
Hardware-Aware Compression with Random Operation Access Specific Tile

(ROAST) Hashing

Aditya Desai 1 Keren Zhou 1 Anshumali Shrivastava 1 2

Abstract

Advancements in deep learning are often associ-

ated with increasing model sizes. Training and

deploying large models require sophisticated hard-

ware and incur significantly higher costs. Thus,

model compression is a widely explored approach

to solving the problem. However, SOTA tech-

niques fall short in one or more desirable as-

pects of compression - for instance, pruning does

not reduce memory for training, quantization can

only provide up to 32× compression, Hashed-

Net is cache-inefficient, etc. This paper proposes

a model-agnostic, cache-friendly, and hardware-

aware model compression approach: Random

Operation Access Specific Tile (ROAST) hash-

ing. ROAST collapses the parameters by club-

bing them through a lightweight mapping. While

clubbing these parameters, ROAST utilizes cache

hierarchies by aligning the memory access pattern

with the parameter access pattern. ROAST is up

to ∼25× faster to train and ∼50× faster to in-

fer than the popular parameter sharing method

HashedNet. Additionally, ROAST introduces

global weight sharing, which is empirically and

theoretically superior to local weight sharing in

HashedNet, and can be of independent interest.

With ROAST, we can efficiently train and deploy

the model using a much smaller memory footprint

(∼ 10 − 100× lesser) in text and image classifi-

cation tasks. ROAST-MM kernel implementation

is open-source 1

1 Department of Computer Science, Rice University,
Houston, Texas, United States 2 ThirdAI Corp, Houston,
Texas, United States. Correspondence to: Aditya Desai
<Aditya.P.Desai@rice.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1https://github.com/apd10/RzLinear/tree/stable

1. Introduction

Models across different domains, including Natural Lan-

guage Processing (NLP), Computer Vision (CV), and Infor-

mation Retrieval (IR), are exploding in size. State-of-the-art

(SOTA) results in these domains are being obtained at a

disproportionate increase in model sizes, questioning the

sustainability of deep learning (Thompson et al., 2021). For

instance, SOTA architectures for vision include VGG (Si-

monyan & Zisserman, 2014) (150M params, 0.6GB) and

ViT (Dosovitskiy et al., 2020) (up to 304M params, 1.2GB).

Additionally, SOTA NLP models range from BERT (Devlin

et al., 2018) (340M params, 1.36GB) to GShard (Lepikhin

et al., 2020) (600B params, 2.4TB). Similarly, industrial-

scale recommendation models such as DLRM (Naumov

et al., 2019; Mudigere et al., 2021) can have up to 10s of

trillions of parameters (50TB).

Large models, such as the above, come with various chal-

lenges. They need high-end distributed hardware for train-

ing and deployment, incurring higher costs. Additionally,

the required model-parallel setup has higher inference and

training-iteration latency for these models. Model compres-

sion is a research direction that aims to resolve these issues

by reducing the memory footprint of the model. Compres-

sion of the order of 100× can eliminate the need for model-

parallel setup for many SOTA models like GPT(Radford

et al., 2019), Gshard(Lepikhin et al., 2020), DLRM (Nau-

mov et al., 2019) which now can fit on a single GPU. Fur-

thermore, compressing large models to small sizes come

with immediate latency benefits. For example, (Desai et al.,

2022) showed that by compressing the DLRM model 1000×
and using 1 GPU instead of 8 GPUs, we could get 3× faster

inference at a lower cost. Also, in the case of CPU inference,

a smaller model is efficient. For example, (Diamos et al.,

2016) showed that if a single RNN layer can fit in registers,

it leads to 146× faster inference.

Thus, the ML community has heavily invested in model

compression. A variety of model compression paradigms

now exist in literature like pruning (Han et al., 2016), quan-

tisation (Han et al., 2016), knowledge distillation (Buciluǎ

et al., 2006), parameter-sharing (Chen et al., 2015; Desai

et al., 2022), and low rank decomposition (Hrinchuk et al.,

2020; Yin et al., 2021). Table 1 compares these approaches

1

Hardware-Aware Compression with ROAST Hashing

Table 1. Various compression techniques on three aspects (1) Memory reduction during training (apart from inference) (2) arbitrary

control over memory (3) Hardware awareness / cache-efficiency * Some versions of pruning that are tuned to the underlying hardware and

are cache-efficient
Model-memory reduction

during training

Arbitrary control

on memory
Cache efficient

Pruning No No No*

Low-rank decomposition Yes No Yes

Low-precision Yes No Yes

Quantization aware training (QAT) No No Yes

Parameter sharing - HashedNet Yes Yes No

Knowledge Distillation No No Yes

ROAST (ours) Yes Yes Yes

on three considerations (1) if the model memory is reduced

for training. (2) if the memory size can be controlled inde-

pendently of the model, and (3) if the approach considers

the underlying memory hierarchies and is cache-efficient.

We want the techniques to fare positively in these three

aspects. However, techniques like pruning, QAT, and knowl-

edge distillation require us to use the memory of the original

model while training and only reduce inference time mem-

ory. Additionally, there are limits to compression obtained

by quantization and pruning depending on which compo-

nent we are compressing. For example, we cannot prune

an embedding table (N × d) more than d× as we do not

want any embedding vector to have all zeros. HashedNet

provides memory reduction during training and arbitrary

control over memory. However, the look-ups in HashedNet

are randomly and independently distributed across the total

memory. This makes HashedNet cache-inefficient.

This paper presents Random Operation Access Specific

Tile (ROAST) hashing, a parameter-sharing approach that

provides cache-efficiency and arbitrary control over mem-

ory during training as well as inference. ROAST does not

change the model’s functional form and can be applied to

all computational modules of a model, such as MLP layers,

attention blocks, convolution layers, and embedding tables.

ROAST is hardware aware: it proposes a tile-based hashing

scheme tuned to the memory access pattern of the algo-

rithmic implementation of the operation being performed.

ROAST uses this hash function to recover blocks of the

model from a single array of parameters - ROAST array.

ROAST is superior to HashedNet due to two factors (1)

Unlike HashedNet, ROAST proposes global weight-sharing

where parameters are shared across the different compu-

tational modules. As we shall see, global weight-sharing

is empirically and theoretically superior to local weight-

sharing and might be of independent interest. (2) ROAST

uses block-based hashing, which is theoretically superior

to count-sketch hashing used in HashedNet. (Desai et al.,

2022)

We show that with ROAST, we can train a BERT-2-2 (2

layers, 2 attention heads) model on the largest available text-

classification datasets (amazon-polarity, yelp-polarity) using

100× lesser memory without loss of quality. In cases where

the model is overly parameterized, like using BERT-12-12

in the text classification task above, we can still obtain sim-

ilar compression of 100×. Thus it is a good alternative to

neural architecture search. The results extend to CV datasets

as well. Specifically, we can train a ResNet-9 model with

10× lesser memory for the CIFAR10 dataset. Importantly,

we show that ROAST, due to its hardware-aware nature, is

significantly faster than HashedNet: ROAST is up to ∼ 25×
faster to train and ∼ 50× faster to infer than HashedNet for

large matrix multiplications. Our current implementation of

ROAST matrix multiplication is about 1.34× slower than

full matrix multiplication in pytorch. This is a testament

to how optimized CUBLAS libraries are. We believe, with

enough investigation, we can make ROAST-MM compara-

bly efficient to pytorch-MM as well.

2. Related Work

This section briefly reviews the rich history of model com-

pression paradigms. Model compression can be generally

classified into two categories: (1) Compressing a learned

model and (2) Learning a compressed model. ROAST lies

in the second category.

Compressing learned models: 1) Pruning: Pruning (Zhu

& Gupta, 2017) is a technique to remove parts of a large

model, including weights, blocks, and layers, to make the

model lighter. Pruning can be performed as a one-time

operation or gradually interspersed with training. 2) Quan-

tization: Quantization can involve reducing the precision

of the parameters of a model. Mixed precision models are

sometimes used where different precision is used with dif-

ferent weights. KMeans quantization is another type of

quantization, where models’ weights are clustered using

KMeans, and each cluster’s centroid is used for all cluster

weights. Model compression, in this case, is achieved by

reducing the number of distinct weights. 3) Knowledge

2

Hardware-Aware Compression with ROAST Hashing

distillation: Knowledge distillation (Buciluǎ et al., 2006)

is widely applied in model compression with a focus on dis-

tilled architectures. Knowledge distillation involves training

a teacher model (large original model); then, a student model

is trained using the logits of the teacher model. Empirically,

the student model trained under this paradigm generalizes

better than the student model trained standalone. Many

variations exist on this basic idea of knowledge distillation.

While these techniques have successfully reduced memory

for inference, one of the drawbacks of this line of compres-

sion is that the memory usage while training the model is

not reduced. ROAST, however, provides a solution that

reduces the model’s memory during training and inference.

Learning compressed models 1) Low-rank decomposi-

tion: In this method, matrices in the model are decom-

posed into a product of two low-rank matrices, thus saving

memory per matrix. A generalization of low-rank decom-

position to tensors is called tensor-train decomposition 2)

Parameter sharing: Parameter sharing approaches such as

HashedNet (Chen et al., 2015) are generally used for matrix

compression. These approaches randomly share weights

among different parameters, reducing the model’s memory

usage.

This line of research provides model reduction even dur-

ing training. However, Low-rank decomposition does not

offer arbitrary control over memory footprint, and Hashed-

Nets are inefficient due to heavy cache-trashing caused by

non-local lookups. Conversely, ROAST is a model-agnostic

parameter-sharing approach that can arbitrarily reduce the

model size without affecting the functional form while keep-

ing the model recovery efficient.

3. Background

HashedNet: Compressing MLP matrices Previous

work (Chen et al., 2015) introduced a weight sharing method

to compress weight matrices of MLP models. They map

each matrix parameter to a shared parameter array using

a random hash function xxhash (Collet, 2016). In the for-

ward pass, this mapping is used to recover a weight matrix

and perform matrix multiplication for each MLP layer. In

the backward pass, the gradients of each weight matrix are

mapped to the shared compressed array and aggregated us-

ing the sum operation. It should also be noted that each

MLP layer uses an independent array of parameters. One of

the main concerns with HashedNet is that memory accesses

on the compressed array are non-coalesced. Thus, fetching

a compressed matrix via HashedNet requires significantly

more memory read transactions than fetching an uncom-

pressed matrix for which memory accesses can coalesce.

Our evaluation shows that uncoalesced memory accesses

lead to high latency, especially for large matrices.

Random Block Offset Embedding Array (ROBE) for

embedding compression In ROBE (Desai et al., 2022), the

embedding table is generated using an array of parameters.

The embedding of a token is obtained by drawing chunks of

the embedding from the ROBE array. The locations of the

chunks are decided randomly via light-weight universal hash

functions. Authors of ROBE showed that ROBE hashing is

theoretically superior to feature hashing used in HashedNet.

Also, the use of chunks causes memory accesses to coalesce,

making embedding lookup efficient.

ROAST proposes a component agnostic, global parameter

sharing approach that tunes the hashing function to match

memory accesses of algorithmic implementation of opera-

tion over available hardware, thus giving a superior parame-

ter sharing scheme.

4. Random Operation Access Specific Tile

(ROAST) Hashing

Let M be the compressed memory from which parame-

ters will be used, f be the model or the function that we

want to run using M, and W be the recovered weights used

in f . f can be considered as a composition of operations

{Oi(Xi,Wi)}. By operation, we mean the smaller func-

tions that, when composed together, give us the model f .

Here Xi is the input to the operation, and Wi is the weights

(i.e., learnable parameters) that Oi uses. Generally, Wis are

distinct and do not share parameters.

Random Operation Access Specific Tile (ROAST) hash-

ing is a way to perform efficient model-agnostic parameter

sharing-based compression. The following distinct aspects

of ROAST set it apart from previous parameter sharing-

based methods. (1) ROAST is a generic technique appli-

cable to all computational modules. (2) ROAST proposes

to tune its mapping from Wi to M in a way that coalesces

memory accesses according to how memory is accessed

during the operation. This makes ROAST efficient and up

to 45× faster than competing approaches like HashedNet.

(3) ROAST proposes Global Memory Sharing (GMS) as op-

posed to Local Memory Sharing (LMS) used in HashedNet.

We show GMS to be theoretically and empirically superior

to LMS in Section 5 and 6.

4.1. ROAST Operations in Deep Learning

Any model f can be considered as a composition of smaller

functions {Oi(Xi,Wi)}. There are multiple ways to per-

form this decomposition depending upon what we consider

a valid (or small enough) operation. In ROAST, we consider

three types of operations: (1) L(l,W), lookup that accesses

M and recovers lth element of W , say w. By element, we

mean some particular part of W that is identifiable by an in-

teger. An example with embedding tables is given in figure

3

Hardware-Aware Compression with ROAST Hashing

Table 2. Experimental settings: The datasets used in experiments.

Domain Task Dataset #Samples

NLP text classification amazon-polarity 3.6M/0.4M

NLP text classification yelp-polarity 560K/38K

CV image classification cifar10 50K/10K

load by autotuning the forward kernel and sharing the tile

size with the backward kernels. (2) Optimize the training

workload by autotuning the forward and backward kernels

together. Extensive evaluation of this kernel is presented in

appendix E.2.

5. Feature Hashing Quality: Global Memory

Sharing Advantage over Local Memory

Sharing

We can consider model compression as dimensionality re-

duction of a parameter vector (a one dimensional vector of

all parameters in a model) of size n into a vector of size

|M| = m. Quality of inner-product preservation is used as

a metric to measure the quality of dimensionality reduction.

In terms of dimensionality reduction, ROAST uses ROBE

hashing, which shows that chunk based hashing is theoreti-

cally better than hashing individual elements. In this section,

we compare ROAST’s GMS proposal against HashedNet’s

LMS using a chunck size of one. Consider two parameter

vectors x, y ∈ Rn, we are interested in how the inner prod-

uct of parameter vectors are preserved under hashing. Let

x = [x1, x2, ..., xk] and y = [y1, y2, ..., yk] be composed of

k vectors of sizes n1, n2, ...nk where [] denotes concaten-

tation. In LMS, let each piece map to memory of size fim
where

∑

i fi = 1. The estimated inner product with GMS

is

⟨̂x, y⟩G,m

=

m
∑

j=1

[

n
∑

i=1

I(h(i)=j)g(i)x[i]

][

n
∑

i=1

I(h(i)=j)g(i)y[i]

]

(3)

The estimated inner product with LMS can be written as

⟨̂x, y⟩
L,m,f⃗

=

k
∑

l=1

flm
∑

j=1

[

nl
∑

i=1

I(h(i)=j)g(i)xl[i]

]





nl
∑

j=1

I(h(i)=j)g(i)yl[i]





=

k
∑

l=1

⟨̂xl, yl⟩G,(flm)

(4)

Theorem 5.1. Let x, y ∈ Rn and be composed of k vectors

x = [x1, x2, ..., xk] and y = [y1, y2, ..., yk]. Then the inner

product estimation of global and local weight sharing are

unbiased.

E(⟨̂x, y⟩G,m) = ⟨x, y⟩ E(⟨̂x, y⟩
L,m,f⃗

) = ⟨x, y⟩ (5)

The variance for inner product estimation can be written as,

VG(⟨̂x, y⟩) =
∑

i

fiVi +
1

m





∑

i,j,i ̸=j

(||xi||2||yj ||2) + ⟨xi, yi⟩⟨xj , yj⟩





(6)

VL(⟨̂x, y⟩) =
∑

i

Vi (7)

where

Vl =
1

fl

1

m





∑

i ̸=j

a2i b
2
j +

∑

i ̸=j

aibiajbj





, where xl = (a1, a2..., anl
) and yl = (b1, b2..., bnl

)

(8)

where VL is local memory sharing variance and VG is

global memory sharing variance.

Intuition: The two terms in VG can be understood as fol-

lows: The first term is the local variance with individual

terms reduced by a factor of fi. This is because each piece

of the vector is being distributed in a memory that is 1/fi×
larger. However, in GMS, there is a possibility of more

collisions across pieces. This leads to the second term in

VG. Note that, for a given x, y and a finite value for m,

VG is always bounded. At the same time, VL is unbounded

due to 0 < fi < 1 in the denominator. So if the number of

pieces increases or particular fi grows smaller, VL increases.

While we cannot prove that VG is strictly less than VL, we

can investigate the equation under some assumptions on the

data. Practically, each piece of the parameter vector is a

computational block like a matrix for multiplication or em-

bedding table lookup. These blocks are initialized at a scale

proportional to the square root of their size. So the norms

of these vectors are similar. Let us assume the norm of each

piece to be
√
α. Also, let us assume that over random data

distributions over x and y, all the inner products to be β in

expectation. Then,

VG ≈ k2

m
(α2 + β2)

VL ≈ 1

m
(α2 + β2)(

1

f1
+

1

f2
+ ...+

1

fk
)

≥ 1

m
(α2 + β2)k2

1

(
∑

fi)

= VG

(9)

6

Hardware-Aware Compression with ROAST Hashing

Table 3. Text classification task. The table shows (a) ROAST and Pruning on BERT-2-2 model comparisons w.r.t quality and convergence

rate (ROAST gives high compression without loss of quality and outperforms pruning baselines). (b)GMS and LMS quality comparisons

(GMS outperforms LMS) and (c) convergence comparison of GMS and LMS (GMS is faster to converge than LMS). To get a sense of

variation in results on multiple runs, see figure 4 in appendix

Text-classification Acc

Model size amazon-polarity
Epochs

to reach the acc
yelp-polarity

Epochs

to reach the acc
Comment

BERT-2-2 37.4M 93.4 5.6 90.8 5.4

BERT-1-1 30.3M 92.01 7.02 90.2 2.8

ROAST-10x-GMS (BERT-2-2) 3.7M 94.6 7.3 90.8 2.8

ROAST-100x-GMS (BERT-2-2) 393K 93.8 7.2 90.8 7.03

PRUNE-10x (BERT-2-2) 3.74M 93.5 9.02 89.65 9 full-9-1 schedule

PRUNE-100x(BERT-2-2) 374K 91.36 9.8 89 9.8 full-9-1 schedule

PRUNE-10x(BERT-2-2) 3.74M 93.24 8.94 89.8 7 full-1-9-schedule

PRUNE-100x(BERT-2-2) 370K 90.73 9.15 87.7 9.82 full-1-9-schedule

BERT-12-12 108M 93.51 6.95 90.8 4.7

BERT-12-12-10x-LMS 10.1M 93.49 4.84 90.9 4.69

BERT-12-12-10x-GMS 10.1M 94.64 4.85 91.1 4.97

BERT-12-12-100x-LMS 1M 92.9 4.87 90.7 9.03

BERT-12-12-100x-GMS 1M 93.9 9.39 91.0 6.83

Text-classification convergence for a specific target accuracy

Model size amazon-polarity yelp-polarity Comment

target epochs target epochs

BERT-12-12 108M 93.4 5 90.8 4.7

BERT-12-12-10x-LMS 10.1M 93.4 3.77 90.9 4.69

BERT-12-12-10x-GMS 10.1M 93.4 1.97 90.9 3.4

BERT-12-12-100x-LMS 1M 92.9 4.78 90.7 9.09

BERT-12-12-100x-GMS 1M 92.9 3.09 90.7 3.74

Table 4. Image classification task: (above)We see that ResNet-9

model can be trained in 10× smaller memory. (below). Pruning

gives 100× post-training compression but requires complete mem-

ory for training. We can prune ROAST-10x model, which uses

10× lesser memory, further 10× to give 100× post-training model

Image-classification Acc (target: 94%)

Model Size cifar-10

ResNet-9 6.5M 94.2

ROAST-5x 1.2M 94.58

ROAST-10x 650K 94.15

PRUNE-10x 650K (6.5M) 95.59

PRUNE-100x 65K (6.5M) 94.8

PRUNE-1000x 6.5K (6.5M) 93.34

ROAST-10x- PRUNE-10x 65K (650K) 94.06

Thus, VL is greater than VG, and it can be much greater de-

pending on the exact values of fi. The proof of the theorem

and other details are presented in Appendix D.2

6. Experimental Evaluation

Setup: In this section, we evaluate the ROAST compression

approach on two types of tasks. The details of the tasks,

datasets, and models used are mentioned in Table 2. . For

image-classification tasks, we choose the cifar-10 dataset

and the leader for the DawnBenchmark (Coleman et al.,

2017) - a ResNet-9 model2 for cifar-10. The target accuracy

for this benchmark is 94%, so we perform hyper-parameter

tuning to get a test accuracy of ≥ 94%. We stop the tuning

once we reach this accuracy; hence, the results for CIFAR-

10 should be compared w.r.t whether it crosses 94.0%. We

use the two largest available text-classification datasets for

NLP tasks on huggingface (HuggingFace, 2022). For the

model, we use BERT-x-y (x:number of layers, y:number

of attention heads) architecture with a classification head.

On both NLP datasets, using models larger than BERT-2-2

led to similar test accuracy, so we chose BERT-2-2 as the

base model. The other hyperparameters for NLP tasks are

{ batch 64 for amazon-polarity and 32 for yelp-polarity,

learning rate 2e-5, AdamW optimizer, Linear scheduler}.

Pruning is used as a baseline. We use iterative magnitude

pruning interspersed with training. We use two schedules

for pruning. ªfull-9-1-scheduleº (‘ alt. ‘full-1-9-scheduleº)

means we start with the fully trained model and then perform

iterative magnitude pruning to require sparsity in 9 (alt. 1)

epochs and finally perform 1 (alt. 9) epoch at final sparsity.

ROAST for compression As we can see in Tables 3 and

4, with ROAST, we can achieve a similar quality of the

model in a much smaller space. Specifically, we can train

and deploy the BERT-2-2 model in 100× lesser space for

text-classification. Similarly, we can train and deploy the

2https://github.com/apple/ml-cifar-10-faster

7

Hardware-Aware Compression with ROAST Hashing

Table 5. Inference times of different square weight matrices using an input batch of 512. For ROAST, the tile parameters of each matrix

multiplication are autotuned. The measurements were taken using TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul

function (MM) for the full uncompressed matrix multiplication. ■:bad ■: good

Inference time (ms)

Weight matrix dimensions (Dim × Dim)

Model M size ↓ 512 1024 2048 4096 8096 10240 20480 Average

Full size → 1MB 4MB 16MB 64MB 128MB 420MB 1.6GB

PyTorch-MM 0.10 0.11 0.12 0.22 0.69 1.18 3.91 0.91

4MB 0.31 0.34 0.63 2.02 6.20 9.67 35.22 7.77

32MB 0.31 0.41 0.86 3.64 13.66 22.11 92.40 19.06

64MB 0.31 0.46 1.09 6.47 31.21 42.45 178.07 37.15

128MB 0.31 0.60 1.62 9.10 34.62 56.03 229.31 47.37

256MB 0.32 0.62 1.82 10.25 38.28 62.67 256.22 52.88

HashedNet

512MB 0.33 0.68 2.05 10.59 40.55 65.74 272.23 56.03

4MB 0.28 0.30 0.27 0.48 0.99 1.36 4.83 1.22

32MB 0.28 0.29 0.27 0.44 1.01 1.38 4.88 1.22

64MB 0.28 0.29 0.27 0.44 1.00 1.40 4.93 1.23

128MB 0.30 0.27 0.27 0.45 1.01 1.39 4.91 1.23

256MB 0.30 0.27 0.27 0.44 1.01 1.40 4.90 1.23

ROAST

512MB 0.30 0.30 0.27 0.45 1.02 1.39 4.95 1.24

ResNet model in 10× lesser space for the same target test

accuracy. Thus, ROAST is an effective method for training

and deploying models on memory-constrained systems.

Managing excess parameters It is clear from Table 3 that

BERT-base architecture is highly overparameterized for

the tasks under consideration. However, even in this case,

ROAST can control the memory footprint while maintaining

the functional form of the larger model.

Pruning and ROAST We perform pruning as a baseline to

ROAST. ROAST outperforms pruning in NLP tasks where

pruning loses accuracy on compression. This is true for both

the schedules used for pruning. also perform pruning (Han

et al., 2016) on ResNet model and find that pruning gives

upto 100× compression. Note that pruning requires us to

train the model using the memory required to store the orig-

inal model. On the other hand, compression with ROAST

means using lesser memory, even for training. Additionally,

pruning can be used with ROAST to obtain smaller models

using smaller memory. In Table 4, we see that we can prune

90% of weights in 10× compressed ROAST array and still

achieve the same quality.

Local vs. Global memory sharing In Table 3, we show

that the quality of the model while using global memory

sharing is, indeed, better than local memory sharing. This

supports our theoretical observation about these memory-

sharing schemes. Also, it can be seen from Table 3, that

GMS converges faster than LMS.

Efficiency of ROAST operators as compared to Hashed-

Net Table 7 shows the inference performance of a sim-

ple model using ROAST-MM for matrix multiplication on

compressed memory. Our model linearly transforms the

input vector and computes its norm. We optimized the

ROAST-MM kernel for this experiment using the inference-

optimal strategy. We make the following observations from

Table 7: (1) ROAST-MM outperforms HashedNet kernel

consistently across the different multiplication workloads.

On average, over different workloads, ROAST-MM is up

to 45× faster than HashedNet. (2) ROAST-MM is 1.34×
slower than PyTorch-MM. This is expected as Pytorch-MM

uses extremely optimized libraries for matrix multiplication

and ROAST-MM implementation is comparatively under-

optimized. It is still interesting to note that ROAST-MM’s

performance is better in terms of scaling efficiency than

PyTorch-MM with the increase in workload. As the work-

load increases 1600× (from 512×512 to 20480×20480),

PyTorch-MM takes 39× time, HashedNet takes 106× time

whereas Roast-MM only takes around 16× time. We

present more detailed measurements across different op-

timizers for training-optimal strategy in the appending E.2

7. Limitations and Future Work

This paper evaluates encoder architectures of transformers

and convolution based ResNet architectures on classifica-

tion tasks. A more comprehensive evaluation on different

tasks Ð such as those involving encoder-decoder based ar-

chitectures Ð is required to understand the effectiveness

of ROAST under different circumstances. The current im-

plementation of ROAST-MM is slower than pytorch-MM

especially for smaller matrix sizes. If found widely useful

in future, it would be interesting to put in more resources

to make ROAST-MM implementation faster. One of the

8

Hardware-Aware Compression with ROAST Hashing

goals of model compression, apart from reducing memory

usage, is to reduce computational workload for deployment.

ROAST, currently, is not devised to decrease computation; it

only decreases the memory footprint of a model. Reducing

computation with a small memory is left for future work.

8. Acknowledgements

This work was supported by National Science Foundation

SHF-2211815, BIGDATA-1838177, ONR DURIP Grant,

and grants from Adobe, Intel, Total, and VMware. We also

thank Zichang Liu for giving helpful writing comments on

the paper.

9. Conclusion

Traditionally model compression has focused on memory

reduction during inference. However, model memory dur-

ing training is also an important consideration. While some

of the existing methods such as HashedNet and Low-rank

factorisation provide model reduction during training, these

methods either do not provide cache-efficient model recov-

ery or have implicit cap on memory reduction. ROAST

overcomes these obstacles and provides a cache-efficient,

arbitrary control over the memory footprint of model dur-

ing training and inference. ROAST, essentially provides a

practical parameter sharing method. ROAST is theoretically

better than HashedNet in terms of dimensionality reduction

due to block based hashing and global memory sharing.

We empirically validate the efficiency advantage of ROAST

over HashedNet and that we can achieve high compression

with ROAST.

References

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. Model

compression. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and

data mining, pp. 535±541, 2006.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y.

Compressing neural networks with the hashing trick. In

International conference on machine learning, pp. 2285±

2294. PMLR, 2015.

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J.,

Nardi, L., Bailis, P., Olukotun, K., RÂe, C., and Zaharia,

M. Dawnbench: An end-to-end deep learning benchmark

and competition. Training, 100(101):102, 2017.

Collet, Y. xxhash: Extremely fast hash algorithm, 2016.

https://github.com/Cyan4973/xxHash [Ac-

cessed May 15, 2022].

Desai, A., Chou, L., and Shrivastava, A. Random offset

block embedding (robe) for compressed embedding tables

in deep learning recommendation systems. Proceedings

of Machine Learning and Systems, 4:762±778, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M.,

Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh,

S. Persistent rnns: Stashing recurrent weights on-chip.

In International Conference on Machine Learning, pp.

2024±2033. PMLR, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty

of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249±256. JMLR

Workshop and Conference Proceedings, 2010.

Han, S., Mao, H., and Dally, W. J. Deep compression:

Compressing deep neural network with pruning, trained

quantization and huffman coding. arXiv: Computer Vi-

sion and Pattern Recognition, 2016.

Hrinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova, E.,

and Oseledets, I. Tensorized embedding layers. In Find-

ings of the Association for Computational Linguistics:

EMNLP 2020, pp. 4847±4860, 2020.

HuggingFace. HuggingFace Transformer, 2022. https:

//github.com/huggingface/transformers

[Accessed May 14, 2022].

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,

Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling

giant models with conditional computation and automatic

sharding. arXiv preprint arXiv:2006.16668, 2020.

Mudigere, D., Hao, Y., Huang, J., Tulloch, A., Sridharan,

S., Liu, X., Ozdal, M., Nie, J., Park, J., Luo, L., et al.

High-performance, distributed training of large-scale

deep learning recommendation models. arXiv preprint

arXiv:2104.05158, 2021.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundara-

man, N., Park, J., Wang, X., Gupta, U., Wu, C., Azzolini,

A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, I.,

Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V.,

Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong,

L., and Smelyanskiy, M. Deep learning recommendation

model for personalization and recommendation systems.

arXiv:1906.00091, 2019.

9

Hardware-Aware Compression with ROAST Hashing

NVIDIA Corporation. NVIDIA cuBLAS, 2022a.

https://developer.nvidia.com/cublas

[Accessed May 14, 2022].

NVIDIA Corporation. NVIDIA CUTLASS, 2022b.

https://github.com/NVIDIA/cutlass

[Accessed May 14, 2022].

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I., et al. Language models are unsupervised

multitask learners. OpenAI blog, 1(8):9, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Thompson, N. C., Greenewald, K., Lee, K., and Manso,

G. F. Deep learning’s diminishing returns: The cost of

improvement is becoming unsustainable. IEEE Spectrum,

58(10):50±55, 2021.

Tillet, P., Kung, H. T., and Cox, D. Triton: An In-

termediate Language and Compiler for Tiled Neural

Network Computations, pp. 10±19. Association for

Computing Machinery, New York, NY, USA, 2019.

ISBN 9781450367196. URL https://doi.org/10.

1145/3315508.3329973.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,

and Attenberg, J. Feature hashing for large scale multi-

task learning. In Proceedings of the 26th Annual Inter-

national Conference on Machine Learning, ICML ’09,

pp. 1113±1120, New York, NY, USA, 2009. Associa-

tion for Computing Machinery. ISBN 9781605585161.

doi: 10.1145/1553374.1553516. URL https://doi.

org/10.1145/1553374.1553516.

Yin, C., Acun, B., Wu, C.-J., and Liu, X. Tt-rec: Tensor train

compression for deep learning recommendation models.

Proceedings of Machine Learning and Systems, 3, 2021.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring

the efficacy of pruning for model compression. arXiv

preprint arXiv:1710.01878, 2017.

10

Hardware-Aware Compression with ROAST Hashing

D.2. Global feature hashing vs local feature hashing.

We can consider model compression techniques as dimensionality reduction of the parameter vector (a one dimensional

vector of all parameters in a model) of size n into a vector of size |M| = m. Quality of inner-product preservation is used

as a metric to measure the quality of dimensionality reduction. In terms of dimensionality reduction, ROAST uses ROBE

hashing (Desai et al., 2022), which showed that chunk based hashing is theoretically better than hashing individual elements.

In this section, we analyse GMS proposal of ROAST against LMS of HashedNet. For the purpose of this comparison we

assume a chunk size of 1. Consider two parameter vectors x, y ∈ Rn. We are interested in how inner product between these

parameter vectors are preserved under hashing. Let x = [x1x2...xk] and y = [y1y2...yk] be composed of k pieces of sizes

n1, n2, ...nk. In LMS, let each piece be mapped into memory of size fim where
∑

i fi = 1.

The estimators of inner product in the GMS case can be written as ,

⟨̂x, y⟩G,m =
m
∑

j=1

(
n
∑

i=1

I(h(i)=j)g(i)x[i])(

n
∑

i=1

I(h(i)=j)g(i)y[i]) (14)

The estimate of inner product with LMS can be written as,

⟨̂x, y⟩
L,m,f⃗

=

k
∑

l=1

flm
∑

j=1

(

nl
∑

i=1

I(h(i)=j)g(i)xl[i])(

nl
∑

j=1

I(h(i)=j)g(i)yl[i]) =

k
∑

l=1

⟨̂xl, yl⟩G,(fim) (15)

Note that

⟨̂x, y⟩
L,m,f⃗

=

k
∑

l=1

⟨̂xl, yl⟩G,(flm) (16)

The GMS estimator is the standard feature hashing estimator and the LMS is essentially sum of GMS estimators for each of

the piece. as E[g(i)] = 0, it is easy to check by linearity of expectations that estimators are unbiased.The suffix L refers to

local hashing and G refers to global hashing.

EG = E(⟨̂x, y⟩G,m) = ⟨x, y⟩ (17)

EL = E(⟨̂x, y⟩
L,m,f⃗

) = ⟨x, y⟩ (18)

Let us now look at the variance. Let us follow the following notation,

• VG = V(⟨̂x, y⟩G,m). GMS variance of entire vectors

• VL = V(⟨̂x, y⟩
L,m,f⃗

). LMS variance of entire vectors

• Vl = V(⟨̂xl, yl⟩G,flm
). variance of each piece

we can write Vl as follows. The following equation is easy to derive and it can be found the lemma 2 of (Weinberger et al.,

2009)

Vl =
1

fl

1

m
(
∑

i ̸=j

a2i b
2
j +

∑

i ̸=j

aibiajbj) where xl = (a1, a2...anl
) and yl = (b1, b2...bnl

) (19)

As, each of the piece is independently hashed in LMSss, we can see

VL =
k

∑

l=1

Vl (20)

13

Hardware-Aware Compression with ROAST Hashing

Let us now look at VG. Again, using lemma 2 from (Weinberger et al., 2009)

VG =
1

m
(
∑

i ̸=j

x2
i y

2
j +

∑

i ̸=j

xiyixjyj) (21)

The expression can be split into terms that belong to same pieces and those across pieces

VG =
1

m

k
∑

l=1

(
∑

i ̸=j∈piece-l

x2
i y

2
j +

∑

i ̸=j∈piece-l

xiyixjyj)

+
1

m

k
∑

l1=1

k
∑

l2=1,l1 ̸=l2

(
∑

i∈piece-l1,j∈pieces-l2

(x2
i y

2
j) +

∑

i∈piece-l1,j∈pieces-l2

xiyixjyj))

VG =

k
∑

l=1

flVl +
1

m

l
∑

l1=1

l
∑

l2=1,l1 ̸=l2

||xl1||22||yl2||22 + ⟨xl1, yl2⟩⟨xl2, yl2⟩ (22)

Observation 1: In VL we can see that there are terms with 1
fl

which makes it unbounded. It makes sense as if number of

pieces increase a lot a lot of compressions will not work for example if number of peices > |M|. Also, it will affect VL a lot

when some fl is very small which can often be the case. For example, generally embedding tables in DLRM model are

much larger than that of matrix multiplciation modules (MLP) . which can make f ≈ 0.001 for MLP components.

Observation 2: Practically we can assume each piece, no matter the size of the vector, to be of same norm. The reason lies

in initialization. According to Xavier’s initialization the weights of a particular node are initialized with norm 1. So for

now lets assume a more practical case of all norms being equal to
√
α. Also, in order to make the comparisons we need

to consider some average case over the data. So let us assume that under independent randomized data assumption, the

expected value of all inner products are β. With this , in expectation over randomized data, we have

VG =
∑

flVl +
k(k − 1)

m
(α2 + β2) (23)

Now note that,

Vl =
1

fl

1

m
(
∑

i ̸=j

a2i b
2
j +

∑

i ̸=j

aibiajbj) where xl = (a1, a2...anl
) and yl = (b1, b2...bnl

) (24)

(dropping the subscript ºlº below)

Vl =
1

fl

1

m
((||x||22||y||22 + ⟨x, y⟩2)− 2

∑

i

x2
i y

2
i) (25)

Vl =
1

fl

1

m
((α2 + β2)− 2

∑

i

x2
i y

2
i) ≈

1

fl

1

m
((α2 + β2) (26)

Note that for each negative term, there are nl positive terms. To simplify we disregard this term in the equation above. This

is an approximation which is practical and only made to get a sense of VL and VG relation.

14

Hardware-Aware Compression with ROAST Hashing

Table 7. Inference times of different square weight matrices using an input batch of 512. For ROAST, the tile parameters of each matrix

multiplication are autotuned. The measurements were taken using TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul

function (MM) for the full uncompressed matrix multiplication. ■:bad ■: good

Inference time (ms)

Weight matrix dimensions (Dim × Dim)

Model M size ↓ 512 1024 2048 4096 8096 10240 20480 Average

Full size → 1MB 4MB 16MB 64MB 128MB 420MB 1.6GB

PyTorch-MM 0.10 0.11 0.12 0.22 0.69 1.18 3.91 0.91

4MB 0.31 0.34 0.63 2.02 6.20 9.67 35.22 7.77

32MB 0.31 0.41 0.86 3.64 13.66 22.11 92.40 19.06

64MB 0.31 0.46 1.09 6.47 31.21 42.45 178.07 37.15

128MB 0.31 0.60 1.62 9.10 34.62 56.03 229.31 47.37

256MB 0.32 0.62 1.82 10.25 38.28 62.67 256.22 52.88

HashedNet

512MB 0.33 0.68 2.05 10.59 40.55 65.74 272.23 56.03

4MB 0.28 0.30 0.27 0.48 0.99 1.36 4.83 1.22

32MB 0.28 0.29 0.27 0.44 1.01 1.38 4.88 1.22

64MB 0.28 0.29 0.27 0.44 1.00 1.40 4.93 1.23

128MB 0.30 0.27 0.27 0.45 1.01 1.39 4.91 1.23

256MB 0.30 0.27 0.27 0.44 1.01 1.40 4.90 1.23

ROAST

512MB 0.30 0.30 0.27 0.45 1.02 1.39 4.95 1.24

VL − VG =
∑

Vl −
∑

flVl −
k(k − 1)

m
(α2 + β2)

VL − VG =
∑

l

1

m
(
1

fl
− 1)((α2 + β2))− k(k − 1)

m
(α2 + β2)

VL − VG =
∑

l

1

m
(
1

fl
− 1)((α2 + β2)− k(k − 1)

m
(α2 + β2)

VL − VG ≥ k(k − 1)

m
((α2 + β2)− k(k − 1)

m
(α2 + β2)

VL − VG ≥ 0

Note that we ignored a term which reduces the VL a bit, The above equation shows even for the best case, VG might be

slightly more than VL. However for general case where harmonic mean is much worse than arithmetic mean, VL will be

much larger depending on exact fl s

E. ROAST-MM latency measurements

E.1. Inference optimization

See Table 7

E.2. Training optimization

See Tables 8, 9, 10, 11

15

Hardware-Aware Compression with ROAST Hashing

forward(ms)

(optimized for forward + backward)

dim (Matrix dimension = dim x dim)

Memory

(mb)
512 1024 2048 4096 8096 10240 20480 Average

Full

(uncompressed)
0.16 0.12 0.12 0.24 0.66 0.91 3.03 0.75

4 0.37 0.35 0.65 2.04 6.23 9.62 35.64 7.84

32 0.39 0.42 0.90 3.67 13.73 22.06 92.83 19.14

64 0.33 0.47 1.11 6.45 25.78 42.51 178.20 36.41

128 0.28 0.56 1.61 9.07 34.21 56.07 229.34 47.31

256 0.20 0.54 1.72 9.95 38.17 62.47 258.11 53.02

HashedNet

512 0.14 0.50 1.88 10.37 40.40 65.43 272.19 55.84

4 0.30 0.31 0.31 0.50 1.43 2.01 7.54 1.77

32 0.30 0.33 0.35 0.55 1.44 2.09 7.59 1.81

64 0.29 0.31 0.33 0.56 1.45 2.08 7.80 1.83

128 0.25 0.27 0.28 0.54 1.41 2.09 7.84 1.81

256 0.16 0.18 0.19 0.46 1.33 2.02 7.82 1.74

ROAST

512 0.21 0.06 0.13 0.41 1.29 1.97 4.98 1.29

Table 8. Inference (forward pass time) for different shapes of square weight matrix with input batch of 512. The tile-parameters of

multiplication are optimized for each function over ºforward + backwardº pass .The measurements are taken with tf32 on A100 (48GB)

backward(ms)

(optimized for forward + backward)

dim (Matrix dimension = dim x dim)

Memory

(mb)
512 1024 2048 4096 8096 10240 20480 Average

Full

(uncompressed)
0.35 0.22 0.24 0.48 1.35 2.01 7.65 1.76

4 0.65 0.53 0.95 2.60 8.51 13.21 56.59 11.86

32 0.68 0.69 1.80 6.36 24.13 38.95 160.54 33.31

64 0.74 1.06 2.81 10.78 41.35 67.02 271.86 56.52

128 0.91 1.34 3.40 12.41 51.00 81.25 337.31 69.66

256 1.29 1.84 4.02 14.57 58.03 91.18 376.83 78.25

HashedNet

512 2.08 2.62 4.90 16.24 62.45 98.46 391.46 82.60

4 0.54 0.54 0.60 1.20 2.54 3.72 13.99 3.30

32 0.57 0.61 0.69 1.06 2.71 4.04 15.07 3.54

64 0.64 0.73 0.77 1.17 2.82 4.18 15.50 3.69

128 0.79 0.81 0.89 1.38 3.17 4.73 18.30 4.30

256 1.19 1.17 1.27 1.77 3.56 5.17 18.33 4.64

ROAST

512 2.11 1.92 2.12 2.53 4.33 5.98 22.71 5.96

Table 9. Backward pass for different shapes of square weight matrix with input batch of 512. The tile-parameters of multiplication are

optimized for each function over ºforward + backwardº pass .The measurements are taken with tf32 on A100 (48GB)

16

Hardware-Aware Compression with ROAST Hashing

update weights (optim.step())(ms)

(optimized for forward + backward)

dim (Matrix dimension = dim x dim)

optim Model msize 512 1024 2048 4096 8096 10240 20480 Average

adagrad Full 0.14 0.11 0.15 0.60 2.16 3.41 13.45 2.86

4 0.14 0.11 0.11 0.11 0.11 0.12 0.54 0.18

32 0.35 0.33 0.33 0.33 0.33 0.34 0.36 0.34

64 0.61 0.61 0.61 0.61 0.61 0.62 0.61 0.61

128 1.15 1.14 1.14 1.14 1.15 1.19 1.18 1.15

256 2.22 2.21 2.21 2.21 2.22 2.26 3.87 2.46

HashedNet

512 4.36 4.36 4.35 4.35 4.37 4.40 4.47 4.38

4 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11

32 0.33 0.34 0.34 0.33 0.33 0.33 0.33 0.33

64 0.60 0.61 0.61 0.60 0.61 0.61 0.61 0.61

128 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14

256 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21

ROAST

512 4.38 4.35 4.36 4.35 4.35 4.36 4.35 4.36

Full 0.15 0.15 0.23 1.06 3.89 6.18 24.47 5.16

4 0.15 0.23 0.16 0.16 0.16 0.16 0.16 0.17

32 0.57 0.57 0.57 0.57 0.57 0.57 0.59 0.57

64 1.06 1.06 1.06 1.06 1.06 1.06 1.16 1.08

128 2.03 2.05 2.04 2.04 2.05 2.04 2.23 2.07

256 3.98 3.99 3.98 3.99 4.00 4.00 4.22 4.02

HashedNet

512 7.89 7.89 7.89 7.89 7.91 7.90 8.13 7.93

4 0.15 0.23 0.15 0.16 0.16 0.15 0.16 0.17

32 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

64 1.07 1.06 1.06 1.06 1.06 1.07 1.06 1.06

128 2.05 2.03 2.04 2.04 2.03 2.04 2.04 2.04

256 4.01 3.98 3.99 3.99 3.99 3.99 3.99 3.99

adam

ROAST

512 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89

Full 0.08 0.07 0.08 0.20 0.62 0.97 3.92 0.85

4 0.08 0.07 0.08 0.07 0.07 0.08 0.08 0.08

32 0.12 0.12 0.12 0.12 0.12 0.12 0.17 0.13

64 0.19 0.20 0.20 0.20 0.20 0.21 0.31 0.22

128 0.35 0.34 0.34 0.35 0.35 0.37 0.48 0.37

256 0.64 0.64 0.64 0.64 0.65 0.67 0.83 0.67

HashedNet

512 1.23 1.23 1.23 1.23 1.25 1.24 1.25 1.24

4 0.07 0.07 0.07 0.08 0.07 0.07 0.23 0.10

32 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12

64 0.22 0.19 0.20 0.19 0.19 0.20 0.29 0.21

128 0.34 0.35 0.34 0.34 0.34 0.35 0.40 0.35

256 0.64 0.65 0.64 0.64 0.64 0.65 0.64 0.64

sgd

ROAST

512 1.27 1.23 1.23 1.23 1.28 1.23 1.62 1.30

Table 10. Weight update operation (optimizer.step()) for different shapes of square weight matrix with input batch of 512. The tile-

parameters of multiplication are optimized for each function over ºforward + backwardº pass .The measurements are taken with tf32 on

A100 (48GB)

17

Hardware-Aware Compression with ROAST Hashing

total = fwd + bkwd + optimize (ms)

(optimized for forward + backward)

dim (Matrix dimension = dim x dim)

optim Model msize 512 1024 2048 4096 8096 10240 20480 Average

adagrad Full 0.65 0.46 0.51 1.32 4.17 6.33 24.13 5.37

4 1.16 0.99 1.71 4.74 14.86 22.95 92.78 19.88

32 1.43 1.44 3.03 10.37 38.19 61.35 253.72 52.79

64 1.68 2.14 4.53 17.83 67.74 110.15 450.66 93.53

128 2.34 3.04 6.15 22.62 86.36 138.51 567.83 118.12

256 3.71 4.59 7.95 26.73 98.42 155.92 638.80 133.73

HashedNet

512 6.58 7.47 11.13 30.96 107.21 168.30 668.12 142.83

4 0.95 0.95 1.02 1.81 4.09 5.84 21.64 5.19

32 1.21 1.27 1.38 1.94 4.49 6.46 23.00 5.68

64 1.54 1.64 1.70 2.34 4.87 6.86 23.90 6.12

128 2.18 2.22 2.31 3.06 5.72 7.97 27.28 7.25

256 3.57 3.56 3.67 4.43 7.10 9.40 28.35 8.58

ROAST

512 6.70 6.32 6.62 7.29 9.97 12.31 32.04 11.61

Full 0.50 0.48 0.60 1.78 5.89 9.11 35.01 7.62

4 1.00 1.56 1.76 4.81 14.94 23.07 86.76 19.13

32 1.43 1.78 3.29 10.60 38.45 61.64 253.20 52.91

64 2.03 2.63 4.97 18.35 68.28 110.63 450.86 93.96

128 3.18 4.27 7.02 23.54 87.47 139.30 568.72 119.07

256 5.45 6.30 9.71 28.66 100.19 157.55 633.80 134.52

HashedNet

512 10.08 10.94 14.64 34.56 110.71 171.67 672.24 146.41

4 1.00 1.27 1.05 1.86 4.06 5.89 21.71 5.26

32 1.45 1.56 1.52 2.21 4.72 6.69 23.28 5.92

64 2.13 2.02 2.18 2.80 5.34 7.39 24.35 6.60

128 3.26 3.11 3.23 3.95 6.62 8.85 28.22 8.18

256 5.82 5.33 5.45 6.21 8.97 11.15 30.19 10.45

adam

ROAST

512 9.82 9.87 10.14 10.90 13.52 15.82 35.59 15.09

Full 0.44 0.43 0.46 0.90 2.62 3.90 14.68 3.35

4 1.25 0.95 1.70 4.72 14.76 22.96 86.70 19.01

32 0.99 1.23 2.86 10.17 38.10 61.16 252.99 52.50

64 1.16 1.84 4.11 17.51 67.28 109.78 450.34 93.15

128 1.59 2.24 5.28 21.84 85.46 137.54 566.88 117.26

256 2.21 3.00 6.35 25.19 96.91 154.43 630.75 131.26

HashedNet

512 3.42 4.28 8.06 27.91 104.03 164.94 665.29 139.70

4 0.92 0.92 0.98 1.79 3.94 5.82 22.39 5.25

32 0.95 1.00 1.17 1.75 4.28 6.25 22.77 5.45

64 1.62 1.15 1.26 1.92 4.45 6.45 24.01 5.84

128 1.38 1.44 1.52 2.26 4.90 7.25 27.18 6.56

256 2.04 2.10 2.14 2.85 5.53 7.91 26.98 7.08

sgd

ROAST

512 3.56 3.20 3.36 4.18 7.10 9.17 31.20 8.82

Table 11. Total training step time for different shapes of square weight matrix with input batch of 512. The tile-parameters of multiplication

are optimized for each function over ºforward + backwardº pass .The measurements are taken with tf32 on A100 (48GB)

18

