes that the costs of
sending an MPI datatype is dependent on its MPI size, not its MPI
extent. In the work described in this paper, we focus on MPI derived
datatypes constructed with MPI_Type_vector using configurable
block count, block size, and block stride parameters.

In addition, we also modified Netgauge to use a configurable de-
lay parameter when estimating the overhead (𝑜) and inter-message
gap (𝑔) parameters. Because these two parameters act in parallel
during message transmission, Netgauge adds this delay to some
round trips to measure the two quantities separately. The original
version of Netgauge used a delay parameter that was much too
short to account for the high overheads that some MPI implemen-
tations (e.g. Spectrum) encountered when sending large buffers of
derived datatypes. Finally, we have made this modified version of
NetGauge publicly available [2].

Overall, our measurement approach is based on the that de-
scribed in the original Netgauge and LogGOPSim papers:

(1) Choose a target memory system (i.e. host or device memory),
datatype, and range of bytes transmitted to evaluate.

(2) Estimate a delay parameter sufficient to accurately distin-
guish between inter-message gap and per-message overhead;
we generally use twice the expected time to send the largest
message size being tested with the chosen datatype. We do
not currently attempt to dynamically choose this delay pa-
rameter.

(3) Compute the base LogGOPS parameters for communication
with a simple primitive type (e.g., MPI_FLOAT) with a con-
tiguous datatype (i.e. a single element MPI vector type with
𝑠𝑡𝑟𝑖𝑑𝑒 == 𝑏𝑙𝑜𝑐𝑘𝑙𝑒𝑛𝑔𝑡ℎ) using the standard approach for
LogGOPS measurement [9].

(a) Run Netgauge with a primitive datatype and counts to ob-
tain basic LogGPS network communication parameters for
the memory being used and to identify where an increase
in the buffer size results in a protocol switch (e.g., eager
to rendezvous).

(b) For each protocol section, perform a linear fit of the origi-
nal LogGPS 𝑜𝑟 and 𝑜𝑠 parameters to compute the base 𝑜𝑟 ,
𝑂𝑟 , 𝑜𝑠 , and 𝑂𝑠 parameters of the LogGOPS model.

Note that the LogGPS parameters include a different overhead value
for each (𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒, 𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡) tuple, while the LogGOPS parame-
ters are estimated piecewise for each protocol switch section of
the model. Our approach also assumes that changes to the packing
approach that impact performance occur at the same boundaries as
network protocol switches.
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4 EXPERIMENTAL SETUP
To evaluate the challenges and approach described in the previous
section, we chose a set of systems, MPI implementations, and MPI
derived datatypes to evaluate in the following manner:

(1) Estimate the LogGPS and LogGOPSmodel parameters of CUDA-
awareMPI communication of GPU buffers with differentMPI
datatypes on these systems using our modified version of
Netgauge described in the previous section;

(2) Directly measure the MPI ping-pong round trip communica-
tion time for the same systems, MPI implementations, and
datatypes.

(3) Compare the relative error between the measured median
round trip time and the predicted round trip time computed
using the formulas presented in Section 3. We use the arith-
metic mean when averaging relative errors of different sizes
for comparison between datatypes or MPIs.

The remainder of this section provides additional details on the ex-
perimental setup, including the systems and MPI implementations
tested, the datatypes evaluated, and how round trip communication
times are measured.

4.1 System Configurations
We collected data for multiple MPI implementations on both a
high-end supercomputer system and a mid-range HPC cluster:

LLNL Lassen: Lawrence LivermoreNational Laboratory’s Lassen
supercomputer uses IBM POWER9 3.80 GHz CPUs, NVIDIA
V100 GPUS, and Mellanox EDR InfiniBand network inter-
face cards. CPUs, GPUs, and NICs are interconnected us-
ing bidirectional 150GB/s NVLINK bus links. Lassen nodes
are configured to provide gdrcopy support [15] for direct
NIC/GPU communication. Our modified version of Netgauge
was compiled with GCC 8.3.1 and CUDA 11.1.1. We used
the following system-provided MPI implementations on this
system:
• Lassen/Spectrum: SpectrumMPImodule version 2020.08.19,
the IBM-provided MPI implementation based on Open-
MPI.

• Lassen/MVAPICH2: MVAPICH2-GDR module version
2021.05.29-cuda-11.1.1, the LLNL-provided version ofMVA-
PICH [17].

SNL Glinda: Sandia National Laboratories’ Glinda cluster is
composed of compute nodes built around AMD EPYC 2.80
GHz CPUs, NVIDIA A100 GPUS, and NVIDIA Mellanox
ConnectX-6 2xHDR InfiniBand network interface cards. CPUs,
GPUs, and NICs are connected via PCIe. gdrcopy support is
not provided on these nodes. Our modified version of Net-
gauge was compiled with GCC 9.3.0 and CUDA 11.1.0. We
used the following system-provided MPI implementations
on this system:
• Glinda/OpenMPI4
• Glinda/OpenMPI4+TEMPI: OpenMPI 4.1.4 was built
with the TEMPI datatype engine (git commit hash 9e623f0
from github.com/cwpearson/TEMPI) to improveGPU datatype
handling. The provided measure-system binary was used
to calibrate packing performance tradeoffs prior to testing.

4.2 Datatype Evaluation Strategy
Our datatype evaluation focuses on testing one of the simpler MPI
derived datatypes, MPI_Type_vector. This datatype is frequently
used to specify blocks of strided data, for example sub-portions of
arrays. MPI vector types are specified with a base MPI_Datatype
and a (𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑢𝑛𝑡, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑐𝑜𝑢𝑛𝑡, 𝑠𝑡𝑟𝑖𝑑𝑒) tuple that specifies, re-
spectively, the number of blocks of contiguous elements; the num-
ber of contiguous elements in each block, and the number of base
type instances between the start of each block. For example, a
(1, 1, 1) vector is simply the underlying base type, while a (2, 2, 4)
vector contains two blocks of two base type elements with two
unused elements at the end of each block.

The experiments described in this paper use either a contigu-
ous buffer of primitive datatypes, specifically MPI_FLOAT, or vector
datatypeswith MPI_FLOAT as the base type. In particular, we use vec-
tor configurations varying from (1, 1, 4) to (4, 4, 4)with a fixed stride
of 4 MPI_FLOATs. The sizes of the resulting datatypes ranged from 4
bytes (i.e., (1, 1, 4)) to 64 bytes (i.e., (4, 4, 4)). This choice of datatypes
tests both sparse and contiguous datatypes, and both single block
and multi-block datatypes. For brevity, the results presented in the
next section focus on eight MPI_Type_vector datatypes: (1, 1, 4),
(1, 2, 4), (1, 3, 4), (1, 4, 4), (4, 1, 4), (4, 2, 4), (4, 3, 4), (4, 4, 4). This
range allows us to test how well the LogGPS models capture perfor-
mance when varying send/recv count, datatype block count, and
sparsity.

4.3 Ping-pong Performance Measurement
We measure the ping-pong time for each datatype with power-
of-two MPI_Send/MPI_Recv element counts ranging from 1 (20)
element to 262,144 (218) elements. In each test, the given number
of datatypes is exchanged as a sequential ping-pong (i.e., the same
number of bytes is sent and received in each direction) between
two nodes 100 times, and the total amount of time for this data
exchange is measured and used to compute the average round trip
time for the trial. We run 10 trials for each datatype with each of
the four system configurations described in Section 4.1. Each of
these trials is repeated 10 times, and we report the median round
trip time of the set of trials as the measured value. For analysis, test
results are grouped by the total number of bytes sent, allowing for
the comparison between datatypes that have dissimilar layouts but
result in the transfer of the same amount of data.

4.4 LogGPS Performance Measurement
We measure the LogGPS parameters using our modified version
of Netgauge. We use the same datatype and element count range
as the ping-pong performance measurements. We do a linear fit
on the raw LogGPS 𝑜𝑟 and 𝑜𝑠 parameters to compute the 𝑜𝑟 , 𝑂𝑟 ,
𝑜𝑠 , and 𝑂𝑠 parameters of the LogGOPS model. Estimated round
trip communication times are then estimated from the measured
LogGPS and LogGOPS parameters using the formulas presented in
Section 3.1.

5 RESULTS AND ANALYSIS
To evaluate the usefulness of the approach described in the previ-
ous section for quantifying and analyzing the performance of MPI

github.com/cwpearson/TEMPI
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implementations on modern systems, we sought to answer three
specific research questions:

• How effectively do the LogGPS and LogGOPS models quan-
tify communication performance of MPI implementations on
modernGPU systemswhen using simple primitive datatypes?

• How effectively do the LogGPS and LogGOPS models quan-
tify the performance of communication using MPI derived
datatypes?

• How do the LogGPS and LogGOPS parameters for different
MPI implementations change across a range of datatypes
and message sizes?

We evaluated these questions on the systems, MPI implementations,
and MPI datatypes and message sizes described in the previous
section.

5.1 LogGPSmodeling of GPU communication
performance

In this subsection, we analyze how accurately the LogGPS and
LogGOPS models capture key performance features of the MPI im-
plementations and systems described in Section 4.1 with primitive
MPI datatypes. LogP-derived models have a relatively simple net-
work model where communication is modeled as a sequence of
messages moving through a single network path. Because of this,
it is not obvious that these models can reasonably predict even
the general trends of modern network communication, much less
precisely predict round trip times.

Figure 2, shows the full range of model predictions of four of the
MPI implementation using both the LogGPS and LogGOPS and the
relative prediction error at each data size. The models measured
using Netgauge capture some key features of MPI performance,
particularly for mid-sized messages. However, they also tend to
consistently over-predict ping-pong communication times, particu-
larly for very large and very small messages. This is particularly
true in both Lassen test cases, which consistently have a relative
error of 60% or higher. The complex network topology, GPUDirect
network access, and highly-tuned nature of MVAPICH2 mean these
cases may not be a good match for the assumptions implicit in
LogP-based communication models. Despite this, however, these
models still capture general communication cost trends, which is
often more important in communication modeling than absolute
or relative error.

5.2 LogGPS and LogGOPS Modeling of GPU
Datatype Communication Performance

In this subsection, we analyze how accurately the LogGPS and
LogGOPS models captured key performance features of the MPI
implementations and systems described in Section 4.1 with differ-
ent MPI datatypes. Based on the results of the previous subsection,
we focus primarily on how well the LogGPS and LogGOPS models
perform when modeling abstractions with higher CPU overheads.
While LogGOPS struggles to capture the performance of complex
modern networks, it is a separate question as to whether it can
reasonably model the communication overheads associated with
communication that uses MPI derived datatypes.

Figures 3 and 4 show the performance of Glinda/OpenMPI4,
Glinda/OpenMPI4+TEMPI, Lassen/MVAPICH2, and Lassen/Spectrum
on two different vector datatypes: 4-block vector datatypes with
either 4 contiguous floats per block of 32 bytes (i.e., (4, 4, 4)) or 1
sparse float per block of 32 bytes (i.e, (4, 1, 4)). In general and as with
primitive datatypes, the models generally track measured commu-
nication performance but overestimate ping-pong times. However,
themodel ismore accurate for communication usingmore expensive
sparse datatypes where datatype packing/unpacking costs domi-
nate network communication costs. Also, note the poor absolute
performance of Spectrum on multi-block sparse datatypes; this is a
known problem with these implementations that other researchers
have also observed [18].

Finally, Figure 5 shows the arithmetic means of the LogGPS rela-
tive prediction error for each of the datatypes we tested on each
system/MPI combination. First, in all cases except Spectrum MPI,
accuracy is relatively poor because the MVAPICH2 and OpenMPI
4.1.4 datatype engines do not introduce significant additional over-
heads. However, the relative error is generally smaller for 4-block
datatypes than 1-block datatypes, especially for sparse 4-block
datatypes (i.e., (4, 1, 4), (4, 2, 4), and (4, 3, 4)) with MVAPICH2 and
Spectrum MPI. In particular, LogGPS is much more accurate for
Spectrum MPI when modeling the performance of the costly multi-
block non-contiguous datatypes, but exhibits the same systematic
relative errors of all LogGPS models on modern systems in other
cases. LogGOPS is also more accurate for MVAPICH2 with multi-
block sparse datatypes for which packing/unpacking costs are more
significant than communication costs.

In general, these data show that LogGPS and LogGOPS modeling
is more accurate when datatype packing and unpacking costs are
high compared to network communication costs. In addition, the
model also successfully captures the general shape and trends of
GPU datatype communication. As a result, we conclude that our
modified Netgauge-measured LogGPS parameters appear to: (1)
accurately model packing and unpacking costs; and (2) continue to
systematically overestimate network communication costs similar
to the original Netgauge. As a result, Netgauge and LogGPS are very
useful for quantifying communication computational overheads
despite the fact that they have significant challenges accurately
quantifying communication network costs on modern systems.

5.3 Analyzing Datatype Engine Performance
As described in the previous subsection, the LogGPS and LogGOPS
parameters measured by our modified Netgauge version can accu-
rately quantify datatype engine behavior of modern MPI implemen-
tations. In this subsection, we use this capability to analyze and
compare the performance of the MPI and system configurations
described in Section 4.1.

Figure 6 shows the computed receive overhead per byte mea-
sured in microseconds per byte for MPIs running on the LLNL
Lassen and SNL Glinda systems with both single block and multi-
block vector datatypes. Note the use of a logarithmic scale on the
𝑦-axis in this chart to show the full range of the data and the ex-
tent to which it varies both between datatypes for a given MPI
implementation and between MPI implementations.
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Figure 2: LogGPS and LogGOPS modeling contiguous MPI_FLOAT Ping-pong Performance.
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Figure 3: Modeled versus measured ping-pong datatype performance of a 4-block contiguous vector datatype

As shown in the figure, the results for Spectrum MPI vary by
three orders of magnitude between single-block datatypes and
multi-block datatypes when receiving sparse data. This accounts
for the high ping-pong times in Figure 4. MVAPICH2 also shows
increased overhead in per-byte overhead for multi-block sparse
datatype reception (approximately one order of magnitude), though
not to the degree shown by Spectrum MPI. In contrast, the results
for OpenMPI and OpenMPI+TEMPI vary less between single block
and multi-block sparse and contiguous dataypes. Send overhead
per byte data, see Figure 7, show similar results.

The data in Figures 6 and 7 shows differences between the way
that these MPI implementations handle datatypes. For the 1-block
datatypes (left subfigures in Figures 6 and 7), the per-byte overheads
are relatively constant between the dense datatype (1, 4, 4) and the
sparse datatypes, (1, 1, 4), (1, 2, 4), and (1, 3, 4). This suggests that
these MPI implementations are not exploiting that (1, 4, 4) specifies
a contiguous layout in memory (i.e., no packing or unpacking is
required). In contrast, for the 4-block datatypes (right subfigures in
Figures 6 and 7), the per-byte overheads for MVAPICH2 and Spec-
trum MPI are significantly lower for the dense datatype (4, 4, 4)
than for the sparse datatypes, (4, 1, 4), (4, 2, 4), and (4, 3, 4), sug-
gesting that these implementations are able to exploit the fact that
(4, 4, 4) specifies a layout that is contiguous in memory. The data
for the two Open MPI configurations show that, like the 1-block
datatypes, the per-byte overheads are relatively constant between
the dense datatype and the sparse datatypes.

6 RELATEDWORK
6.1 Modern Datatype Abstractions
MPI datatypes [13, Chapter 5] are themostwell-known and commonly-
used datatype abstractions, but other HPC communication systems
support similar features. For example, GASNet-EX [12] provides
support for user-defined data types in reduction operations. Simi-
larly, UCX [16] provides support for generic data types that enable
integration with MPI datatype engines.

6.2 Datatype Performance Modeling
Sun et al. [20] use the Memory-LogP model to understand the
overhead of transferring non-contiguous data types. Based on their
analysis, they develop an approach based on the MPI Profiling
interface in which they use heuristics to identify data types in
MPI_Send operations where optimization is possible.

6.3 Datatype Performance Optimization
Several researchers have implemented new approaches for opti-
mizing datatype performance in modern communication systems.
TEMPI [18], for example, is an MPI interposer library that con-
verts non-contiguous data types in GPU memory into contigu-
ous data to improve communication performance. It includes fine-
grainedmeasurement-based optimization to tune packing. Similarly,
Yaksa [11] is a datatype engine that helps users and communica-
tion libraries more effectively manage and manipulate datatypes
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Figure 4: Modeled versus measured ping-pong datatype performance of a 4-block sparse vector datatype
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Figure 5: Arithmetic mean of relative error for LogGP model with one block and four block vector datatypes

in non-contiguous memory. Yaksa provides support for both CPUs
and GPUs and has been integrated into MPICH. Finally, a wide
range of datatype optimization approaches have been proposed for
MVAPICH2. For example, Wang et. al [23] describe an approach
that offloads packing and unpacking operations to the GPU and
uses pipelining to overlap communication operations. Similarly,
HAND [19] is a framework that uses CUDA GPU kernels to pack
and unpack non-contiguous data types in GPU memory to improve
communication performance and to reduce the need for hand-tuned,

application-specific packing kernels. Finally, Suresh et al. [21] ex-
amine the potential benefit of using the scatter-gather functionality
of Infiniband HCAs to manage transfers of MPI datatypes that are
non-contiguous in GPU memory. function to improve performance.
Similar approaches have also been examined for non-contiguous
transfers in the GASNet-EX communication system [4].
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Figure 6: LogGOPS estimated receive overhead per byte (𝑂𝑟 ) for varying vector datatypes, MPI implementation, and systems.
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Figure 7: LogGOPS estimated send overhead per byte (𝑂𝑠 ) for varying vector datatypes, MPI implementation, and systems.

6.4 Data Transfer Models
Finally, various models have been developed to study the perfor-
mance of specific elements of GPU communication systems. Van-
Werkhoven et al. [22] use LogGP to model the time required to
transfer data between CPU and GPU memory via the PCIe bus,
and Boyer et al. [5] used a simple latency plus bandwidth model of
transfers of data between CPUs and GPUs over the PCIe bus. More
recently, Bienz et al. [3] used a latency plus bandwidth model to
measure the performance of multiple GPU communication datap-
aths in modern multi-GPU systems. Unlike the work described in
this paper, none of these approaches attempt to model end-to-end
GPU communication performance or assess the suitability of their
models for end-to-end performance analysis.

7 CONCLUSION
The results presented in this paper show the challenges and op-
portunities faced in understanding, measuring, and modeling the
performance of communication in modern HPC middleware and
hardware systems. In particular, these results demonstrate: (1) the
limitations LogP-based models for predicting communication per-
formance on modern hardware, and (2) their continuing suitability
for quantifying the computational overheads associated with com-
munication abstraction implementations. In addition, these results

quantify and highlight the large range of performance in the imple-
mentations of key communication abstractions on modern systems.

A wide range of directions exists for future work building on
these results. First, the results in this paper focus only on the point-
to-point communication portions of the LogGPS and LogGOPS mod-
els; studies examining both the qualitative and quantitative accu-
racy of this model for collective (e.g., broadcast) communication on
modern systems that includes hardware collective support would
be an interesting direction for future work. Second, the presented
results highlight the need for new communication performance
models that more accurately capture the communication charac-
teristics of modern hardware systems. Finally, studies modeling
the performance characteristics of additional common or emerging
communication abstractions, for example, GPU kernel-triggered or
stream-triggered communication, are also potentially interesting.
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