Hardware-Aware Compression with Random Operation Access Specific Tile
(ROAST) Hashing

Aditya Desai! Keren Zhou'! Anshumali Shrivastava '?

Abstract

Advancements in deep learning are often associ-
ated with increasing model sizes. Training and
deploying large models require sophisticated hard-
ware and incur significantly higher costs. Thus,
model compression is a widely explored approach
to solving the problem. However, SOTA tech-
niques fall short in one or more desirable as-
pects of compression - for instance, pruning does
not reduce memory for training, quantization can
only provide up to 32x compression, Hashed-
Net is cache-inefficient, etc. This paper proposes
a model-agnostic, cache-friendly, and hardware-
aware model compression approach: Random
Operation Access Specific Tile (ROAST) hash-
ing. ROAST collapses the parameters by club-
bing them through a lightweight mapping. While
clubbing these parameters, ROAST utilizes cache
hierarchies by aligning the memory access pattern
with the parameter access pattern. ROAST is up
to ~25x faster to train and ~50x faster to in-
fer than the popular parameter sharing method
HashedNet. Additionally, ROAST introduces
global weight sharing, which is empirically and
theoretically superior to local weight sharing in
HashedNet, and can be of independent interest.
With ROAST, we can efficiently train and deploy
the model using a much smaller memory footprint
(~ 10 — 100x lesser) in text and image classifi-
cation tasks. ROAST-MM kernel implementation
is open-source

' Department of Computer Science, Rice University,
Houston, Texas, United States 2 ThirdAl Corp, Houston,
Texas, United States. Correspondence to: Aditya Desai
<Aditya.P.Desai@rice.edu>.

Proceedings of the 40 International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

"https://github.com/apd 1 0/RzLinear/tree/stable

1. Introduction

Models across different domains, including Natural Lan-
guage Processing (NLP), Computer Vision (CV), and Infor-
mation Retrieval (IR), are exploding in size. State-of-the-art
(SOTA) results in these domains are being obtained at a
disproportionate increase in model sizes, questioning the
sustainability of deep learning (Thompson et al., 2021). For
instance, SOTA architectures for vision include VGG (Si-
monyan & Zisserman, 2014) (150M params, 0.6GB) and
ViT (Dosovitskiy et al., 2020) (up to 304M params, 1.2GB).
Additionally, SOTA NLP models range from BERT (Devlin
et al., 2018) (340M params, 1.36GB) to GShard (Lepikhin
et al., 2020) (600B params, 2.4TB). Similarly, industrial-
scale recommendation models such as DLRM (Naumov
et al., 2019; Mudigere et al., 2021) can have up to 10s of
trillions of parameters (50TB).

Large models, such as the above, come with various chal-
lenges. They need high-end distributed hardware for train-
ing and deployment, incurring higher costs. Additionally,
the required model-parallel setup has higher inference and
training-iteration latency for these models. Model compres-
sion is a research direction that aims to resolve these issues
by reducing the memory footprint of the model. Compres-
sion of the order of 100x can eliminate the need for model-
parallel setup for many SOTA models like GPT(Radford
et al., 2019), Gshard(Lepikhin et al., 2020), DLRM (Nau-
mov et al., 2019) which now can fit on a single GPU. Fur-
thermore, compressing large models to small sizes come
with immediate latency benefits. For example, (Desai et al.,
2022) showed that by compressing the DLRM model 1000 x
and using 1 GPU instead of 8 GPUs, we could get 3 faster
inference at a lower cost. Also, in the case of CPU inference,
a smaller model is efficient. For example, (Diamos et al.,
2016) showed that if a single RNN layer can fit in registers,
it leads to 146 x faster inference.

Thus, the ML community has heavily invested in model
compression. A variety of model compression paradigms
now exist in literature like pruning (Han et al., 2016), quan-
tisation (Han et al., 2016), knowledge distillation (Bucilud
et al., 2006), parameter-sharing (Chen et al., 2015; Desai
et al., 2022), and low rank decomposition (Hrinchuk et al.,
2020; Yin et al., 2021). Table 1 compares these approaches

Hardware-Aware Compression with ROAST Hashing

Table 1. Various compression techniques on three aspects (1) Memory reduction during training (apart from inference) (2) arbitrary
control over memory (3) Hardware awareness / cache-efficiency * Some versions of pruning that are tuned to the underlying hardware and

are cache-efficient

Model-m-emory.re.:ductlon Arbitrary control Cache efficient
during training on memory

Pruning No No No*
Low-rank decomposition Yes No Yes
Low-precision Yes No Yes
Quantization aware training (QAT) No No Yes
Parameter sharing - HashedNet Yes Yes No
Knowledge Distillation No No Yes
ROAST (ours) Yes Yes Yes

on three considerations (1) if the model memory is reduced
for training. (2) if the memory size can be controlled inde-
pendently of the model, and (3) if the approach considers
the underlying memory hierarchies and is cache-efficient.
We want the techniques to fare positively in these three
aspects. However, techniques like pruning, QAT, and knowl-
edge distillation require us to use the memory of the original
model while training and only reduce inference time mem-
ory. Additionally, there are limits to compression obtained
by quantization and pruning depending on which compo-
nent we are compressing. For example, we cannot prune
an embedding table (N x d) more than dx as we do not
want any embedding vector to have all zeros. HashedNet
provides memory reduction during training and arbitrary
control over memory. However, the look-ups in HashedNet
are randomly and independently distributed across the total
memory. This makes HashedNet cache-inefficient.

This paper presents Random Operation Access Specific
Tile (ROAST) hashing, a parameter-sharing approach that
provides cache-efficiency and arbitrary control over mem-
ory during training as well as inference. ROAST does not
change the model’s functional form and can be applied to
all computational modules of a model, such as MLP layers,
attention blocks, convolution layers, and embedding tables.
ROAST is hardware aware: it proposes a tile-based hashing
scheme tuned to the memory access pattern of the algo-
rithmic implementation of the operation being performed.
ROAST uses this hash function to recover blocks of the
model from a single array of parameters - ROAST array.
ROAST is superior to HashedNet due to two factors (1)
Unlike HashedNet, ROAST proposes global weight-sharing
where parameters are shared across the different compu-
tational modules. As we shall see, global weight-sharing
is empirically and theoretically superior to local weight-
sharing and might be of independent interest. (2) ROAST
uses block-based hashing, which is theoretically superior
to count-sketch hashing used in HashedNet. (Desai et al.,
2022)

We show that with ROAST, we can train a BERT-2-2 (2

layers, 2 attention heads) model on the largest available text-
classification datasets (amazon-polarity, yelp-polarity) using
100x lesser memory without loss of quality. In cases where
the model is overly parameterized, like using BERT-12-12
in the text classification task above, we can still obtain sim-
ilar compression of 100x. Thus it is a good alternative to
neural architecture search. The results extend to CV datasets
as well. Specifically, we can train a ResNet-9 model with
10x lesser memory for the CIFAR10 dataset. Importantly,
we show that ROAST, due to its hardware-aware nature, is
significantly faster than HashedNet: ROAST is up to ~ 25x
faster to train and ~ 50X faster to infer than HashedNet for
large matrix multiplications. Our current implementation of
ROAST matrix multiplication is about 1.34x slower than
full matrix multiplication in pytorch. This is a testament
to how optimized CUBLAS libraries are. We believe, with
enough investigation, we can make ROAST-MM compara-
bly efficient to pytorch-MM as well.

2. Related Work

This section briefly reviews the rich history of model com-
pression paradigms. Model compression can be generally
classified into two categories: (1) Compressing a learned
model and (2) Learning a compressed model. ROAST lies
in the second category.

Compressing learned models: 1) Pruning: Pruning (Zhu
& Gupta, 2017) is a technique to remove parts of a large
model, including weights, blocks, and layers, to make the
model lighter. Pruning can be performed as a one-time
operation or gradually interspersed with training. 2) Quan-
tization: Quantization can involve reducing the precision
of the parameters of a model. Mixed precision models are
sometimes used where different precision is used with dif-
ferent weights. KMeans quantization is another type of
quantization, where models’ weights are clustered using
KMeans, and each cluster’s centroid is used for all cluster
weights. Model compression, in this case, is achieved by
reducing the number of distinct weights. 3) Knowledge

Hardware-Aware Compression with ROAST Hashing

distillation: Knowledge distillation (Bucilua et al., 2006)
is widely applied in model compression with a focus on dis-
tilled architectures. Knowledge distillation involves training
a teacher model (large original model); then, a student model
is trained using the logits of the teacher model. Empirically,
the student model trained under this paradigm generalizes
better than the student model trained standalone. Many
variations exist on this basic idea of knowledge distillation.

While these techniques have successfully reduced memory
for inference, one of the drawbacks of this line of compres-
sion is that the memory usage while training the model is
not reduced. ROAST, however, provides a solution that
reduces the model’s memory during training and inference.

Learning compressed models 1) Low-rank decomposi-
tion: In this method, matrices in the model are decom-
posed into a product of two low-rank matrices, thus saving
memory per matrix. A generalization of low-rank decom-
position to tensors is called tensor-train decomposition 2)
Parameter sharing: Parameter sharing approaches such as
HashedNet (Chen et al., 2015) are generally used for matrix
compression. These approaches randomly share weights
among different parameters, reducing the model’s memory
usage.

This line of research provides model reduction even dur-
ing training. However, Low-rank decomposition does not
offer arbitrary control over memory footprint, and Hashed-
Nets are inefficient due to heavy cache-trashing caused by
non-local lookups. Conversely, ROAST is a model-agnostic
parameter-sharing approach that can arbitrarily reduce the
model size without affecting the functional form while keep-
ing the model recovery efficient.

3. Background

HashedNet: Compressing MLP matrices Previous
work (Chen et al., 2015) introduced a weight sharing method
to compress weight matrices of MLP models. They map
each matrix parameter to a shared parameter array using
a random hash function xxhash (Collet, 2016). In the for-
ward pass, this mapping is used to recover a weight matrix
and perform matrix multiplication for each MLP layer. In
the backward pass, the gradients of each weight matrix are
mapped to the shared compressed array and aggregated us-
ing the sum operation. It should also be noted that each
MLP layer uses an independent array of parameters. One of
the main concerns with HashedNet is that memory accesses
on the compressed array are non-coalesced. Thus, fetching
a compressed matrix via HashedNet requires significantly
more memory read transactions than fetching an uncom-
pressed matrix for which memory accesses can coalesce.
Our evaluation shows that uncoalesced memory accesses
lead to high latency, especially for large matrices.

Random Block Offset Embedding Array (ROBE) for
embedding compression In ROBE (Desai et al., 2022), the
embedding table is generated using an array of parameters.
The embedding of a token is obtained by drawing chunks of
the embedding from the ROBE array. The locations of the
chunks are decided randomly via light-weight universal hash
functions. Authors of ROBE showed that ROBE hashing is
theoretically superior to feature hashing used in HashedNet.
Also, the use of chunks causes memory accesses to coalesce,
making embedding lookup efficient.

ROAST proposes a component agnostic, global parameter
sharing approach that tunes the hashing function to match
memory accesses of algorithmic implementation of opera-
tion over available hardware, thus giving a superior parame-
ter sharing scheme.

4. Random Operation Access Specific Tile
(ROAST) Hashing

Let M be the compressed memory from which parame-
ters will be used, f be the model or the function that we
want to run using M, and W be the recovered weights used
in f. f can be considered as a composition of operations
{0;(X;,W;)}. By operation, we mean the smaller func-
tions that, when composed together, give us the model f.
Here X is the input to the operation, and W is the weights
(i.e., learnable parameters) that O; uses. Generally, W;s are
distinct and do not share parameters.

Random Operation Access Specific Tile (ROAST) hash-
ing is a way to perform efficient model-agnostic parameter
sharing-based compression. The following distinct aspects
of ROAST set it apart from previous parameter sharing-
based methods. (1) ROAST is a generic technique appli-
cable to all computational modules. (2) ROAST proposes
to tune its mapping from W; to M in a way that coalesces
memory accesses according to how memory is accessed
during the operation. This makes ROAST efficient and up
to 45 faster than competing approaches like HashedNet.
(3) ROAST proposes Global Memory Sharing (GMS) as op-
posed to Local Memory Sharing (LMS) used in HashedNet.
We show GMS to be theoretically and empirically superior
to LMS in Section 5 and 6.

4.1. ROAST Operations in Deep Learning

Any model f can be considered as a composition of smaller
functions {O;(X;, W;)}. There are multiple ways to per-
form this decomposition depending upon what we consider
a valid (or small enough) operation. In ROAST, we consider
three types of operations: (1) L(Z, W), lookup that accesses
M and recovers [*" element of W, say w. By element, we
mean some particular part of 1 that is identifiable by an in-
teger. An example with embedding tables is given in figure

Hardware-Aware Compression with ROAST Hashing

ﬂp Mask LM Mask LM
*

®
BERT

2D ROAST tiles in 1D ROAST tiles in

MM(x, K) operation 7. & L(t,E) operation
:-__________________-: M‘::‘mm ! ..DDDD !
! ! s |[Tkt v 1 To ! !
| 5] - (=) | .
| (]| I N | T l E(t) |
1 x e Wx ! Masked VutHea | | led Sentence B 1 |
I 31 I 1 I
| [3](4] |!|== ; Un B Pair it — I
! e EE O TN g !
| BN 1 i o w OO |
I I Embedding

example: Attention matrix K et example: embedding
X(K) Parameter Memory (M)
1TTTT I T T T . T T T T T Ty T T |
: ﬂﬂﬂmmmWHHHHHHHHHHH*IDD:
!)
h,"(1,0) h,E9(0)

Figure 1. Generic model compression with operation-specific blocking for BERT as an example : (left) Shows how 2D tiles are mapped
to M in case of MM operation. (right) Shows how 1D tiles are mapped to M in case of L operation. A is the module-specific GMS

scaling factor

1. (2) MM (X, W), matrix multiplication that multiplies X
with W and returns the result, and (3) N(X), various oper-
ations that only act on the input but do not interact with M.
In ROAST, in order to limit the memory usage, we make
sure that LL is used only on a small w and MM is performed
without recovering the entire matrix. We find that most deep
learning models, if not all, can be written as a composition
of operations N, MM and L, where L is only applied on
small parameters. Let us discuss how ROAST implements
L and MM operations in the following paragraphs.

Lookup (L(I,W)) We recover a parameter weight w of
any shape in a row-major format. Thus, we can consider
w = W(l) to be a 1D vector without loss of generality.
ROAST recovers w from M in a blocked fashion. Consider
w to be composed of chunks of size Z. Each chunk c is
located in M using a universal hash function h; and is
recovered from the location h;(¢) in M. Let C(i) give the
chunk number of index 7 and O(7) give the offset of 7 in this
chunk.

wlil= AM[h1(C(2)) + O3F)] hi:N—={0,....,IM|-Z}
(1
The recovered W has A as a scaling factor discussed in sec-
tion 4.2. The hash function hashes to a range {0, ..., |[M| —
Z'} to avoid overflows while reading the memory. For ex-
ample, Figure 1 (right) illustrates the embedding lookup
using L with chunk size of 2. ROAST uses L to implement
computational modules such as embeddings, bias vectors,
and so on. We generalize the embedding lookup kernel from
ROBE (Desai et al., 2022) to implement our L kernel.

Matrix multiplication (MM (X;, W;)) 2D matrix multi-
plication is one of the most widely used operations in deep
learning. We implement our ROAST-MM kernel with pa-

rameter sharing performed in a way that the algorithm for
matrix multiplication accesses coalesced pieces of M. An
efficient implementation of matrix multiplication on GPU
follows a block multiplication algorithm to use the on-chip
shared memory efficiently. While computing C' = A x B,
A, B and C are divided in tiles of size Zy X £y, Z1 X Z5 and
Zy X Zo respectively. Thus, we divide our 2D weight matrix
into tiles of size Z; x Zs. The tile, (x,y), where and y are
the coordinates of the tile, is located in M in a row-major
format via a universal hash function hy(z, y). Let Cy (4, j)
and Cs(4, j) give the z-coordinate and y-coordinate of the
tile to which 4, j belongs. Similarly, let O1 (¢, j) and O (%, 7)
give the z-offset and y-offset of a location (i, j) on the tile.
Then, we use the following mapping for ROAST-MM,

W[Zv.]] =)‘M[hZ(Cl(Z.])C2(7’v.7)) + ZZOl(i7j) + 02(Z7.])]
hy i N2 = {0, ..., M| — Z1Z5}

Again,) is the scaling factor discussed in section 4.2. The
hash function hashes to a range {0, ...,|M| — Z1Z>} to
avoid overflows while reading the chunk. Figure 1 (left) il-
lustrates ROAST-MM with a chunk size of 2 x 2. The above
mapping is used whenever a 2D tile is accessed in the matrix
multiplication algorithm. The pseudo code for ROAST-MM
is shown in algorithm 1. We talk about implementation of
this kernel and its evaluation in the later part of the paper.
ROAST uses ROAST-MM kernel to implement computa-
tional modules such as MLP layers, attention blocks, etc.
Each module invoking ROAST kernels uses independent
hash functions.

Apart from scaling each recovered parameter with module-
specifc A\, we can also multiply it with another independent
hash function g : N¥ — {£1} (k=1 or k=2).

Hardware-Aware Compression with ROAST Hashing

Algorithm 1 ROAST-MM(] x H x O)

Require: X € RP>H M, A\, h : N2 — {0,...,|M]| —
2175}
Ensure: output = MM(X, M[h(:,:)])
value < TILE(Zy, Z5) > Allocate a 2D tile of size
Zo X Zo to accumulate results
fori € {0,1,...,[I/Zy] — 1} do
for j € {0,1,...,[0/Z3] — 1} do
value[:,:] < 0
for k € {0,1,...,[H/Z1] — 1} do
value + value + MM(X[i :
k+ Zl],./\/l(h(k‘ k4 24,57+ Z2)))
> Access to the weight tile passes through the hash
function
end for
outputli : i+ Zo,j : j + Za] < A X value
end for
end for

i+Zo,k2

4.2. Global Memory Sharing (GMS)

HashedNet uses local memory sharing (LMS), which states
that each layer will have independent compressed mem-
ory. In contrast, ROAST proposes global memory sharing
(GMS), wherein we share memory across modules. How-
ever, modules cannot directly use the parameters stored in
M as each module’s weights requires initialization and opti-
mization at different scales. For instance, in the Xavier’s ini-
tialization (Glorot & Bengio, 2010), weights are initialized
with distribution Uniform(—1/+/n,1/\/n) where n is
size of the input to the module. In GMS, we must ensure that
each module gets weights at the required scale. To achieve
this, we first initialize the entire ROAST parameter array
with values from the distribution Uniform(—1/C,1/C)
for some constant C. Then, for each module, we scale
the weights retrieved from the ROAST array by a factor of

A=C/yn.

One can understand the benefit of GMS over LMS in terms
of the number of distinct functions in f that can be ex-
pressed using a fixed M. Consider a family of functions
with n parameters. GMS can potentially express |M|™
functions across different random mappings. In LMS, let
separate parameters be of sizes ni,ns,..n; and each of
them is mapped into memories My, Mo, ..., M. Thus,
n =y ,n;and |[M| = 3", |M;|. Then LMS can only ex-
press | M|t | My|™2....| M |™* different functions. Thus
expressivity of LMS is strictly less than that of GMS and
can be orders of magnitude less depending on exact values
of n; and | M;|. We also show that GMS is superior to LMS
in terms of dimensionality reduction (feature hashing) in
Section 5.

Local Memory Sharing

EEEEECCOO00CEE EEEERCO0C0CCCEE

Global Memory Sharing

ERCOOCOE ~ I i

Figure 2. Local memory sharing : each module compresses its
parameters separately. In Global memory sharing, all parameters
from accross the modules share the same memory

4.3. Forward and Backward Passes

Recall that in ROAST, operations are of three types L, MM
and N. The forward pass proceeds by applying each opera-
tion in sequence. If an operation is of type N, we directly
apply its function on the input. For L and MM operations,
outputs are computed according to the procedure described
in Section 4.1.

The gradient of the loss w.r.t a weight w; in M is the A-
scaled aggregation of gradients of loss w.r.t all the param-
eters that map to this weight. For simplicity of notation,
consider 6 as the complete parameter, A(j) as the scaling
factor we use for the module that 6; belongs to, and / be the
mapping from 6 to M. See Appendix D.1 for more details.

Vi f(w) =" Aj)Ve, [(0))

J.h(g)=i

4.4. Implementation of ROAST-MM

The high-performance community has heavily investigated
the fast implementation of the General Matrix Multipli-
cation (GEMM) kernel, a fundamental operation in many
computational workloads, including deep learning. Opti-
mized implementations of GEMM kernels are available in
vendor libraries such as cuBLAS (NVIDIA Corporation,
2022a) and CUTLASS (NVIDIA Corporation, 2022b). Un-
fortunately, these implementations do not support custom
tile loading operations, which is the key of ROAST-MM. To
implement ROAST-MM to a reasonable level of efficiency,
we used Triton (Tillet et al., 2019): an intermediate language
for tiled neural network computations. Triton abstracts out
the shared memory management to make it helpful in cus-
tomizing tiled operations with high efficiency.

In our implementation of ROAST-MM, the optimal size of
coalesced tiles is a parameter that depends on the shape of
the weight matrix. Therefore, different tile sizes can lead to
different parallelism, occupancy, and shared memory effi-
ciency, resulting in different execution times. We autotune
this parameter to obtain the best performance for particular
matrix shapes. We propose two strategies for autotuning
each ROAST-MM layer - (1) Optimize the inference work-

Hardware-Aware Compression with ROAST Hashing

Table 2. Experimental settings: The datasets used in experiments.

Domain Task Dataset #Samples
NLP text classification | amazon-polarity | 3.6M/0.4M
NLP text classification yelp-polarity 560K/38K

CvV image classification cifarl0 50K/10K

load by autotuning the forward kernel and sharing the tile
size with the backward kernels. (2) Optimize the training
workload by autotuning the forward and backward kernels
together. Extensive evaluation of this kernel is presented in
appendix E.2.

5. Feature Hashing Quality: Global Memory
Sharing Advantage over Local Memory
Sharing

We can consider model compression as dimensionality re-
duction of a parameter vector (a one dimensional vector of
all parameters in a model) of size n into a vector of size
|M| = m. Quality of inner-product preservation is used as
a metric to measure the quality of dimensionality reduction.
In terms of dimensionality reduction, ROAST uses ROBE
hashing, which shows that chunk based hashing is theoreti-
cally better than hashing individual elements. In this section,
we compare ROAST’s GMS proposal against HashedNet’s
LMS using a chunck size of one. Consider two parameter
vectors x,y € R", we are interested in how the inner prod-
uct of parameter vectors are preserved under hashing. Let
x = [x1, T2, ...,] and y = [y1, Y2, ..., Yx| be composed of
k vectors of sizes ni, ns, ...nx where [] denotes concaten-
tation. In LMS, let each piece map to memory of size f;m
where) . f; = 1. The estimated inner product with GMS
is

.’K,

[Z I(n ()=

I
HMS S

The estimated inner product with LMS can be written as

—

(z,y

=

Lom,f
k fim [n ny

-y [}:H znu}lzjﬂuwn-ynﬂwqu
=1 j=1 Li=1 Jj=1
k —_—

=D @6 im)

Il
—

4)

Theorem 5.1. Let z,y € R™ and be composed of k vectors
x = [x1, 22, ..., x| and y = [y1, Y2, ..., Yi|. Then the inner

product estimation of global and local weight sharing are
unbiased.

E(<$7y>c,m) = E(<x7y>L7m$f) =

The variance for inner product estimation can be written as,

(z,y) (z,y))

Va((z,y)) =
1
> fVit - S UlwallPllys11?) + s, vi) s, v5)
i i3 it
(6)
Vi((zy) =D Vi (7)
where
=1 > alt? +) " aibiasb
fim #jlj oy 7 (8)
, where x; = (a1, as..., an,) and y; = (b1, ba..., by,)

where V1, is local memory sharing variance and V¢ is
global memory sharing variance.

Intuition: The two terms in V& can be understood as fol-
lows: The first term is the local variance with individual
terms reduced by a factor of f;. This is because each piece
of the vector is being distributed in a memory that is 1/ f; x
larger. However, in GMS, there is a possibility of more
collisions across pieces. This leads to the second term in
V¢. Note that, for a given z,y and a finite value for m,
V¢ is always bounded. At the same time, V, is unbounded
due to 0 < f; < 1 in the denominator. So if the number of
pieces increases or particular f; grows smaller, V1, increases.
While we cannot prove that V is strictly less than Vi, we
can investigate the equation under some assumptions on the
data. Practically, each piece of the parameter vector is a
computational block like a matrix for multiplication or em-
bedding table lookup. These blocks are initialized at a scale
proportional to the square root of their size. So the norms
of these vectors are similar. Let us assume the norm of each
piece to be y/a. Also, let us assume that over random data
distributions over x and y, all the inner products to be 3 in
expectation. Then,

]432
Vg =~ m(Oé + 6?%)
1 1 1
VLzE(aﬂﬁ?)(flJrng +fk))
1 2 2 2 1
- k
SRR 5P
=Vg

Hardware-Aware Compression with ROAST Hashing

Table 3. Text classification task. The table shows (a) ROAST and Pruning on BERT-2-2 model comparisons w.r.t quality and convergence
rate (ROAST gives high compression without loss of quality and outperforms pruning baselines). (b)GMS and LMS quality comparisons
(GMS outperforms LMS) and (c) convergence comparison of GMS and LMS (GMS is faster to converge than LMS). To get a sense of

variation in results on multiple runs, see figure 4 in appendix

Text-classification Acc
Model size amazon-polarity Epochs yelp-polarity Epochs Comment
to reach the acc to reach the acc
BERT-2-2 37.4M 93.4 5.6 90.8 5.4
BERT-1-1 30.3M 92.01 7.02 90.2 2.8
ROAST-10x-GMS (BERT-2-2) 3.TM 94.6 7.3 90.8 2.8
ROAST-100x-GMS (BERT-2-2) | 393K 93.8 7.2 90.8 7.03
PRUNE-10x (BERT-2-2) 3.74M 93.5 9.02 89.65 9 full-9-1 schedule
PRUNE-100x(BERT-2-2) 374K 91.36 9.8 89 9.8 full-9-1 schedule
PRUNE-10x(BERT-2-2) 3.74M 93.24 8.94 89.8 7 full-1-9-schedule
PRUNE-100x(BERT-2-2) 370K 90.73 9.15 87.7 9.82 full-1-9-schedule
BERT-12-12 108M 93.51 6.95 90.8 4.7
BERT-12-12-10x-LMS 10.1M 93.49 4.84 90.9 4.69
BERT-12-12-10x-GMS 10.1M 94.64 4.85 91.1 4.97
BERT-12-12-100x-LMS 1M 92.9 4.87 90.7 9.03
BERT-12-12-100x-GMS 1M 93.9 9.39 91.0 6.83
Text-classification convergence for a specific target accuracy
Model size amazon-polarity yelp-polarity Comment
target epochs target epochs
BERT-12-12 108M 93.4 5 90.8 4.7
BERT-12-12-10x-LMS 10.1M 93.4 3.77 90.9 4.69
BERT-12-12-10x-GMS 10.1M 93.4 1.97 90.9 34
BERT-12-12-100x-LMS IM 92.9 4.78 90.7 9.09
BERT-12-12-100x-GMS 1M 92.9 3.09 90.7 3.74

Table 4. Image classification task: (above)We see that ResNet-9
model can be trained in 10x smaller memory. (below). Pruning
gives 100 post-training compression but requires complete mem-
ory for training. We can prune ROAST-10x model, which uses
10x lesser memory, further 10x to give 100X post-training model

Image-classification Acc (target: 94%)
Model Size cifar-10

ResNet-9 6.5M 94.2
ROAST-5x 1.2M 94.58
ROAST-10x 650K 94.15
PRUNE-10x 650K (6.5M) | 95.59
PRUNE-100x 65K (6.5M) 94.8
PRUNE-1000x 6.5K (6.5M) 93.34
ROAST-10x- PRUNE-10x | 65K (650K) 94.06

Thus, V7, is greater than V, and it can be much greater de-
pending on the exact values of f;. The proof of the theorem
and other details are presented in Appendix D.2

6. Experimental Evaluation

Setup: In this section, we evaluate the ROAST compression
approach on two types of tasks. The details of the tasks,
datasets, and models used are mentioned in Table 2. . For
image-classification tasks, we choose the cifar-10 dataset
and the leader for the DawnBenchmark (Coleman et al.,

2017) - a ResNet-9 model? for cifar-10. The target accuracy
for this benchmark is 94%, so we perform hyper-parameter
tuning to get a test accuracy of > 94%. We stop the tuning
once we reach this accuracy; hence, the results for CIFAR-
10 should be compared w.r.t whether it crosses 94.0%. We
use the two largest available text-classification datasets for
NLP tasks on huggingface (HuggingFace, 2022). For the
model, we use BERT-x-y (x:number of layers, y:number
of attention heads) architecture with a classification head.
On both NLP datasets, using models larger than BERT-2-2
led to similar test accuracy, so we chose BERT-2-2 as the
base model. The other hyperparameters for NLP tasks are
{ batch 64 for amazon-polarity and 32 for yelp-polarity,
learning rate 2e-5, AdamW optimizer, Linear scheduler}.
Pruning is used as a baseline. We use iterative magnitude
pruning interspersed with training. We use two schedules
for pruning. “full-9-1-schedule” (* alt. ‘full-1-9-schedule”)
means we start with the fully trained model and then perform
iterative magnitude pruning to require sparsity in 9 (alt. 1)
epochs and finally perform 1 (alt. 9) epoch at final sparsity.

ROAST for compression As we can see in Tables 3 and
4, with ROAST, we can achieve a similar quality of the
model in a much smaller space. Specifically, we can train
and deploy the BERT-2-2 model in 100x lesser space for
text-classification. Similarly, we can train and deploy the

*https://github.com/apple/ml-cifar-10-faster

Hardware-Aware Compression with ROAST Hashing

Table 5. Inference times of different square weight matrices using an input batch of 512. For ROAST, the tile parameters of each matrix
multiplication are autotuned. The measurements were taken using TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul
function (MM) for the full uncompressed matrix multiplication. l:bad M: good

Inference time (ms)

Weight matrix dimensions (Dim x Dim)

Model Msize | | 512 | 1024 | 2048

4096 8096 10240 | 20480 | Average

Full size — IMB | 4MB | 16MB
PyTorch-MM

HashedNet

64MB | 128MB | 420MB | 1.6GB
0.69 1.18 3.91 0.91
2.02 6.20 9.67 35.22 7.77
3.64 13.66 22.11 92.40 19.06

6.47 31.21 42.45 37.15
9.10 34.62 56.03 47.37
10.25 38.28 62.67 52.88
10.59 | 40.55 65.74 56.03

0.48 0.99 1.36 4.83 1.22
0.44 1.01 1.38 4.88 1.22

0.44 1.00 1.40 4.93 1.23

ROAST

0.45 1.01 1.39 491 1.23

0.44 1.01 1.40 4.90 1.23
0.45 1.02 1.39 4.95 1.24

ResNet model in 10x lesser space for the same target test
accuracy. Thus, ROAST is an effective method for training
and deploying models on memory-constrained systems.

Managing excess parameters It is clear from Table 3 that
BERT-base architecture is highly overparameterized for
the tasks under consideration. However, even in this case,
ROAST can control the memory footprint while maintaining
the functional form of the larger model.

Pruning and ROAST We perform pruning as a baseline to
ROAST. ROAST outperforms pruning in NLP tasks where
pruning loses accuracy on compression. This is true for both
the schedules used for pruning. also perform pruning (Han
et al., 2016) on ResNet model and find that pruning gives
upto 100x compression. Note that pruning requires us to
train the model using the memory required to store the orig-
inal model. On the other hand, compression with ROAST
means using lesser memory, even for training. Additionally,
pruning can be used with ROAST to obtain smaller models
using smaller memory. In Table 4, we see that we can prune
90% of weights in 10x compressed ROAST array and still
achieve the same quality.

Local vs. Global memory sharing In Table 3, we show
that the quality of the model while using global memory
sharing is, indeed, better than local memory sharing. This
supports our theoretical observation about these memory-
sharing schemes. Also, it can be seen from Table 3, that
GMS converges faster than LMS.

Efficiency of ROAST operators as compared to Hashed-
Net Table 7 shows the inference performance of a sim-
ple model using ROAST-MM for matrix multiplication on

compressed memory. Our model linearly transforms the
input vector and computes its norm. We optimized the
ROAST-MM kernel for this experiment using the inference-
optimal strategy. We make the following observations from
Table 7: (1) ROAST-MM outperforms HashedNet kernel
consistently across the different multiplication workloads.
On average, over different workloads, ROAST-MM is up
to 45x faster than HashedNet. (2) ROAST-MM is 1.34x

slower than PyTorch-MM. This is expected as Pytorch-MM
uses extremely optimized libraries for matrix multiplication
and ROAST-MM implementation is comparatively under-
optimized. It is still interesting to note that ROAST-MM’s
performance is better in terms of scaling efficiency than
PyTorch-MM with the increase in workload. As the work-
load increases 1600x (from 512x512 to 20480x20480),
PyTorch-MM takes 39x time, HashedNet takes 106 x time
whereas Roast-MM only takes around 16x time. We
present more detailed measurements across different op-
timizers for training-optimal strategy in the appending E.2

7. Limitations and Future Work

This paper evaluates encoder architectures of transformers
and convolution based ResNet architectures on classifica-
tion tasks. A more comprehensive evaluation on different
tasks — such as those involving encoder-decoder based ar-
chitectures — is required to understand the effectiveness
of ROAST under different circumstances. The current im-
plementation of ROAST-MM is slower than pytorch-MM
especially for smaller matrix sizes. If found widely useful
in future, it would be interesting to put in more resources
to make ROAST-MM implementation faster. One of the

Hardware-Aware Compression with ROAST Hashing

goals of model compression, apart from reducing memory
usage, is to reduce computational workload for deployment.
ROAST, currently, is not devised to decrease computation; it
only decreases the memory footprint of a model. Reducing
computation with a small memory is left for future work.

8. Acknowledgements

This work was supported by National Science Foundation
SHF-2211815, BIGDATA-1838177, ONR DURIP Grant,
and grants from Adobe, Intel, Total, and VMware. We also
thank Zichang Liu for giving helpful writing comments on
the paper.

9. Conclusion

Traditionally model compression has focused on memory
reduction during inference. However, model memory dur-
ing training is also an important consideration. While some
of the existing methods such as HashedNet and Low-rank
factorisation provide model reduction during training, these
methods either do not provide cache-efficient model recov-
ery or have implicit cap on memory reduction. ROAST
overcomes these obstacles and provides a cache-efficient,
arbitrary control over the memory footprint of model dur-
ing training and inference. ROAST, essentially provides a
practical parameter sharing method. ROAST is theoretically
better than HashedNet in terms of dimensionality reduction
due to block based hashing and global memory sharing.
We empirically validate the efficiency advantage of ROAST
over HashedNet and that we can achieve high compression
with ROAST.

References

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 535-541, 2006.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y.
Compressing neural networks with the hashing trick. In
International conference on machine learning, pp. 2285—
2294. PMLR, 2015.

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J.,
Nardi, L., Bailis, P., Olukotun, K., Ré, C., and Zaharia,
M. Dawnbench: An end-to-end deep learning benchmark
and competition. Training, 100(101):102, 2017.

Collet, Y. xxhash: Extremely fast hash algorithm, 2016.
https://github.com/Cyan4973/xxHash [Ac-
cessed May 15, 2022].

Desai, A., Chou, L., and Shrivastava, A. Random offset
block embedding (robe) for compressed embedding tables

in deep learning recommendation systems. Proceedings
of Machine Learning and Systems, 4:762-778, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M.,
Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh,
S. Persistent rnns: Stashing recurrent weights on-chip.
In International Conference on Machine Learning, pp.
2024-2033. PMLR, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256. JMLR
Workshop and Conference Proceedings, 2010.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. arXiv: Computer Vi-
sion and Pattern Recognition, 2016.

Hrinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova, E.,
and Oseledets, I. Tensorized embedding layers. In Find-

ings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4847-4860, 2020.

HuggingFace. HuggingFace Transformer, 2022. https:
//github.com/huggingface/transformers
[Accessed May 14, 2022].

Lepikhin, D., Lee, H., Xu, Y., Chen, D, Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Mudigere, D., Hao, Y., Huang, J., Tulloch, A., Sridharan,
S., Liu, X., Ozdal, M., Nie, J., Park, J., Luo, L., et al.
High-performance, distributed training of large-scale
deep learning recommendation models. arXiv preprint
arXiv:2104.05158, 2021.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundara-
man, N., Park, J., Wang, X., Gupta, U., Wu, C., Azzolini,
A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, 1.,
Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V.,
Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong,
L., and Smelyanskiy, M. Deep learning recommendation
model for personalization and recommendation systems.
arXiv:1906.00091, 2019.

Hardware-Aware Compression with ROAST Hashing

NVIDIA Corporation. NVIDIA cuBLAS, 2022a.
https://developer.nvidia.com/cublas

[Accessed May 14, 2022].

NVIDIA Corporation. NVIDIA CUTLASS, 2022b.
https://github.com/NVIDIA/cutlass
[Accessed May 14, 2022].

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I, et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Thompson, N. C., Greenewald, K., Lee, K., and Manso,
G. F. Deep learning’s diminishing returns: The cost of
improvement is becoming unsustainable. IEEE Spectrum,
58(10):50-55, 2021.

Tillet, P., Kung, H. T., and Cox, D. Triton: An In-
termediate Language and Compiler for Tiled Neural
Network Computations, pp. 10-19. Association for
Computing Machinery, New York, NY, USA, 2019.

ISBN 9781450367196. URL https://doi.org/10.

1145/3315508.3329973.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,
and Attenberg, J. Feature hashing for large scale multi-
task learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09,
pp. 1113-1120, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585161.

doi: 10.1145/1553374.1553516. URL https://doi.

org/10.1145/1553374.1553516.

Yin, C., Acun, B., Wu, C.-J., and Liu, X. Tt-rec: Tensor train
compression for deep learning recommendation models.
Proceedings of Machine Learning and Systems, 3, 2021.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

10

Hardware-Aware Compression with ROAST Hashing

A. Societal impact

Our work is directed towards efficient machine learning that will reduce carbon footprint of model training and deployment.
To the best of our knowledge, there is no negative societal impact of our work.

B. Additional Data
B.1. GMS vs LMS for Yelp

0.91 4
0.91 A
0.90 4
0.90
0.89
> >
() (@]
E 0.89 E 0.88 -
3 -]
9 9
< 088 | <[0.87 A
—— ORIG —— ORIG
087 —— ROAST-100x-Global 081 —— ROAST-10x-Global
{ —— ROAST-100x-Local oss] —— ROAST-10x-Local
(I) 20600 40600 60600 BO(I!OO 100‘000 IZObOO 140bOO 160'000 20600 40(‘]00 60(300 BO(IJOO lOUbOO 120‘000 140‘000
Iterations Iterations
(a) GMS vs. LMS 100x Yelp (b) GMS vs. LMS 10x Yelp

Figure 3. Separate plots for 10x and 100x ROAST for Yelp dataset for better visibility. Also, rolling mean of 5 measurements was used
to reduce noise in the plots

As can be seen from the two plots in figure3, it is clear the GMS performs superior to LMS in both the compression settings.

B.2. ResNet-50 on Imagenet

Table 6. Off-the-shelf ROAST compression to ImageNet dataset with ResNet-50 architecture without much hyperparameter tuning and

limited running times. Run using : https://github.com/libffcv/ffcv-imagenet

Compression | Top-1 | Top-5
2x 76.3 93.2
5x 74.3 92.1

C. Variance in quality over different runs

The figure 4 shows three runs of ROASTed BERT and BERT models

D. Theory

ROAST is a generalized model compression which performs operation specific system-friendly lookup and global memory
sharing. This raises some interesting theoretical questions
D.1. Backward pass for model sharing weights across different components

A general function sharing a weight, say x across different components can be written as , f(z, g(x)) The interpretation is
that x was used in g(.) and then again used ahead in f. (In case of MLP, we can think of x being used in multiple layers)

Let f(g1, g2) where both ¢; and go are functions of z.

11

Hardware-Aware Compression with ROAST Hashing

0.90 090
0.88
0.88
9 o
€ oo g
3 3
8 8 0.84
< 0.84 o <
—— original-seedl —— ROAST-100x-seedl
0.82
—— original-seed2 —— ROAST-100x-seed?2
0.82
—— original-seed3 0.80 —— ROAST-100x-seed3
o 10(')00 20600 30{;00 40600 50600 6 10000 20000 30600 40000 50600
Iterations Iterations
(a) yelp - original (b) yelp - ROAST100x
0.92 4
0.900
0.90 1 0.875
0.850
> >
'§ 0.88 E 0.825
g g 0.800
£ 0.86 - T 2.,
—— original-seedl I —— ROAST-100x-seedl
0841 —— original-seed2 0750 —— ROAST-100x-seed?2
—— original-seed3 0725 —— ROAST-100x-seed3
0.82
0 2500 SObO 7500 10000 12.‘;00 15600 17500 o700 0 2500 5000 7500 10000 12500 15000 17%00
Iterations Iterations
(c) ag_news - original (d) ag_news - ROAST100x

Figure 4. Three runs of original and ROAST-100x runs

0f(g1.92) Of(g1,92) Og1 .~ Of(g1,92) Og2
= e 1
ox dg1 * ox + dgs ¥ ox (10)

g1 =z and go = g(z)

9f(y: 9(x)) _ 9g(x)

ox a 0 ly=a + g (x) ox ly=2 an
0f(91,92) Of(x,9(y)) of (y, g(x))
e - or et Tgp e 12
Renaming,
Of(x,g(x)) Of(2,9(y)) of(z,9(y))
O - Ep |y=1,z:z + ay |y:z,z:z (13)

Thus, we can essentially consider each place where x appears as new variables and then gradient w.r.t X is just summation of
partial derivatives of the function w.r.t these new variables. Thus, it is easy to implement this in the backward pass. In order
to make sure that the memory utilization in backward pass is not of the order of the recovered model size, we do not use the
auto-differentiation of tensorflow/pytorch. We implement our own backward pass and it can be found in the code.

12

Hardware-Aware Compression with ROAST Hashing

D.2. Global feature hashing vs local feature hashing.

We can consider model compression techniques as dimensionality reduction of the parameter vector (a one dimensional
vector of all parameters in a model) of size n into a vector of size | M| = m. Quality of inner-product preservation is used
as a metric to measure the quality of dimensionality reduction. In terms of dimensionality reduction, ROAST uses ROBE
hashing (Desai et al., 2022), which showed that chunk based hashing is theoretically better than hashing individual elements.
In this section, we analyse GMS proposal of ROAST against LMS of HashedNet. For the purpose of this comparison we
assume a chunk size of 1. Consider two parameter vectors z,y € R™. We are interested in how inner product between these
parameter vectors are preserved under hashing. Let = [x125...2%] and y = [y1y2...yx] be composed of k pieces of sizes
ni, na, ...nj. In LMS, let each piece be mapped into memory of size f;m where >, f; = 1.

The estimators of inner product in the GMS case can be written as ,

@D = S I()=)g(0)alil) (S 1(h(i)=1)g(i)yli]) (14)

j=1 =1 i=1

m n n

The estimate of inner product with LMS can be written as,

/\ kE fim mny n; ko
7= S0 S M@ =)g @S 1O =Ng i) = S @ i gomy ()
=1 j5=1 i=1 Jj=1 =1
Note that i
@L,M,f: Z <$/I’E>G,(flm) (16)
=1

The GMS estimator is the standard feature hashing estimator and the LMS is essentially sum of GMS estimators for each of
the piece. as E[g(¢)] = 0, it is easy to check by linearity of expectations that estimators are unbiased.The suffix L refers to
local hashing and G refers to global hashing.

—

EG =]E(<x7y>G7m) = <I’,y> (17)
By =E({@.9), . p) = @) (18)

Let us now look at the variance. Let us follow the following notation,

o Vo= V(@Gm). GMS variance of entire vectors

o VL = V(@ 7)- LMS variance of entire vectors

L,m,

o —

* Vi =V({z1,y)q f,m)- variance of each piece

we can write V; as follows. The following equation is easy to derive and it can be found the lemma 2 of (Weinberger et al.,
2009)

V= —E(Z afb? + Zaibiajbj) where x; = (a1, a3...ay,) and y; = (b1, ba...by,) (19)
i#] i#£]
As, each of the piece is independently hashed in LMSss, we can see

k
V=)V (20)
=1

13

Hardware-Aware Compression with ROAST Hashing

Let us now look at V5. Again, using lemma 2 from (Weinberger et al., 2009)

1
G = E(Z rjy; + inyiiﬁjyj) (2D

i#] i#]
The expression can be split into terms that belong to same pieces and those across pieces

k

Z(Z xy]—|— Z TiYiT;Y;)

=1 i#jé€Epiece-1 17 j Epiece-1
k

k
+ % Z (Z (@7y2) + Z TiYi®;Y;))
=11

112=1,11#£12 i€&piece-11,jEpieces-12 iEpiece-11,j Epieces-12

Vo =

3=

Vo = Zflv +—= Z Z znl3]1yills + (zo, iz) (212, i2) (22)

M D=1 A1£12

Observation 1: In V;, we can see that there are terms with - 7 which makes it unbounded. It makes sense as if number of
pieces increase a lot a lot of compressions will not work for example if number of peices > |M]|. Also, it will affect V7, a lot
when some f; is very small which can often be the case. For example, generally embedding tables in DLRM model are
much larger than that of matrix multiplciation modules (MLP) . which can make f = 0.001 for MLP components.

Observation 2: Practically we can assume each piece, no matter the size of the vector, to be of same norm. The reason lies
in initialization. According to Xavier’s initialization the weights of a particular node are initialized with norm 1. So for
now lets assume a more practical case of all norms being equal to y/a. Also, in order to make the comparisons we need
to consider some average case over the data. So let us assume that under independent randomized data assumption, the
expected value of all inner products are 5. With this , in expectation over randomized data, we have

k(k=1) > g
Vo = i+ —= 23
6= fiVit = (a®+) (23)
Now note that,
11 272
V= f Z by + Zazb a;b;) where z; = (a1, ag...an,) and y; = (b1, b2...by,) (24)
em i#] i#]
(dropping the subscript ”’1” below)
Vi= f*(13 11y113 + —2296 (25)

Vl:%i«a?w 223: ((+5%) (26)

m

Note that for each negative term, there are n; positive terms. To simplify we disregard this term in the equation above. This
is an approximation which is practical and only made to get a sense of V7, and V; relation.

14

Hardware-Aware Compression with ROAST Hashing

Table 7. Inference times of different square weight matrices using an input batch of 512. For ROAST, the tile parameters of each matrix
multiplication are autotuned. The measurements were taken using TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul
function (MM) for the full uncompressed matrix multiplication. l:bad M: good

Inference time (ms)
Weight matrix dimensions (Dim x Dim)
Model Mssize | | 512 | 1024 | 2048 4096 8096 10240 | 20480 | Average
Full size — IMB | 4MB | 16MB | 64MB | 128MB | 420MB | 1.6GB
PyTorch-MM 0.69 1.18 3.91 0.91
6.20 9.67 35.22 7.717
13.66 22.11 92.40 19.06
31.21 42.45 37.15
HashedNet 3462 | 56.03 47.37
38.28 62.67 52.88
40.55 65.74
0.99 1.36
1.01 1.38 4.88 1.22
1.00 1.40 4.93 1.23
RO 1.01 1.39 491 1.23
1.01 1.40 4.90 1.23
1.02 1.39 4.95 1.24

V=t = V- - 2
Vi Vo=Y (7 - Dl +5) - D2 4 p2)

. m Ji

Vi, — Vg = Z %(% _ 1)((a2 +62) B k(k—1) (a2 +B2)
l

V- ve 2 ME ey oy EZD) o2 g

VL =Ve >0

Note that we ignored a term which reduces the V7, a bit, The above equation shows even for the best case, V& might be
slightly more than V. However for general case where harmonic mean is much worse than arithmetic mean, V7, will be
much larger depending on exact f; s

E. ROAST-MM latency measurements

E.1. Inference optimization

See Table 7

E.2. Training optimization

See Tables 8, 9, 10, 11

15

Hardware-Aware Compression with ROAST Hashing

forward(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

512 1024 2048 4096 8096 10240 20480 WE\EGelE

Full
(uncompressed)

HashedNet

ROAST

Table 8. Inference (forward pass time) for different shapes of square weight matrix with input batch of 512. The tile-parameters of
multiplication are optimized for each function over “forward + backward” pass .The measurements are taken with tf32 on A100 (48GB)

backward(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

M(enri‘;ry 512 1024 2048 4096 8096 10240 20430 WNCereS
Full
(uncompressed)
HashedNet
ROAST

Table 9. Backward pass for different shapes of square weight matrix with input batch of 512. The tile-parameters of multiplication are
optimized for each function over “forward + backward” pass .The measurements are taken with tf32 on A100 (48GB)

16

Hardware-Aware Compression with ROAST Hashing

update weights (optim.step())(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)
optim Model Al 512 1024 2048 \ 4096 8096 \ 1024085204805 W\ T

adagrad | Ful 060 | 2.16 | 341
| |
| |

0.54

HashedNet 0.61 | 0.61 | 0.61 | 0.61 | 0.61 0.62 0.61 0.61
128 | 1.15 | 1.14 | 1.14 | 1.14 | 1.15 1.19 1.18 1.15
256 | 222 | 2.21 | 221 | 221 | 222 2.26 3.87 2.46
512 | 436 | 436 | 435 | 435 | 437 4.40 4.47 4.38
O 128 | 1.14 | 1.14 | 1.14 | 1.14 | 1.14 1.14 1.14 1.14
256 | 221 | 221 | 221 | 221 | 221 2.21 2.21 2.21
512 | 438 | 435 | 436 | 435 | 4.35 4.36 4.35 4.36
Full
4
32 1057 | 057 | 057 | 0.57 | 0.57 0.57 0.59 0.57
HashedNet 64 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 1.06 1.16 1.08
128 | 2.03 | 2.05 | 2.04 | 2.04 | 2.05 2.04 2.23 2.07
256 | 3.98 | 399 | 398 | 3.99 | 4.00 4.00 4.22 4.02
adam 512 | 789 | 7.89 | 7.89 | 7.89 | 7.91 7.90 8.13 7.93
4
32 1 057 | 057 | 057 | 0.57 | 0.57 0.57 0.57 0.57
ROAST 64 | 1.07 | 1.06 | 1.06 | 1.06 | 1.06 1.07 1.06 1.06
128 | 2.05 | 2.03 | 2.04 | 2.04 | 2.03 2.04 2.04 2.04
256 | 4.01 | 398 | 3.99 | 399 | 3.99 3.99 3.99 3.99
512 | 7.89 | 7.89 | 7.89 | 7.89 | 7.89 7.89 7.89 7.89
Full
HashedNet 048
. . 0.83 0.67
sgd . . 1.25
ROAST

Table 10. Weight update operation (optimizer.step()) for different shapes of square weight matrix with input batch of 512. The tile-
parameters of multiplication are optimized for each function over "forward + backward” pass .The measurements are taken with tf32 on
A100 (48GB)

17

Hardware-Aware Compression with ROAST Hashing

total = fwd + bkwd + optimize (ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)
optim Model msize 024 048 4096 8096 0240 (2500 Average
adagrad | Full 4.17 6.33 | 24.13 5.37
4 474 | 1486 | 2295 | 92.78 19.88
32 1037 | 38.19 | 61.35 | 253.72 52.79
64 453 | 17.83 | 67.74 | 110.15 93.53
HashedNet |)¢ 6.15 | 22.62 | 86.36 | 138.51 118.12
256 | 371 | 459 | 7.95 | 2673 | 98.42 | 155.92 133.73
512 | 6.58 | 7.47 | 11.13 | 30.96 | 107.21 | 168.30 142.83
| 4.09 584 | 21.64 5.19
| 4.49 6.46 | 23.00 5.68
4.87 6.86 | 23.90 6.12
RO 5.72 7.97 | 27.28 7.25
| ; 7.10 9.40 | 28.35 8.58
. 9.97 | 1231 | 32.04 11.61
Full | | 5.89 9.11 | 35.01 7.62
| |) 1494 | 23.07 | 86.76 19.13
| |) 3845 | 61.64 | 253.20 52.91
)) 68.28 | 110.63 93.96
(RN 427 | . . 87.47 | 139.30 119.07
545 | 6.30)) 100.19 | 157.55 134.52
adam 10.94)) 110.71 | 171.67 146.41
4.06 589 | 21.71 5.26
| 472 6.69 | 23.28 5.92
5.34 739 | 24.35 6.60
RO . 6.62 8.85 | 28.22 8.18
582 | 533 | 545 : 897 | 11.15| 30.19 10.45
9.87) 13.52 | 15.82 | 35.59 15.09
Full | | 390 14.68
| 1476 | 22.96 | 86.70 19.01
| 38.10 | 61.16 | 252.99 52.50
67.28 | 109.78 93.15
HashedNet 8546 | 137.54 117.26
| 96.91 | 154.43 131.26
sgd | 4 104.03 | 164.94 139.70
| 3.94 5.82 | 22.39 5.25
| 428 6.25 | 2277 5.45
4.45 6.45 | 24.01 5.84
{0 4.90 725 | 27.18 6.56
| 5.53 791 | 26.98 7.08
| 7.10 9.17 | 31.20 8.82

Table 11. Total training step time for different shapes of square weight matrix with input batch of 512. The tile-parameters of multiplication
are optimized for each function over “forward + backward” pass .The measurements are taken with tf32 on A100 (48GB)

18

