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Abstract

This paper proposes a logistic undirected network formation model which allows for assortative
matching on observed individual characteristics and the presence of edge-wise fixed effects. We
model the coefficients of observed characteristics to have a latent community structure and the
edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving
nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to
detect the latent communities. We show that the latent communities can be exactly recovered when
the expected degree of the network is of order log n or higher, where n is the number of nodes in the
network. The finite sample performance of the new estimation and inference methods is illustrated
through both simulated and real datasets.

Keywords: Community detection, homophily, spectral clustering, strong consistency, unobserved
heterogeneity

1. Introduction

In real world social and economic networks, individuals tend to form links with someones who
are alike to themselves, resulting in assortative matching on observed individual characteristics
(homophily). In addition, network data often exhibit natural communities such that individuals in
the same community may share similar preferences for a certain type of homophily while those in
different communities tend to have quite distinctive preferences. In many cases, such a community
structure is latent and has to be identified from the data. The detection of such community structures
is challenging yet crucial for network analyses. It prompts a couple of important questions that need
to be addressed: how do we formulate a network formation model with individual characteristics,
unobserved edge-wise fixed effects, and latent communities? When the model is formulated, how
do we recover the community structure and estimate the community-specific parameters effectively
in the model?
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To address the first issue above, we propose a logistic undirected network formation model with
observed measurements of homophily as regressors. We allow the regression coefficients to have a
latent community structure such that the regression coefficient for covariate [ in the network forma-
tion model is By 1, 1, for any nodes ¢ and j in communities k1 and ko, respectively. The edge-wise
fixed effects are assumed to have a low-rank structure. This includes the commonly used discretized
fixed effects and additive fixed effects as special cases. To address the second issue, we note that
the estimation of this latent model is challenging, and it has to involve a multi-step procedure. In
the first step, we estimate the coefficient matrices by a nuclear norm regularized logistic regression
given their low-rank structures; we then obtain the estimators of their singular vectors which con-
tain information about the community memberships via the singular value decomposition (SVD).
Such singular vector estimates are only consistent in Frobenius norms but not in uniform row-wise
Euclidean norm. A refined estimation is needed for accurate community detection. In the second
step, we use the singular vector estimates from the first step as the initial values and iteratively run
row-wise and column-wise logistic regressions to reestimate the singular vectors. The efficiency
of the resulting estimator can be improved through this iterative procedure. In the third step, we
apply the standard K-means algorithm to the singular vector estimates obtained in the second step.
For technical reasons, we have to resort to sample-splitting techniques to estimate the singular vec-
tors, and for numerical stability, both iterative procedures and multiple-splits are called upon. We
establish the exact recovery of the latent community (strong consistency) under the condition that
the expected degree of the network! diverges to infinity at the rate logn or higher order, where n
is the number of nodes. Under the exact recovery property, we can treat the estimated community
memberships as the truth and further estimate the community-specific regression coefficients.

Our paper contributes to three strands of literature in statistics and econometrics. First, our paper
contributes to the large literature on the application of spectral clustering to detect communities in
stochastic block models (SBMs) by studying the estimation and inference of a network formation
model with both covariates and latent community structures in the regression coefficients. Since the
pioneering work of Holland et al. (1983), SBM has become the most popular model for community
detection. The statistical properties of spectral clustering in such models have been studied by Jin
(2015), Joseph and Yu (2016), Lei and Rinaldo (2015), Paul and Chen (2020), Qin and Rohe (2013),
Rohe et al. (2011), Sarkar and Bickel (2015), Sengupta and Chen (2015), Vu (2018), Wang and
Wong (1987), Yun and Proutiere (2014), Yun and Proutiere (2016), and Zhao et al. (2012) among
others.2 From an information theory perspective, Abbe and Sandon (2015), Abbe et al. (2016),
Mossel et al. (2014), and Vu (2018) establish the phase transition threshold for the exact recovery of
communities in SBMs, which requires the expected degree to diverge to infinity at a rate no slower
than logn. See Abbe (2018) for an excellent survey on the recent development of estimation of
SBMs and degree-corrected SBMs. Nevertheless, most existing SBMs do not include covariates.
A few exceptions include (Binkiewicz et al., 2017), Weng and Feng (2016), Yan and Sarkar (2020)
and Zhang et al. (2016), who consider covariates-assisted community detection but not inferences
on the underlying parameters.

1. Let Y;; be a binary variable which equals one when there is an edge between nodes ¢ and j and zero otherwise. Then,
the expected degree for node 7 is defined as E > i Yig-

2. Other methods to detect communities include but are not limited to modularity maximization (Newman and Girvan,
2004), likelihood-based methods (Amini et al., 2013; Bickel and Chen, 2009; Choi et al., 2012; Zhao et al., 2012),
the method of moments (Bickel et al., 2011), and spectral embedding (Lyzinski et al., 2014; Sussman et al., 2012).



DLC

In addition, our multi-step procedure combines likelihood maximization with low-rank estima-
tion and a spectral clustering step and provides an effective and reliable tool for the estimation of
the complex network model considered in the paper. The variational EM algorithm is an alternative
method widely used to estimate complicated models that can incorporate both covariates and com-
munity structures. However, its performance highly hinges on the proper choice of initial values
and its solution is not globally optimal. Our method, on the other hand, enjoys both the optimal
fitting of the data based on the likelihood and the easy computation of the spectral clustering. Fur-
thermore, despite the fact that the regression coefficient matrices have to be estimated from the data
in order to obtain the associated singular vectors for spectral clustering, we are able to obtain the
exact recovery of the community structures at the minimal rate on the expected node degree and to
conduct inferences on the underlying parameters in the model.

Second, our paper contributes to the burgeoning literature on network formation models and
panel structure models. For the former, see Chatterjee et al. (2011), Graham (2017), Graham (2019),
Graham (2020), Graham and de Paula (2019), Holland and Leinhardt (1981), Hoff et al. (2002),
Jochmans (2019), Leung (2015), Mele (2017a), Rinaldo et al. (2013), and Yan and Xu (2013). We
complement these works by allowing for community structures on the regression coefficients, which
can capture a rich set of unobserved heterogeneity in the network data. In a working paper, Mele
(2017b) also considers a network formation model with heterogeneous players and latent commu-
nity structure. He assumes that the community structure follows an i.i.d. multinomial distribution
and imposes a prior distribution over communities and parameters before conducting Bayesian es-
timation and inference. In contrast, we treat the community memberships as fixed parameters and
aim to recover them from a single observation of a large network. Our idea of introducing the
community structure into the network formation model is mainly inspired by the recent works of
Bonhomme and Manresa (2015) and Su et al. (2016), who introduce latent group structures into
panel data analyses. When the community structure is unobserved, it is analogous to the latent
group structure in panel data models. For recent analyses of panel data models with latent group
structures, see Ando and Bai (2016), Chen (2019), Cheng et al. (2019), Dzemski and Okui (2018),
Huang et al. (2020), Huang et al. (2021), Liu et al. (2020), Lu and Su (2017), Su and Ju (2018), Su
et al. (2019), Vogt and Linton (2020), Wang and Su (2021), and Xu et al. (2020), among others. In
particular, Wang and Su (2021) establish the connection between SBMs and panel data models with
latent group structures and propose to adopt the spectral clustering techniques to recover the latent
group structures in panel data models.

Last, our paper also contributes to the literature on the use of nuclear norm regularization in
various contexts; see Alidaee et al. (2020), Belloni et al. (2019), Bai and Ng (2019), Chernozhukov
et al. (2020), Fan et al. (2019), Feng (2019), Koltchinskii et al. (2011), Moon and Weidner (2018),
Negahban and Wainwright (2011), Negahban et al. (2012), and Rohde and Tsybakov (2011), among
others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear
norm regularized estimates, except Moon and Weidner (2018) and Chernozhukov et al. (2020) who
study the inference problem in linear panel data models with a low-rank structure. Like Moon and
Weidner (2018) and Chernozhukov et al. (2020), we simply use the nuclear norm regularization
to obtain consistent initial estimates. Unlike Moon and Weidner (2018) and Chernozhukov et al.
(2020), we study a nonlinear logistic network formation model with a latent community structure
and propose the iterative row- and column-wise logistic regressions to improve the error bounds
(in row-wise Euclidean norm) for the singular vectors of the nuclear norm regularized estimates.
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Relying on such an improvement, we can fully recover the community memberships. Then, we can
estimate the community specific parameters and make statistical inferences.

The rest of the paper is organized as follows. In Section 2, we introduce the model and basic
assumptions. In Section 3, we provide our multi-step estimation procedure. Section 4 establishes
the statistical properties of the proposed estimators of the singular vectors. Section 5 studies the
K-means estimation of the community memberships when the regression coefficient matrix is as-
sumed to exhibit some community structure. Section 6 studies the asymptotic properties of the
regression coefficient estimates in the presence of latent community structures. Section 7 discusses
the determination of the ranks of the regression coefficient matrices. Section 8 reports simulation
results. In Section 9, we apply the new methods to study the community structure of a Facebook
friendship networks at one hundred American colleges and universities at a single time point. Sec-
tion 10 concludes. The Appendix provides the proofs of all theoretical results and the associated
technical lemmas, and some additional technical details.

Notation. Throughout the paper, we write “w.p.a.1” for “with probability approaching one,”
M = {M;;} as a matrix with its (7, j)-th entry denoted as M;;. We use || - ||op, || - ||, and || - ||« to
denote matrix spectral, Frobenius, and nuclear norms, respectively. We use [n] to denote {1,--- ,n}
for some positive integer n. For a vector u, ||u|| and u" denote its Ly norm and transpose, respec-
tively. For a vector a = (ay, - - ,ay), let diag(a) be the diagonal matrix whose diagonal is a. For a
symmetric matrix B € RE>*X we define

vech(B) = (Bi1, ..., Bix, Ba2, ., Barc, -, Bxk—1,x-1, Bk 1.5, Biic) |

We define max(u, v) = uV v and min(u, v) = u A v for two real numbers v and v. We write 1{A}
to denote the usual indicator function that takes value 1 if event A happens and 0 otherwise. Let ®
denote Hadamard product.

2. The Model and Basic Assumptions

In this section, we introduce the model and basic assumptions.

2.1 The Model

For i # j € [n], let Y;; denote the dummy variable for a link between nodes ¢ and j. It takes value
1 if nodes 4 and j are linked and O otherwise. Let W;; = (Wl,ij, e Wp,ij)T denote a p-vector of
measurements of homophily between nodes ¢ and j. Researchers observe the network adjacency
matrix {Y;;} and covariates {W;;}. We model the link formation between 7 and j is as

p
Vi = 1{ey; <logCu+ > WiiiOf 5}, i < 4, (1)
=0

where {(,, }»>1 is a deterministic sequence that may decay to zero and is used to control the expected
degree in the network, Wy ;; = 1, and W ;; = W, j; for j # iand [ € [p]. For clarity, we consider
undirected network so that Y;; = Y;; and @zij =0 i Veif i # J, €;j follows the standard logistic
distribution for i < j, and ¢;; = €;;. Let Yj; = 0 for all i € [n]. Our estimation and inference
methods can be extended to directed networks by considering the upper- and lower-triangular sub-

matrices separately.
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Apparently, without making any assumptions on ©; = {©j;;} for [ € [p] U {0}, one cannot
estimate all the parameters in (1) as the number of parameters can easily exceed the number of
observations in the model. Specifically, we will follow the literature on reduced rank regressions
and assume that each ©] exhibits a certain low rank structure. Even so, it is easy to see that our

model in (1) is fairly general, and it includes a variety of network formation models as special cases.
1. Iflog(¢y) =2a =231 | a;, 04 = a; — @, ©.; = a; + aj, and p = 0, then

Yij = 1{eij < a; + a;}. (2)

exp(a;+a;)
1+exp(a;+a;)
all ¢ # j, and we have the simplest exponential graph model (Beta model) considered in the

literature; see, e.g., Lusher et al. (2013).

Under the standard logistic distribution assumption on &;;, P (Yj; = 1) = for

2. Iflog(¢,) and OF ;. are defined as above and O

5 [ij = By forl € [p], then

Yij=Uej <a;+a;+ WJ/B}, 3)

where 5 = (f1, ..., 5p)T. Apparently, (3 ) is the undirected dyadic link formation model with
degree heterogeneity studied in Graham (2017). See also Yan et al. (2019) for the case of a
directed network.

3. Let O = 0 ;;+10g (. If p = 0,and ©g = {©o,i;} is assumed to exhibit a stochastic block
structure such that ©g ;; = by if nodes 7 and j belong to communities & and [, respectively,
then we have

Yij = 1{esj < Oo45}- 4

Corresponding to the simple SBM with K communities, the probability matrix P = {P;;}
with P;; = P (Y;; = 1) can be written as P = ZBZ " where Z = {Z;;,} denotes an n x K
binary matrix providing the cluster membership of each node, i.e., Z;; = 1 if node ¢ is in
community k and Z;;, = 0 otherwise, and B = {By;} denotes the block probability matrix
that depends on by;. See Holland et al. (1983) and the references cited in the introduction
section.

4. Let Og5 = ©Og,;; + log(n. If ©g = {O0,i;} is assumed to exhibit the stochastic block
structure such that ©g ;; = by if nodes 7 and j belong to communities & and [, respectively,
and O}, = B for I € [p], then

Y = 1{es; < Oo45 + W, B} (5)

Then (5) defines a stochastic block model with covariates considered in Sweet (2015), Leger
(2016), and Roy et al. (2019).

Under the assumptions specified in the next subsection, it is easy to see that the expected degree
of the network is of order n(,. In the theory to be developed below, we allow (,, to shrink to zero
at a rate as slow as n~!'logn, so that the expected degree can be as small as C'logn for some
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sufficiently large constant C' and the network is semi-dense.? Of course, if ¢,, is fixed or convergent
to a positive constant as n — oo, the network becomes dense.

Admittedly, our model is somewhat restrictive in the sense that it requires that different com-
munities should share the same order of expected degree. But this is also the common case in the
community detection literature. Ideally, we can allow different communities to have different orders
of expected degree in which case one should replace (;, by ¢, ;; in (1), where

Cniij = Cp gy for nodes in 7 and j in communities & and [, respectively,

and k,l =1,..., K. Since we now allow ¢, ,, to be n-dependent and they may decay to zero at
different rates for different pairs (k,1), we allow different communities to have different expected
degrees of connection. For instance, we can assume that ¢ ,, = n~“k for some group specific rate
ag; > 0. Then log(¢p,ij) = —ouy logn. With such a change, we need to combine log((y ;) with

0,i; in the estimation procedure. Notice that log(Cn,ij)—i—@aij may diverge to negative infinity
at rate logn and {(log(Cn,ij) + ©g;;)/(logn)} converges to a matrix {A;;} which contains the
group structure, i.e., A;; = —ay if 7 € kand j € [. We can apply K-means to the estimator
of {(log(n,ij) + ©5,;)/(logn)} to estimate a and then estimate O ;. This will complicate the
subsequent analyses in the paper. We leave the theoretical study of this extension for future research
and focus on the case with a universal rate ¢, for the rest of the paper.

To proceed, let 7, = log(Cn), I'g ;; = 7 + O0 15, T = (155,07 s -+ @;ij)T, and W;; =
(WO,ij7 WLU’ . Wpﬂ'j)—r, where WO,ij =1. LetI'™ = (FB, T, ey @;), where Fa = {FSJJ} and
©; ={0],;} forl € [p]. Then, we can rewrite the model in (1) as

Yy = ey < WiT ) (6)

Below, we will let I'; = ©; for [ € [p] and impose some basic assumptions on the model in order
to propose a multiple-step procedure to estimate the parameters of interest in the model.

2.2 Basic Assumptions

Now, we state a set of basic assumptions to characterize the model in (1). The first assumption is
about the data generating process (DGP).

Assumption1 1. Forl € [p|, there exists a function g|(-) such that W ;; = g/(Xs, Xj, eij),
where g;(-, -, e) is symmetric in its first two arguments, {X;}I'_, and {e;;}1<i<j<n are two
independent and identically distributed (i.i.d.) sequences of random variables, and e;; = ej;
fori #£ 7.

2. {eijti<icj<n is an i.i.d. sequence of logistic random variables. Moreover, {e;;}1<i<j<n 1L
({Xi}?zl U {eij}lgi<j§n). Let €;5 = €j; fori > j.

3. maxjepp) max; ey |Wiij| < Mw for some constant My, < oco.

Assumption 1 specifies how the covariates and error terms are generated. As the labels of the
nodes are exchangeable, Assumption 1.1 is innocuous due to the Aldous and Hoover representation

3. A network is dense if the expected degree grows at rate-n and semi-dense if it diverges to infinity at a rate slower
than n.
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theorem. In some applications, e;; is absent and W, ;; depend on (X;, X;) only. For example,
Wii; = || X; — Xj|| for some I. We further assume that it is uniformly bounded to simplify the
analysis. Assumption 1.2 is standard.

The next assumption imposes some structures on {©; }_, <p

Assumption 2 . Suppose }; ;ci 955 =0

2. Suppose O is symmetric and of low rank K, for | € [p|U{0}. The singular value decomposi-
tion ofn_l@zk is UlElVlT, where U and V) are n x K; matrices such thatUTUl =1k, = VZTVZ
and ¥ = diag(o1,- - ,0k,,) with singular values o1; > --- > ok, ;. We further denote
U = /nlX; and V; = \/nV,. Then,

OF =XV, = UV, forl =0,...,p. (7)

Let u . and v ;1 denote the i-th row of Uy and V), respectively for | € [p] U {0}. Then,
MaX;e|n] i[p] (\ \uz 1|V |vigl]) < M for some constant M < oo and there are constants C,
and cy such that

o0 > Cy > limsup max o7 > liminf min ok, ; > ¢, > 0.
7 R i nooepufoy T °

We note (7) implies that O, i = uZ 1050 We view @* ; as the edge-wise fixed effects for the
network formation model. We impose the normalization that > jeln] 0,;; = 0 in the first part of
Assumption 2 because we have included the grand intercept term 7,,(= log(Cn)) in (1). The low-
rank structure of ©; incorporates two special cases: (1) additive structure and (2) latent community
structure, as illustrated in detail in Examples 1 and 2 below, respectively. When there are no co-
variates in regression and © belongs to the two cases in Examples 1 and 2, the model becomes the
so-called Beta model and stochastic block model, respectively. We extend these models to the sce-
nario with edge-wise characteristics and latent community structure for the slope coefficients. The
following two examples further show that all four models, namely (2)—(5), considered in Section
2.1 satisfy Assumption 2.

Example 1 Let O, = oy ; + oy j. In this case, K| = 2 and 71_192k = Z/{lElVZT, where

l,ij

(o781 —1 Oll,l
A+ - )
Uy = : : M= ( o > ;
: - : 0 Sin
A 0=
1 1,1 1 1%
) A=)
Vl - 5
1 A n 1 An
A+ A=)

and sl n = 1 Zl 1 a . Similarly, it is easy to verify that

o

(8[ n T o n) %(Sl,n - Ql,n)

&
Il

: : and V; = \/nV,.
(31 n + (67 n) %(sl,n - al,n)

o
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When | = 0, we further impose Jeln @5 = 0, which implies > | og; = 0. We also allow
{auy i}l to depend on {W;;}1<icj<n so that {oy ;}7_ | are usually referred to as individual fixed
effects in the literature.

Example 2 Let ©] = ZlBl*ZlT , where Z; € R™ X1 is the membership matrix with one entry
in each row taking value one and the rest taking value zero, K| denotes the number of distinctive
communities for ©;, and B} € REXEKL i symmetric with rank K. Let plT = (%, cee nKl ) and

ny, denotes the size of O ’s k-th community for k € [K;|. Then, as Lemma 2.1 below shows,

U= 2] (I,,)"28]  and V= 7] (I1,,,) /%8,

where S, and S| are two K; x K| matrices such that S;' S; = I, = (S))T S}, 11, ,, = diag(p;), and
Y1 is the singular value matrix 0]‘1‘[1/2B*H1/2 Let 1y, denote an n x 1 vector of ones. Ifl = 0, we

further impose that LIZOBO Zo ln = Pg Bopo =0.

For classification and inference, we need to impose the latent community structure for O7,
[ € [p| as in Example 2. This is summarized in the following assumption.

Assumption 3 1. ©] = Z,By ZZT, where Z; € Rl is as defined in Example 2.

2. There exist some constants C and ¢ such that

oo > (1 >limsup max 7 g, > liminf  min = m g, > ¢ > 0.
n  ke[K], l€[p] n ke[K], l€[p]

Two remarks are in order. First, Assumption 3 implies that if ©; has a latent community struc-
ture, the size of each community must be proportional to the number of nodes n. Such an assumption
is common in the literature on network community detection and panel data latent structure detec-
tion. Second, it is possible to allow for m; ., and/or oy, ; to vary with n. In this case, one just needs
to keep track of all these terms in the proofs.

To proceed, we state a lemma that shows Assumption 3 is a special case of Assumption 2 and
lays down the foundation for our classification procedure Section 3.2.

Lemma 2.1 Suppose Assumption 3 holds. Then,

1.V, = Zl(Hlvn)_l/QSl and U, = Zl(Hlm)_l/QSl’Zl for 1 € [pl, where S; and S| are two
K; x K; matrices such that SlTSl = Ik, = (SZ’)TSZ’.

—1/2 —1/2
2. maxjepy) ||vjull < ¢ /? < 00 and maXey) |[uil] < ¢ 20, < co.
3. Ifzzl 7& 24,0 then ) ||v lH HZjiH H Zz,l - Zj,l)SlH = \/i

Lemma 2.1 implies that, if ©; has the community structure, its singular vectors {vi,l}ie[n] con-
tain information about the community structure. A similar result has been established in the com-
munity detection literature; see, e.g., Rohe et al. (2011, Lemma 3.1) and Su et al. (2020, Theorem
IL1).
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In Section 4, we only require ©F, I € [p] U {0} to be of low-rank and derive the uniform
convergence rate of the estimators of (u;, v; ;) across ¢ € [n]. In Section 5, we further suppose that
some coefficient ©; has a special community structure as in Assumption 3 and apply the K-means
algorithm to exactly recover their group identities. Last, for inference in Section 6, we impose that
all coefficients ©}, | € [p] have (potentially different) community structures while ©F follows the
structure in either Example 1 or 2.

3. The Estimation Algorithm

For notational simplicity, we will focus on the case of p = 1. The general case with multiple
covariates involves fundamentally no new ideas but more complicated notations.

First, we recognize that I'j and I'] are both low rank matrices with ranks bounded from above
by Ko + 1 and K1, respectively. We can obtain their preliminary estimates via the nuclear norm
penalized logistic regression. Second, based on the normalization imposed in Assumption 2.1, we
can estimate 7,, and ©f separately. We then apply the SVD to the preliminary estimates of O
and ©7F and obtain the estimates of Uj, ¥;, and V}, [ = 0, 1. Third, we plug back the second step
estimates of {V;};—0 1 and re-estimate each row of U; by a row-wise logistic regression. We can
further iterate this procedure and estimate U; and V; alternatively. Last, if we further impose O]
has a community structure, then we can apply the K-means algorithm to the final estimate of V)
to recover the community memberships. We rely on a sample splitting technique along with the
estimation. Throughout, we assume the ranks K¢ and K are known. We will propose an singular-
value-ratio-based criterion to select them in Section 7.

Below is an overview of the multi-step estimation procedure that we propose.

1. Using the full sample, run the nuclear norm regularized estimation twice as detailed in Section
3.1.1 and obtain 7,, and {X;};—¢ 1, the preliminary estimates of 7,, and {¥;};—¢ 1.

2. Randomly split the n nodes into two subsets, denoted as I; and 5. Using edges (i,7) €
I x [n], run the nuclear norm estimation twice as detailed in Section 3.1.2 and obtain

{171(1)}1:071, a preliminary estimate of {V;};—o 1, where the superscript (1) means we use
the first subsample to conduct the nuclear norm estimation. For j € [n], denote the j-th row
of Vl(l) as (@(’,11))Ta which is a preliminary estimate of v]—&.

3. Foreacht € I, take {i;\](ll) } jel»,1=0,1 as regressors and run the row-wise logistic regression to
obtain {ﬂgll)}lzo’l, the estimates of {w;;};—0 1. For each j € [n], take {ﬂgll)}ig%l:(),l as re-
gressors and run the column-wise logistic regression to obtain updated estimates, {z';](.(;’l) Hi=0,1
of {v;}i1—0,1, where 0 in the superscript (0, 1) means it is the 0-th step estimator for the full
sample iteration below and 1 in the superscript means it is computes when the first subsample
is used for the nuclear norm estimation. See Section 3.1.3 for details.

4. Based on {1}3(-01’1)} j€ln],i=0,1, Obtain the iterative estimates

(k1) . (h,1 .(h,1) . (h,1
(“z(',o )7uz(,1 ))ie[n] and (U](-,o )711](-,1 )>je[n]

of the singular vectors as in Step 3 for h = 1,2,--- | H. See Section 3.1.4 for details.
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5. Switch the roles of I; and I5 and repeat Steps 2—4 to obtain

C(h2) . (k2 (h,2) . (h2
(uéo ),ug’l ))ze[n] and (1)](-,0 )’U](',l ))je[n] Yh € [H],

where h in the superscript (h, 2) means it is the h-th step iteration of the full sample estimator
and 2 in the superscript means the second subsample is used for the nuclear norm estimation.
GG
Let vj1 = ( ]le’l)H , H?’fH’g)H > . Then, apply the K-means algorithm on {T; 1} ;[ to
7,1

||7.)‘, Vi1

recover the community memberships in O] as detailed in Section 3.2.

In the following, we provide explanations for our proposed multi-step estimation procedure. In
Step 1, we obtain 7, that is needed in the iterative logistic regression in Steps 3-5. We also obtain
{il}lzo,l which is used to estimate the ranks {K;},_,, of the matrices {O]};—o; in Section 7
below. ’

In Step 2, we obtain ‘Z(l) via nuclear norm regularized estimation. It serves as an initial estimate
for the iterative logistic regression in Steps 3-4. However, we cannot directly classify nodes using
‘/}l(l), as we can only control its estimation error in Frobenius norm, as shown in Theorem 4.1. In
order to show the exact recovery of latent communities, we need to control the estimation error in
the row-wise Lo norm (denoted as || - ||2—00)-

In Step 3, we run row-wise and column-wise logistic regression to obtain refined estimates of
{wii}i=0,1 and {v;; }1=0.1, respectively. It is worth noting that in Steps 2 and 3, we employ a sample-
splitting technique to create independence (conditional on covariates {X;}?" ; U {e; j }1<i<j<n) be-
tween the edges, so that the estimation error of the resulting row-wise logistic regression estimators
can be well controlled in || - ||2—,00 norm. To see the effect of sample splitting, we note that in the
row-wise logistic regression, the estimation error of ﬁl(ll) (the i-th row of (A]l(l)) fori € Iy in Ly norm
is determined by the score function

1 ] |
=3 (Vi — AW Ty Wi (OF) T8

JjElz,j#1

where A(-) is the logistic CDF, 61(1) is a K; x K orthogonal matrix defined in Theorem 4.1 below,
and v;; is the j-th row of 171 We see that

1 (1) TA~(1
= 3 (Y - AW W (0) oY)
JElz,j#i
1
= > (Vi = AW Ti)) W05
JEI2,j#i
1 ()T A(1
o DD (¥ = AW Wi (O]) 55 = vi). ®
jelz,j#1

The first term on the right hand side (RHS) of (8) is O, < (log:)C"> uniformly in ¢ € I3, where

the rate (,, comes from the fact that the network is possibly semi-dense. However, without sample

10
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splitting, we do not have independence between Y;; and (61(1))T6§.1l) and we can apply the Cauchy-
Schwartz inequality to obtain the crude bound for the second term on the RHS of (8) as follows

1 A)\TA(1
n > (Y- AW, Ti))Wai5((O ))TU](-,I) — j1)
JEI2,j#1
1/2 (1) ~
| Vi = V0l
<aty (250 (- AanTy) L
JEI2,j#1
1
=0, ( ogn> uniformly in i € I,
n
where we use the fact that
1/2
1 S A0
max | = 37 (V) —AWGTy)* | =0p(G%) and [V =GO |p/vit = Op ()
Jj€ln]
by Theorem 4.1 below, and 7, = 12%: + 12%:. The same conclusion holds with jely ji

replaced by >

term, the second term has a rate loss by a magnitude of 1/C,,, which can be close to n~'/2 because
we allow ¢, = C'log(n)/n for some constant C'. That is, without sample splitting, we can only

show that & dieryjzi(Yij — A(WJF@))VVMj(51(1))T6](.711) is O, (\/ 10;%") uniformly in i € I. In
contrast, with sample splitting, we can employ the independence between Y;; and (51(1))T6§.1l) and

show that it is O, | 1/ (log:)cn) uniformly in ¢ € I3, which improves over the rate O, ( 105")
when ¢, = o(1).

Note that we cannot use {ﬂl(ll)}le 1, to cluster all nodes ¢ € [n]. Therefore, also in Step 3, given
(ﬁgll))ze I,» we need to compute 5](.’11) from a column-wise logistic regression using nodes in 5 for
each j € [n]. Similarly, the estimation error of ﬁﬁ

jcln] in the absence of sample splitting. When (,, = o(1), compared with the first

in Lo norm is determined by the score function

1 A\ T~(1
n 2 (Vi = AW Ti)) Wi (OF) Tal)
ielg,i;téj
1
N Z (Yij — A(W;Fij))Wl,ijui,z
1€12,i#£]
1 = o~
o> (= AWIT) W (O]) T — uiy) ©)
1€l2,i#]

where we do not have independence between (5}1))Tﬁ§1l) and Y;;. However, we have already

obtained the || - ||2—0 rate of ((Ol(l))TAgll) — U;)ier,- To bound the second term on the RHS of

11
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(9), instead of the Cauchy-Schwartz inequality, we can apply the Holder inequality to obtain

1

=3 (Vi = AW T) Wiy (O Tl = wig)
i€ls 9
w ~ N
S Do Y = AT max [(O) Ty — il
i€ls
=0, ( W) uniformly in j € [n], (10)

where we use the fact that

1 1 /Gn
n Z ‘Yij - A(WJFZ-J-)] < n Z(Yza - A(Wi—erZ] )+ = ZA WTF =0p < C + Cn) )

i€lo i€ly ’LEIQ

the result that max;er, H(él(l))Taﬁ) - = Op(nn) as established in Theorem 4.2, and the

condition that ¢, > C(logn)/n. The order in (10) is also the uniform probability order of the first
term on the RHS of (9) and thus does not cause any efficiency loss to bound the left hand side of (9)
in terms of uniform convergence rate.

In Step 4, we iterate the row- and column-wise logistic regressions on the full sample multiple
times. Following the above argument, the || - ||o_00 Of (ug}’”)ie[n] and (vj(’il)) jen) Will be the
same as shown in Theorem 4.3. We use this step to reduce the instability of our estimator due to the
random sample splitting.

In Step 5, we apply the K-means algorithm to the normalized {(ag};’”)idn], (1')](.};’1)) jen) - We
show in Theorem 5.1 that if n(,/logn > C for some sufficiently large and positive constant C,
we can exactly recover the latent communities. We provide the implementation detail of each step
below.

3.1 The Estimation of (u;,v;;)
In the estimation of (u;, v;;) (see Steps 1-5 in the above procedure), we only require that ©F and
©7 be of low-rank.

3.1.1 FULL-SAMPLE LOW-RANK ESTIMATION

Recall that ' = 75, + ©f and I'] = ©7. LetI'* = (I'5, I'}), A (u) = m denote the standard
logistic probability distribution function,

0ij (Tij) = Yijlog(A(W;5Tij)) + (1 = Yij) log(1 — A(W;; Tij))
denote the conditional logistic log-likelihood function associated with nodes ¢ and j, and
T(T, Cn) = {(Fo,rl) € Rnxn X Rnxn . |F0,ij — T| S Cn, |F1,ij’ S Cn}.
We propose to estimate I'* by I = (fo, fl) via minimizing the negative logistic log-likelihood

function with the nuclear norm regularization:

I'= argmin Qn(T)+ Ay ZHFZH*, (11)
r'eT(0,logn)

12



DLC

where @, (I") = n(%l) 2 jefn),izj lis (ij) and A, > 0 is a regularization parameter.* As men-
tioned above, we allow (, to shrink to zero at a rate as slow as n~ ! logn so that 7,, = log ({,) is

slightly smaller than log n in magnitude. So it is sufficient to consider a parameter space T (0, logn)

that expands at rate-log n. Later on, we specify \, = S2(Vnntvioen) Vfl’zgfl V)log") for some constant tuning pa-

rameter C'. Throughout the paper, we assume W7 ;; has been rescaled so that its standard error is
one. Therefore, we do not need to consider different penalty loads for ||Tg||, and [|T';||«. Many
statistical softwares automatically normalize the regressors when estimating a generalized linear
model. We recommend this normalization in practice before using our algorithm.

Let 7, = ﬁ > oy fO,z’j- We will show that 7, lies within ¢, +/log n-neighborhood of the
true value 7,,, where ¢, can be made arbitrarily small provided that the expected degree is larger than
C'log n for some sufficiently large C. This rate is insufficient and remains to be refined. Given 7,,,
we propose to reestimate ['* by I' = (fo, fl), where

1
r = arg min Qn(r)+>‘n2||rl”*’
LeT(7n,Crrv/logn) 1=0

and C'js is some constant to be specified later. Note that we now restrict the parameter space to
expand at rate-y/logn only. Let 7,, = m Z#j Io;;. We are then able to show 7,, — 7, =
O, ( logn 12%) in Theorem 4.1 below.

nn

Since ©] = {0©;, j} are symmetric, we define their preliminary low-rank estimators as ©; =
{©14}, where

=0,1,

o (T +Tug) /2 = Fadio) if i # for 1
0 if Q=

oo = 1{l =0}, fu(u) = u-Hu| < M} + M- -1{u> M} — M- 1{u < —M} is the round
function, and M is some positive constant. For [ = 0, 1, we denote the SVD of n~'©; as

~

nO = (V)7,

where 3, = diag(c1,,...,0n41), 017 > -+ > 0py > 0, and both U, and V; are n x n uni-

tary matrices. Let ]71 consist of the first K; columns of 171, such that (]71)T]71 = Ik, and il =
diag(G14, - ,0K,;). Then Vi = /nV,. We will establish in Theorem 4.1 below that ||V} —

ViOil[r/v/n = Op(1n)-
3.1.2 SPLIT-SAMPLE LOW-RANK ESTIMATION

We divide the n nodes into two roughly equal-sized subsets (1, [2). Let ny = #1, denote the
cardinality of the set I,. If n is even, one can simply set ny = n/2 for ¢ = 1,2.

4. We provide the detailed estimation algorithm in Section E in the Appendix.

logn
nln

is op(v/logn) (resp. op(1)) if one assumes that the magnitude n¢, of the expected degree is of order higher than
log n (resp. (logn)?). But we will only assume that 79, < Cr < i for some sufficiently small constant C'r below.

5. Let non, = and 1, = 7on + 7oy The proof of Theorem 4.1.1 suggests that 7, — 7, = O, (n,+/Togn), which

13



MA, SU AND ZHANG

Now, we only use the pair of observations (7, j) € I; x [n] to conduct the low-rank estimation.
Let I'; (1) consist of the i-th row of I'; fori € I, 1 = 0,1. Let I'* (1) = (I'j({1),I'7(11)). Define

T(l) (T, Cn) = {(Fo,rl) € Rn1><n X Rnlxn : ’FO,ij — T‘ S Cn, ’PI,ij‘ S Cn}.

We estimate I'*(1;) via the following nuclear-norm regularized estimation

1
= arg min lel)(r) + )\%1) Z [T | (12)
reT® (0,logn)

1 _ VCan+/1 .
where Qi (T') = Wl—l) > ien jenlizi bis (Dig)s AP = W and the superscript (1)
means we use the first subsample (/1) in this step.

Let 77,(11) = m Yien Jelnlisti f(()lzj As above, this estimate lies within c+/log n-neighborhood

of the true value 7,,. To refine it, we can reestimate ['*(I ) by ra = (F(l) F( ))

1
= arg min Q) + A D (Tl
reT® FWY ChrvIogn) =
Let 74 = ity Sien jequlizj Loy Noting that {Tj}i—o,1 are symmetric, we define the pre-

liminary low-rank estimates for the ny X n matrices ©; (I;) by @l( ) for | = 0,1, where

) fu(@ + T2 =7060) it () ehx,i#]
O =140 it (j)ehxh,i=j,
Fur (T = 780) if ielh,j¢l

and 050, far(u) and M are defined in Step 1. For [ = 0, 1, we denote the SVD of nil(:)l(l) as

~()=(1) =(1) T

”’flél(l): c X V),

=)
where 3J; is a rectangular (n; x n) diagonal matrix with 8.(1l) appearing in the (i,%)th position
=~(1) =(1)
and zeros elsewhere, ) > > 2 0—(1) > 0, and Z/{l and V; are ny X n1 and n X n unitary

1,0
=(1)
matrices, respectively. Let V(l) consist of the first K; columns of V;  such that (Vl( ))TVZ( - K,

Let f]l(l) = diag(agll), e g)l) Then V(1 = \/ﬁ)A/l(l), and (@S})T is the j-th row of XA/l(l) for
Jj € [n]. We will establish in Theorem 4.1 below that ||V} — W”é}”HF/f = Op(1n)-

3.1.3 SPLIT-SAMPLE ROW- AND COLUMN-WISE LOGISTIC REGRESSIONS

We note that O}, = uv;; fori € Iy and j € [n]. For the i-th row when i € I, we can view
{vj1}jem) and u;; as regressors and the parameter, respectively, and estimate u;; by the row-wise
logistic regression. Although {v;;} <[, are unobservable, we can replace them by their estimators

obtained from the previous step.
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~ ~(1
Let o = (ug 1] )T and Al (1) = A(Fo + Sig ] 051/ W) and £ () = Vi log (A (1)
+(1-Y;;) log(1— A%‘}f‘( 1)), where the superscript “left” means these functions are used to estimate

the left singular vector u;;. Given the preliminary estimate {i)\J(ll)} obtained in Step 2, we can

estimate the left singular vectors {u; o, u; 1 } foreach i € I, by {ﬂz(lo) , ﬁg}l)} via the row-wise logistic
regression:
~(ONT ~(1) \T\T . 0
(@) @) = agmin QU (u),
p=(ng »pf ) T €ERKOTEL

where QEZ)U(M) = ;—21 el jti Egﬁ (1) and the superscript (0) means it is the initial step for the

full sample iteration below. To keep the independence between {@](,}l) }je[n] and the data in this
regression, we only use j € 2 to run the regression.

Letv = (1] ,v]) " and AT (1) = ATt iy ) @Y Wiy) and £2" (1) = Yi; log (ATE" (1)

+(1-Yj5) log(1— Aright(v)) where the superscript “right” means the functions are used to estimate

(1) ~(1)

the right singular vector v;;. Given ( Ui Uy | ), we update the estimate of the right singular vectors

{vi0,vi1} foreach j € [n] by {vj o ,1}](-01’1)} via the column-wise logistic regression:

0,1 .(0,1 . 0

(@GHT, @G T = agmin QW (),

y— (’/0 v )T eRKo+EL
0 _ hi
where Qg.n)y(y) == Z’LEIQ it ;}g "W).
We will establish in Theorem 4.2 below that
~(1 .(0,1
max[|(OF) ")~ widl] = Oplm) and max[|(OF) "o ~ wyall = Oyl

Our final objective is to obtain accurate estimates of {'Uj,l}j €ln],i=0,1 in finite samples. To this end,

(0,1)

we treat {v , i)j(-?l’l) }je[n) as the initial estimate in the following full-sample iteration procedure.

3.1.4 FULL-SAMPLE ITERATION

Given the initial estimates, we use the full sample and iteratively run row- and column-wise logistic
regressions to estimate {u; 1, v }ic[n)- Forh = 1,2,..., H, let

h 1,1
A () = A + Z pl oy W) and

G () = Y, log(AZﬁ’h(M)) + (1= i) log(1 — A ().

(h—1,1) . (h—1,1) S(h1) (1)
Given {v;q 7,0, }, we can compute {uZ o0 >t ; "} via the row-wise logistic regression

(@57 @M T = argmin QW (),
’ p=(ng puf )T €RKoTEKL ’

Eleft h (

h _
where QEH?U( )= Zje [n],j#i OF

15



MA, SU AND ZHANG

Given {u (1) " {0 1)} by letting Angh[h( v) = AGF 4+ S oV U (l )Wl 4ij)) and Kﬂght’h (v) =

)

Yi;lo g(Angmh( )) (1 Yi;) log(1 Anjghth(l/)) we compute {v(h 1), O;q }Vlathecolumn -wise
logistic regression
((0 (hl)) L (® (hl)) )T _ (h)

V0 () = arg min any(l/),
v=(vy v )T eRKo+K1

where QEZ)V( ) == Zze (] i leght’h (v).

We can stop 1terat10n when certain convergence criterion is met for sufficiently large H. Switch-
ing the roles of I} and I and repeating the procedure in the last three steps, we can obtain the iter-
ative estimates {u 2 (h 2)}Ze i) and {0} 02), jhlz)}]e[n forh =1,2,---, H. We will establish
in Theorem 4.3 below that

1 h ~1 h,1
IZIGI?XH(O( )) l(ll) uigl| = Op(nn) and IZTGI%LP}(H(Oz( ))T z(l ) —vi1l| = Op(mn)-

3.2 K-means Classification

In this step, we further assume O7 has the latent community structure and © remains to be of
( (H, 1))T (v (H, 2)) T
low-rank. Recall that 7,1 = ( o ( o) ”7 (1H oy ) ,a 2K, x 1 vector. We now apply the K-

means algorithm to {v1}je[n)- Let B = {ﬂl, ..., Bk, } be a set of K arbitrary 2K; X 1 vectors:
B, ..., BKk,. Define

n

~ 1
Qn(B) = min |71 - Bil?
i
and B, = {B1,. .., Bk, }, where B,, = arg ming Q,(B). For each j € [n], we estimate the group

identity by

Uj1— B (13)

g; = argmin
1<k<K;
where if there are multiple k’s that achieve the minimum, g; takes value of the smallest one. We
establish in Theorem 5.1 below that g; estimates the true group identity gO for node j uniformly
well w.p.a.l.
As mentioned previously, we can repeat Steps 2—6 R times to obtain R membership estimates,
denoted as {gjr } je[n],re[r)- Recall that

*\ * * * * * * * T
vech(BY) = (31,11, --~731,1K1731,227 T 7Bl,2K17 T 7B1,K171,K171731,K171,K17B1,K1K1) )

which is a K (K + 1)/2-vector. In addition, let 1 ;; be the vectorization of the upper triangular
part of the K7 x K matrix whose (g7, g?) and (g?7 g?) entries are one and the rest entries are zero,
i.e., X1, is a K1 (K + 1)/2 vector such that the ((¢? v g? —1)(g? Vv g?)/Q + g9 A g?)—th element
is one and the rest are zeros, where g9 € [K] denotes the true group membership of the i-th node
in ©7. By construction,

-
X1,;;vech(BY) = B*,gogo.

16



DLC

Analogously, for the r-th split, denote x1,;; as a /1 (K7 + 1)/2 vector such that the ((g;» V §j.» —
)(Gir V 3jr) /24 Gir N Gj,r)-th element is one and the rest are zeros. We then estimate B} by By,
a symmetric matrix constructed from b, by reversing the vech operator:

Zr = argmax Ly, »(b),
b
where £,,,(b) = 32, ;[Vijlog(Ai; (b)) + (1 — Yij)log(1 — Ayj(b)))] with Az;(b) = A% +
Qo 4 + W ijfg/lmjb), T, is obtained in Step 1, Qo i = [(u%l))T pUID (u%g))T p(H2) ]/2
and (u; (H 1),1')5{3’1), u% 2), J(Ig 2)) are obtained in Step 5.° Then, the llkehhood of the - th split is

deﬁned as L(r) = Enw(br) Our final estimator {g; ,~ };|n] of the membership corresponds to the
r*-th split, where R
r* = argmax L£(r). (14)

r€[R]
4. Statistical Properties of the Estimators of (u;;,v;;)
In this section, we study the asymptotic properties of the estimators of (u;,v;,;) proposed in the
last section.
4.1 Full- and Split-Sample Low-Rank Estimations

Suppose the singular value decomposition of I'] is I'] = UZZZVZT for! =0,1and U;. and V.
are the left and right singular matrices corresponding to the zero singular values. Let Pj(A) =
Ul,cﬁZcAVl,cVZc for some n x n matrix A and M;(A) = A — P;(A). Define the restricted
low-rank set as, for some ¢; > 0

Cler) = {(A0, A1) = [[Po(A0)[« + [[Pr(AD]|« < c1][Mo(Qo)l« + er|[Ma(AD)[|«} . (15)
Assumption 4 For any ¢y > 0, there exist constants K, co, c3 > 0,

Cile2) = {(Ao, A1) :[|Ao|l7 + [|A1][7 < c2log(n)n/¢n}, and
Coles) = {(Ao, A1) [[Ag+ A1 @ WA|E > K(||Aol[7 + [|AL|F) — cslog(n)n /¢,

such that
C(Cl) cC (02) U 62(63) w.p.a.l.

The same condition holds when (I'fj,I'}) are replaced by (I'§(11),T'(11)) and (T'(12), T (12)).

Several remarks are in order. First, Assumption 4 is a slight generalization of Chernozhukov
et al. (2020, Assumption 3.1) where, in terms of our notation, C; (c2) and Ca(c3) take the forms:

Cile2) = {(Ao, A1) : [|Ag||F +[|A1][F < e2n} and

6. If we have multiple covariates Wi, I € [p], to compute L, .(b), we let (:'jl,z‘j = [(u(H INTHED

1,0 ] l
(@ (If 2))T A, 2)} /2 when ©7 is only assumed to be of low-rank. For those ©;’s that have latent communities,

for the r- th spht we can estimate their memberships by §; 1, and construct X;,.;; similarly. Then, we can define
Ln,~(b) and L£(r) in the same manner.
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Caoles) = {(Do,A1) || A0+ A1 Wll3 > k(]| Aol[F + ||A1][7) — nes}

Such a generalization is due to the fact that the network can be semi-dense, and thus, the convergence
rates of our estimators of the singular vectors are slower than those of Chernozhukov et al. (2020)’s
estimators.

Second, even if there are two sets of parameters (I'j,I'}) and (Fg, FD with I'} # FlT for some
[ € {0,1} such that both satisfy Assumption 4 and

Ty+TioW, =T +TT 0w,

such an ambiguity will not affect the the rate of convergence. To see this, note the singular value
decomposition of I‘Zf is I‘}L = UZEIVZT for [ = 0,1 and U, and V] . are the left and right sin-
gular matrices corresponding to the zero singular values. Denote P;(A) = (?lﬁﬁchAf/lc f/ﬂ; and

le(A) =A— 731(A). Suppose that

{C(Cl) = (D0, A1)+ |[Po(A0)ll + [[P1(AD]]x < e1]|Mo(Ao)| | + c1||ﬂ1(A1)||*},

Assumption 4 holds for both C(c;) and C(c; ). Denote A; = F;r—FZ‘, [ =0,1. Then Ag+A10W; =
0 and it is possible to show that (Ag, A1) belongs to either C(1) or C(1).7 If (Ag, A1) ¢ Ci(c2),
then Assumption 4 implies

0= 1|20 + A1 © WillF = k(| Aol + || A1][F) — eslog(n)n/Cu,

and thus,
czlog(n)n/(kCn) > [|A0l |3 + [[A1|[3 > calog(n)n/Cn.

Therefore,
1A0l[% + [1ALl[5 < (c2 VK~ es) log(n)n /.

For any estimator I of I'},1=0,1, we have, w.p.a.1,

2(ca V k7 Les) log(n)

e

(I1AollF + [|A1]lF) S\/

S

1 1

1 . . 1 .

~QC T =TillE) =~ lIT = Tllp)| <
1=0 =0

7. Without loss of generality, we assume that ||f|[« + [T} ||« < |[T5||« + ||T§]]+. Noting that

II0F ]« =[ITF + Mi(A) + Pi(A)]|«
Z||FZk + Pi(A)||« — [|Mi(A)]]«
=[T7 | A [P (AD |« = [[Mi(Ar)]|]« for I = 0,1,

where the last equality holds due to Chernozhukov et al. (2020, Lemma D.2(i)), we have

TG + IITE ] ZNTE ] + (1T
2|71 + [1Po(A0)[ |« = Mo (Do)l |« + (O]l + [P (AD)]|- = M1 (A,

which implies
1Po(B0)[ |« + [IP1 (A1)« < [[Mo(Lo)llx + [IM1 (A1),

e, (Ao, Ar) € C(1).
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Based on Assumption 4 and other conditions in the paper, we can show that (see Theorem 4.1

below)

log(n) , log(n)
e s

1
1 .
— | IV < 48C .p.a.l
n(;OH 1= I7llF) <48Ck, w.p.a.l,

where C'r 1 is some constant. This implies

1

1 A log(n log(n

~( B = Tl[e) < (48Cks + V22 Vi Te)) 2(n) | 08) ) o pan
=0

e e

and vise versa. The same conclusion holds if (Ag, A1) € C1(c2). As aresult, the ambiguity between
©7 and O, is asymptotically negligible and will not affect the convergence rates of their estimators.

Third, Chernozhukov et al. (2020, Appendix D.3) provide a sufficient condition for Assump-
tion 4. Recall Wy ;; = ¢1(Xj, Xj,e;;). Following the same arguments in Chernozhukov et al.
(2020, Appendix D.3), it is possible to show that Assumption 4 holds if W ;; is bounded and
Var(Wi,4|X:, X;) > 0.8 The sufficient condition basically requires the existence of e;; in g;(-)
which is a sequence of i.i.d. random variables across 4, j.° Note that the presence of ei; is sufficient,
but may not be necessary. In our simulation, we generate W1 ;; = | X; — X[ with {X; };¢|, being
a sequence of i.i.d. standard normal random variables, and find that our method works well.

Fourth, Assumption 4 rules out the case W1 ;; = g1( X, X j) when X is discrete, which is
equivalent to a community structure of Wy ;;. Suppose W1 ;; = wi,k, > 0 Vki, ko where i, j
are in groups k; and k2. Then, we can let A; share the same community structure as W; and
Ay = w,;lka. Let Ag = —LnL;Lr. Then we have

Do+ AW =0 and [[Aol}+ Al > 1A} = 2.
Because both A; and A are of low-rank, we have
[[Po(A0)[« + [[P1(AD)[|x < [[Aoll+ + [|A1]]« < Cn,

for some constant C' > 0. In addition, the singular value decomposition of Ag is Ag = (—tp//1) X
n X (tn/y/n)". It is possible to find some parameter O such that || Mg(Ag)||« > cn for some
¢ > 0.'° Then we can take ¢; = C//c so that

[1Po(B0)[l« + [[P1(AD]]« < a1l Mo(Ao)ll+ < erl[Mo(Ao)[« + er|[Mi(A)]]s
In this case, Assumption 4 does not hold because ||Ag||% + [|A1]|% > n? > cylog(n)n/¢,!! and

0=1]20 + A1 © Wi|F < wn? — cslog(n)n/Gu < w([|AollF + [|A1][7) — c3log(n)n/Ga.

8. In the general case with multiple covariates, they require min; j Amin (EW3,; W3} | X5, X;) > ¢ > 0 where Amin(A)
is the minimum eigenvalue of matrix A and Wi; = (1, W1,i5, -, Wp.i;) "

9. Note there are two key differences between the setups in our paper and Chernozhukov et al. (2020). First, Cher-
nozhukov et al. (2020) consider the panel data with indexes ¢ € [N] and ¢ € [T] while we consider the network data
with indexes (i,7) € {1 < i < j < n}. Second, Chernozhukov et al. (2020) consider X;; = i+ + €5+ such that
given {11t }ic[N7,te[z]» Xit is independent across both ¢ and ¢. Instead, we consider Wy ;; = g1(X5, X, ei5) such
that given {X; };c[n), W1,4; is independent across 1 < ¢ < j < n. By examining the proofs of Chernozhukov et al.
(2020, Lemmas D.3 and D.4), we note that their argument does not rely on the special structure of X;; = it + et
and works if X;¢+ = f (¢, es¢) for some non-additive function f.

10. This occurs, say, when ¢y, /y/7 is in the spaces spanned by the left and right singular vectors of ©g that correspond
to its nonzero singular values.
11. When ¢, = C.n™ " log(n), we require that C. is sufficiently large.
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Assumption 5 1. Cy\ > CyMyy, where C'y is a constant defined in Lemma B.1 in the Appendix.

2. There exist constants 0 < ¢ < € < 00 such that (¢ < Ay ij < (o€, where Ay i =
AWTE).

3. 12%: < ¢ < 1 for some sufficiently small constant cp.

. 1
4. EiEh,jE[n} 0,45 — 0( OT%C(:))

Assumption 5 is a regularity condition. In particular, Assumptions 5.2 implies the order of the
average degree in the network is n(,. Assumption 5.3 means that the average degree diverges to
infinity at a rate that is not slower than logn. Such a rate is the slowest for exact recovery in the
SBM, as established by Abbe et al. (2016), Abbe and Sandon (2015), Mossel et al. (2014), and
Vu (2018). As our model incorporates the SBM as a special case, the rate is also the minimal
requirement for the exact recovery of Z;, which is established in Theorem 5.1 below. Assump-
tion 5.4 usually holds as the sample is split randomly and ©y satisfies the normalization condi-
tion in Assumption 2.1. If O satisfies the additive structure as in Example 1, then Assumption

5.4 holds provided that n% Y ien, @i = of %) Such a requirement holds almost surely if
o = a; — % Zie[n] a; and {a;}?_, is a sequence of i.i.d. random variables with finite second mo-
ments. If ©F has the community structure as in Example 2, then Assumption 5.4 holds provided
that pJ (I1)Bgpo = of M), where pJ (I1) = (nl’o(h),--- ,nKO’O(Il)) and ny o(I1) denotes

nn ni ni
the size of ©’s k-th community for the subsample of nodes with index ¢ € I1. As pg Bgpo = 0,
the requirement holds almost surely if community memberships are generated from a multinomial

distribution so that ||py — po(11)|| = 04.5.( %)
Theorem 4.1 Let Assumptions 1, 2, 4, and 5 hold and n,, = % + 12%. Then forl = 0,1 and

w.p.a.l, we have
1. |70 — 7| < 30CE1T, [7Y = 7| < 30CE 110,
2. 1180 = 6|l < 48Ck171n, 2110 = 67 (11)][1 < 48Cr11n,
3. maxpe(x,) [0k — ok| < 48CF 1M, maxge(x) |3;(il) — 01| < 4A8CE 11,

4. |[Vi = ViO||r < 136Cpay/minn, and |[Vi — VDO || 5 < 136C /i,

where 61 and 551) are two K;x K| orthogonal matrices that depend on (V}, YA/Z) and (V}, ‘71(1)),
respectively, and Cr1 and CF 3 are two constants defined respectively after (31) and (32 ) in
the Appendix.

Part 1 of Theorem 4.1 indicates that despite the possible divergence of the grand intercept 7,,
we can estimate it consistently up to rate 7,,. In the dense network, (,, < 1 where a < b denotes both
a/b and b/a are stochastically bounded. In this case, 7, < 1 and it can be estimated consistently

at rate-1/(log n) /n. Note that the convergence rate of (:)l and (:)l(l) in terms of the Frobenius norm
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is also driven by 7,,. Similarly for oy, 8,(:[), v /+/n and 171(1) /+/n. In part 4 of Theorem 4.1, the

orthogonal matrices O; and Ol(l) are present because the singular values of ©; can be the same and

its singular vectors can only be identified up to some rotation.

4.2 Split-Sample Row- and Column-Wise Logistic Regressions
Define two (Ko + K1) x (Ko + K7) matrices:

T T
1 Ui 0 ;.0 1 Vi.0 V5.0
\I/-(IQ):— [ 1, :| [ 2, ] and@-(Ig):— [ Js Js .
J N9 iegﬂ;j w1 Wi | |wiaiWhij ! ng9 jegﬂ viiWiii| [vi1 Wi

To study the asymptotic properties of the third step estimator, we assume that both matrices are well
behaved uniformly in ¢ and j in the following assumption.
Assumption 6 There exist constants Cy and cy such that w.p.a.1,
0o > Oy > limsup max Amax(V;(12)) > liminf min Apin (¥;(12)) > ¢4 > 0 and
n  Jj€[n] no j€[n]

0o > Oy > limsup max Apax(P;(12)) > liminf min Ayin (®;(12)) > ¢y > 0,
i€l n i€l

n

where Amax(+) and Amin () denote the maximum and minimum eigenvalues, respectively.

Assumption 6 assumes that ®;(I5) and W, (1) are positive definite (p.d.) uniformly in ¢ and j
asymptotically. Suppose I'; follows the community structure as in Example 2 with K; equal-sized
communities and Bf = I, , thenII; ,, = diag(1/K7,---,1/K;). By Lemma B.4 in the Appendix,

if node j is in community k, then v 1 = \/ny/ %zﬂ = Kiek, i, where ek, j, denotes a Ky x 1

vector with the k-th unit being 1 and all other units being 0. In addition, suppose O follows the
specification in Example 1. Then,

. ; T
. U+ [+ 5
1 g, j 1 Qg j
‘I’z‘(b):njz SA=D [ 50 -5
1€\ vja Wi 01 Wi

Suppose that o ; = a; — a for some i.i.d. sequence {a;}!" ; with a = % >, a;, and the group
identities of ©7 ({zi};c[,)) are independent of ©F and { X, };c(n and {e;;}; je[n). Further suppose
E(Wi5ai|X;) = 0, E(W;,44|X;) = 0, and E(WfZJ\Xl) > ¢ > 0 for some constant c¢. Then, we
can expect that, uniformly over ¢ € I,

®;(I) — diag(1, 1, E(W};|1X,), - -+ E(WT1X0)) a.s.,

which implies Assumption 6 holds.

If © has the community structure as in Example 2. Further suppose O and ©7 share the same
community structure Z1, which is independent of Wy, E(W1 ;;|X;) = 0 and E(WEZ]]Xl) >c¢>0
for some constant ¢, then one can expect that ®;(I2) has the same limit as above uniformly over

i € Is.
The following theorem studies the asymptotic properties of ﬁ(ll) and 1.);3,1) defined in Step 3.

7
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Theorem 4.2 Suppose that Assumptions 1, 2, 4—6 hold. Then,

(1) T ~(1 " ~(1 .(0,1
max |[(Of)Tal}) — will < Cfm and  max ||(Of) 7o' — vyl < Coumn w.p.anl,
i€l ’ JEn] '

where C and Cy ,, are some constants defined respectively in (44) and (48) in the Appendix.
(0,1)

Theorem 4.2 establishes the uniform bound for the estimation error of v i

J
However, we only use half of the edges to estimate z';(.(;’l), which may result in information loss.

J
In the next section, we treat ijj((;’l) as an initial value and iteratively re-estimate {u;;};c[,) and

{fuﬂ}ie[n] using all the edges in the network. We will show that the iteration can preserve the error
bound established in Theorem 4.2.

up to some rotation.

4.3 Full-Sample Iteration
Define two (Ko + K1) x (Ko + K7) matrices:
1 U U; i 1 v V4 i
oot 3l = oot 2 Ll
n i€l it Wil Wiig ] [Wi,1VV 1,45 n jelnliti Vi aWWLij] Y51 Wi
To study the asymptotic properties of the fourth step estimators, we add an assumption.
Assumption 7 There exist constants Cy and cg4 such that w.p.a.1
oo > Cy > limsup ma)]( Amax(¥;) > lim inf min} Amin(¥;) > ¢4 > 0 and

n  J€n n o j€n
oo > Cy > limsup ma)]< Amax (®;) > lim inf mirﬁ Amin(®;) > ¢4 > 0.

n i€ln n i€n
The above assumption parallels Assumption 6 and is now imposed for the full sample.
Theorem 4.3 Suppose that Assumptions 1, 2, 4-7 hold. Then, forh =1,--- |H andl = 0,1,

max [[(0) Tl = wigl| < o and max |(OF) T8 = vl < Cpm wpa,

where {Ch,, } | and {C, , }1_| are two sequences of constants defined in the proof of this theorem.
(Th)eorem 4.(3 eitablishes the uniform bound for the estimation error in the iterated estimators
. (h,1 . (h,1
{a;, "} and {07, }.
By switching the roles of I; and I, we have, similar to Theorem 4.1, that

Vi = V20D p < 136C k2 v/nim,

where 61(2) is a K; x K rotation matrix that depends on V; and 17l(2). Then, following the same

derivations of Theorems 4.2 and 4.3, we have, forh =1,--- | H,
~N(2NT - (h,2 S(2NT - (h,2
oo [[(O) T — wial] < Coamn - and - mmax [[(OF) 747 — wigl] < Chn wopad
en en
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5. K-means Classification

If we further assume ©7 has the community structure and satisfies Assumption 3, then Lemma 2.1
shows {v; 1} je[n] contains information about the community memberships. It is intuitive to expect
that we can use v;; defined in Section 3.2 to recover the memberships as long as the estimation
error is sufficiently small.

Let g? € [K1] denote the true group identity for the i-th node in ©F. To establish the strong
consistency of the membership estimator g; defined in (13), we add the following condition.

/

Assumption 8 Suppose 145K f ZCH,van < 1, where Cy,, is the constant defined in the proof

of Theorem 4.3.

Apparently, Assumption 8 is automatically satisfied in large samples if 77, = o (1) . The constant
in the statement is not optimal.

Theorem 5.1 If Assumptions 1, 2, 4 -8 hold and ©F further satisfies Assumption 3, then up to some
label permutation,
1{3; # 60} = 0w.p.a.l.
ax 1{g; # g;} = 0w.p.a

Several remarks are in order. First, Theorem 5.1 implies the K-means algorithm can exactly
recover the latent community structure of ©] w.p.a.1. Second, if we repeat the sample split R
times, we need to maintain Assumption 6 for each split. Then, we can show the exact recovery of
Gi,r for r € [R] in the exact same manner, as long as R is fixed. This implies g; ,« for r* selected in
(14) also enjoys the property that

- 0y
1%%Xn1{gz,r # 9t =0wp.al

Third, if ©F also has the latent community structure as in Example 2, we can apply the same K-
means algorithm to {70} jef,) With Tj0 = ({zj(g’l)T/Hi)](-g’l)H,i}§ﬁ’2)T/\|1}§g’2)||)T to recover the
group identities of ©. Last, if we further assume Zy = Z; = Z (which implies Ky = K7), then
we can catenate U; o and U;; as a 4K X 1 vector and apply the same K-means algorithm to this

vector to recover the group membership for each node.

6. Inference for B

In this section, we maintain the assumption that ©7 has a latent community structure. In the gen-
eral model with multiple covariates, we allow {@f}le[p} to have potentially different community
structures. Note this includes the case that some of the ©;’s are homogeneous. We can recover the
community structures by applying the K-means algorithm in the previous section to each O}

For the rest of the section, for notation simplicity, we continue to consider the case that there
is only one covariate 1 and ©] has a latent community structure, which is estimated by { gi}ie[n]
defined in the previous section. Given the exact recovery of the community memberships asymp-
totically, we can just treat g; as g9.

We discuss the inference for By for two specifications of ©: (1) ©g ;; has an additive struc-
ture as in Example 1 and (2) Oy ;; has a latent community structure as in Example 2. In the first
specification, once the group membership of ©7 is recovered, the model boils down to the one
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studied by Graham (2017). For the second specification, when the memberships of both © and
©7 are recovered, the model boils down to the standard logistic regression with finite-number of
parameters.

6.1 Additive Fixed Effects

Suppose Faij =T, +ao;+aojand '] = O] = ZlBi‘ZlT. Recall the definitions of x1 5, X1r,i;, and
vech(Bj) in Section 3.2 such that XIijvech(Bi‘) = By g0g0 We further denote X1 ;; as either X1 ;;

if one single split is used or x1,+ ;; if R splits are used and the 7*-th split is selected.

Corollary 6.1 Suppose Assumptions 1, 2, 4-8 hold and O] further satisfies Assumption 3. Then
X1,ij = X1,4j Vi < j w.p.a.l.

Corollary 6.1 directly follows from Theorem 5.1 and implies that we can treat 1 ;; as observed.
Then, (6) can be written as

Yij = ey < 7 + o + aj + w] ;vech(B)},

where w1 ;; = W1 45x1,i;. This model has already been studied by Graham (2017). We can directly
apply his Tetrad logit regression to estimate vec(B7).

Let S;jirj0 = Yi; Y (1 — Yy )(1 = Yj) — (1 — Y35)(1 — Yirj1)Yi Y r. Then, for an arbitrary
K1 (K + 1)/2-vector B, the conditional likelihood of S;; ;7 given Syj ;s € {—1,1} is

Cijirg'(B) = [Sijj| [Sij,i’j’@ij,z"j/B — log <1 + oxp(Sij,i 11 050 B ))} ’

where Wy ;7 = w1,ij + w177 — (w147 + wi j;7). Further denote

- 1

bijay(B) = 3 [Cijir0(B) + Lijjrir(B) + Ligr i (B)] .

Following Graham (2017), we define the tetrad regression estimator B for vech(B*) as

B = arg max Z Lijirj (B).

i<i'<j<j’
Let

- 1 if Sy € {=1,1} US;; jrw € {=1,1} U Sy j;» € {—1,1}
v 0 otherwise

be the indicator that the tetrad {4, j, ¢, j'} take an identifying configuration, and thus, contributes to
the tetrad logit regression. Further denote ¢4, = P( T iizis = 1, T jjojsja = 1) as the probability
that tetrads {41, 2,173,494} and {j, jo, j3, ja} both take an identifying configuration when sharing
qg = 0,1,2,3, or 4 nodes in common. Then, we make the following assumption on the Hessian
matrix.

Assumption 9 Suppose that Ty = lim,, tZ}L Y icite i<t Vg BZij’i, j/(B) is a finite nonsingular
matrix.
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The following theorem reports the asymptotic normality of B.

Theorem 6.1 Suppose that Assumptions 1, 2, 4-9 hold. Suppose that I'y = 7, + o; + o and O
satisfies Assumption 3. Then B - vec(B*) and

~

79 PP . -1/2 i}
[(n— 1)nH "No H 1} (B —vech(B*)) ~» N (0, I, (k,+1)/2);

where

-1 07 ~
o (n 0lijuy(B)  ~ 9 P
a=(1) X T R Y s@nG)

i<j<i'<j’ i<j

2 1 n
SZJ(B) = nn—1)/2—2(n—1)11 Zi’<j’,{i,j}ﬁ{i/,j/}=@ Sig,il§! (B), Sij,i’j’(B) = vBeij,i’j’<B)» and Lz
denotes an a X a identity matrix.

Theorem 6.1 imposes two additional structures in order to make the inferences on B* by bor-
rowing the asymptotic results from Graham (2017). One is that I'jj exhibits the usual additive fixed
effects structure (with Ky = 2) and the other is I'] has a latent community structure. The model
reduces to that of Graham (2017) in the special case of K} = 1.

6.2 Latent Community Structure in the Fixed Effects

Let gg o be the true memberships of node ¢ for © and g; ¢ be its estimator which can be computed by
applying the K-means algorithm to {¥; 0} j[n). Further note Zotx, = ¢, where recall that ¢; denotes
abx 1 vector of ones. Therefore, I}y = Tptnt,) + ZoBiZ, = Zo(Bg+Tntk, L;E-O V2o = ZoBg*Z,
i.e., I'jy shares the same community structure as ©f. We then define x ;; as a Ko(Ko +1)/2 x 1
vector whose ((g?,0 v 9?,0 —1)(g) v 9?,0) /24 g2 A g‘g{o)—th element is one and the rest are zeros
and )A(()’Z'j as a KO(KO + 1)/2 x 1 vector whose ((gi70 \Y gj70 — 1)(@1"0 vV gj70)/2 + gi,O VAN gj’o)-th
element is one and the rest are zeros. Similar to Corollary 6.1, we have the following corollary.

Corollary 6.2 Suppose that Assumptions 1, 2, 4-8 hold. Suppose that O}, | = 0, 1, further satisfy
Assumption 3. Then, X1 ;; = Xi1,i; Vi < j for| = 0,1 w.p.a.1.

We propose to estimate vech(B*) = (vech(B;*) ", vech(B;)T)T by

B= (B\J,EI)T = arg min Qn(b),
b=(bJ b] ) T ERK0(Ko+1)/2 x RK1(K1+1)/2
where :
n(n—1) 1<i<j<n
and

Aij(b) = A(Rg.i5b0 + X145 W1,ijb1)-
Let Ay, ij(u) = A(w;; [vech(B*) 4+ u(n?¢,)~/?]) and Ay, ;; = Apij(0), where
wij = (X(Iij?XIile,ij)T

is an K-vector with K = 3, K;(K; + 1)/2. Note that A,, ;; = A(WJF;‘})
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Assumption 10 sup,<¢ ﬁ Y 1<icj<n Ansij () (1—An7ij(u))wijwi—; 2 H for some positive-
definite matrix H and large but fixed constant C.

Theorem 6.2 Suppose that Assumptions 1, 2, 4-8, 10 hold and ©7, 1 = 0,1, further satisfy As-
sumption 3. Let Hp = 1< i<y, A(wgé)(l — A(wgé))wzng. Then

H1/2(B — vech(B*)) ~ N(0, Ix).

Although in theory, the inference for B7 in the above two cases is straightforward, there are two
finite-sample issues. First, the Tetrad logit regression does not scale with the number of nodes n
as it needs to scan over all four-node figurations, which contains a total of (n*) operations in a
brutal force implementation. Such a step is inevitable even when we know the true memberships.
Although the Python code by Graham (2017) incorporates a number of computational speed-ups by
keeping careful track of non-contributing configurations as the estimation proceeds, we still find in
our simulations that the implementation turns extremely hard for networks with over 1000 nodes.
One can, instead, use subsampling or divide-and-conquer algorithm for estimation. To establish the
theoretical properties of such an estimator is an important and interesting topic for future research.
Second, for the specification in the second example, based on unreported simulation results, we find
that §1 has a small bias if there are some misclassified nodes. However, as the standard error of
our estimator is even smaller, such a small bias may not be ignored in making inferences. If we
further increase the sample size, then the classification indeed achieves exact recovery and such a
bias vanishes quickly. However, in practice, researchers cannot know whether their sample size is
sufficiently large. It is interesting to further investigate such a bias issue and make proper bias-
corrections. This is, again, left as a topic for future research.

7. Determination of i, and K

In practice, Ky and K; are unknown and need to be estimated from the data. In this case, for
any given k satisfying 1 < k£ < Kpax, where K.« is a large but fixed integer, we first obtain
the singular value estimates {67} }E [ K] 1=0,1 from Step 1 of the estimation algorithm given in
Section 3. We then propose a version of singular-value ratio (SVR) statistic in the spirit of the
eigenvalue-ratio statistics of Ahn and Horenstein (2013) and Lam and Yao (2012). That is, for
1 =0,1, we estimate K; by

~ o N 1 1
K; =arg max Tkl 4 {Um 2>q ( e ogn) } ; (16)

1<k<Kmax—1 Ok41,] ny nY

where Y = ﬁ 219' <j<n Yij, and ¢; is a tuning parameter to be specified. Without the indicator

function in the above definition, K 1 is nothing but the SVR statistic. The use of the indicator function
helps to avoid the overestimation of the ranks. Apparently, nY consistently estimate the expected
degree that is of order n(,. By using Assumption 3 and the results in Theorem 4.1, we can readily
establish the consistency of K, B

8. Monte Carlo Simulations

In this section, we conduct some simulations to evaluate the performance of our procedure.
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8.1 Data generation mechanisms

We generate data from the following two models.
Model 1. We simulate the responses Y;; from the Bernoulli distribution with mean A (log(¢,) +

+ Wl,ij@iij) for ¢+ < j, where 98,2']'
U(—-1/2,1/2) fori =1, ...,n,and Wy 4; = |X; — X;| for i # j, where X i N(0,1). For the ™
row of the membership matrix Z € R"*51 the C;h component is 1 and other entries are 0, where
C = (Cy,...,C,) T € R™ is the membership vector with C; € [K7].

Case 1. Let K; = 2 and Bf = ((0.6,0.2)7,(0.2,0.7)7)". The membership vector C =
(Ch,...,C,) T is generated by sampling each entry independently from {1,2} with probabilities
{0.4,0.6}. Let ¢, = 0.7n"'/2 log n.

Case 2. Let K1 = 3 and B} = ((0.8,0.4,0.3)7,(0.4,0.7,0.4)7,(0.3,0.4,0.8)T)T. The
membership vector C = (C1,...,C,,)" is generated by sampling each entry independently from
{1,2, 3} with probabilities {0.3,0.3,0.4}. Let ¢, = 1.5n~ /2 log n.

S} = o; + aj and O] = ZBi“ZT. We generate «; iid

0,ij

Model 2. We simulate the responses Y;; from the Bernoulli distribution with mean A (log(¢,) +
O + W1,507 ;) for i < j, where ©f = ZBiZ', 0t = ZB;Z'", and W 4; is simulated in
the same way as in Model 1. Note here we impose that the latent community structures for ©F and
©7 are the same. We then apply the K-means algorithm to the 4K x 1 vector {@]T’O, EJT’I }je[n] to
recover the community membership, as described in Section 5.

Case 1. Let Ko = K1 = 2and Bf = ((0.6,0.2)7,(0.2,0.7)") T, Bf = ((0.6,0.2)7,(0.2,0.5)") .
The membership vector C' = (C4, ..., C,,) T is generated by sampling each entry independently from
{1, 2} with probabilities {0.3,0.7}. Let ¢, = 0.5n~/2log n.

Case 2. Let Ko = K7 = 3 and By = ((0.7,0.2,0.2)7,(0.2,0.6,0.2) ", (0.2,0.2,0.7) ") T,
Bf =((0.7,0.3,0.2)",(0.3,0.7,0.2) ", (0.2,0.2,0.6) ") . The membership vector is generated in
the same way as given in Case 2 of Model 1. Let ¢, = 1.5n~ /2 log n.

We consider n = 500, 1000, and 1500. All simulation results are based on 200 realizations.

8.2 Simulation Results

We select the number of communities /1 by an eigenvalue ratio method given as follows. Let o1 1 >

“++ > O Kpmax,1 be the first Ky, singular values of the SVD decomposition of (:)1 from the nuclear
norm penalization method given in Section 3.1.1. We estimate K by K defined in (16) by setting
¢1 = 0.1 and Kppay = 10. We set the tuning parameter \,, = Cy{VnY ++/Iogn}/{n(n—1)} with
C = 2 and similarly for )\g). To require that the estimator of él,ij is bounded by finite constants,
we let M = 2 and C); = 2. The performance of the method is not sensitive to the choice of these
finite constants. Define the mean squared error (MSE) of the nuclear norm estimator (:)l for ©; as
Zi?/:j(@lﬂ‘j - @7713)2/{77,(77, - 1)} forl = O, 1.

Table 1 reports the MSEs for (:)l, the mean of K 1 and the percentage of correctly estimating K
based on the 200 realizations. We observe that the mean value of & 1 gets closer to the true number
of communities Ky and, the percentage of correctly estimating K approaches to 1, as the samples
size n increases. When n is large enough (n = 1500), the mean value of K 1 1s the same as K7 and
the percentage of correctly estimating K is exactly equal to 1.

Next, we use three commonly used criteria for evaluating the accuracy of membership estima-

tion for our proposed method. These criteria include the Normalized Mutual Information (NMI), the
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Table 1: The MSEs for (:)l, the mean of K 1 and the percentage of correctly estimating K based on
the 200 realizations for Models 1 and 2.

K1 =2 Kl —
n 500 1000 1500 500 1000 1500
Model 1
MSE for O 0.083 0.079 0.092 0.112 0.091 0.088
MSE for @1 0.226 0.215 0.211 0.256 0.263 0.265
mean of K 1 1.990 2.000 2.000 2.990 3.000 3.000
percentage 0.990 1.000 1.000 0.990 1.000 1.000
Model 2
MSE for O 0.304 0.318 0.328 0.173 0.184 0.196
MSE for (:)1 0.150 0.157 0.170 0.153 0.155 0.151
mean of IA(l 1.980 2.005 2.000 2.725 3.000 3.000
percentage 0.980 0.995 1.000 0.705 1.000 1.000

Rand Index (RI) and the proportion (PROP) of nodes whose memberships are correctly identified.
They all give a value between 0 and 1, where 1 means a perfect membership estimation. Table 2
presents the mean of the NMI, RI and PROP values based on the 200 realizations for Models 1 and
2. The values of NMI, RI and PROP increase to 1 as the sample size increases for all cases. These
results demonstrate that our method is quite effective for membership estimation in both models,
and corroborate our large-sample theory.

Table 2: The means of the NMI, RI and PROP values based on the 200 realizations for Models 1

and 2.
Ki=2 Ki=3
n 500 1000 1500 500 1000 1500
Model 1
NMI 0.9247 0.9976 0.9978 0.5494 0.7867 0.8973
RI 0.9807 0.9995 0.9996 0.7998 0.9062 0.9593
PROP 0.9903 0.9999 0.9999 0.8063 0.9089 0.9670
Model 2
NMI 0.9488 0.9977 0.9984 0.9664 0.9843 0.9977
RI 0.9881 0.9966 0.9998 0.9790 0.9909 0.9987
PROP 0.9940 0.9978 0.9999 0.9838 0.9928 0.9988
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Last, we estimate the parameters B and Bj by our proposed method given in Section 6 for
Model 2. Tables 3 and 4 show the empirical coverage rate (coverage) of the 95% confidence inter-
vals, the absolute value of bias (bias), the empirical standard deviation (emp_sd), and the average
value of the estimated asymptotic standard deviation (asym_sd) of the estimates for B and B} in
cases 1 and 2 of model 2, respectively, based on 200 realizations. We observe that the emp_sd and
asym_sd decrease and the empirical coverage rate gets close to the nominal level 0.95, as the sam-
ple size increases. Moreover, the value of emp_sd is similar to that of asym_sd for each parameter.
This result confirms our established formula (in the Appendix) for the asymptotic variances of the
estimators for the parameters. When the sample size is large enough (n = 1500), the value of bias
is very small compared to asym_sd, so that it can be negligible for constructing confidence intervals
of the parameters.

Table 3: The empirical coverage rate (coverage), the absolute bias (bias), empirical standard devi-
ation (emp_sd) and asymptotic standard deviation (asym_sd) of the estimators for B; and
B in case 1 of Model 2 based on 200 realizations.

n Bj 11 33,12 33,22 Bin Biis By 29
coverage 0.880 0.860 0.975 0.960 0.915 0.955
500  bias 0.023 0.020 0.003 0.002 0.007 0.001
emp_sd 0.042 0.036 0.014 0.021 0.018 0.009
asym_sd 0.035 0.029 0.015 0.020 0.017 0.009
coverage 0.960 0.940 0.945 0.945 0.945 0.940
1000 bias 0.004 0.001 < 0.001 0.002 0.002 < 0.001
emp_sd 0.017 0.016 0.008 0.010 0.009 0.005
asym_sd 0.018 0.015 0.008 0.011 0.008 0.005
coverage 0.945 0.955 0.945 0.945 0.945 0.940
1500 Dbias < 0.001 0.001 0.001 0.001 0.001 < 0.001
emp_sd 0.014 0.011 0.006 0.008 0.006 0.003
asym_sd 0.013 0.011 0.005 0.007 0.006 0.003

9. Empirical applications

In this section, we apply the proposed method to study the community structure of social network
datasets.

9.1 Pokec social network
9.1.1 THE DATASET AND MODEL

Pokec is a popular on-line social network in Slovakia. The whole dataset has more than 1.6 million
users, and it can be downloaded from https://snap.stanford.edu/data/soc-Pokec.html. In this social
network, nodes are anonymized users of Pokec and edges represent friendships. Moreover, demo-
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Table 4: The empirical coverage rate (coverage), the absolute bias (bias), empirical standard devi-
ation (emp_sd) and asymptotic standard deviation (asym_sd) of the estimators for B; and
B in case 2 of Model 2 based on 200 realizations.

n Bé,n Bj o 33,13 Bj o Bjas By 33
coverage 0.910 0.920 0.900 0.875 0.925 0.960
500  bias 0.018 0.025 < 0.001 0.008 0.002 0.009
emp_sd 0.033 0.029 0.035 0.030 0.028 0.032
asym_sd 0.033 0.031 0.032 0.028 0.027 0.032
coverage 0.915 0.935 0.955 0.930 0.950 0.925
1000 bias 0.005 0.005 0.001 0.004 0.006 0.006
emp_sd 0.018 0.016 0.015 0.014 0.014 0.017
asym_sd 0.017 0.015 0.017 0.013 0.014 0.016
coverage 0.940 0.945 0.940 0.960 0.940 0.955
1500 bias 0.001 0.001 < 0.001 0.001 0.002 < 0.001
emp_sd 0.012 0.010 0.012 0.008 0.009 0.011
asym_sd 0.011 0.010 0.011 0.009 0.010 0.011
n Bin B Biis Bi 2 Bi 23 Bi 33
coverage 0.885 0.900 0.915 0.900 0.960 0.925
500  bias 0.020 0.005 0.001 0.016 < 0.001 0.005
emp_sd 0.023 0.019 0.020 0.021 0.017 0.022
asym_sd 0.025 0.019 0.019 0.020 0.016 0.022
coverage 0.930 0.905 0.945 0.925 0.940 0.930
1000 bias 0.003 0.001 0.006 0.007 0.002 0.002
emp_sd 0.011 0.011 0.011 0.009 0.008 0.011
asym_sd 0.012 0.009 0.010 0.009 0.008 0.011
coverage 0.940 0.955 0.940 0.960 0.960 0.950
1500 bias < 0.001 < 0.001 < 0.001 0.001 < 0.001 0.001
emp_sd 0.009 0.006 0.007 0.005 0.005 0.007
asym_sd 0.008 0.006 0.007 0.006 0.006 0.007
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Figure 1: left panel depicts the number of nodes in different age groups; right panel shows the
boxplots of degrees by age groups.

Age Degree Plot by Age

1200

- 1175

800 1000
1 1
100
1
0000 ©

1
o
WD @®D 0000

600
1

Frequency
degree

400
1
~A«|om @00 00 000

263 286

3 .
« i
1 18 2 -

200
1

0
L

T T T T T T T T 1 T T T T
15 20 25 30 35 40 45 50 55 20-24 25-29 30-34 35-39

age groups age groups

graphical features of the users are provided, including gender, age, hobbies, interest, education, etc.
To illustrate our method, we select the first 10000 users. Each user is a node in the graph. After
deleting the nodes with missing values in age and with degree less than 10, we have 1745 nodes in
our dataset. We use the continuous variable, age, as the covariate in our model, and use the friend-
ship network to create an undirected adjacency matrix which has 1745 nodes and 39650 edges. The
average degree in this dataset is 22.72. The left panel of Figure 1 shows the number of nodes in
different age groups. We see that the age group of 25-29 is the largest group with 1175 users and the
age groups of 20-24 and 30-34 have similar number of users. Around 98.8% of users are between
the ages of 20 and 35 years old. Moreover, in the right panel of Figure 1, we depict the boxplots of
degrees (the number of users connected to each user) for the four age groups 20-24, 25-29, 30-34
and 35-39 that include most users. The plots of degrees vary across different age groups, indicating
that age may play a role in the prediction of connections between users.
We consider fitting the model:

Vij = Heij <o + 00, + W07 55}, > 7, (17

fori = 1,...,1745, where Y;; is the observed value (0 or 1) of the adjacency matrix in our dataset,
and W45 = |X; — X;|/(\/ X2 + ij) in which X is the normalized age of the i™ customer.!?

In this model, (7,,, 00,591, j) are unknown parameters, and O ,; and ©7 ;. have the latent group

structures ©f = ZB{Z" and ©F = ZB;jZ ', respectively. Model (17) considered for this real
application is similar to Model 2 in the simulation, and it allows for not only the main effect but also
possible interaction effects of age and the latent community structure.

12. The variable W1 ;; takes 1444 distinctive values. Given there are only 1745 nodes in our dataset, we can view W
as continuous.
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Figure 2: left panel depicts the friendship network with two communities; right panel shows the
adjacency matrix reorganized according to the node’s memberships.
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9.1.2 ESTIMATION RESULTS

We first use the singular-value ratio method to obtain the estimated number of groups for ©; and
O7: K o= 2and K 1 = 2, i.e., we identify two subgroups in the friendship network.

Next, we use our proposed method to obtain the estimated membership for each node. As a
result, we have identified 842 nodes in one community and 903 nodes in the other community. We
reorganize the observed adjacency matrix according to the estimated memberships of the nodes,
i.e., the nodes in the same estimated community are put together in the adjacency matrix. We use
blue dots to represent the edges between nodes. The left panel of Figure 2 displays the reorganized
adjacency. We see that nodes within each community are generally more densely connected than
nodes between communities. In the right panel of Figure 2, we show the boxplots of age for the two
identified subgroups. We can observe that in general, the values of age in group 1 are smaller than
those in group 2.

Last, Table 5 shows the estimates of Bj and B} and their standard errors (s.e.). We obtain the
p-value< 0.01 for testing each coefficient in B} equal to zero, indicating that the covariate age has
a significant effect on the prediction of the friendships between users.

Table 5: The estimates of B and B} and their standard errors (s.e.).

B Bj 1o Bj 2o Bl Biis Bl 2
estimate -3.922 -4.119 -3.425 -0.444 -0.518 -0.477
s.e. 0.017 0.025 0.017 0.027 0.019 0.016
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9.2 Facebook friendship network
9.2.1 THE DATASET AND MODEL

The dataset contains Facebook friendship networks at one hundred American colleges and univer-
sities at a single point in time. It was provided and analyzed by Traud et al. (2012), and can be
downloaded from https://archive.org/details/oxford-2005-facebook-matrix. Traud et al. (2012) used
the dataset to illustrate the relative importance of different characteristics of individuals across dif-
ferent institutions, and showed that gender, dormitory residence and class year may play a role in
network partitions by using assortativity coefficients. We, therefore, use these three user attributes
as the covariates X; = (X;1, X2, X43) |, where X;; =binary indicator for gender, X;» =multi-
category variable for dorm number (e.g., “202”, “203”, etc.), and X;3 =integer valued variable for
class year (e.g., “2004”, “2005”, etc.). We use the dataset of Rice University to identify the latent
community structure interacted with the covariates by our proposed method.
We use the dataset to fit the model:

Yij = 1{5ij < Tn+ @8,1;3' + Wl,z’j@iij}, 1> 7, (18)

where Y;; is the observed value (0 or 1) of the adjacency matrix in the dataset, and W7 ;; =
{Zi:1(2Dij,k/Ak)2}1/2, where A, = max(D;j;) — min(D;j ) and Dy;, = X — Xy for
k = 1,2,3.1% In this model, (7,, 0 ;;, ©7 ;;) are unknown parameters, and ©f ,; and ©7 ;; have
the latent group structures Oy = ZB;Z Tand ©f = ZB}Z', respectively. Following model 2 in
the simulation, we impose that ©; and ©7 share the same community structure. It is worth noting
that Roy et al. (2019) fit a similar regression model as (18) but let the coefficient of the pairwise
covariate be an unknown constant with respect to (7, j) such that 07 ,; = ©7. Although Roy et al.’s
2019 model can take into account the covariate effect for community detection, it does not consider
possible interaction effects of the observed covariates and the latent community structure. As a re-
sult, it may cause the number of estimated groups to be inflated. In the dataset of Rice University,
we delete the nodes with missing values and with degree less than 10, and consider the class year
from 2004 to 2009. After the cleanup, there are n = 3073 nodes and 279916 edges in the dataset

for our analysis.

9.2.2 ESTIMATION RESULTS

We first use the eigenvalue ratio method to obtain the estimated number of groups for ©f and ©7:
Ko=4and K| = 4.

Next, we use our proposed method to obtain the estimated membership for each node. Table
6 presents the number of students in each estimated group for female and male, for different class
years, and for different dorm numbers. It is interesting to observe that most female students belong
to either group 2 or group 4, and most male students belong to either group 1 or group 3. There
is a clear community division between female and male; within each gender category, the students
are further separated into two large groups. Moreover, most students in the class years of 2004 and
2005 are in either group 1 or group 2, while most students in the class years of 2008 and 2009 are in
either group 3 or group 4. Students in the class years of 2006 and 2007 are almost evenly distributed
across the four groups, with a tendency that more students will join groups 3 and group 4 when they

13. We note that W ;; takes 1512 distinctive values. Given there are just 3073 nodes in the dataset, we can view Wy ;;
as continuous.
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are in later class years. This result indicates that students tend to be in different groups as the gap
between their class years becomes larger. Last, Table 7 shows the estimates of B} and B} and their
standard errors (s.e.). We obtain the p-value< 0.01 for testing each coefficient in Bj equal to zero,
indicating that the three covariates are useful for identifying the community structure.

Table 6: The number of persons in each estimated group for female and male, for different class

years, and for different dorm numbers.

gender class year
female male 2004 2005 2006 2007 2008 2009
group 1 1 515 112 139 147 110 37 1
group 2 540 4 103 135 116 165 50 2
group 3 4 1050 38 79 152 178 277 300
group 4 958 1 30 62 125 156 288 271
dorm number
202 203 204 205 206 207 208 209 210
group 1 71 67 36 42 41 50 57 59 93
group 2 65 98 53 46 20 63 56 56 84
group 3 94 116 142 138 129 130 121 101 83
group 4 92 72 124 125 139 95 122 110 83
Table 7: The estimates of B and B} and their standard errors (s.e.).
Boii  Boia Bz Bois  Boge  Bios  Boas  Boss  Biss  Boas
estimate -0.730 4912 -1.543 6.197 -0.751 4.123 -1.624 -1.702 5.933 -1.419
s.e. 0.018 0.112 0.024 0.171 0.017 0.195 0.024 0.017 0.207 0.016
By Biia Biig Biis  Bigp Bias Biyy Bisgs Bisy Biy
estimate -3.397 -6.381 -4.398 -5.656 -3.600 -5.628 -4.387 -6.384 -6.704 -7.567
s.e. 0.042 0.102 0.057 0.155 0.042 0.180 0.059 0.059 0.196 0.060

10. Conclusion

In this paper, we proposed a network formation model which can capture heterogeneous effects of
homophily via a latent community structure. When the expected degree diverges at a rate no slower
than rate-log n, we established that the proposed method can exactly recover the latent community
memberships almost surely. By treating the estimated community memberships as the truth, we can
then estimate the regression coefficients in the model by existing methods in the literature.
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Appendix

Appendix A. Proofs of the Main Results

In this Appendix, we prove the main results in the paper. Given the fact that our proofs involve a
lot of constants defined in the assumptions and proofs, we first provide a list of these constants in
Appendix A.1. Then we prove Lemma 2.1 and Theorems 4.1-5.1 in Appendices A.2—-A.6,
respectively.

A.1 List of constants

Before we prove the main results, we first list the frequently used constants in Table 8. We specify
each constant to illustrate that all our results hold as long as y/logn/(né,) < cp < % for some
sufficiently small constant cp. Apparently, if logn/(n,) — 0, ¢y can be arbitrarily small as long
as n is sufficiently large. Then all the rate requirements in the proof hold automatically. However,
logn/(n¢,) — 0 is sufficient but not necessary.

Table 8: Table of Constants

Name Description
My Wi < M.
M mMax;en],1—0,1 |6)2"U| < M, used in the definition of fy/(-) and Assumption 2.
Ch Used in the definition of )\7(11).
Cur Used in the definition of T(),
Cs,Cs,C1,c1 | Defined in Assumption 3.
K Defined in Assumption 4.
C,C, CR Defined in Assumption 5.
Cy, o Defined in Assumption 6.
Cr,Cr1,CFy2 | Defined in Theorem 4.1.
Cy Defined in Theorem 4.2.
Chu Chv Defined in Theorem 4.3.
Cvy Defined in Lemma B.1.

A.2 Proof of Lemma 2.1
We prove the results for U; first. Let I ,, = ZlTZl/n = diag(m’ln, -+, T Kn)- Then,
(n'en) ('O =n"'ZBN,, B Z,.
Consider the spectral decomposition of x = Hll’{fBl* 11, Bf Hi{f tx =S50S T Let
U, = Zl(ZlTZl)_l/le’, where S; is a K| x K, matrix such that (SZ’)TSZ’ = Ig,. Then, we have
QU =n 1z, 285028 10, 22 = 0l 2B, B Z) = (n1e))>2.

In addition, note that Z/{lTUl = Ik, and QlQ is a diagonal matrix. This implies fl% = ZlQ (after
reordering the eigenvalues) and I/ is the corresponding singular vector matrix. Then, by definition,

U, = \/EU[E[ = Zl(Hl’n)il/ZSlIEl.
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Similarly, by considering the spectral decomposition of (n~107) T (n~1©7), we can show that
V= ZZ(HM)_I/ 2§, for some rotation matrix ,S;. Parts (2) and (3) can be verified directly by
noting that .S; and S} are orthonormal, IT; ,, is diagonal, and Assumption 3 holds.

A.3 Proof of Theorem 4.1

We focus on the split-sample low-rank estimators. The full-sample results can be derived in the
same manner. Denote Q, ;;(I';;) = —[Y5; log(A(WZ-—erij)) + (1 =) log(1 — A(Wi}—l“ij))],
which is a convex function for each element in I';; = (I'¢ 5, FLij)T. In addition, we note that the
true parameter I'* (/1) € T(l)(O,log n). Denote r® = {fg)}iell,je[n]a 1:1(]1) = (f(()ll)j, fglz)j)‘r
and A;j = fg;) -Iy = (Ao ij, Alﬂ-j)—r, fori € I, j € [n]. Then, we have

21: ( 7 (11)] Hfl(l)H*) an(nl—l) Z (an( ) @n,ij (L5 ))

1=0 i€ly,j€[n),i#j

! > (3%@7”]( Z}))TAM

n(n—1) i€l1,j€n] i

-1 .
:m Z (Yij - A(Wz‘—lj—rij)) Wz‘—lj—Aij
! i€l jen) i
—1
Efnl(T Ztrace Tl Al) (19)

where Or,; Q;—,ij(ljz‘j) = 0Qn,ij(I'};) /0L, Ty is anny x n matrix with (4, j)-th entry

o (AT Wiy it i€ e, i
Y o if i=jel ’

and trace(-) is the trace operator. By (19), we have

1
1
0 <A™ (Il — IE ) +
=0
1 1
* = 1
<MD 32 (IEF 0l = V1) + s S Il 0)
=0 =0

ni(n

1
1
o Z trace(Y] A;)
1=0

For some generic n1 x n matrix A, let ./\/ll(l) (A) and 73[(1) (A) be the residual and projection
matrices of A with respect to I'; (/1), as defined in Assumption 4. By Chernozhukov et al. (2020,
Lemma D.2) and the fact that ' (1) and I'j () are exact low-rank matrices with ranks upper

bounded by K + 1 and K, respectively, we have A; = ./\/ll(l)(Al) + Pl(l)(Al),
rank(M((]l)(Ao)) < 2Ky +2, rank(./\/lgl)(Al)) < 2Kj,andforl =0,1,

A% = [IMD A3+ [P (A)|E and [[TF (1) + P (A« = [T+ [P (A
(21)
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This implies that
T3 (1)) — [T, =TI — 05 (L) + M (A) + P (A
T () = T e =T (@) = 1T (1) + MO A +PM (@A)
<MD AL = [PV (A, 1=0,1. (22)

Therefore, combining (20), Lemma B.1, and (22), we have

1

0 <20 (IMP A~ PO L)
=0
| OxMw(VGun + Viogn) §;

DS (IMP @l + PP @)
=0

ni(n—1)

Noting that )\% ) = Glantvlogn) ong o '\ > Cy My, the last inequality implies that

ni(n—1)
1 1
(Cx — CeMw) S IP (A < (Cr + CrMw) S IMP (A, (23)
=0 =0

and that (Ao, A1) € C(¢) for ¢ = g‘iirgiim > 0, with a slight abuse of notation.
Next, we first aim to show

1< 9 (log(n) n (logn)3/2> 7

- A2 < 170
n(§| 7)) ° < 17Ck e e

where Cp = \/?(MWH)Q(EC*JFCTMW) + /2 + \/c2. We suppose (Ag, A1) ¢ Ci(cz), ie

1
> AE > canlog(n) /Cn, (24)

=0

otherwise,

ZHA 15)1/2 < CQIO?( ") < 170p <10g(n) + (logn)3/2>,

and we are done.

Now we consider the second-order Taylor expansion of @), ;;(I';;), following the argument in
Belloni et al. (2017). Let fi;(t) = log{1 + exp(W;; (I'}; + tAy))}, where

Az’j = (Aoﬂ']‘, s ,Ap’ij)—r. Note

anj( ) an( ) aFUQnU( *) ij:fij() flj( )_fZJ(O)

and that f;;(-) is a three times differentiable convex function such that for all ¢ € R,
[fig O =W AP AW (Aij + £85)) (1 = AW (A + tA5))[1 = 2A(Wi} (A + tAy))]
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<|W Ayl fis(t).

Then, by Bach (2010, Lemma 1) we have

"

"0
Falt) = al0) = 0 2 s [exn W] 8+ 19 8~ 1
—A(WT5) (1 = AWTE)) |exp(— W Ayl) + Wi Ayl - 1]

>cn {exp(—!WJAij\) + Wi Ayl - 1}

(W5 As5)
>cCn zr
4(maxi,j ‘sz A”| Vlog(2))
Cnc(Wi5 Aj)?

> 25
~8(Mw + 1)logn’ (25)

where the third inequality holds by Lemma B.2 and the last inequality holds because of
Assumption 5 and the fact that
\WZ-}—AM < |To4 — Lo,ij| + Mw|T1i5 — T1i5] < 2(Mw + 1) log n. Therefore, w.p.a.1,

Fn(A()a Al)
1 *
=D 2 @)~ Quis(T) - o, QL (M) Ay
' ie]hje[”]vj#’
CnC T )
= 8ni(n — 1)(Mw + 1) logn > (WAy)

i€l ,je[n] I

nc [ Z IAE — 4(Mw + 1)*(logn)*ny — C3n10g(n)/Cn] ;

>
~ 8ni(n—1)(Mwy + 1)logn

(26)

where the last inequality holds by Assumption 4, (24), and the fact that |A; ;| < 2logn, i € I;.
On the other hand, by (19),

Fn(A()a Al)

1
< XS (Il = IE) +

=0

1
1
< X0 (I @l = 1P Aoll) + S Il
=0 =0

Ztrace (Y A)

nl(n -1)

1 1
: W > (@4 CoMw) M Q)] = 7 (Cr = Cr M) [PV (A
(=0 1=0
n 1 !
< o e PR 0+ Cont (3 WM S0

=0
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1
< Yo = VIBT 6 4 o h ) WRR (S 1M (A0 1)
(=0

ni(n—1)
1
< Yl EVOER Gy 1 Ce i) VRR (Y 181]r)
1=0
n 1 _ !
= W(CA T CTMW)Q‘/}(Z A1F)2, 27)

=0

where K = max(Ky + 1, K1), the first inequality is due to (19), the second inequality is due to
(1)

(22) and the trace inequality, the third inequality holds by the definition of )\nl and Lemma B.1,
the fourth inequality is due to the fact that C\ — Cy My > 0, the fifth inequality is due to the fact
that rank(/\/ll(l) (A))) < 2K, the second last inequality is due to (21), and the last inequality is due
to the Cauchy’s inequality.

Combining (26) and (27), we have

2

CK Cn

1 1/2 _
(Z HAM%) _ 8VK(My + 1)(Cx + Cx My ) log n[\/nG, + vIog n]
=0

< [80Mw + 1)(Cx + CrMw)]? (lognlynG, + Viogn] )
a ek Cn
4ng (My + 1)%(logn)?  esnlog(n)
+ + ,
K KkCp,
and thus,
1
1 logn  (logn)®/?
— A|2)Y2 <170 p.a.l. 28
Sl <17y (EE - EE ) v e
Then,

1 ~ 1 ~ 1
~(1 — . . * *
7 — 1| = . E (Lo,ij — )| < i E (Losiz — Lo + i E 00.ij
i€ly,j€[n] icl,j€(n] i€ly,j€[n]

3/2
< logn n (logn) )

<30CE(cp + ¢%)y/logn w.p.a.1, (29)

A M <
\/WH ollF + M < 30Ck (

where the last inequality follows Assumption 5.3.
Next, we rerun the nuclear norm regularized logistic regression with the parameter space

restriction T™ (0, log n) replaced by T (77,(11), Crr+/logn). First, we note that the true parameter
(L) e ’]1‘(1>(%,§1), Chrv/logn) because [I'] ;| < Crry/logn and

T — 701 < 105,451 + 7D = 7] < 165451 + 30Ck(cr + ck)y/logn < Cary/logn,  (30)

where we use the fact that cp, and thus, 30(cr + c%)C r 1s sufficiently small.
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Therefore, following the same arguments used to obtain (23), we can show that
A= (AQ, Al) € C(E), where A; = Fl(l) — F?(Il). Let Az’j = (Aow‘, ALZ‘J‘)T. Now let
fij(t) = log(1 + exp(WJ(Fg‘j +tA;j))). We aim to show that

A 1/2
- (Z ||A,\|%> <17Cp1m, w.p.a.l, (31)
=0

where with Cr; = VE (Myw +Cyr) (Cr+Cr M) + /S + ﬁ and n, = /187 4 1987 Rollowing

CK nCn nCn

the same argument as before, we can suppose that (Ao, 1) ¢ Ci(c2). Then, following (25),

fij(1) = fi5(0) = f;;(0) > (W Aiy)? . Cuc(W]T Ayj)?
ij ij ij(0) = cCn 4(max; ; ’WJ&ZJ‘ Vlog(2)) 8(Cyr + My)\/logn’

where the last inequality holds because of (30) and uniformly in (i, )

|VVZ‘—]|’—AU| <|F0 z] FO U| + MW|F1 g T’ij|
<t 3 =TI 17D = T4 451 + Mw (V/log n + M) < 2(Cs + My)\/log n.

Then, similar to (26) and (27),

Fn(ﬁ()a 31)

= O (2T~ Quulmy) - or, QL TRy

m(n=1) i€l1,j€[n],j#i

CnC
~ 8ni(n—1)(Mw + Cy)/logn

[ (Z IIAzHF> — 4(Mw + Car)*log(n)ny — ¢3 log(n)n/Cn]
and

ni(n—1)

1
SR Ve 4 /1 = ~
Fu(Bo, Ay) < Yo X V08T (04 oty 2B (S (IR 22
=0

Therefore, we have

2

(i"ﬁl”%> 1/2_ 8VE (My + Car)(Cy + Cr Myy) (\/10@(\/717@4- \/@))

CK Cn

<K [8(MW + CM)C(:'A + CTMW)} 2 <v10gn(\/n<?+ @))2
n 4(Myy + Cpr)?log(n)ng L e log(n)n

K KCn 7

and thus, (31) holds. Then, similar to (29) and by Assumption 5.4, we have

\?,(11) —Tn| < ﬁ“ﬁoﬂp + 0(nn) < 30CF,17y,. This establishes the first result in Theorem 4.1.
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In addition,

I, ~a
SICIRE

IA
S|

+
S|

<

S|

| (&,4)

i€ly

_ieh

SHUI,

> (3
el x1I1,i#j
1/2

Zelzz

Sl -

JE[n)i#j

(F(l)

MA, SU AND ZHANG

1/2

T,ij)Q + % Z

i€ly

1/2

2
* 1 *
1, T Fg;@) - 1,ij> + Z (Fg @)J 1,ij)2

(27])7’611 7j¢11

1/2

@1 ,1

1/ 1/2 e
< " (Z ||Al||%) + \/7 . <18Cpin, w.p.a.1,
=0

where the first inequality holds due to the facts that fj;(-) is 1-Lipschitz continuous, ©% = (01) T,

and [©7 ;;

L a0
n||@0

IN

(4,9) €1 xI1,i#]

IN
S|

>

| < M. Similarly,

Ou(1)||F

9\ 0,15

1/2

ZGO (1

i€l

>

(%ﬂuﬁw

0,717

1 *
(T8 — T3

Z‘GII 7j€[n] 7i7é.7

2
) @0 2] Ar(zl)> +

1/2

1/2

Z (Fg,z] Ar(zl) @O ’L_])

(4.)1€0,j¢

~ M?
+7Y -l + \/37 < 48C 1, wp.a.l

Then, by the Weyl’s inequality, maxj_; ... k, |3,Ejll) — 0 1

<48Cp1m, w.p.a.lforl =0,1.

Last, noting that TA/I(I) consists of the first K eigenvectors of (%@1(1))7(%@(1))’ we have

Lgmr
n

(@
n

(1) L s
l )_n@lT

op

l

— 07 (I)||F £ 96CF1CsMn.

Then by the Davis-Kahan sin © Theorem (Su et al. (2020, Lemma C.1)), we have

1z

5(1) A(1
- VoM Ip

<

VE|V -

96v/2K,Cr1Co s,

lop < 96v2K,Cr1Cssny
= U%(l,l — 960}?710077”

136\/ KlCFy]_Co'nn

6(2, — 96CF,1CUT]TL
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< 136CF21n, (32)

where Cr2 = maxj—g1 vV K;Cr1 Cocgz, and the third inequality holds due to Assumption 5 and
the second last inequality is due to the fact that we can set cr to be sufficiently small to ensure that

1- 96prlC (cr + ch)eg? = %5
Recall that V =/n V M) and V) = v/nV,, we have the desired result that
Vi — V,“)(),“)HF < 136Cpay/nij,. B

A.4 Proof of Theorem 4.2
First, we prove the first result in the theorem. Let A;; = (@(1))T171(.11) —u;y forl = 0,1, and
Ay = (A;—O, Az‘T,1)T- Denote

~

1
Rnij = Ao + 3w, (O T3 W), (33)
(=0

Recall that A,, ;; = A(7, + lezo uiT?lvj,lVVl’ij) = A(m, + 05,5 + ©1.:,;W1, ij)- Let

Anij = Aanij), (34)
where ay, ;; is an intermediate value that is between 7,, + O ; it CH i Wi,j and
Tn + Zl:o 7;7Z(Ol(1))TA](~7ll)m7ij. Define
AN T(1)
~1 (Oy7) ' v; .
z(j) = 5(1)OTA(1)§; ] and <I> Z ¢( )
(O17) Vi1 Wiy % jeby,j#i

Let A (1) = AT + Yo 1] (O)T0 )W) and £ () = Yij log(ALY (1))

+(1 - Yij) log(1 — AL (). Define Q1Y) (1) = =2 32y i €4 (1) . Then,

0> Q@Y. al) - QWL ((ON)uio, (OV)uiy)
= Qv(l)(uz 0+ Dio, w1+ A1) — Ql(-rll) (wi0, 1)
NT

—1 ~
>— > (Vi — Aai)(0) A
2 icly i
1 —~ —~ ~ ~
+ = Y Ryl = Rugg) [ep(—1@)  AuD + 185 Al - 1]
2j€12,j7éi
1 - N
> 3 (Y K@) A
2 ey i
dG,
+ S8 S [exp(—I(@]) T Aul) + G Asl 1]
2 el j#i
-1 )7 i (BN TAW? (80T Awf?
> — Z (zy_Anzg)(¢ ) Azu+ Z 9 -
ng | ‘ no ‘. 6
Jjel2,j#i jEl2,jF#i

(35)
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where the second inequality is due to Bach (2010, Lemma 1), the third inequality is due to the fact
that exp(—t) +¢ — 1 > 0 and Lemma B.3(2), the constant  is defined in Lemma B.3, and the last

inequality is due to the fact that exp(—t) +t¢ — 1 > £ — & The following argument follows
Belloni et al. (2017). Let

_ - 1 N N
F(Ay) = Qf;i) (uio + Dio,uin + A1) — QS@)(W,O, ui1) + " Z (Yi; — An,ij)(cﬁgjl-))TAiu,

2 jely i
which is convex in A;,,. Let
3/2 1/2
LS e a((05))TA)?
Qin :inf[ J€l2,j# J } and 0;, = i Z ((fb(l))TA ) . (36)
A 1 (YT A)3 na
75 Djeh jzi(0) T A) jels j#i

(S) T Aw)? < 62

mn’

If 5m < Gin» then L Z]elg,gyéz

hand if 521’1, > Qin» let A’L’u - Suqln then [nig E

and thus F'(A;y,)

11) TAw) ] < gin. Then, we have

jelgﬁéz
5znAzu din A C/Cn in ANT X Q,Cn(ﬁn(sin
F(Ay) = F > % p (A A;y)? = Eondinin.
(@) = PPy 5 O 5 Coln 52 Gy, 2 = Ct

JEn],j#i

Therefore, by Lemma B.4,

4 2 / in 03 / A; 2 nin Azu
F(Aw) > min c Cn(sm’ [ Cn%nézn > min [ Cd)CnQH zu” ’ QC q \/@H H ‘ (37)
3 3 6 3v2

15 e i (Yid = Ruif) (@) T A,

On the other hand, we have |F'(A;,)] <

< I; 4+ II;, where

1 1 1 . -
Li=|= > (Y= Ani) (05) A and 1L = |~ 37 (Rpij — Ani) (0) T Al

JEI2,j#1 JEI2,j#1

We aim to upper bound I; and I I; uniformly in ¢ below.
We first bound I1;. Note that

Z An zg nzg <‘Tn

Tl — ;1) Wi

) )T A

]l
ijJ?ﬁl
SQE’M(l—l—MW)CnHAiuH z (An ](ll) — ;1) Wiij )
126 jen2 it |
2 M (1 + My )Col| A Y
< . 48CF177n+CHZ Z H _Uj’lH

361'273761

_20M (1 + M)l Al | |

Co

48C 11 + ¢ —Hff(l)é(”—vH
17 Illz:;\/% 1 1 lF
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<Cr1l| Al Gnn, (38)

where ¢j; = M(l + Mw) Crr = QC/M(l + MW)Cn (4801:1 + 1360]]CF2) the first
inequality holds by the Taylor expansion, the second inequality holds by Lemma B 3

< 0§"5{3 11 + Mw 10511
Jmax (165 < max (1105785011 + Miw |05 |

<2Moy! o +2Mw Moy | <2M(1+ My)c, ", (39)

the third inequality is due to Theorem 4.1 and the fact that HulTl Wi45l| < crr, the fourth inequality
is due to Cauchy’s inequality, and the last inequality is due to Theorem 4.1. Note that the constant
C71 does not depend on ¢, the above upper bound for /7; holds uniformly over 4.

Next, we turn to the upper bound for I;. Let F,, be the o-field generated by

{Xi}?zl U {Eij}iell,je[n],j;ﬁi U {ei]’}lgi,jgn and Hij = (YZ] — An,1])¢z(]1) Further note that, for

i € Iy, {€ij }jer, ji is independent of F;,. Therefore, conditional on Fr, {Hij},cp, ;; only
depends on {&;;}jcr,, i, and thus, is a sequence of independent random vectors. Note that

I; < ||ni2 > icty jzi Hijl|[[Aiul|- Let Hy ;; be the k-th coordinate of H;; where k € [Ko + K1) and

AT -
A, = {rj;ggu(ol‘ NToll < 2Mol )} € F.
By Lemma B.3, P(A4,,) — 1. Under A,, and Assumption 5, we have

| max |Hpij| < [2M (14 Mw)c, ' + 1] (14+¢) =Cx (40)
<i,j<

and Ej €Ly jti E(H k i |Fn) < CpCyno. Therefore, by the Bernstein inequality, for any ¢ > 0,

P | max Z Hk,ij > nat

5t
2
Fn | 1{A,} < g 2exp <_CHCnn2 = C’H3tn2> .

el
e J€I2,jF#i il
Taking t = 4CH\/C”I%, we have
160%1 ¢n lognn3
P maxi Z Hy i) > t|Fn | H{AR} <2ngexp | — 2n
i€ls N9 | . g ’ 40 HY Cnlsgn n2
J€l2,970 CHCan + —t

81
< 2ng exp (— ogn) < n_l'l,

where the second inequality holds because logn/(n(,) < ¢p < 1 and Cy > 1. Then, we have

1 1
P — H...|>t] <P — Hy..| >t P(AS
W | 2 M 2t <Py B Hi) 2t A | R
jelz,j#1 JEIz,jF#i

1
<E [P | max — Z Hy ;| >t
i€la Ny |, ‘7
JEIL2,j#1

Fo | HALH| +P(A7)
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<n~H L P(AS) = 0.

1 log n¢,
I; < — Hy ;| <4C .p.a.l. 41
mal Sy | D, i) < AC[ TR wpa @y

JE€l2,jF#1

This means

Combining (38) and (41), we have
|F(Ai)| < (4CH + Crr)Cnnn|[Adul |- (42)

Then, (37) and (42) imply

(43)

2 ndin Azu
(4CH +CII)Cn77nHAiu|| > min <CC¢CHH‘AWH Q\/@C 4 ” H) .

6 ’ 3v2

On the other hand, we have

lim inf min Ql\/@(nqm‘ ‘AWH > CUQICQSCn‘ ’Am H
n i€l 32 24M (1 + M)

> (4CH + CII)CnnnHAwHa

where the first inequality holds by Lemma B.5 and the second inequality holds due to the fact that
cr 1is sufficiently small so that

depcq

2 e —
(4CH—|—CH)(CF—|—CF) < 24M(1+Mw).

Therefore, (43) implies

6(4CHx + Crr)

M = Cinp wop.a.l. (44)
ccy

IO T8 = wiall < llAull <
Because the constant C does not depend on index ¢, the above inequality holds uniformly over
1 € Is.
Now, we prove the second result in the theorem. The proof follows that of the first result with a
notable difference: the regressors {ﬁgll) }ier,,1=0,1 obtained from the previous step are not
independent of the observations {Y;;} given the covariates. Thus, the conditional Bernstein
inequality argument above cannot be used again. Recall that

(%D, 5GY) = arg min Q%) (v, 1),

where Qﬁ)v(y) with v = (vg ,v{ )T is defined in Section 3.1.2. Let

A(O)(V) = Ay + ZVzT(az(l))Ta('}l)Wl’ij)

)

and
(49 (v) = Yy log(A) () + (1 — ¥iy)log(1 — AD ().
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~(0 _
Define Qg.n)y(l/) = 1 el jti EEJ) (v) . Then
0 ~(0) ,, A ¢
Q) (w0, 11) = Q%) ((OF) v, (OF) "),
Recall that A, ;j = A(T, + 31, UZZU]',ZWZ,U) = A7, + 05 ;; + ©7 ;;W15). Let

An,ij = AT, + 211:0 v]Tl(él(l))Tﬂgll)M/l,ij) and IN\W-]- = A(an,ij), where a, ;; is an intermediate
value that is between 7, + O ;; + ©7 ;; W1 ;; and Tn + lezo v; Z(Ol( ))TA(l)I/Vl ij- Define

- (O "y -
wij — o ¢ and \I/j = — 1/’1] wz]
o\ )) fl)Wl,z'j zegﬁ

Let Aj, = (A] 0 A ) , where A;; = (6}1))T1}](.3’1) —vj, for [ = 0, 1. Then we have

0 >QY, (@'%", 0'%) = QL (05) Twj0, (OF) ;1)

=QW) (O TG (O ToGH) — Q) (w0, v1.0)

— C 'i'T 1}2 .i'T v3
>0 Y (- A A+ £ S [(W S

n 2 6
i€12,i#] i€lz,i#j

By the first result that max;e, ||(6§1))Tﬂgll) — ;|| < Cinp, we have

max ||(OM)T 5}

1€y

~(1 *
e |[1(OF) T} = will + llusa ||| < Mow (G + M) < oo

Therefore, similar to (52), we have

. 2MW C* nn—l-M
[ — (1)) < 22w (C ST 1O A — al
1=0 1€l

<Myw (Cinn + M)Cinp w.p.a.l.

As cr is sufficiently small so that My (C{n, + M)CY (cr + ¢%.) < cg/2 can be ensured and
Assumption 7 holds, we have min () Amin(¥;) > /2 w.p.a.1.
Let

~(0 ~(0 1 . .
F(Ajy) = Q§n) (vj0 + Aj0, 050 + A1) — Q§n) (00, vj1) + D (Vi — Ay (Wig) T A
i€la,i#j
Following the same argument in the proof of Theorem 4.2, we have
Q/%CnQHAijZ C/Cann\/@”Aij)
6 ) 3\/§ )

F(A;y) > min (

[ Sicry s (W) T2)2]

% Zie]z,i¢j((¢ij)TA)3

where ¢j, = infa . For the upper bound of F'(Aj,), we can show that

1 . 1 . .
F(Aj) < |— D (Y — M) (i) T Aj| + p— Y (A = M) (Wig) " Ao

2 el it 2 el it
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I +11;.

We first bound ﬁj. Following Lemma B.3(1), we have
AS()NT ~(1 (1) T A~(1
[0/ OF) Tl Wil S 11OF) Ty — il + il < € < oo
Then, by the same argument in the proof of Lemma B.3(2), we have
TG > Anij > ¢ and @G > Ay > G,

for some constants oo > ¢ > ¢’ > 0. Following (38) and by noticing that
1 AN T ~(1)
5 2ichizi 1(077) U — iy

< Cinn, we have

/I\I/j < C}ICnnnHAija (45)

for some constant C';; > 0.
The analysis of I; is different from that of I; as we no longer have the independence between 1);;

and Y;j — An,ij given {Wl,ij}1§i<j§n- Instead, we let wij = [u ?1231 ] . Note that 1/11']' is

Z7 7Zj
deterministic given {W1 ;; }1<i<j<n. In addition, max; je|n) i |[¥ij — ¥ijl| < (1 4+ Mw)Cinp.
Therefore,

B 1 1
I < |||— Z (Yij — Anjij) Vi + Z Yij — Anij

n
2 ielsit] i€l,i]

i — il | 112501

For the first term in the square brackets, by the conditional Bernstein inequality given
{W1,ijh1<icj<n. we have

! log nén
max | == Z (Yij — Anjij) i SC}I\/Tw.p.a.l, (46)

j€ na . Y,
J [n} 2 746127275.7

where Cl; = 4(1 + )2 [C,Co (Myy + 1) 4 1]*. For the second term in the square brackets, we
have

1 .
. D 1Yig = Al - sy — il

2 1€l2,i#]

(14 Mw)Cin
< o "‘ E NYij = A
i€la,i#yj

R 2
< (1+ Mw)Cim | Z '(Yi'_An,ij)'{’n*Z' Z 'An,ij
1€l2,i#] 1€l2,i#]

< (1 + Mw)Cinn (4(;\ [$n fgn + 2ch>

< 3(1 + MW)ECfT/nCm
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where the second last inequality is due to the Bernstein inequality and Assumption 5, and the last
inequality holds because 4/ 12% <dcp < 1.
Combining the two estimates, we have uniformly in j and

logn

e

LgQ& +&me%@>%MMM§4G+MW%W¢M%wawL

where the last inequality holds because cr is sufficiently small so that
Cly(cr + c%) < (1 + Mw)eCy.
Combining the upper and lower bounds for F'(A;,), we have, w.p.a.1,

Q/%CnQHAij C/Cann\/@HAjv”)
6 ’ 32 '

[4(1 + Myw)eC;t + C)nmCallAjy]| > min ( 7)

By the same argument in Lemma B.5, we have

C2 .
w Lieniz (W) T8 co\/ey/2
16(1 + Myw)2M2[|A[[2 = 4(1 + Mw)M

Qjn > iI&f > 0.

In addition, because cr can be made sufficiently small to ensure
s coc\/C
(4(1 + Mw)eCs + Clp)(cp + %) < m, we have

(41 + Myw)eCT + Cp)mnallAjol] < (4(1 + Myw)eCy + C1p)(cr + ¢k)6nl| A

codcolnl|Ajoll _ €v/CoCntinll Al
24(1 + My )M — 3v2 '

Then, (47) implies

(4(1 + Mw )eCy + C7p)
dege

6
1Al < 1 = Co,pMn w.p.a.l. (48)

Note the constant Cy ,, on the right hand side does not depend on j so that the desired result holds
uniformly over j € [n]. B

A.5 Proof of Theorem 4.3

We can establish the desired results by induction. Given
mMaxey] H(Ol(l))Tbyfl’l) — ]| £ Ch—1,Mn W.p.a.1, we can readily show that
ANT - (hy1
max||(O]") T — il < Chune
i€[n] ’

Then, given max;¢y,) H(az(l))—ru('lrl)

2 —uigl| < Chunp w.p.a.1, we can show that

(1 . (h,1
oo [[(0) T45") = wl] < Gl

As the regressors in both iteration steps have the uniform bound, the proof of Theorem 4.3 is
similar to that of the second result in Theorem 4.2, and is thus omitted for brevity. B

49



MA, SU AND ZHANG

A.6 Proof of Theorem 5.1

-
AL, T (A2, \T
Let v} = ((Ol via) (01 vy1) ) . Then we have

1 2
10D v;4]1 7 110D v;1]]

v 11—1’1) 6(1)

( o H2) A(2)
[5; — }|| < .J(H’l) - 11)1)],1 |+ ](;12 — 9%2)%1 H
01 10wl NS 10P vl
O e |, @”)T Dy, H
O T eaall || |10 T " ol
2O T | 2@ o va
1OM) TV 1O Tl
= ijj er’?Z,mn <501 *Crta, @
p

where the last inequality is due to the fact that ||v;1]| > C
Crpnn < Cpro(cp + %) < Cl / 5 as c¢p can be made sufﬁ01ently small. In addition, by
Lemma 2.1, for z; # zj,

(11 A0 ~(1 2 ~(2 ~(2 2] /2
[y = vi|| = OE )Uz’l ~ Ol ‘ O s _OPluss (50)
J ? (1 (2 (2
|10t 10 sl 11O viall - 108 w5l
[ (¥ v 2 (Y v 2 1/2
7,1 7,1 %,1 7,1
= = - —2. (51)
il lvja |H ‘ viall Hvjall ]

Given (49) and (50), the result of Theorem 5.1 is a direct consequence of Su et al. (2020, Theorem
IL.3). In particular, we only need to verify their Assumption 4 holds with ¢y, = 2,
CH,vMn, and M = 2. Note when cp is sufficiently small,

_ 1/2 .
2(5C; 1/2 1/20 ’mn)uz <9 [50 1/2 1/20HU(CF+CF)] < Kf/“\/j
Then their Assumption 4 holds as
TK M2 )2 = 1734 KPPy

< 174K O Cn(er + ¢3) < 201

(2concs’® + 16K/ M2 22

IN

when cp is sufficiently small. B

Appendix B. Some Technical Lemmas

Lemma B.1 Let C'y be an sufficiently large and fixed constant. Suppose that the assumptions in
Theorem 4.1 hold. Then

ZIESL}%HTZHO;D < Cy My (v/Gan + /logn) w.p.a.l.
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Proof. LetC = {X;}", U{eijti<i<j<n and rp, = Cy My, +/log(n)(,n for some sufficiently
large constant Cy whose value will be determined later. In addition, we augment the n; X n matrix
T, to a symmetric n X n matrix Y; with (7, j)-th entry

Tl,ij if 1eli,j=1,---,n
Tl,ij = Tl,jz' if jel,ie [n]/Il
0 if i¢L,j¢éI.
Then, by construction, ||Y;||op < ||Y;|op- Therefore,
P(max ||Tillop 2 ) <2maxP([|Tillop 2 mn) < 2maxE[P(|[Yillop 2 7a|C)]
<2maxE [P(||Tilop > 7a/C)] -

Next, we bound P(||Ty||op > 7,|C). Recall

Ty ={(i,j) € h x I1,j > i} U{(i,5) : i € I1,j ¢ I }. Given C, the only randomness of T
comes from {e;;}(; jez, [n]> Which is an i.i.d. sequence of logistic random variables. In addition,
{€ij}(i,j)eT, x[n) 1s independent of C,

n

E aXE (Z T, Z]|C> < max An M3, < eMEné,

i€ [n]

and |Y;;;| < My . Then, by Bandeira and van Handel (2016, Corollary 3.12 and Remark 3.13),
there exists a universal constant ¢ such that

__ 5 t2
P (||'rl|\op > 3v26 +tyc) < nexp <—5M2 ) .
w

Choosing ¢t = 3v/&Myy, we have

2P (I\Tz\lop > 3My/2enC, + 3\/5log(n)MW‘C) <l

and thus,

il |op < 3My (/260G + V/Elog(n)) < Oy My (v/né, + /log(n)) w.p.a.1. B

Lemma B.2 Suppose M >t > 0, then Then exp(—t) +t —1 > Wzg(z))‘

Proof. First, suppose M > log(2). Let f(t) = exp(—t) +t — 1 — z3;. Then,
f'(t) =1 — exp(—t) — 5+7. We want to show f'(t) > 0 fort € [0, M] This implies that
minye(, a7 f(t) = f(0) = 0. Note that

f' (M) =05 —exp(—M) > 0.
In addition, we note that f’(¢) is concave so that for any ¢ € [0, M],

f(M)t

Fl(t) 2 == 20
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This leads to the desired result.
Next, suppose M < log(2). Then, we have
2 3 _ (3 —1log(2))t? - t2

1> L s .
exp(—t) + 276~ 6 = Ilog(2)

This concludes the proof. l
Lemma B.3 Suppose that the Assumptions in Theorem 4.1 hold. Then, w.p.a.l,

1)\ T~(1
1. maxjep, ||(O}) 7987 || < 2Moi!;
2. There exist some constants 0o > ¢ > ¢’ > 0 such that

E/Cn > Kn,ij > ClCn and E/Cn > An,ij > Q/Cna

where /AXMJ and An,ij are defined in (33) and (34), respectively.
Proof. 1. Note that

1 Al Al ~_ 1
1O a1 =151 < o IEDB

n 25 H 1))T@(1) H<”_1/2&;(1 H W), H<2MUKZI,

A

where the first equality holds because O, is unitary, the second equality holds because

n71/2(1/7l(1))T(:)l(1) _ il(l)\/ﬁ(ﬁl(l))T _ il(1)(‘72(1))77

the second inequality holds because HZ/AIl(l) llop < 1, and the last inequality holds because

\@)17ij\ < M by construction and that by Theorem 4.1 and the fact that cr is sufficiently small so
that 48Cr 11, < 0k,,1/2, and thus,

- - 0Kl — 0K, _
|UKlll — aKll’l| < 10, b | < UKlll w.p.a.l.
! 010K, 1 = |0Ky 1 — Ok i) ’
As the constant M does not depend on j, the result holds uniformly over j = 1,--- ,n.

2. By Theorem 4.1 and the previous result,

1
Z Uzl(él(l))T@(-}l)m,ij < 30Cp1mm + C,
1=0

Tn‘i‘zu@l )I/Vlz] Tn S’?n_'rn‘"f’

and thus, there exist some constants co > ¢ > ¢ > 0 such that
E,Cn > An,z’j > Q,Cn-
For the same reason, we have @'(, > Aw‘j >J¢,. 1
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Lemma B.4 Suppose Assumptions 1-6 hold. Recall that

~ N ~ N T
ol x [ [ o
2 el jti (O )Ti}\j,IleiJ (O )Tﬁj,lwlﬂj

Then, for the constant cy defined in Assumption 6,

min /\min(cf)gl)) > cy/2 w.p.a.l.
i€l

Proof. By Lemma B.3(1), H( )TA(1)|| < 2Moy!, forl = 0,1. Then, we have, w.p.a.1,

188 — @, (L) <*ZZ Tl

=0 jelz

T(1)

vj,l B Ujle

<a0'S ot O~ il
=0
<1088V2MCrac, ', (52)

where the second inequality holds due to Cauchy’s inequality, and the last inequality holds due to
Theorem 4.1. As cp is sufficiently small so that 1088v/2M Crac, t(cr + ¢%) < c4/2, we have,
w.p.a.l,

miln )\mm@gl)) > rm]n Amm(q),(fg)) — (544(\/ Ko =+ 1/ Kl)CUMCFJC;S) Mn > C¢/2 [ |
1€l2 [ASY D)

Lemma B.5 Let q;, be defined in (36). Suppose that Assumptions 1-6 hold. Then,

\/Cs/2Cs
lim inf min ¢;,, > o/

_ VI g ypal
n e AM(1+ My) ~ - Pt

where c and M are two constants in Assumption 6 and Lemma B.3, respectively.

Proof. Note

RSNy anLQ Z]EIQ j#z((gbg ))TA) > Co lim lnf manEIQ Amln((/l\)l(l)) N V C¢/260
Bin =T\ T16M2(1 + My 2|[A[E < AM(1 + My) = AM(1 + My)

> 0,

where the first inequality is due to Lemma B.3(1) and the second inequality is due to Lemma B.4.
|

Appendix C. Proof of Theorem 6.1

Theorem 6.1 is the direct consequence of Graham (2017, Theorem 1). Note that Assumptions 1-3
in Graham (2017) hold in our setup. Although Graham (2017) requires that W ;; = g;(X;, X;),
his proof remains valid if we have W ;; = a1(Xi, X, ei;) for some i.i.d. random variable e;; such
that e;; = ej; and e;; 1L (X;, X;,¢€;5). In addition, Assumption 4(i)-(ii) in Graham (2017) hold as
we have n(, = Q(logn). His Assumption 4(iii) is the same as our Assumption 9. l
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Appendix D. Proof of Theorem 6.2

Let B = vech(B*) + u(n?¢,) /2 for some K x 1 vector u. Then, by the change of variables, we

have @ = 1/n2(, (B — vech(B*)) and

G = arg max [Qn (vech(B*) + u(nQCn)_l/Q) - Qn(vech(B*))} .
u
We divide the proof into two steps. In the first step, we show that for each w,
u' Hu

Qn <vec(B*) + u(nQCn)’1/2> — Qn(vec(B*)) + v, u — 5~ op(1), (53)

where vy, = Op(1) and H is positive definite. Then, by noticing that Q,, (vec(B*) + u(n?¢,)~/?)

is convex in u, we can apply the convexity lemma of Pollard (1991) and conclude that

o —H v, = op(1). (54)

In the step second, we derive the asymptotic distribution of H~uv,,.
Step 1. By Taylor expansion,

Qn (vee(B*) + u(n?G,)™2) = Qu(vee(B")

1 T 1 T 1 ~ ~ T
N > (Vi — Angglwliu+ 3" D A (@) (1 = A (@) Jwijwiju
nCn 1<i<j<n " 1<i<j<n
1
=-— Ulu + Zu Hau,

2
where Ay, ;; = Ay, 45(0), @ is between 0 and u, and the definitions of v,, and H,, are evident. By
Assumption 10, H,, — H. In addition, Ev,, = E(E(v,|w;;)) = 0 and Var(v,,) < oo, implying
that v, = Op(1). Therefore, we have established (53), and thus (54).
Step 2. # is positive definite by Assumption 10. Noting that, {€;; }1<i<j<n 1L {W1i4j}i<icj<ns
and {€;; }1<i<j<n is independent across (i, j), we have

1

n*Cn

1
E {(Yi' - An,ij)Qwing!{Wl,ij}1§i<j§n} =2, Y (1= Apipwiwi; = H,
n

1<i<j<n

and for any € > 0, there exists ng sufficiently large so that for all n > ny and k € [K],

1
> E [(Yi‘ — A ig)?wit i, {1 (Yij — Ani)*wit i1 = vnzCne}]

2
n=Gn 1<i<j<n
< M7 1{Mj, > \/n2¢ye} =0,

where wy, ;; denotes the k-th element of w;;. Therefore, by the Lindeberg-Feller central limit
theorem, v, ~» N (0, H) conditionally on {W1 ;; }1<i<j<n. As H is deterministic, the above weak
convergence holds unconditionally too. Therefore, @ ~ N'(0,£~!) = O,(1). In addition, by
Assumption 10,

1

—~ 1 R N T P
e = g 2 M) A (@) > H

1<i<j<n

It follows that ﬁ;l/Q(B—Vec(B*)) ~ N(0,Ic). 1
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Appendix E. Algorithm for the Nuclear Norm Regularization

We apply the optimization algorithm proposed in Cabral et al. (2013) to obtain the nuclear norm
penalized estimator given in (12). For any given r; > K; and r; < n, I'; can be written as

I = UlVlT, where U; € R™" and V; € R"*" for ] = 0, ..., p. We consider the optimization
problem:

)\7(11) D
QS)(D+TZW(HU1H%+HWH%), (55)
1=0
where I' = (I';,1 =0, ..., p), and

QUM = 3 [Vu(WTy) + log{l + exp(WTij)}
iEIl,jG[n},i;éj

subject to I'y = UV, " forl = 0, ..., p. Let A\ = Oy(v/Gom + vIog ).

LetI'; forl =0, ...,p be an optlmal solution of (12) with rank(I'}) = K. Cabral et al. (2013)
shows that any solutlon I = UlVl forl =0, ...,p of (55) with r; > Kl* is a solution of (11). Next
we apply the Augmented Lagrange Multiplier (ALM) method given in Cabral et al. (2013) to solve
(55). The augmented Lagrangian function of (55) is

( P P
)+ 2 S U+ Vi) +Z<Al,rl NS IV AT
=0 =0 =0

where /\; are Lagrange multipliers and p is a penalty parameter to improve convergence.

1. Atstep m + 1, for given (U;", V", A]",0™,1 =0, ...,p), (I'™+1) minimizes

p p
m m m p m m
Ln(T) = QV(T) + > (AP, Ty = U vy ) + 5 2= 0PVl
1=0

Moreover, fori € 11,5 € [n],i # j,

0L, (T)
81_‘[71']'

= (pij — Yij)Wiij + A% + p(Ori; — Vi U,

i3

where 11 = exp(3_,_o Wii;T1,i) {1 + exp(32,_o Wii;Tui5)} % and

9L, (T) )
“ary, il )W e
9?L,(T)
— 7 = i (1= i YW i Wy o for L £ 1
aFMjFl/’ij Mz]( lu’lj) Lij Wi ij or ?é
Fori=j e I,
OL,(T")
8Fl,z’j - Am] +p(rl,z] WU Ul zy)
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9%L,(To,T'1)

2
81“1’”.

_ 9Ln(To,T1) _
=p and W =0. Then,

92L(I™) ., OLn(I™)
Fm—i—l - _ n -1 n + Fm7
Carar )
where Fij = (FO,ij; ety Fp7ij)T. Update
m+1 m+1 m+1 m+1
Uy =T {0y, | <logn} +lognI{[T;;; | > logn}.
2. For given (U™, V™, A T+ [ =1,2), Ulm'H minimizes
o 1 )
S U+ I ) + D0 (A7 I = 0T ) + 2y T+
=0 =0
Then

Ut = (AP + pT YV Dy, + pV TV
Similarly, V"' = (A" 4 p07) TOP (N, + pU T O 7L
3. Let APt = AT 4 (@1 — gy T

4. Let p = min(ppu, 10%°).
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