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Abstract

This paper proposes a logistic undirected network formation model which allows for assortative

matching on observed individual characteristics and the presence of edge-wise fixed effects. We

model the coefficients of observed characteristics to have a latent community structure and the

edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving

nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to

detect the latent communities. We show that the latent communities can be exactly recovered when

the expected degree of the network is of order log n or higher, where n is the number of nodes in the

network. The finite sample performance of the new estimation and inference methods is illustrated

through both simulated and real datasets.

Keywords: Community detection, homophily, spectral clustering, strong consistency, unobserved

heterogeneity

1. Introduction

In real world social and economic networks, individuals tend to form links with someones who

are alike to themselves, resulting in assortative matching on observed individual characteristics

(homophily). In addition, network data often exhibit natural communities such that individuals in

the same community may share similar preferences for a certain type of homophily while those in

different communities tend to have quite distinctive preferences. In many cases, such a community

structure is latent and has to be identified from the data. The detection of such community structures

is challenging yet crucial for network analyses. It prompts a couple of important questions that need

to be addressed: how do we formulate a network formation model with individual characteristics,

unobserved edge-wise fixed effects, and latent communities? When the model is formulated, how

do we recover the community structure and estimate the community-specific parameters effectively

in the model?
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To address the first issue above, we propose a logistic undirected network formation model with

observed measurements of homophily as regressors. We allow the regression coefficients to have a

latent community structure such that the regression coefficient for covariate l in the network forma-

tion model is Bl,k1k2 for any nodes i and j in communities k1 and k2, respectively. The edge-wise

fixed effects are assumed to have a low-rank structure. This includes the commonly used discretized

fixed effects and additive fixed effects as special cases. To address the second issue, we note that

the estimation of this latent model is challenging, and it has to involve a multi-step procedure. In

the first step, we estimate the coefficient matrices by a nuclear norm regularized logistic regression

given their low-rank structures; we then obtain the estimators of their singular vectors which con-

tain information about the community memberships via the singular value decomposition (SVD).

Such singular vector estimates are only consistent in Frobenius norms but not in uniform row-wise

Euclidean norm. A refined estimation is needed for accurate community detection. In the second

step, we use the singular vector estimates from the first step as the initial values and iteratively run

row-wise and column-wise logistic regressions to reestimate the singular vectors. The efficiency

of the resulting estimator can be improved through this iterative procedure. In the third step, we

apply the standard K-means algorithm to the singular vector estimates obtained in the second step.

For technical reasons, we have to resort to sample-splitting techniques to estimate the singular vec-

tors, and for numerical stability, both iterative procedures and multiple-splits are called upon. We

establish the exact recovery of the latent community (strong consistency) under the condition that

the expected degree of the network1 diverges to infinity at the rate log n or higher order, where n
is the number of nodes. Under the exact recovery property, we can treat the estimated community

memberships as the truth and further estimate the community-specific regression coefficients.

Our paper contributes to three strands of literature in statistics and econometrics. First, our paper

contributes to the large literature on the application of spectral clustering to detect communities in

stochastic block models (SBMs) by studying the estimation and inference of a network formation

model with both covariates and latent community structures in the regression coefficients. Since the

pioneering work of Holland et al. (1983), SBM has become the most popular model for community

detection. The statistical properties of spectral clustering in such models have been studied by Jin

(2015), Joseph and Yu (2016), Lei and Rinaldo (2015), Paul and Chen (2020), Qin and Rohe (2013),

Rohe et al. (2011), Sarkar and Bickel (2015), Sengupta and Chen (2015), Vu (2018), Wang and

Wong (1987), Yun and Proutiere (2014), Yun and Proutiere (2016), and Zhao et al. (2012) among

others.2 From an information theory perspective, Abbe and Sandon (2015), Abbe et al. (2016),

Mossel et al. (2014), and Vu (2018) establish the phase transition threshold for the exact recovery of

communities in SBMs, which requires the expected degree to diverge to infinity at a rate no slower

than log n. See Abbe (2018) for an excellent survey on the recent development of estimation of

SBMs and degree-corrected SBMs. Nevertheless, most existing SBMs do not include covariates.

A few exceptions include (Binkiewicz et al., 2017), Weng and Feng (2016), Yan and Sarkar (2020)

and Zhang et al. (2016), who consider covariates-assisted community detection but not inferences

on the underlying parameters.

1. Let Yij be a binary variable which equals one when there is an edge between nodes i and j and zero otherwise. Then,

the expected degree for node i is defined as E
∑

j 6=i Yij .

2. Other methods to detect communities include but are not limited to modularity maximization (Newman and Girvan,

2004), likelihood-based methods (Amini et al., 2013; Bickel and Chen, 2009; Choi et al., 2012; Zhao et al., 2012),

the method of moments (Bickel et al., 2011), and spectral embedding (Lyzinski et al., 2014; Sussman et al., 2012).
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In addition, our multi-step procedure combines likelihood maximization with low-rank estima-

tion and a spectral clustering step and provides an effective and reliable tool for the estimation of

the complex network model considered in the paper. The variational EM algorithm is an alternative

method widely used to estimate complicated models that can incorporate both covariates and com-

munity structures. However, its performance highly hinges on the proper choice of initial values

and its solution is not globally optimal. Our method, on the other hand, enjoys both the optimal

fitting of the data based on the likelihood and the easy computation of the spectral clustering. Fur-

thermore, despite the fact that the regression coefficient matrices have to be estimated from the data

in order to obtain the associated singular vectors for spectral clustering, we are able to obtain the

exact recovery of the community structures at the minimal rate on the expected node degree and to

conduct inferences on the underlying parameters in the model.

Second, our paper contributes to the burgeoning literature on network formation models and

panel structure models. For the former, see Chatterjee et al. (2011), Graham (2017), Graham (2019),

Graham (2020), Graham and de Paula (2019), Holland and Leinhardt (1981), Hoff et al. (2002),

Jochmans (2019), Leung (2015), Mele (2017a), Rinaldo et al. (2013), and Yan and Xu (2013). We

complement these works by allowing for community structures on the regression coefficients, which

can capture a rich set of unobserved heterogeneity in the network data. In a working paper, Mele

(2017b) also considers a network formation model with heterogeneous players and latent commu-

nity structure. He assumes that the community structure follows an i.i.d. multinomial distribution

and imposes a prior distribution over communities and parameters before conducting Bayesian es-

timation and inference. In contrast, we treat the community memberships as fixed parameters and

aim to recover them from a single observation of a large network. Our idea of introducing the

community structure into the network formation model is mainly inspired by the recent works of

Bonhomme and Manresa (2015) and Su et al. (2016), who introduce latent group structures into

panel data analyses. When the community structure is unobserved, it is analogous to the latent

group structure in panel data models. For recent analyses of panel data models with latent group

structures, see Ando and Bai (2016), Chen (2019), Cheng et al. (2019), Dzemski and Okui (2018),

Huang et al. (2020), Huang et al. (2021), Liu et al. (2020), Lu and Su (2017), Su and Ju (2018), Su

et al. (2019), Vogt and Linton (2020), Wang and Su (2021), and Xu et al. (2020), among others. In

particular, Wang and Su (2021) establish the connection between SBMs and panel data models with

latent group structures and propose to adopt the spectral clustering techniques to recover the latent

group structures in panel data models.

Last, our paper also contributes to the literature on the use of nuclear norm regularization in

various contexts; see Alidaee et al. (2020), Belloni et al. (2019), Bai and Ng (2019), Chernozhukov

et al. (2020), Fan et al. (2019), Feng (2019), Koltchinskii et al. (2011), Moon and Weidner (2018),

Negahban and Wainwright (2011), Negahban et al. (2012), and Rohde and Tsybakov (2011), among

others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear

norm regularized estimates, except Moon and Weidner (2018) and Chernozhukov et al. (2020) who

study the inference problem in linear panel data models with a low-rank structure. Like Moon and

Weidner (2018) and Chernozhukov et al. (2020), we simply use the nuclear norm regularization

to obtain consistent initial estimates. Unlike Moon and Weidner (2018) and Chernozhukov et al.

(2020), we study a nonlinear logistic network formation model with a latent community structure

and propose the iterative row- and column-wise logistic regressions to improve the error bounds

(in row-wise Euclidean norm) for the singular vectors of the nuclear norm regularized estimates.
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Relying on such an improvement, we can fully recover the community memberships. Then, we can

estimate the community specific parameters and make statistical inferences.

The rest of the paper is organized as follows. In Section 2, we introduce the model and basic

assumptions. In Section 3, we provide our multi-step estimation procedure. Section 4 establishes

the statistical properties of the proposed estimators of the singular vectors. Section 5 studies the

K-means estimation of the community memberships when the regression coefficient matrix is as-

sumed to exhibit some community structure. Section 6 studies the asymptotic properties of the

regression coefficient estimates in the presence of latent community structures. Section 7 discusses

the determination of the ranks of the regression coefficient matrices. Section 8 reports simulation

results. In Section 9, we apply the new methods to study the community structure of a Facebook

friendship networks at one hundred American colleges and universities at a single time point. Sec-

tion 10 concludes. The Appendix provides the proofs of all theoretical results and the associated

technical lemmas, and some additional technical details.

Notation. Throughout the paper, we write “w.p.a.1” for “with probability approaching one,”

M = {Mij} as a matrix with its (i, j)-th entry denoted as Mij . We use || · ||op, || · ||F , and || · ||∗ to

denote matrix spectral, Frobenius, and nuclear norms, respectively. We use [n] to denote {1, · · · , n}
for some positive integer n. For a vector u, ||u|| and u> denote its L2 norm and transpose, respec-

tively. For a vector a = (a1, · · · , an), let diag(a) be the diagonal matrix whose diagonal is a. For a

symmetric matrix B ∈ R
K×K , we define

vech(B) = (B11, ..., B1K , B22, ..., B2K , · · · , BK−1,K−1, BK−1,K , BKK)
>.

We define max(u, v) = u∨ v and min(u, v) = u∧ v for two real numbers u and v. We write 1{A}
to denote the usual indicator function that takes value 1 if event A happens and 0 otherwise. Let �
denote Hadamard product.

2. The Model and Basic Assumptions

In this section, we introduce the model and basic assumptions.

2.1 The Model

For i 6= j ∈ [n], let Yij denote the dummy variable for a link between nodes i and j. It takes value

1 if nodes i and j are linked and 0 otherwise. Let Wij = (W1,ij , ...,Wp,ij)
> denote a p-vector of

measurements of homophily between nodes i and j. Researchers observe the network adjacency

matrix {Yij} and covariates {Wij}. We model the link formation between i and j is as

Yij = 1{εij ≤ log ζn +

p∑

l=0

Wl,ijΘ
∗
l,ij}, i < j, (1)

where {ζn}n≥1 is a deterministic sequence that may decay to zero and is used to control the expected

degree in the network, W0,ij = 1, and Wl,ij = Wl,ji for j 6= i and l ∈ [p]. For clarity, we consider

undirected network so that Yij = Yji and Θ∗
l,ij = Θ∗

l,ji ∀l if i 6= j, εij follows the standard logistic

distribution for i < j, and εij = εji. Let Yii = 0 for all i ∈ [n]. Our estimation and inference

methods can be extended to directed networks by considering the upper- and lower-triangular sub-

matrices separately.
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Apparently, without making any assumptions on Θ∗
l = {Θ∗

l,ij} for l ∈ [p] ∪ {0}, one cannot

estimate all the parameters in (1) as the number of parameters can easily exceed the number of

observations in the model. Specifically, we will follow the literature on reduced rank regressions

and assume that each Θ∗
l exhibits a certain low rank structure. Even so, it is easy to see that our

model in (1) is fairly general, and it includes a variety of network formation models as special cases.

1. If log(ζn) = 2ā = 2
n

∑n
i=1 ai, αi = ai − ā, Θ∗

0,ij = αi + αj , and p = 0, then

Yij = 1{εij ≤ ai + aj}. (2)

Under the standard logistic distribution assumption on εij , P (Yij = 1) =
exp(ai+aj)

1+exp(ai+aj)
for

all i 6= j, and we have the simplest exponential graph model (Beta model) considered in the

literature; see, e.g., Lusher et al. (2013).

2. If log(ζn) and Θ∗
0,ij are defined as above and Θ∗

l,ij = βl for l ∈ [p], then

Yij = 1{εij ≤ ai + aj +W>
ij β}, (3)

where β = (β1, ..., βp)
>. Apparently, (3 ) is the undirected dyadic link formation model with

degree heterogeneity studied in Graham (2017). See also Yan et al. (2019) for the case of a

directed network.

3. Let Θ0,ij = Θ∗
0,ij+log ζn. If p = 0, and Θ0 = {Θ0,ij} is assumed to exhibit a stochastic block

structure such that Θ0,ij = bkl if nodes i and j belong to communities k and l, respectively,

then we have

Yij = 1{εij ≤ Θ0,ij}. (4)

Corresponding to the simple SBM with K communities, the probability matrix P = {Pij}
with Pij = P (Yij = 1) can be written as P = ZBZ> where Z = {Zik} denotes an n×K
binary matrix providing the cluster membership of each node, i.e., Zik = 1 if node i is in

community k and Zik = 0 otherwise, and B = {Bkl} denotes the block probability matrix

that depends on bkl. See Holland et al. (1983) and the references cited in the introduction

section.

4. Let Θ0,ij = Θ∗
0,ij + log ζn. If Θ0 = {Θ0,ij} is assumed to exhibit the stochastic block

structure such that Θ0,ij = bkl if nodes i and j belong to communities k and l, respectively,

and Θ∗
l,ij = βl for l ∈ [p], then

Yij = 1{εij ≤ Θ0,ij +W>
ij β}. (5)

Then (5) defines a stochastic block model with covariates considered in Sweet (2015), Leger

(2016), and Roy et al. (2019).

Under the assumptions specified in the next subsection, it is easy to see that the expected degree

of the network is of order nζn. In the theory to be developed below, we allow ζn to shrink to zero

at a rate as slow as n−1 log n, so that the expected degree can be as small as C log n for some
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sufficiently large constant C and the network is semi-dense.3 Of course, if ζn is fixed or convergent

to a positive constant as n→ ∞, the network becomes dense.

Admittedly, our model is somewhat restrictive in the sense that it requires that different com-

munities should share the same order of expected degree. But this is also the common case in the

community detection literature. Ideally, we can allow different communities to have different orders

of expected degree in which case one should replace ζn by ζn,ij in (1), where

ζn,ij = ζon,kl for nodes in i and j in communities k and l, respectively,

and k, l = 1, ...,K0. Since we now allow ζon,kl to be n-dependent and they may decay to zero at

different rates for different pairs (k, l) , we allow different communities to have different expected

degrees of connection. For instance, we can assume that ζon,kl = n−αkl for some group specific rate

αkl ≥ 0. Then log(ζn,ij) = −αkl log n. With such a change, we need to combine log(ζn,ij) with

Θ∗
0,ij in the estimation procedure. Notice that log(ζn,ij)+Θ∗

0,ij may diverge to negative infinity

at rate log n and {(log(ζn,ij) + Θ∗
0,ij)/(log n)} converges to a matrix {Aij} which contains the

group structure, i.e., Aij = −αkl if i ∈ k and j ∈ l. We can apply K-means to the estimator

of {(log(ζn,ij) + Θ∗
0,ij)/(log n)} to estimate αkl and then estimate Θ∗

0,ij . This will complicate the

subsequent analyses in the paper. We leave the theoretical study of this extension for future research

and focus on the case with a universal rate ζn for the rest of the paper.

To proceed, let τn = log(ζn), Γ
∗
0,ij = τn + Θ∗

0,ij , Γ
∗
ij = (Γ∗

0,ij ,Θ
∗
1,ij , ...,Θ

∗
p,ij)

>, and Wij =

(W0,ij ,W1,ij , ...,Wp,ij)
>, where W0,ij = 1. Let Γ∗ = (Γ∗

0,Θ
∗
1, ...,Θ

∗
p), where Γ∗

0 = {Γ∗
0,ij} and

Θ∗
l = {Θ∗

l,ij} for l ∈ [p] . Then, we can rewrite the model in (1) as

Yij = 1{εij ≤W>
ij Γ

∗
ij}. (6)

Below, we will let Γ∗
l = Θ∗

l for l ∈ [p] and impose some basic assumptions on the model in order

to propose a multiple-step procedure to estimate the parameters of interest in the model.

2.2 Basic Assumptions

Now, we state a set of basic assumptions to characterize the model in (1). The first assumption is

about the data generating process (DGP).

Assumption 1 1. For l ∈ [p], there exists a function gl(·) such that Wl,ij = gl(Xi, Xj , eij),
where gl(·, ·, e) is symmetric in its first two arguments, {Xi}ni=1 and {eij}1≤i<j≤n are two

independent and identically distributed (i.i.d.) sequences of random variables, and eij = eji
for i 6= j.

2. {εij}1≤i<j≤n is an i.i.d. sequence of logistic random variables. Moreover, {εij}1≤i<j≤n ⊥⊥
({Xi}ni=1 ∪ {eij}1≤i<j≤n). Let εij = εji for i > j.

3. maxl∈[p]maxi 6=j∈[n] |Wl,ij | ≤MW for some constant MW <∞.

Assumption 1 specifies how the covariates and error terms are generated. As the labels of the

nodes are exchangeable, Assumption 1.1 is innocuous due to the Aldous and Hoover representation

3. A network is dense if the expected degree grows at rate-n and semi-dense if it diverges to infinity at a rate slower

than n.
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theorem. In some applications, eij is absent and Wl,ij depend on (Xi, Xj) only. For example,

Wl,ij = ‖Xi −Xj‖ for some l. We further assume that it is uniformly bounded to simplify the

analysis. Assumption 1.2 is standard.

The next assumption imposes some structures on {Θ∗
l }0≤l≤p .

Assumption 2 1. Suppose
∑

i,j∈[n]Θ
∗
0,ij = 0.

2. Suppose Θ∗
l is symmetric and of low rankKl for l ∈ [p]∪{0}. The singular value decomposi-

tion of n−1Θ∗
l is UlΣlV>

l , where Ul and Vl are n×Kl matrices such that U>
l Ul = IKl

= V>
l Vl

and Σl = diag(σ1,l, · · · , σKl,l) with singular values σ1,l ≥ · · · ≥ σKl,l. We further denote

Ul =
√
nUlΣl and Vl =

√
nVl. Then,

Θ∗
l = nUlΣlV>

l = UlV
>
l for l = 0, ..., p. (7)

Let u>i,l and v>i,l denote the i-th row of Ul and Vl, respectively for l ∈ [p] ∪ {0}. Then,

maxi∈[n],l∈[p](||ui,l|| ∨ ||vi,l||) ≤ M for some constant M < ∞ and there are constants Cσ
and cσ such that

∞ > Cσ ≥ lim sup
n

max
l∈[p]∪{0}

σ1,l ≥ lim inf
n

min
l∈[p]∪{0}

σKl,l ≥ cσ > 0.

We note (7) implies that Θ∗
l,ij = u>i,lvj,l. We view Θ∗

0,ij as the edge-wise fixed effects for the

network formation model. We impose the normalization that
∑

i,j∈[n]Θ
∗
0,ij = 0 in the first part of

Assumption 2 because we have included the grand intercept term τn(≡ log(ζn)) in (1). The low-

rank structure of Θ∗
l incorporates two special cases: (1) additive structure and (2) latent community

structure, as illustrated in detail in Examples 1 and 2 below, respectively. When there are no co-

variates in regression and Θ0 belongs to the two cases in Examples 1 and 2, the model becomes the

so-called Beta model and stochastic block model, respectively. We extend these models to the sce-

nario with edge-wise characteristics and latent community structure for the slope coefficients. The

following two examples further show that all four models, namely (2)–(5), considered in Section

2.1 satisfy Assumption 2.

Example 1 Let Θ∗
l,ij = αl,i + αl,j . In this case, Kl = 2 and n−1Θ∗

l = UlΣlVTl , where

Ul =




1√
2n
(1 +

αl,1

sl,n
) −1√

2n
(1− αl,1

sl,n
)

...
...

1√
2n
(1 +

αl,n

sl,n
) −1√

2n
(1− αl,n

sl,n
)


 , Σl =

(
sl,n 0
0 sl,n

)
,

Vl =




1√
2n
(1 +

αl,1

sl,n
) 1√

2n
(1− αl,1

sl,n
)

...
...

1√
2n
(1 +

αl,n

sl,n
) 1√

2n
(1− αl,n

sl,n
)


 ,

and s2l,n = 1
n

∑n
i=1 α

2
i . Similarly, it is easy to verify that

Ul =




1√
2
(sl,n + αl,n)

−1√
2
(sl,n − αl,n)

...
...

1√
2
(sl,n + αl,n)

−1√
2
(sl,n − αl,n)


 and Vl =

√
nVl.

7
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When l = 0, we further impose
∑

i,j∈[n]Θ
∗
0 = 0 , which implies

∑n
i=1 α0,i = 0. We also allow

{αl,i}ni=1 to depend on {Wij}1≤i<j≤n so that {αl,i}ni=1 are usually referred to as individual fixed

effects in the literature.

Example 2 Let Θ∗
l = ZlB

∗
l Z

>
l , where Zl ∈ R

n×Kl is the membership matrix with one entry

in each row taking value one and the rest taking value zero, Kl denotes the number of distinctive

communities for Θ∗
l , and B∗

l ∈ R
Kl×Kl is symmetric with rank Kl. Let p>l = (

n1,l

n , · · · , nKl,l

n ) and

nk,l denotes the size of Θ∗
l ’s k-th community for k ∈ [Kl]. Then, as Lemma 2.1 below shows,

Ul = Z>
l (Πl,n)

−1/2S′
lΣl and Vl = Z>

l (Πl,n)
−1/2Sl,

where Sl and S′
l are two Kl ×Kl matrices such that S>

l Sl = IKl
= (S′

l)
>S′

l , Πl,n = diag(pl), and

Σl is the singular value matrix of Π
1/2
l,n B

∗
l Π

1/2
l,n . Let ιn denote an n× 1 vector of ones. If l = 0, we

further impose that ι>nZ0B
∗
0Z

>
0 ιn = p>0 B

∗
0p0 = 0.

For classification and inference, we need to impose the latent community structure for Θ∗
l ,

l ∈ [p] as in Example 2. This is summarized in the following assumption.

Assumption 3 1. Θ∗
l = ZlB

∗
l Z

>
l , where Zl ∈ R

n×Kl is as defined in Example 2.

2. There exist some constants C1 and c1 such that

∞ > C1 ≥ lim sup
n

max
k∈[Kl], l∈[p]

πl,kn ≥ lim inf
n

min
k∈[Kl], l∈[p]

πl,kn ≥ c1 > 0.

Two remarks are in order. First, Assumption 3 implies that if Θ∗
l has a latent community struc-

ture, the size of each community must be proportional to the number of nodes n. Such an assumption

is common in the literature on network community detection and panel data latent structure detec-

tion. Second, it is possible to allow for πl,kn and/or σk,l to vary with n. In this case, one just needs

to keep track of all these terms in the proofs.

To proceed, we state a lemma that shows Assumption 3 is a special case of Assumption 2 and

lays down the foundation for our classification procedure Section 3.2.

Lemma 2.1 Suppose Assumption 3 holds. Then,

1. Vl = Zl(Πl,n)
−1/2Sl and Ul = Zl(Πl,n)

−1/2S′
lΣl for l ∈ [p], where Sl and S′

l are two

Kl ×Kl matrices such that S>
l Sl = IKl

= (S′
l)
>S′

l .

2. maxj∈[n] ||vj,l|| ≤ c
−1/2
1 <∞ and maxi∈[n] ||ui,l|| ≤ c

−1/2
1 Cσ <∞.

3. If zi,l 6= zj,l, then

∥∥∥ vi,l
||vi,l|| −

vj,l
||vj,l||

∥∥∥ = ||(zi,l − zj,l)Sl|| =
√
2.

Lemma 2.1 implies that, if Θ∗
l has the community structure, its singular vectors {vi,l}i∈[n] con-

tain information about the community structure. A similar result has been established in the com-

munity detection literature; see, e.g., Rohe et al. (2011, Lemma 3.1) and Su et al. (2020, Theorem

II.1).
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In Section 4, we only require Θ∗
l , l ∈ [p] ∪ {0} to be of low-rank and derive the uniform

convergence rate of the estimators of (ui,l, vi,l) across i ∈ [n]. In Section 5, we further suppose that

some coefficient Θ∗
l has a special community structure as in Assumption 3 and apply the K-means

algorithm to exactly recover their group identities. Last, for inference in Section 6, we impose that

all coefficients Θ∗
l , l ∈ [p] have (potentially different) community structures while Θ∗

0 follows the

structure in either Example 1 or 2.

3. The Estimation Algorithm

For notational simplicity, we will focus on the case of p = 1. The general case with multiple

covariates involves fundamentally no new ideas but more complicated notations.

First, we recognize that Γ∗
0 and Γ∗

1 are both low rank matrices with ranks bounded from above

by K0 + 1 and K1, respectively. We can obtain their preliminary estimates via the nuclear norm

penalized logistic regression. Second, based on the normalization imposed in Assumption 2.1, we

can estimate τn and Θ∗
0 separately. We then apply the SVD to the preliminary estimates of Θ∗

0

and Θ∗
1 and obtain the estimates of Ul, Σl, and Vl, l = 0, 1. Third, we plug back the second step

estimates of {Vl}l=0,1 and re-estimate each row of Ul by a row-wise logistic regression. We can

further iterate this procedure and estimate Ul and Vl alternatively. Last, if we further impose Θ∗
1

has a community structure, then we can apply the K-means algorithm to the final estimate of V1
to recover the community memberships. We rely on a sample splitting technique along with the

estimation. Throughout, we assume the ranks K0 and K1 are known. We will propose an singular-

value-ratio-based criterion to select them in Section 7.

Below is an overview of the multi-step estimation procedure that we propose.

1. Using the full sample, run the nuclear norm regularized estimation twice as detailed in Section

3.1.1 and obtain τ̂n and {Σ̂l}l=0,1, the preliminary estimates of τn and {Σl}l=0,1.

2. Randomly split the n nodes into two subsets, denoted as I1 and I2. Using edges (i, j) ∈
I1 × [n], run the nuclear norm estimation twice as detailed in Section 3.1.2 and obtain

{V̂ (1)
l }l=0,1, a preliminary estimate of {Vl}l=0,1, where the superscript (1) means we use

the first subsample to conduct the nuclear norm estimation. For j ∈ [n], denote the j-th row

of V̂
(1)
l as (v̂

(1)
j,l )

>, which is a preliminary estimate of v>j,l.

3. For each i ∈ I2, take {v̂(1)j,l }j∈I2,l=0,1 as regressors and run the row-wise logistic regression to

obtain {û(1)i,l }l=0,1, the estimates of {ui,l}l=0,1. For each j ∈ [n], take {û(1)i,l }i∈I2,l=0,1 as re-

gressors and run the column-wise logistic regression to obtain updated estimates, {v̇(0,1)j,l }l=0,1

of {vj,l}l=0,1, where 0 in the superscript (0, 1) means it is the 0-th step estimator for the full

sample iteration below and 1 in the superscript means it is computes when the first subsample

is used for the nuclear norm estimation. See Section 3.1.3 for details.

4. Based on {v̇(0,1)j,l }j∈[n],l=0,1, obtain the iterative estimates

(u̇
(h,1)
i,0 , u̇

(h,1)
i,1 )i∈[n] and (v̇

(h,1)
j,0 , v̇

(h,1)
j,1 )j∈[n]

of the singular vectors as in Step 3 for h = 1, 2, · · · , H . See Section 3.1.4 for details.
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5. Switch the roles of I1 and I2 and repeat Steps 2–4 to obtain

(u̇
(h,2)
i,0 , u̇

(h,2)
i,1 )i∈[n] and (v̇

(h,2)
j,0 , v̇

(h,2)
j,1 )j∈[n] ∀h ∈ [H],

where h in the superscript (h, 2) means it is the h-th step iteration of the full sample estimator

and 2 in the superscript means the second subsample is used for the nuclear norm estimation.

Let vj,1 =

(
(v̇

(H,1)
j,1 )>

||v̇(H,1)
j,1 ||

,
(v̇

(H,2)
j,1 )>

||v̇(H,2)
j,1 ||

)>
. Then, apply the K-means algorithm on {vj,1}j∈[n] to

recover the community memberships in Θ∗
1 as detailed in Section 3.2.

In the following, we provide explanations for our proposed multi-step estimation procedure. In

Step 1, we obtain τ̂n that is needed in the iterative logistic regression in Steps 3-5. We also obtain

{Σ̂l}l=0,1 which is used to estimate the ranks {Kl}l=0,1 of the matrices {Θ∗
l }l=0,1 in Section 7

below.

In Step 2, we obtain V̂
(1)
l via nuclear norm regularized estimation. It serves as an initial estimate

for the iterative logistic regression in Steps 3-4. However, we cannot directly classify nodes using

V̂
(1)
l , as we can only control its estimation error in Frobenius norm, as shown in Theorem 4.1. In

order to show the exact recovery of latent communities, we need to control the estimation error in

the row-wise L2 norm (denoted as || · ||2→∞).

In Step 3, we run row-wise and column-wise logistic regression to obtain refined estimates of

{ui,l}l=0,1 and {vj,l}l=0,1, respectively. It is worth noting that in Steps 2 and 3, we employ a sample-

splitting technique to create independence (conditional on covariates {Xi}ni=1 ∪ {ei,j}1≤i<j≤n) be-

tween the edges, so that the estimation error of the resulting row-wise logistic regression estimators

can be well controlled in || · ||2→∞ norm. To see the effect of sample splitting, we note that in the

row-wise logistic regression, the estimation error of û
(1)
i,l (the i-th row of Û

(1)
l ) for i ∈ I2 in L2 norm

is determined by the score function

1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))Wl,ij(Ô
(1)
l )>v̂(1)j,l ,

where Λ(·) is the logistic CDF, Ô
(1)
l is a Kl ×Kl orthogonal matrix defined in Theorem 4.1 below,

and v̂j,l is the j-th row of V̂l. We see that

1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))Wl,ij(Ô
(1)
l )>v̂(1)j,l

=
1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))Wl,ijvj,l

+
1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))Wl,ij((Ô
(1)
l )>v̂(1)j,l − vj,l). (8)

The first term on the right hand side (RHS) of (8) is Op

(√
(logn)ζn

n

)
uniformly in i ∈ I2, where

the rate ζn comes from the fact that the network is possibly semi-dense. However, without sample

10
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splitting, we do not have independence between Yij and (Ô
(1)
l )>v̂(1)j,l and we can apply the Cauchy-

Schwartz inequality to obtain the crude bound for the second term on the RHS of (8) as follows

∣∣∣∣∣∣
1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))Wl,ij((Ô
(1)
l )>v̂(1)j,l − vj,l)

∣∣∣∣∣∣

≤MW


 1

n

∑

j∈I2,j 6=i
(Yij − Λ(W>

ij Γij))
2




1/2

||Vl − V̂
(1)
l Ô

(1)
l ||F√

n

= Op

(√
log n

n

)
uniformly in i ∈ I2,

where we use the fact that

max
i∈[n]


 1

n

∑

j∈[n]
(Yij − Λ(W>

ij Γij))
2




1/2

= Op(ζ
1/2
n ) and ||V − V̂

(1)
l Ô

(1)
l ||F /

√
n = Op (ηn)

by Theorem 4.1 below, and ηn =
√

logn
nζn

+ logn
nζn

. The same conclusion holds with
∑

j∈I2,j 6=i
replaced by

∑
j∈[n] in the absence of sample splitting. When ζn = o(1), compared with the first

term, the second term has a rate loss by a magnitude of
√
ζn, which can be close to n−1/2 because

we allow ζn = C log(n)/n for some constant C. That is, without sample splitting, we can only

show that 1
n

∑
j∈I2,j 6=i(Yij −Λ(W>

ij Γij))Wl,ij(Ô
(1)
l )>v̂(1)j,l is Op

(√
logn
n

)
uniformly in i ∈ I2. In

contrast, with sample splitting, we can employ the independence between Yij and (Ô
(1)
l )>v̂(1)j,l and

show that it is Op

(√
(logn)ζn

n

)
uniformly in i ∈ I2, which improves over the rate Op

(√
logn
n

)

when ζn = o(1).

Note that we cannot use {û(1)i,l }i∈I2 to cluster all nodes i ∈ [n]. Therefore, also in Step 3, given

(û
(1)
i,l )i∈I2 , we need to compute v̂

(1)
j,l from a column-wise logistic regression using nodes in I2 for

each j ∈ [n]. Similarly, the estimation error of v̂
(1)
j,l in L2 norm is determined by the score function

1

n

∑

i∈I2,i 6=j
(Yij − Λ(W>

ij Γij))Wl,ij(Ô
(1)
l )>û(1)i,l

=
1

n

∑

i∈I2,i 6=j
(Yij − Λ(W>

ij Γij))Wl,ijui,l

+
1

n

∑

i∈I2,i 6=j
(Yij − Λ(W>

ij Γij))Wl,ij((Ô
(1)
l )>û(1)i,l − ui,l), (9)

where we do not have independence between (Ô
(1)
l )>û(1)i,l and Yij . However, we have already

obtained the || · ||2→∞ rate of ((Ô
(1)
l )>û(1)i,l − ui,l)i∈I2 . To bound the second term on the RHS of

11
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(9), instead of the Cauchy-Schwartz inequality, we can apply the Hölder inequality to obtain
∥∥∥∥∥∥
1

n

∑

i∈I2
(Yij − Λ(W>

ij Γij))Wl,ij((Ô
(1)
l )>û(1)i,l − ui,l)

∥∥∥∥∥∥
2

≤ MW

n

∑

i∈I2
|Yij − Λ(W>

ij Γij)|max
i∈I2

‖(Ô(1)
l )>û(1)i,l − ui,l‖2

= Op

(√
(log n)ζn

n

)
uniformly in j ∈ [n] , (10)

where we use the fact that

1

n

∑

i∈I2
|Yij − Λ(W>

ij Γij)| ≤
1

n

∑

i∈I2
(Yij − Λ(W>

ij Γij)) +
2

n

∑

i∈I2
Λ(W>

ij Γij) = Op

(√
ζn
n

+ ζn

)
,

the result that maxi∈I2 ‖(Ô
(1)
l )>û(1)i,l − ui,l‖2 = Op(ηn) as established in Theorem 4.2, and the

condition that ζn ≥ C(log n)/n. The order in (10) is also the uniform probability order of the first

term on the RHS of (9) and thus does not cause any efficiency loss to bound the left hand side of (9)

in terms of uniform convergence rate.

In Step 4, we iterate the row- and column-wise logistic regressions on the full sample multiple

times. Following the above argument, the || · ||2→∞ of (u̇
(h,1)
i,l )i∈[n] and (v̇

(h,1)
j,l )j∈[n] will be the

same as shown in Theorem 4.3. We use this step to reduce the instability of our estimator due to the

random sample splitting.

In Step 5, we apply the K-means algorithm to the normalized {(u̇(h,1)i,l )i∈[n], (v̇
(h,1)
j,l )j∈[n]}. We

show in Theorem 5.1 that if nζn/ log n ≥ C for some sufficiently large and positive constant C,

we can exactly recover the latent communities. We provide the implementation detail of each step

below.

3.1 The Estimation of (ui,l, vi,l)

In the estimation of (ui,l, vi,l) (see Steps 1–5 in the above procedure), we only require that Θ∗
0 and

Θ∗
1 be of low-rank.

3.1.1 FULL-SAMPLE LOW-RANK ESTIMATION

Recall that Γ∗
0 = τn+Θ∗

0 and Γ∗
1 = Θ∗

1. Let Γ∗ = (Γ∗
0,Γ

∗
1), Λ (u) = 1

1+exp(−u) denote the standard

logistic probability distribution function,

`ij (Γij) = Yij log(Λ(W
>
ij Γij)) + (1− Yij) log(1− Λ(W>

ij Γij))

denote the conditional logistic log-likelihood function associated with nodes i and j, and

T (τ, cn) = {(Γ0,Γ1) ∈ R
n×n × R

n×n : |Γ0,ij − τ | ≤ cn, |Γ1,ij | ≤ cn}.
We propose to estimate Γ∗ by Γ̃ = (Γ̃0, Γ̃1) via minimizing the negative logistic log-likelihood

function with the nuclear norm regularization:

Γ̃ = argmin
Γ∈T(0,logn)

Qn(Γ) + λn

1∑

l=0

||Γl||∗, (11)

12
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where Qn(Γ) =
−1

n(n−1)

∑
i,j∈[n],i 6=j `ij (Γij) and λn > 0 is a regularization parameter.4 As men-

tioned above, we allow ζn to shrink to zero at a rate as slow as n−1 log n so that τn = log (ζn) is

slightly smaller than log n in magnitude. So it is sufficient to consider a parameter space T (0, log n)

that expands at rate-log n. Later on, we specify λn = Cλ(
√
ζnn+

√
logn)

n(n−1) for some constant tuning pa-

rameter Cλ. Throughout the paper, we assume W1,ij has been rescaled so that its standard error is

one. Therefore, we do not need to consider different penalty loads for ||Γ0||∗ and ||Γ1||∗. Many

statistical softwares automatically normalize the regressors when estimating a generalized linear

model. We recommend this normalization in practice before using our algorithm.

Let τ̃n = 1
n(n−1)

∑
i 6=j Γ̃0,ij . We will show that τ̃n lies within cτ

√
log n-neighborhood of the

true value τn,where cτ can be made arbitrarily small provided that the expected degree is larger than

C log n for some sufficiently large C.5 This rate is insufficient and remains to be refined. Given τ̃n,

we propose to reestimate Γ∗ by Γ̂ = (Γ̂0, Γ̂1), where

Γ̂ = argmin
Γ∈T(τ̃n,CM

√
logn)

Qn(Γ) + λn

1∑

l=0

||Γl||∗,

and CM is some constant to be specified later. Note that we now restrict the parameter space to

expand at rate-
√
log n only. Let τ̂n = 1

n(n−1)

∑
i 6=j Γ̂0,ij . We are then able to show τ̂n − τn =

Op

(√
logn
nζn

+ logn
nζn

)
in Theorem 4.1 below.

Since Θ∗
l = {Θ∗

l,ij} are symmetric, we define their preliminary low-rank estimators as Θ̂l =

{Θ̂l,ij}, where

Θ̂l,ij =

{
fM ((Γ̂l,ij + Γ̂l,ji)/2− τ̂nδl0) if i 6= j

0 if i = j
for l = 0, 1,

δl0 = 1{l = 0}, fM (u) = u · 1{|u| ≤ M} +M · 1{u > M} −M · 1{u < −M} is the round

function, and M is some positive constant. For l = 0, 1, we denote the SVD of n−1Θ̂l as

n−1Θ̂l =
̂̃U l ̂̃Σl(̂̃V l)>,

where
̂̃
Σl = diag(σ̂1,l, ..., σ̂n,l), σ̂1,l ≥ · · · ≥ σ̂n,l ≥ 0, and both

̂̃U l and
̂̃V l are n × n uni-

tary matrices. Let V̂l consist of the first Kl columns of
̂̃V l, such that (V̂l)>V̂l = IKl

and Σ̂l =

diag(σ̂1,l, · · · , σ̂Kl,l). Then V̂l =
√
nV̂l. We will establish in Theorem 4.1 below that ||Vl −

V̂lÔl||F /
√
n = Op(ηn).

3.1.2 SPLIT-SAMPLE LOW-RANK ESTIMATION

We divide the n nodes into two roughly equal-sized subsets (I1, I2). Let n` = #I` denote the

cardinality of the set I`. If n is even, one can simply set n` = n/2 for ` = 1, 2.

4. We provide the detailed estimation algorithm in Section E in the Appendix.

5. Let η0n =
√

logn
nζn

and ηn = η0n+η2
0n. The proof of Theorem 4.1.1 suggests that τ̃n−τn = Op(ηn

√
log n), which

is op(
√
log n) (resp. op(1)) if one assumes that the magnitude nζn of the expected degree is of order higher than

log n (resp. (log n)2). But we will only assume that η0n ≤ CF ≤ 1
4

for some sufficiently small constant CF below.
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Now, we only use the pair of observations (i, j) ∈ I1 × [n] to conduct the low-rank estimation.

Let Γ∗
l (I1) consist of the i-th row of Γ∗

l for i ∈ I1, l = 0, 1. Let Γ∗(I1) = (Γ∗
0(I1),Γ

∗
1(I1)). Define

T
(1) (τ, cn) = {(Γ0,Γ1) ∈ R

n1×n × R
n1×n : |Γ0,ij − τ | ≤ cn, |Γ1,ij | ≤ cn}.

We estimate Γ∗(I1) via the following nuclear-norm regularized estimation

Γ̃(1) = argmin
Γ∈T(1)(0,logn)

Q(1)
n (Γ) + λ(1)n

1∑

l=0

||Γl||∗, (12)

where Q
(1)
n (Γ) = −1

n1(n−1)

∑
i∈I1,j∈[n],i 6=j `ij (Γij), λ

(1)
n = Cλ(

√
ζnn+

√
logn)

n1(n−1) , and the superscript (1)
means we use the first subsample (I1) in this step.

Let τ̃
(1)
n = 1

n1(n−1)

∑
i∈I1,j∈[n],i 6=j Γ̃

(1)
0,ij . As above, this estimate lies within cτ

√
log n-neighborhood

of the true value τn. To refine it, we can reestimate Γ∗(I1) by Γ̂(1) = (Γ̂
(1)
0 , Γ̂

(1)
1j ) :

Γ̂(1) = argmin
Γ∈T(1)(τ̃

(1)
n ,CM

√
logn)

Q(1)
n (Γ) + λ(1)n

1∑

l=0

||Γl||∗.

Let τ̂
(1)
n = 1

n1(n−1)

∑
i∈I1,j∈[n],i 6=j Γ̂

(1)
0,ij . Noting that {Γ∗

l }l=0,1 are symmetric, we define the pre-

liminary low-rank estimates for the n1 × n matrices Θ∗
l (I1) by Θ̂

(1)
l for l = 0, 1, where

Θ̂
(1)
l,ij =





fM ((Γ̂
(1)
l,ij + Γ̂

(1)
l,ji)/2− τ̂

(1)
n δl0) if (i, j) ∈ I1 × I1, i 6= j

0 if (i, j) ∈ I1 × I1, i = j

fM (Γ̂
(1)
l,ij − τ̂

(1)
n δl0) if i ∈ I1, j /∈ I1

,

and δl0, fM (u) and M are defined in Step 1. For l = 0, 1, we denote the SVD of n−1Θ̂
(1)
l as

n−1Θ̂
(1)
l =

̂̃U
(1)

l
̂̃
Σ
(1)

l (
̂̃V
(1)

l )>,

where
̂̃
Σ
(1)

l is a rectangular (n1 × n) diagonal matrix with σ̂
(1)
i,l appearing in the (i, i)th position

and zeros elsewhere, σ̂
(1)
1,l ≥ · · · ≥ σ̂

(1)
n1,l

≥ 0, and
̂̃U
(1)

l and
̂̃V
(1)

l are n1 × n1 and n × n unitary

matrices, respectively. Let V̂(1)
l consist of the firstKl columns of

̂̃V
(1)

l such that (V̂(1)
l )>V̂(1)

l = IKl
.

Let Σ̂
(1)
l = diag(σ̂

(1)
1,l , · · · , σ̂

(1)
Kl,l

). Then V̂
(1)
l =

√
nV̂(1)

l , and (v̂
(1)
j,l )

> is the j-th row of V̂
(1)
l for

j ∈ [n]. We will establish in Theorem 4.1 below that ||Vl − V̂
(1)
l Ô

(1)
l ||F /

√
n = Op(ηn).

3.1.3 SPLIT-SAMPLE ROW- AND COLUMN-WISE LOGISTIC REGRESSIONS

We note that Θ∗
l,ij = u>i,lvj,l for i ∈ I2 and j ∈ [n]. For the i-th row when i ∈ I2, we can view

{vj,l}j∈[n] and ui,l as regressors and the parameter, respectively, and estimate ui,l by the row-wise

logistic regression. Although {vj,l}j∈[n] are unobservable, we can replace them by their estimators

obtained from the previous step.
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Let µ = (µ>0 , µ
>
1 )

> and Λleft
ij (µ) = Λ(τ̂n +

∑1
l=0 µ

>
l v̂

(1)
j,l Wl,ij) and `left

ij (µ) = Yij log(Λ
left
ij (µ))

+(1−Yij) log(1−Λleft
ij (µ)), where the superscript “left” means these functions are used to estimate

the left singular vector ui,l. Given the preliminary estimate {v̂(1)j,l } obtained in Step 2, we can

estimate the left singular vectors {ui,0, ui,1} for each i ∈ I2 by {û(1)i,0 , û
(1)
i,1 } via the row-wise logistic

regression:

((û
(1)
i,0 )

>, (û(1)i,10)
>)> = argmin

µ=(µ>0 ,µ
>
1 )>∈RK0+K1

Q
(0)
in,U (µ),

where Q
(0)
in,U (µ) =

−1
n2

∑
j∈I2,j 6=i `

left
ij (µ) and the superscript (0) means it is the initial step for the

full sample iteration below. To keep the independence between {v̂(1)j,l }j∈[n] and the data in this

regression, we only use j ∈ I2 to run the regression.

Let ν = (ν>0 , ν
>
1 )

> and Λ
right
ij (ν) = Λ(τ̂n+

∑1
l=0 ν

>
l û

(1)
i,l Wl,ij) and `

right
ij (ν) = Yij log(Λ

right
ij (ν))

+(1−Yij) log(1−Λ
right
ij (ν)), where the superscript “right” means the functions are used to estimate

the right singular vector vj,l. Given (û
(1)
i,0 , û

(1)
i,1 ), we update the estimate of the right singular vectors

{vi,0, vi,1} for each j ∈ [n] by {v̇(0,1)j,0 , v̇
(0,1)
j,1 } via the column-wise logistic regression:

((v̇
(0,1)
j,0 )>, (v̇(0,1)j,1 )>)> = argmin

ν=(ν>0 ,ν
>
1 )>∈RK0+K1

Q
(0)
jn,V (ν),

where Q
(0)
jn,V (ν) =

−1
n2

∑
i∈I2,i 6=j `

right
ij (ν) .

We will establish in Theorem 4.2 below that

max
i∈I2

||(Ô(1)
l )>û(1)i,l − ui,l|| = Op(ηn) and max

j∈[n]
||(Ô(1)

l )>v̇(0,1)j,l − vj,l|| = Op(ηn).

Our final objective is to obtain accurate estimates of {vj,l}j∈[n],l=0,1 in finite samples. To this end,

we treat {v̇(0,1)j,0 , v̇
(0,1)
j,1 }j∈[n] as the initial estimate in the following full-sample iteration procedure.

3.1.4 FULL-SAMPLE ITERATION

Given the initial estimates, we use the full sample and iteratively run row- and column-wise logistic

regressions to estimate {ui,l, vi,l}i∈[n]. For h = 1, 2, ..., H, let

Λleft,h
ij (µ) = Λ(τ̂n +

1∑

l=0

µ>l v̇
(h−1,1)
j,l Wl,ij) and

`left,h
ij (µ) = Yij log(Λ

left,h
ij (µ)) + (1− Yij) log(1− Λleft,h

ij (µ)).

Given {v̇(h−1,1)
i,0 , v̇

(h−1,1)
i,1 }, we can compute {u̇(h,1)i,0 , u̇

(h,1)
i,1 } via the row-wise logistic regression

((u̇
(h,1)
i,0 )>, (u̇(h,1)i,01 )>)> = argmin

µ=(µ>0 ,µ
>
1 )>∈RK0+K1

Q
(h)
in,U (µ),

where Q
(h)
in,U (µ) =

−1
n

∑
j∈[n],j 6=i `

left,h
ij (µ) .
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Given {u̇(h,1)i,0 , u̇
(h,1)
i,1 }, by letting Λ

right,h
ij (ν) = Λ(τ̂n +

∑1
l=0 ν

>
l u̇

(h,1)
i,l Wl,ij)) and `

right,h
ij (ν) =

Yij log(Λ
right,h
ij (ν)) +(1−Yij) log(1−Λ

right,h
ij (ν)), we compute {v̇(h,1)j,0 , v̇

(h,1)
j,1 } via the column-wise

logistic regression

((v̇
(h,1)
j,0 )>, (v̇(h,1)j,1 )>)> = argmin

ν=(ν>0 ,ν
>
1 )>∈RK0+K1

Q
(h)
jn,V (ν),

where Q
(h)
jn,V (ν) =

−1
n

∑
i∈[n],i 6=j `

right,h
ij (ν) .

We can stop iteration when certain convergence criterion is met for sufficiently largeH. Switch-

ing the roles of I1 and I2 and repeating the procedure in the last three steps, we can obtain the iter-

ative estimates {u̇(h,2)i,0 , u̇
(h,2)
i,1 }i∈[n] and {v̇(h,2)j,0 , v̇

(h,2)
j,1 }j∈[n] for h = 1, 2, · · · , H . We will establish

in Theorem 4.3 below that

max
i∈[n]

||(Ô(1)
l )>u̇(h,1)i,l − ui,l|| = Op(ηn) and max

i∈[n]
||(Ô(1)

l )>v̇(h,1)i,l − vi,l|| = Op(ηn).

3.2 K-means Classification

In this step, we further assume Θ∗
1 has the latent community structure and Θ∗

0 remains to be of

low-rank. Recall that vj,1 =

(
(v̇

(H,1)
j,1 )>

||v̇(H,1)
j,1 ||

,
(v̇

(H,2)
j,1 )>

||v̇(H,2)
j,1 ||

)>
, a 2K1 × 1 vector. We now apply the K-

means algorithm to {vj,1}j∈[n]. Let B = {β1, . . . , βK1} be a set of K1 arbitrary 2K1 × 1 vectors:

β1, . . . , βK1 . Define

Q̂n(B) =
1

n

n∑

j=1

min
1≤k≤K1

‖vj,1 − βk‖2

and B̂n = {β̂1, . . . , β̂K1}, where B̂n = argminB Q̂n(B). For each j ∈ [n], we estimate the group

identity by

ĝj = argmin
1≤k≤K1

∥∥∥vj,1 − β̂k

∥∥∥ , (13)

where if there are multiple k’s that achieve the minimum, ĝj takes value of the smallest one. We

establish in Theorem 5.1 below that ĝj estimates the true group identity g0j for node j uniformly

well w.p.a.1.

As mentioned previously, we can repeat Steps 2–6 R times to obtain R membership estimates,

denoted as {ĝj,r}j∈[n],r∈[R]. Recall that

vech(B∗
1) = (B∗

1,11, ..., B
∗
1,1K1

, B∗
1,22, · · · , B∗

1,2K1
, · · · , B∗

1,K1−1,K1−1, B
∗
1,K1−1,K1

, B∗
1,K1K1

)>,

which is a K1(K1 + 1)/2-vector. In addition, let χ1,ij be the vectorization of the upper triangular

part of the K1 ×K1 matrix whose (g0i , g
0
j ) and (g0j , g

0
i ) entries are one and the rest entries are zero,

i.e., χ1,ij is a K1(K1 + 1)/2 vector such that the ((g0i ∨ g0j − 1)(g0i ∨ g0j )/2 + g0i ∧ g0j )-th element

is one and the rest are zeros, where g0i ∈ [K1] denotes the true group membership of the i-th node

in Θ∗
1. By construction,

χ>
1,ijvech(B∗

1) = B∗
1,g0i g

0
j
.
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Analogously, for the r-th split, denote χ̂1r,ij as a K1(K1 + 1)/2 vector such that the ((ĝi,r ∨ ĝj,r −
1)(ĝi,r ∨ ĝj,r)/2+ ĝi,r ∧ ĝj,r)-th element is one and the rest are zeros. We then estimate B∗

1 by B̂1,r,

a symmetric matrix constructed from b̂r by reversing the vech operator:

b̂r = argmax
b

Ln,r(b),

where Ln,r(b) =
∑

i<j [Yij log(Λ̂ij(b)) + (1 − Yij) log(1 − Λ̂ij(b)))] with Λ̂ij(b) = Λ(τ̂n +

Θ̂0,ij + W1,ijχ̂
′
1r,ijb), τ̂n is obtained in Step 1, Θ̂0,ij = [(u̇

(H,1)
i,0 )>v̇(H,1)j,0 + (u̇

(H,2)
i,0 )>v̇(H,2)j,0 ]/2,

and (u̇
(H,1)
i,0 , v̇

(H,1)
j,0 , u̇

(H,2)
i,0 , v̇

(H,2)
j,0 ) are obtained in Step 5.6 Then, the likelihood of the r-th split is

defined as L̂(r) = Ln,r (̂br). Our final estimator {ĝi,r∗}i∈[n] of the membership corresponds to the

r∗-th split, where

r∗ = argmax
r∈[R]

L̂(r). (14)

4. Statistical Properties of the Estimators of (ui,l, vj,l)

In this section, we study the asymptotic properties of the estimators of (ui,l, vj,l) proposed in the

last section.

4.1 Full- and Split-Sample Low-Rank Estimations

Suppose the singular value decomposition of Γ∗
l is Γ∗

l = U lΣlV
>
l for l = 0, 1 and U l,c and V l,c

are the left and right singular matrices corresponding to the zero singular values. Let Pl(∆) =

U l,cU
>
l,c∆V l,cV

>
l,c for some n × n matrix ∆ and Mj(∆) = ∆ − Pj(∆). Define the restricted

low-rank set as, for some c1 > 0

C(c1) =
{
(∆0,∆1) : ||P0(∆0)||∗ + ||P1(∆1)||∗ ≤ c1||M0(∆0)||∗ + c1||M1(∆1)||∗

}
. (15)

Assumption 4 For any c1 > 0, there exist constants κ, c2, c3 > 0,

C1(c2) = {(∆0,∆1) : ||∆0||2F + ||∆1||2F ≤ c2 log(n)n/ζn}, and

C2(c3) = {(∆0,∆1) : ||∆0 +∆1 �W1||2F ≥ κ(||∆0||2F + ||∆1||2F )− c3 log(n)n/ζn},

such that

C(c1) ⊂ C1(c2) ∪ C2(c3) w.p.a.1.
The same condition holds when (Γ∗

0,Γ
∗
1) are replaced by (Γ∗

0(I1),Γ
∗
1(I1)) and (Γ∗

0(I2),Γ
∗
1(I2)).

Several remarks are in order. First, Assumption 4 is a slight generalization of Chernozhukov

et al. (2020, Assumption 3.1) where, in terms of our notation, C1(c2) and C2(c3) take the forms:

C1(c2) = {(∆0,∆1) : ||∆0||2F + ||∆1||2F ≤ c2n} and

6. If we have multiple covariates Wl, l ∈ [p], to compute Ln,r(b), we let Θ̂l,ij = [(u̇
(H,1)
i,l )>v̇

(H,1)
j,l +

(u̇
(H,2)
i,l )>v̇

(H,2)
j,l ]/2 when Θ∗

l is only assumed to be of low-rank. For those Θ∗
l ’s that have latent communities,

for the r-th split, we can estimate their memberships by ĝi,l,r and construct χ̂′
lr,ij similarly. Then, we can define

Ln,r(b) and L̂(r) in the same manner.
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C2(c3) = {(∆0,∆1) : ||∆0 +∆1 �W1||2F ≥ κ(||∆0||2F + ||∆1||2F )− nc3}.

Such a generalization is due to the fact that the network can be semi-dense, and thus, the convergence

rates of our estimators of the singular vectors are slower than those of Chernozhukov et al. (2020)’s

estimators.

Second, even if there are two sets of parameters (Γ∗
0,Γ

∗
1) and (Γ†

0,Γ
†
1) with Γ∗

l 6= Γ†
l for some

l ∈ {0, 1} such that both satisfy Assumption 4 and

Γ∗
0 + Γ∗

1 �W1 = Γ†
0 + Γ†

1 �W1,

such an ambiguity will not affect the the rate of convergence. To see this, note the singular value

decomposition of Γ†
l is Γ†

l = ŨlΣ̃lṼ
>
l for l = 0, 1 and Ũl,c and Ṽl,c are the left and right sin-

gular matrices corresponding to the zero singular values. Denote P̃l(∆) = Ũl,cŨ
T
l,c∆Ṽlc Ṽ

T
l,c and

M̃l(∆) = ∆− P̃l(∆). Suppose that

{
C̃(c1) = (∆0,∆1) : ||P̃0(∆0)||∗ + ||P̃1(∆1)||∗ ≤ c1||M̃0(∆0)||∗ + c1||M̃1(∆1)||∗

}
,

Assumption 4 holds for both C(c1) and C̃(c1). Denote ∆l = Γ†
l−Γ∗

l , l = 0, 1. Then ∆0+∆1�W1 =

0 and it is possible to show that (∆0,∆1) belongs to either C(1) or C̃(1).7 If (∆0,∆1) /∈ C1(c2),
then Assumption 4 implies

0 = ||∆0 +∆1 �W1||2F ≥ κ(||∆0||2F + ||∆1||2F )− c3 log(n)n/ζn,

and thus,

c3 log(n)n/(κζn) ≥ ||∆0||2F + ||∆1||2F > c2 log(n)n/ζn.

Therefore,

||∆0||2F + ||∆1||2F ≤ (c2 ∨ κ−1c3) log(n)n/ζn.

For any estimator Γ̂l of Γ∗
l , l = 0, 1, we have, w.p.a.1,

∣∣∣∣∣
1

n
(

1∑

l=0

||Γ̂l − Γ∗
l ||F )−

1

n
(

1∑

l=0

||Γ̂l − Γ†
l ||F )

∣∣∣∣∣ ≤
1

n
(||∆0||F + ||∆1||F ) ≤

√
2(c2 ∨ κ−1c3) log(n)

nζn

7. Without loss of generality, we assume that ||Γ†
0||∗ + ||Γ†

1||∗ ≤ ||Γ∗
0||∗ + ||Γ∗

1||∗. Noting that

||Γ†
l ||∗ =||Γ∗

l +Ml(∆l) + Pl(∆l)||∗
≥||Γ∗

l + Pl(∆l)||∗ − ||Ml(∆l)||∗
=||Γ∗

l ||∗ + ||Pl(∆l)||∗ − ||Ml(∆l)||∗ for l = 0, 1,

where the last equality holds due to Chernozhukov et al. (2020, Lemma D.2(i)), we have

||Γ∗
0||∗ + ||Γ∗

1||∗ ≥||Γ†
0||∗ + ||Γ†

1||∗
≥||Γ∗

0||∗ + ||P0(∆0)||∗ − ||M0(∆0)||∗ + ||Θ∗
1||∗ + ||P1(∆1)||∗ − ||M1(∆1)||∗,

which implies

||P0(∆0)||∗ + ||P1(∆1)||∗ ≤ ||M0(∆0)||∗ + ||M1(∆1)||∗,
i.e., (∆0,∆1) ∈ C(1).

18



DLC

Based on Assumption 4 and other conditions in the paper, we can show that (see Theorem 4.1

below)

1

n
(

1∑

l=0

||Γ̂l − Γ∗
l ||F ) ≤ 48CF,1

(√
log(n)

nζn
+

log(n)

nζn

)
w.p.a.1,

where CF,1 is some constant. This implies

1

n
(

1∑

l=0

||Γ̂l − Γ†
l ||F ) ≤

(
48CF,1 +

√
2(c2 ∨ κ−1c3)

)(√ log(n)

nζn
+

log(n)

nζn

)
w.p.a.1

and vise versa. The same conclusion holds if (∆0,∆1) ∈ C1(c2). As a result, the ambiguity between

Θ∗
l and Θ̃l is asymptotically negligible and will not affect the convergence rates of their estimators.

Third, Chernozhukov et al. (2020, Appendix D.3) provide a sufficient condition for Assump-

tion 4. Recall W1,ij = g1(Xi, Xj , eij). Following the same arguments in Chernozhukov et al.

(2020, Appendix D.3), it is possible to show that Assumption 4 holds if W1,ij is bounded and

V ar(W1,ij |Xi, Xj) > 0.8 The sufficient condition basically requires the existence of eij in gl(·)
which is a sequence of i.i.d. random variables across i, j.9 Note that the presence of eij is sufficient,

but may not be necessary. In our simulation, we generate W1,ij = |Xi −Xj | with {Xi}i∈[n] being

a sequence of i.i.d. standard normal random variables, and find that our method works well.

Fourth, Assumption 4 rules out the case W1,ij = g1(Xi, Xj) when Xi is discrete, which is

equivalent to a community structure of W1,ij . Suppose W1,ij = wk1k2 > 0 ∀k1, k2 where i, j
are in groups k1 and k2. Then, we can let ∆1 share the same community structure as W1 and

∆1,ij = w−1
k1k2

. Let ∆0 = −ιnι>n . Then we have

∆0 +∆1 �W1 = 0 and ||∆0||2F + ||∆1||2F ≥ ||∆0||2F = n2.

Because both ∆1 and ∆0 are of low-rank, we have

||P0(∆0)||∗ + ||P1(∆1)||∗ ≤ ||∆0||∗ + ||∆1||∗ ≤ Cn,

for some constantC > 0. In addition, the singular value decomposition of ∆0 is ∆0 = (−ιn/
√
n)×

n × (ιn/
√
n)>. It is possible to find some parameter Θ0 such that ||M0(∆0)||∗ ≥ cn for some

c > 0.10 Then we can take c1 = C/c so that

||P0(∆0)||∗ + ||P1(∆1)||∗ ≤ c1||M0(∆0)||∗ ≤ c1||M0(∆0)||∗ + c1||M1(∆1)||∗.
In this case, Assumption 4 does not hold because ||∆0||2F + ||∆1||2F ≥ n2 > c2 log(n)n/ζn

11 and

0 = ||∆0 +∆1 �W1||2F < κn2 − c3 log(n)n/ζn ≤ κ(||∆0||2F + ||∆1||2F )− c3 log(n)n/ζn.

8. In the general case with multiple covariates, they require mini,j λmin(EWijW
>
ij |Xi, Xj) ≥ c > 0 where λmin(A)

is the minimum eigenvalue of matrix A and Wij = (1,W1,ij , · · · ,Wp,ij)
>.

9. Note there are two key differences between the setups in our paper and Chernozhukov et al. (2020). First, Cher-

nozhukov et al. (2020) consider the panel data with indexes i ∈ [N ] and t ∈ [T ] while we consider the network data

with indexes (i, j) ∈ {1 ≤ i < j ≤ n}. Second, Chernozhukov et al. (2020) consider Xit = µit + eit such that

given {µit}i∈[N ],t∈[T ], Xit is independent across both t and t. Instead, we consider W1,ij = g1(Xi, Xj , eij) such

that given {Xi}i∈[n], W1,ij is independent across 1 ≤ i < j ≤ n. By examining the proofs of Chernozhukov et al.

(2020, Lemmas D.3 and D.4), we note that their argument does not rely on the special structure of Xit = µit + eit
and works if Xit = f(µit, eit) for some non-additive function f .

10. This occurs, say, when ιn/
√
n is in the spaces spanned by the left and right singular vectors of Θ0 that correspond

to its nonzero singular values.

11. When ζn = Cςn
−1 log(n), we require that Cς is sufficiently large.
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Assumption 5 1. Cλ > CΥMW , whereCΥ is a constant defined in Lemma B.1 in the Appendix.

2. There exist constants 0 < c ≤ c < ∞ such that ζnc ≤ Λn,ij ≤ ζnc , where Λn,ij ≡
Λ(W>

ij Γ
∗
ij).

3.

√
logn
nζn

≤ cF ≤ 1
4 for some sufficiently small constant cF .

4.
∑

i∈I1,j∈[n]Θ
∗
0,ij = o(

√
log(n)
nζn

).

Assumption 5 is a regularity condition. In particular, Assumptions 5.2 implies the order of the

average degree in the network is nζn. Assumption 5.3 means that the average degree diverges to

infinity at a rate that is not slower than log n. Such a rate is the slowest for exact recovery in the

SBM, as established by Abbe et al. (2016), Abbe and Sandon (2015), Mossel et al. (2014), and

Vu (2018). As our model incorporates the SBM as a special case, the rate is also the minimal

requirement for the exact recovery of Z1, which is established in Theorem 5.1 below. Assump-

tion 5.4 usually holds as the sample is split randomly and Θ∗
0 satisfies the normalization condi-

tion in Assumption 2.1. If Θ∗
0 satisfies the additive structure as in Example 1, then Assumption

5.4 holds provided that 1
n1

∑
i∈I1 αi = o(

√
log(n)
nζn

). Such a requirement holds almost surely if

αi = ai − 1
n

∑
i∈[n] ai and {ai}ni=1 is a sequence of i.i.d. random variables with finite second mo-

ments. If Θ∗
0 has the community structure as in Example 2, then Assumption 5.4 holds provided

that p>0 (I1)B
∗
0p0 = o(

√
log(n)
nζn

), where p>0 (I1) = (
n1,0(I1)
n1

, · · · , nK0,0
(I1)

n1
) and nk,0(I1) denotes

the size of Θ∗
0’s k-th community for the subsample of nodes with index i ∈ I1. As p>0 B

∗
0p0 = 0,

the requirement holds almost surely if community memberships are generated from a multinomial

distribution so that ||p0 − p0(I1)|| = oa.s.(
√

log(n)
nζn

).

Theorem 4.1 Let Assumptions 1, 2, 4, and 5 hold and ηn =
√

logn
nζn

+ logn
nζn

. Then for l = 0, 1 and

w.p.a.1, we have

1. |τ̂n − τn| ≤ 30CF,1ηn, |τ̂ (1)n − τn| ≤ 30CF,1ηn,

2. 1
n ||Θ̂l −Θ∗

l ||F ≤ 48CF,1ηn,
1
n ||Θ̂

(1)
l −Θ∗

l (I1)||F ≤ 48CF,1ηn,

3. maxk∈[Kl] |σ̂k,l − σk,l| ≤ 48CF,1ηn, maxk∈[Kl] |σ̂
(1)
k,l − σk,l| ≤ 48CF,1ηn,

4. ||Vl − V̂lÔl||F ≤ 136CF,2
√
nηn, and ||Vl − V̂

(1)
l Ô

(1)
l ||F ≤ 136CF,2

√
nηn,

where Ôl and Ô
(1)
l are twoKl×Kl orthogonal matrices that depend on (Vl, V̂l) and (Vl, V̂

(1)
l ),

respectively, and CF,1 and CF,2 are two constants defined respectively after (31) and (32 ) in

the Appendix.

Part 1 of Theorem 4.1 indicates that despite the possible divergence of the grand intercept τn,
we can estimate it consistently up to rate ηn. In the dense network, ζn � 1 where a � b denotes both

a/b and b/a are stochastically bounded. In this case, τn � 1 and it can be estimated consistently

at rate-
√
(log n)/n. Note that the convergence rate of Θ̂l and Θ̂

(1)
l in terms of the Frobenius norm
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is also driven by ηn. Similarly for σ̂k,l, σ̂
(1)
k,l , V̂l/

√
n and V̂

(1)
l /

√
n. In part 4 of Theorem 4.1, the

orthogonal matrices Ôl and Ô
(1)
l are present because the singular values of Θ∗

l can be the same and

its singular vectors can only be identified up to some rotation.

4.2 Split-Sample Row- and Column-Wise Logistic Regressions

Define two (K0 +K1)× (K0 +K1) matrices:

Ψj(I2) =
1

n2

∑

i∈I2,i 6=j

[
ui,0

ui,1W1,ij

] [
ui,0

ui,1W1,ij

]>
and Φi(I2) =

1

n2

∑

j∈I2,j 6=i

[
vj,0

vj,1W1,ij

] [
vj,0

vj,1W1,ij

]>
.

To study the asymptotic properties of the third step estimator, we assume that both matrices are well

behaved uniformly in i and j in the following assumption.

Assumption 6 There exist constants Cφ and cφ such that w.p.a.1,

∞ > Cφ ≥ lim sup
n

max
j∈[n]

λmax(Ψj(I2)) ≥ lim inf
n

min
j∈[n]

λmin(Ψj(I2)) ≥ cφ > 0 and

∞ > Cφ ≥ lim sup
n

max
i∈I2

λmax(Φi(I2)) ≥ lim inf
n

min
i∈I2

λmin(Φi(I2)) ≥ cφ > 0,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues, respectively.

Assumption 6 assumes that Φi(I2) and Ψj(I2) are positive definite (p.d.) uniformly in i and j
asymptotically. Suppose Γ1 follows the community structure as in Example 2 with K1 equal-sized

communities andB∗
1 = IK1 , then Π1,n = diag(1/K1, · · · , 1/K1). By Lemma B.4 in the Appendix,

if node j is in community k, then vj,1 =
√
n
√

K1
n zj,1 =

√
K1eK1,k, where eK1,k denotes a K1 × 1

vector with the k-th unit being 1 and all other units being 0. In addition, suppose Θ0 follows the

specification in Example 1. Then,

Φi(I2) =
1

n2

∑

j∈I2




1√
2
(1 +

α0,j

s0,n
)

1√
2
(1− α0,j

s0,n
)

vj,1W1,ij







1√
2
(1 +

α0,j

s0,n
)

1√
2
(1− α0,j

s0,n
)

vj,1W1,ij




>

.

Suppose that α0,i = ai − ā for some i.i.d. sequence {ai}ni=1 with ā = 1
n

∑n
i=1 ai, and the group

identities of Θ∗
1 ({zi}i∈[n]) are independent of Θ∗

0 and {Xi}i∈[n] and {eij}i,j∈[n]. Further suppose

E(W1,ijaj |Xi) = 0, E(W1,ij |Xi) = 0, and E(W 2
1,ij |Xi) ≥ c > 0 for some constant c. Then, we

can expect that, uniformly over i ∈ I2,

Φi(I2) → diag(1, 1,E(W 2
1,ij |Xi), · · · ,E(W 2

1,ij |Xi)) a.s.,

which implies Assumption 6 holds.

If Θ∗
0 has the community structure as in Example 2. Further suppose Θ∗

0 and Θ∗
1 share the same

community structure Z1, which is independent of W1, E(W1,ij |Xi) = 0 and E(W 2
1,ij |Xi) ≥ c > 0

for some constant c, then one can expect that Φi(I2) has the same limit as above uniformly over

i ∈ I2.

The following theorem studies the asymptotic properties of û
(1)
i,l and v̇

(0,1)
j,l defined in Step 3.
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Theorem 4.2 Suppose that Assumptions 1, 2, 4–6 hold. Then,

max
i∈I2

||(Ô(1)
l )>û(1)i,l − ui,l|| ≤ C∗

1ηn and max
j∈[n]

||(Ô(1)
l )>v̇(0,1)j,l − vj,l|| ≤ C0,vηn w.p.a.1,

where C∗
1 and C0,v are some constants defined respectively in (44) and (48) in the Appendix.

Theorem 4.2 establishes the uniform bound for the estimation error of v̇
(0,1)
j,l up to some rotation.

However, we only use half of the edges to estimate v̇
(0,1)
j,l , which may result in information loss.

In the next section, we treat v̇
(0,1)
j,l as an initial value and iteratively re-estimate {ui,l}i∈[n] and

{vj,l}i∈[n] using all the edges in the network. We will show that the iteration can preserve the error

bound established in Theorem 4.2.

4.3 Full-Sample Iteration

Define two (K0 +K1)× (K0 +K1) matrices:

Ψj =
1

n

∑

i∈[n],i 6=j

[
ui,0

ui,1W1,ij

] [
ui,0

ui,1W1,ij

]>
and Φi =

1

n

∑

j∈[n],j 6=i

[
vj,0

vj,1W1,ij

] [
vj,0

vj,1W1,ij

]>
.

To study the asymptotic properties of the fourth step estimators, we add an assumption.

Assumption 7 There exist constants Cφ and cφ such that w.p.a.1

∞ > Cφ ≥ lim sup
n

max
j∈[n]

λmax(Ψj) ≥ lim inf
n

min
j∈[n]

λmin(Ψj) ≥ cφ > 0 and

∞ > Cφ ≥ lim sup
n

max
i∈[n]

λmax(Φi) ≥ lim inf
n

min
i∈[n]

λmin(Φi) ≥ cφ > 0.

The above assumption parallels Assumption 6 and is now imposed for the full sample.

Theorem 4.3 Suppose that Assumptions 1, 2, 4–7 hold. Then, for h = 1, · · · , H and l = 0, 1,

max
i∈[n]

||(Ô(1)
l )>u̇(h,1)i,l − ui,l|| ≤ Ch,uηn and max

i∈[n]
||(Ô(1)

l )>v̇(h,1)i,l − vi,l|| ≤ Ch,vηn w.p.a.1,

where {Ch,u}Hh=1 and {Ch,v}Hh=1 are two sequences of constants defined in the proof of this theorem.

Theorem 4.3 establishes the uniform bound for the estimation error in the iterated estimators

{u̇(h,1)i,l } and {v̇(h,1)i,l }.
By switching the roles of I1 and I2, we have, similar to Theorem 4.1, that

‖Vl − V̂
(2)
l Ô

(2)
l ‖F ≤ 136CF,2

√
nηn,

where Ô
(2)
l is a Kl × Kl rotation matrix that depends on Vl and V̂

(2)
l . Then, following the same

derivations of Theorems 4.2 and 4.3, we have, for h = 1, · · · , H ,

max
i∈[n]

||(Ô(2)
l )>u̇(h,2)i,l − ui,l|| ≤ Ch,uηn and max

i∈[n]
||(Ô(2)

l )>v̇(h,2)i,l − vi,l|| ≤ Ch,vηn w.p.a.1
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5. K-means Classification

If we further assume Θ∗
1 has the community structure and satisfies Assumption 3, then Lemma 2.1

shows {vj,1}j∈[n] contains information about the community memberships. It is intuitive to expect

that we can use vj,l defined in Section 3.2 to recover the memberships as long as the estimation

error is sufficiently small.

Let g0i ∈ [K1] denote the true group identity for the i-th node in Θ∗
1. To establish the strong

consistency of the membership estimator ĝi defined in (13), we add the following condition.

Assumption 8 Suppose 145K
3/2
1 CH,vC1ηn ≤ 1, where CH,v is the constant defined in the proof

of Theorem 4.3.

Apparently, Assumption 8 is automatically satisfied in large samples if ηn = o (1) . The constant

in the statement is not optimal.

Theorem 5.1 If Assumptions 1, 2, 4 –8 hold and Θ∗
1 further satisfies Assumption 3, then up to some

label permutation,

max
1≤i≤n

1{ĝi 6= g0i } = 0 w.p.a.1.

Several remarks are in order. First, Theorem 5.1 implies the K-means algorithm can exactly

recover the latent community structure of Θ∗
1 w.p.a.1. Second, if we repeat the sample split R

times, we need to maintain Assumption 6 for each split. Then, we can show the exact recovery of

ĝi,r for r ∈ [R] in the exact same manner, as long as R is fixed. This implies ĝi,r∗ for r∗ selected in

(14) also enjoys the property that

max
1≤i≤n

1{ĝi,r∗ 6= g0i } = 0 w.p.a.1.

Third, if Θ∗
0 also has the latent community structure as in Example 2, we can apply the same K-

means algorithm to {vj,0}j∈[n] with vj,0 ≡ (v̇
(H,1)>
j,0 /||v̇(H,1)j,0 ||, v̇(H,2)>j,0 /||v̇(H,2)j,0 ||)> to recover the

group identities of Θ∗
0. Last, if we further assume Z0 = Z1 = Z (which implies K0 = K1), then

we can catenate vj,0 and vj,1 as a 4K1 × 1 vector and apply the same K-means algorithm to this

vector to recover the group membership for each node.

6. Inference for B∗
1

In this section, we maintain the assumption that Θ∗
1 has a latent community structure. In the gen-

eral model with multiple covariates, we allow {Θ∗
l }l∈[p] to have potentially different community

structures. Note this includes the case that some of the Θ∗
l ’s are homogeneous. We can recover the

community structures by applying the K-means algorithm in the previous section to each Θ∗
l .

For the rest of the section, for notation simplicity, we continue to consider the case that there

is only one covariate W1 and Θ∗
1 has a latent community structure, which is estimated by {ĝi}i∈[n]

defined in the previous section. Given the exact recovery of the community memberships asymp-

totically, we can just treat ĝi as g0i .

We discuss the inference for B∗
1 for two specifications of Θ∗

0: (1) Θ∗
0,ij has an additive struc-

ture as in Example 1 and (2) Θ∗
0,ij has a latent community structure as in Example 2. In the first

specification, once the group membership of Θ∗
1 is recovered, the model boils down to the one
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studied by Graham (2017). For the second specification, when the memberships of both Θ∗
0 and

Θ∗
1 are recovered, the model boils down to the standard logistic regression with finite-number of

parameters.

6.1 Additive Fixed Effects

Suppose Γ∗
0,ij = τn+αi+αj and Γ∗

1 = Θ∗
1 = Z1B

∗
1Z

>
1 . Recall the definitions of χ1,ij , χ̂1r,ij , and

vech(B∗
1) in Section 3.2 such that χ>

1,ijvech(B∗
1) = B∗

1,g0i g
0
j
. We further denote χ̂1,ij as either χ̂1,ij

if one single split is used or χ̂1r∗,ij if R splits are used and the r∗-th split is selected.

Corollary 6.1 Suppose Assumptions 1, 2, 4–8 hold and Θ∗
1 further satisfies Assumption 3. Then

χ̂1,ij = χ1,ij ∀i < j w.p.a.1.

Corollary 6.1 directly follows from Theorem 5.1 and implies that we can treat χ1,ij as observed.

Then, (6) can be written as

Yij = 1{εij ≤ τn + αi + αj + ω>
1,ijvech(B∗

1)},

where ω1,ij =W1,ijχ1,ij . This model has already been studied by Graham (2017). We can directly

apply his Tetrad logit regression to estimate vec(B∗
1).

Let Sij,i′j′ = YijYi′j′(1 − Yii′)(1 − Yjj′) − (1 − Yij)(1 − Yi′j′)Yii′Yjj′ . Then, for an arbitrary

K1(K1 + 1)/2-vector B, the conditional likelihood of Sij,i′j′ given Sij,i′j′ ∈ {−1, 1} is

`ij,i′j′(B) = |Sij,i′j′ |
[
Sij,i′j′ω̃

>
1,ij,i′j′B − log

(
1 + exp(Sij,i′j′ω̃

>
1,ij,i′j′B)

)]
,

where ω̃1,ij,i′j′ = ω1,ij + ω1,i′j′ − (ω1,ii′ + ω1,jj′). Further denote

¯̀
ij,i′j′(B) =

1

3

[
`ij,i′j′(B) + `ij,j′i′(B) + `ii′,j′j(B)

]
.

Following Graham (2017), we define the tetrad regression estimator B̂ for vech(B∗) as

B̂ = argmax
B

∑

i<i′<j<j′

¯̀
ij,i′j′(B).

Let

>iji′j′ =

{
1 if Sij,i′j′ ∈ {−1, 1} ∪ Sij,j′i′ ∈ {−1, 1} ∪ Sii′,jj′ ∈ {−1, 1}
0 otherwise

be the indicator that the tetrad {i, j, i′, j′} take an identifying configuration, and thus, contributes to

the tetrad logit regression. Further denote tq,n = P(>i1i2i3i4 = 1,>jj2j3j4 = 1) as the probability

that tetrads {i1, i2, i3, i4} and {j, j2, j3, j4} both take an identifying configuration when sharing

q = 0, 1, 2, 3, or 4 nodes in common. Then, we make the following assumption on the Hessian

matrix.

Assumption 9 Suppose that Υ0 ≡ limn→∞ t−1
4,n

∑
i<i′<j<j′ ∇BB

¯̀
ij,i′j′(B) is a finite nonsingular

matrix.
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The following theorem reports the asymptotic normality of B̂.

Theorem 6.1 Suppose that Assumptions 1, 2, 4–9 hold. Suppose that Γ∗
0 = τn + αi + αj and Θ∗

1

satisfies Assumption 3. Then B̂
p−→ vec(B∗) and

[
72

(n− 1)n
Ĥ−1∆̂2,nĤ

−1

]−1/2

(B̂ − vech(B∗)) N (0, IK1(K1+1)/2),

where

Ĥ =

(
n

4

)−1 ∑

i<j<i′<j′

∂2 ¯̀ij,i′j′(B̂)

∂B∂B> , ∆̂2,n =
2

n(n− 1)

∑

i<j

ˆ̄sij(B̂)ˆ̄sij(B̂)>,

ˆ̄sij(B) = 1
n(n−1)/2−2(n−1)+1

∑
i′<j′,{i,j}∩{i′,j′}=∅ sij,i′j′(B), sij,i′j′(B) = ∇B

¯̀
ij,i′j′(B), and Ia

denotes an a× a identity matrix.

Theorem 6.1 imposes two additional structures in order to make the inferences on B∗ by bor-

rowing the asymptotic results from Graham (2017). One is that Γ∗
0 exhibits the usual additive fixed

effects structure (with K0 = 2) and the other is Γ∗
1 has a latent community structure. The model

reduces to that of Graham (2017) in the special case of K1 = 1.

6.2 Latent Community Structure in the Fixed Effects

Let g0i,0 be the true memberships of node i for Θ∗
0 and ĝi,0 be its estimator which can be computed by

applying the K-means algorithm to {vj,0}j∈[n]. Further noteZ0ιK0 = ιn where recall that ιb denotes

a b×1 vector of ones. Therefore, Γ∗
0 = τnιnι

>
n +Z0B

∗
0Z

>
0 = Z0(B

∗
0+τnιK0ι

>
K0

)Z>
0 ≡ Z0B

∗∗
0 Z

>
0 ,

i.e., Γ∗
0 shares the same community structure as Θ∗

0. We then define χ0,ij as a K0(K0 + 1)/2 × 1
vector whose ((g0i,0 ∨ g0j,0 − 1)(g0i,0 ∨ g0j,0)/2 + g0i,0 ∧ g0j,0)-th element is one and the rest are zeros

and χ̂0,ij as a K0(K0 + 1)/2 × 1 vector whose ((ĝi,0 ∨ ĝj,0 − 1)(ĝi,0 ∨ ĝj,0)/2 + ĝi,0 ∧ ĝj,0)-th
element is one and the rest are zeros. Similar to Corollary 6.1, we have the following corollary.

Corollary 6.2 Suppose that Assumptions 1, 2, 4–8 hold. Suppose that Θ∗
l , l = 0, 1, further satisfy

Assumption 3. Then, χ̂l,ij = χl,ij ∀i < j for l = 0, 1 w.p.a.1.

We propose to estimate vech(B∗) ≡ (vech(B∗∗
0 )>, vech(B∗

1)
>)> by

B̂ ≡ (B̂>
0 , B̂

>
1 )

> = argmin
b=(b>0 ,b

>
1 )>∈RK0(K0+1)/2×RK1(K1+1)/2

Qn(b),

where

Qn(b) =
−1

n(n− 1)

∑

1≤i<j≤n
[Yij log(Λ̂ij(b)) + (1− Yij) log(1− Λ̂ij(b))],

and

Λ̂ij(b) = Λ(χ̂>
0,ijb0 + χ̂>

1,ijW1,ijb1).

Let Λn,ij(u) = Λ(ω>
ij [vech(B∗) + u(n2ζn)

−1/2]) and Λn,ij ≡ Λn,ij(0), where

ωij = (χ>
0,ij , χ

>
1,ijW1,ij)

>

is an K-vector with K =
∑1

l=0Kl(Kl + 1)/2. Note that Λn,ij = Λ(W>
ij Γ

∗
ij).
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Assumption 10 sup‖u‖≤C
1

n2ζn

∑
1≤i<j≤n Λn,ij (u) (1−Λn,ij(u))ωijω

>
ij

p−→ H for some positive-

definite matrix H and large but fixed constant C.

Theorem 6.2 Suppose that Assumptions 1, 2, 4–8, 10 hold and Θ∗
l , l = 0, 1, further satisfy As-

sumption 3. Let Ĥn =
∑

1≤i<j≤n Λ(ω
>
ijB̂)(1− Λ(ω>

ijB̂))ωijω
>
ij . Then

Ĥ−1/2
n (B̂ − vech(B∗)) N (0, IK).

Although in theory, the inference for B∗
1 in the above two cases is straightforward, there are two

finite-sample issues. First, the Tetrad logit regression does not scale with the number of nodes n
as it needs to scan over all four-node figurations, which contains a total of Ω(n4) operations in a

brutal force implementation. Such a step is inevitable even when we know the true memberships.

Although the Python code by Graham (2017) incorporates a number of computational speed-ups by

keeping careful track of non-contributing configurations as the estimation proceeds, we still find in

our simulations that the implementation turns extremely hard for networks with over 1000 nodes.

One can, instead, use subsampling or divide-and-conquer algorithm for estimation. To establish the

theoretical properties of such an estimator is an important and interesting topic for future research.

Second, for the specification in the second example, based on unreported simulation results, we find

that B̂1 has a small bias if there are some misclassified nodes. However, as the standard error of

our estimator is even smaller, such a small bias may not be ignored in making inferences. If we

further increase the sample size, then the classification indeed achieves exact recovery and such a

bias vanishes quickly. However, in practice, researchers cannot know whether their sample size is

sufficiently large. It is interesting to further investigate such a bias issue and make proper bias-

corrections. This is, again, left as a topic for future research.

7. Determination of K0 and K1

In practice, K0 and K1 are unknown and need to be estimated from the data. In this case, for

any given k satisfying 1 ≤ k ≤ Kmax, where Kmax is a large but fixed integer, we first obtain

the singular value estimates {σ̂k,l}k∈[Kmax],l=0,1 from Step 1 of the estimation algorithm given in

Section 3. We then propose a version of singular-value ratio (SVR) statistic in the spirit of the

eigenvalue-ratio statistics of Ahn and Horenstein (2013) and Lam and Yao (2012). That is, for

l = 0, 1, we estimate Kl by

K̂l = arg max
1≤k≤Kmax−1

σ̂k,l
σ̂k+1,l

1

{
σ̂k,l ≥ cl

(√
log n

nY
+

log n

nY

)}
, (16)

where Ȳ = 2
n(n−1)

∑
1≤i<j≤n Yij , and cl is a tuning parameter to be specified. Without the indicator

function in the above definition, K̂l is nothing but the SVR statistic. The use of the indicator function

helps to avoid the overestimation of the ranks. Apparently, nȲ consistently estimate the expected

degree that is of order nζn. By using Assumption 3 and the results in Theorem 4.1, we can readily

establish the consistency of K̂l.

8. Monte Carlo Simulations

In this section, we conduct some simulations to evaluate the performance of our procedure.
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8.1 Data generation mechanisms

We generate data from the following two models.

Model 1. We simulate the responses Yij from the Bernoulli distribution with mean Λ(log(ζn)+

Θ∗
0,ij +W1,ijΘ

∗
1,ij) for i < j, where Θ∗

0,ij = αi + αj and Θ∗
1 = ZB∗

1Z
>. We generate αi

i.i.d∼
U(−1/2, 1/2) for i = 1, ..., n, and W1,ij = |Xi −Xj | for i 6= j, where Xi

i.i.d∼ N (0, 1). For the ith

row of the membership matrix Z ∈ R
n×K1 , the C th

i component is 1 and other entries are 0, where

C = (C1, ..., Cn)
> ∈ R

n is the membership vector with Ci ∈ [K1].

Case 1. Let K1 = 2 and B∗
1 = ((0.6, 0.2)>, (0.2, 0.7)>)>. The membership vector C =

(C1, ..., Cn)
> is generated by sampling each entry independently from {1, 2} with probabilities

{0.4, 0.6}. Let ζn = 0.7n−1/2 log n.

Case 2. Let K1 = 3 and B∗
1 = ((0.8, 0.4, 0.3)>, (0.4, 0.7, 0.4)>, (0.3, 0.4, 0.8)>)>. The

membership vector C = (C1, ..., Cn)
> is generated by sampling each entry independently from

{1, 2, 3} with probabilities {0.3, 0.3, 0.4}. Let ζn = 1.5n−1/2 log n.

Model 2. We simulate the responses Yij from the Bernoulli distribution with mean Λ(log(ζn)+
Θ∗

0,ij +W1,ijΘ
∗
1,ij) for i < j, where Θ∗

0 = ZB∗
0Z

>, Θ∗
1 = ZB∗

1Z
>, and W1,ij is simulated in

the same way as in Model 1. Note here we impose that the latent community structures for Θ∗
0 and

Θ∗
1 are the same. We then apply the K-means algorithm to the 4K1 × 1 vector {v>j,0, v>j,1}j∈[n] to

recover the community membership, as described in Section 5.

Case 1. LetK0 = K1 = 2 andB∗
0 = ((0.6, 0.2)>, (0.2, 0.7)>)>,B∗

1 = ((0.6, 0.2)>, (0.2, 0.5)>)>.

The membership vectorC = (C1, ..., Cn)
> is generated by sampling each entry independently from

{1, 2} with probabilities {0.3, 0.7}. Let ζn = 0.5n−1/2 log n.

Case 2. Let K0 = K1 = 3 and B∗
0 = ((0.7, 0.2, 0.2)>, (0.2, 0.6, 0.2)>, (0.2, 0.2, 0.7)>)>,

B∗
1 = ((0.7, 0.3, 0.2)>, (0.3, 0.7, 0.2)>, (0.2, 0.2, 0.6)>)>. The membership vector is generated in

the same way as given in Case 2 of Model 1. Let ζn = 1.5n−1/2 log n.

We consider n = 500, 1000, and 1500. All simulation results are based on 200 realizations.

8.2 Simulation Results

We select the number of communitiesK1 by an eigenvalue ratio method given as follows. Let σ̂1,1 ≥
· · · ≥ σ̂Kmax,1 be the first Kmax singular values of the SVD decomposition of Θ̂1 from the nuclear

norm penalization method given in Section 3.1.1. We estimate K1 by K̂1 defined in (16) by setting

c1 = 0.1 andKmax = 10. We set the tuning parameter λn = Cλ{
√
nY +

√
log n}/{n(n−1)} with

Cλ = 2 and similarly for λ
(1)
n . To require that the estimator of Θ̂l,ij is bounded by finite constants,

we let M = 2 and CM = 2. The performance of the method is not sensitive to the choice of these

finite constants. Define the mean squared error (MSE) of the nuclear norm estimator Θ̂l for Θl as∑
i 6=j(Θ̂l,ij −Θ∗

l,ij)
2/{n(n− 1)} for l = 0, 1.

Table 1 reports the MSEs for Θ̂l, the mean of K̂1 and the percentage of correctly estimating K1

based on the 200 realizations. We observe that the mean value of K̂1 gets closer to the true number

of communities K1 and, the percentage of correctly estimating K1 approaches to 1, as the samples

size n increases. When n is large enough (n = 1500), the mean value of K̂1 is the same as K1 and

the percentage of correctly estimating K is exactly equal to 1.

Next, we use three commonly used criteria for evaluating the accuracy of membership estima-

tion for our proposed method. These criteria include the Normalized Mutual Information (NMI), the
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Table 1: The MSEs for Θ̂l, the mean of K̂1 and the percentage of correctly estimating K1 based on

the 200 realizations for Models 1 and 2.

K1 = 2 K1 = 3

n 500 1000 1500 500 1000 1500

Model 1

MSE for Θ̂0 0.083 0.079 0.092 0.112 0.091 0.088

MSE for Θ̂1 0.226 0.215 0.211 0.256 0.263 0.265

mean of K̂1 1.990 2.000 2.000 2.990 3.000 3.000

percentage 0.990 1.000 1.000 0.990 1.000 1.000

Model 2

MSE for Θ̂0 0.304 0.318 0.328 0.173 0.184 0.196

MSE for Θ̂1 0.150 0.157 0.170 0.153 0.155 0.151

mean of K̂1 1.980 2.005 2.000 2.725 3.000 3.000

percentage 0.980 0.995 1.000 0.705 1.000 1.000

Rand Index (RI) and the proportion (PROP) of nodes whose memberships are correctly identified.

They all give a value between 0 and 1, where 1 means a perfect membership estimation. Table 2

presents the mean of the NMI, RI and PROP values based on the 200 realizations for Models 1 and

2. The values of NMI, RI and PROP increase to 1 as the sample size increases for all cases. These

results demonstrate that our method is quite effective for membership estimation in both models,

and corroborate our large-sample theory.

Table 2: The means of the NMI, RI and PROP values based on the 200 realizations for Models 1

and 2.

K1 = 2 K1 = 3

n 500 1000 1500 500 1000 1500

Model 1

NMI 0.9247 0.9976 0.9978 0.5494 0.7867 0.8973

RI 0.9807 0.9995 0.9996 0.7998 0.9062 0.9593

PROP 0.9903 0.9999 0.9999 0.8063 0.9089 0.9670

Model 2

NMI 0.9488 0.9977 0.9984 0.9664 0.9843 0.9977

RI 0.9881 0.9966 0.9998 0.9790 0.9909 0.9987

PROP 0.9940 0.9978 0.9999 0.9838 0.9928 0.9988
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Last, we estimate the parameters B∗
0 and B∗

1 by our proposed method given in Section 6 for

Model 2. Tables 3 and 4 show the empirical coverage rate (coverage) of the 95% confidence inter-

vals, the absolute value of bias (bias), the empirical standard deviation (emp sd), and the average

value of the estimated asymptotic standard deviation (asym sd) of the estimates for B∗
0 and B∗

1 in

cases 1 and 2 of model 2, respectively, based on 200 realizations. We observe that the emp sd and

asym sd decrease and the empirical coverage rate gets close to the nominal level 0.95, as the sam-

ple size increases. Moreover, the value of emp sd is similar to that of asym sd for each parameter.

This result confirms our established formula (in the Appendix) for the asymptotic variances of the

estimators for the parameters. When the sample size is large enough (n = 1500), the value of bias

is very small compared to asym sd, so that it can be negligible for constructing confidence intervals

of the parameters.

Table 3: The empirical coverage rate (coverage), the absolute bias (bias), empirical standard devi-

ation (emp sd) and asymptotic standard deviation (asym sd) of the estimators for B∗
0 and

B∗
1 in case 1 of Model 2 based on 200 realizations.

n B∗
0,11 B∗

0,12 B∗
0,22 B∗

1,11 B∗
1,12 B∗

1,22

coverage 0.880 0.860 0.975 0.960 0.915 0.955

500 bias 0.023 0.020 0.003 0.002 0.007 0.001

emp sd 0.042 0.036 0.014 0.021 0.018 0.009

asym sd 0.035 0.029 0.015 0.020 0.017 0.009

coverage 0.960 0.940 0.945 0.945 0.945 0.940

1000 bias 0.004 0.001 < 0.001 0.002 0.002 < 0.001
emp sd 0.017 0.016 0.008 0.010 0.009 0.005

asym sd 0.018 0.015 0.008 0.011 0.008 0.005

coverage 0.945 0.955 0.945 0.945 0.945 0.940

1500 bias < 0.001 0.001 0.001 0.001 0.001 < 0.001
emp sd 0.014 0.011 0.006 0.008 0.006 0.003

asym sd 0.013 0.011 0.005 0.007 0.006 0.003

9. Empirical applications

In this section, we apply the proposed method to study the community structure of social network

datasets.

9.1 Pokec social network

9.1.1 THE DATASET AND MODEL

Pokec is a popular on-line social network in Slovakia. The whole dataset has more than 1.6 million

users, and it can be downloaded from https://snap.stanford.edu/data/soc-Pokec.html. In this social

network, nodes are anonymized users of Pokec and edges represent friendships. Moreover, demo-
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Table 4: The empirical coverage rate (coverage), the absolute bias (bias), empirical standard devi-

ation (emp sd) and asymptotic standard deviation (asym sd) of the estimators for B∗
0 and

B∗
1 in case 2 of Model 2 based on 200 realizations.

n B∗
0,11 B∗

0,12 B∗
0,13 B∗

0,22 B∗
0,23 B∗

0,33

coverage 0.910 0.920 0.900 0.875 0.925 0.960

500 bias 0.018 0.025 < 0.001 0.008 0.002 0.009

emp sd 0.033 0.029 0.035 0.030 0.028 0.032

asym sd 0.033 0.031 0.032 0.028 0.027 0.032

coverage 0.915 0.935 0.955 0.930 0.950 0.925

1000 bias 0.005 0.005 0.001 0.004 0.006 0.006

emp sd 0.018 0.016 0.015 0.014 0.014 0.017

asym sd 0.017 0.015 0.017 0.013 0.014 0.016

coverage 0.940 0.945 0.940 0.960 0.940 0.955

1500 bias 0.001 0.001 < 0.001 0.001 0.002 < 0.001
emp sd 0.012 0.010 0.012 0.008 0.009 0.011

asym sd 0.011 0.010 0.011 0.009 0.010 0.011

n B∗
1,11 B∗

1,12 B∗
1,13 B∗

1,22 B∗
1,23 B∗

1,33

coverage 0.885 0.900 0.915 0.900 0.960 0.925

500 bias 0.020 0.005 0.001 0.016 < 0.001 0.005

emp sd 0.023 0.019 0.020 0.021 0.017 0.022

asym sd 0.025 0.019 0.019 0.020 0.016 0.022

coverage 0.930 0.905 0.945 0.925 0.940 0.930

1000 bias 0.003 0.001 0.006 0.007 0.002 0.002

emp sd 0.011 0.011 0.011 0.009 0.008 0.011

asym sd 0.012 0.009 0.010 0.009 0.008 0.011

coverage 0.940 0.955 0.940 0.960 0.960 0.950

1500 bias < 0.001 < 0.001 < 0.001 0.001 < 0.001 0.001

emp sd 0.009 0.006 0.007 0.005 0.005 0.007

asym sd 0.008 0.006 0.007 0.006 0.006 0.007
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Figure 1: left panel depicts the number of nodes in different age groups; right panel shows the

boxplots of degrees by age groups.
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graphical features of the users are provided, including gender, age, hobbies, interest, education, etc.

To illustrate our method, we select the first 10000 users. Each user is a node in the graph. After

deleting the nodes with missing values in age and with degree less than 10, we have 1745 nodes in

our dataset. We use the continuous variable, age, as the covariate in our model, and use the friend-

ship network to create an undirected adjacency matrix which has 1745 nodes and 39650 edges. The

average degree in this dataset is 22.72. The left panel of Figure 1 shows the number of nodes in

different age groups. We see that the age group of 25-29 is the largest group with 1175 users and the

age groups of 20-24 and 30-34 have similar number of users. Around 98.8% of users are between

the ages of 20 and 35 years old. Moreover, in the right panel of Figure 1, we depict the boxplots of

degrees (the number of users connected to each user) for the four age groups 20-24, 25-29, 30-34

and 35-39 that include most users. The plots of degrees vary across different age groups, indicating

that age may play a role in the prediction of connections between users.

We consider fitting the model:

Yij = 1{εij ≤ τn +Θ∗
0,ij +W1,ijΘ

∗
1,ij}, i > j, (17)

for i = 1, ..., 1745, where Yij is the observed value (0 or 1) of the adjacency matrix in our dataset,

and W1,ij = |Xi − Xj |/(
√
X2
i +X2

j ), in which Xi is the normalized age of the ith customer.12

In this model, (τn,Θ
∗
0,ij ,Θ

∗
1,ij) are unknown parameters, and Θ∗

0,ij and Θ∗
1,ij have the latent group

structures Θ∗
0 = ZB∗

0Z
> and Θ∗

1 = ZB∗
1Z

>, respectively. Model (17) considered for this real

application is similar to Model 2 in the simulation, and it allows for not only the main effect but also

possible interaction effects of age and the latent community structure.

12. The variable W1,ij takes 1444 distinctive values. Given there are only 1745 nodes in our dataset, we can view Wij

as continuous.
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Figure 2: left panel depicts the friendship network with two communities; right panel shows the

adjacency matrix reorganized according to the node’s memberships.
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9.1.2 ESTIMATION RESULTS

We first use the singular-value ratio method to obtain the estimated number of groups for Θ∗
0 and

Θ∗
1: K̂0 = 2 and K̂1 = 2, i.e., we identify two subgroups in the friendship network.

Next, we use our proposed method to obtain the estimated membership for each node. As a

result, we have identified 842 nodes in one community and 903 nodes in the other community. We

reorganize the observed adjacency matrix according to the estimated memberships of the nodes,

i.e., the nodes in the same estimated community are put together in the adjacency matrix. We use

blue dots to represent the edges between nodes. The left panel of Figure 2 displays the reorganized

adjacency. We see that nodes within each community are generally more densely connected than

nodes between communities. In the right panel of Figure 2, we show the boxplots of age for the two

identified subgroups. We can observe that in general, the values of age in group 1 are smaller than

those in group 2.

Last, Table 5 shows the estimates of B∗
0 and B∗

1 and their standard errors (s.e.). We obtain the

p-value< 0.01 for testing each coefficient in B∗
1 equal to zero, indicating that the covariate age has

a significant effect on the prediction of the friendships between users.

Table 5: The estimates of B∗
0 and B∗

1 and their standard errors (s.e.).

B∗
0,11 B∗

0,12 B∗
0,22 B∗

1,11 B∗
1,12 B∗

1,22

estimate -3.922 -4.119 -3.425 -0.444 -0.518 -0.477

s.e. 0.017 0.025 0.017 0.027 0.019 0.016
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9.2 Facebook friendship network

9.2.1 THE DATASET AND MODEL

The dataset contains Facebook friendship networks at one hundred American colleges and univer-

sities at a single point in time. It was provided and analyzed by Traud et al. (2012), and can be

downloaded from https://archive.org/details/oxford-2005-facebook-matrix. Traud et al. (2012) used

the dataset to illustrate the relative importance of different characteristics of individuals across dif-

ferent institutions, and showed that gender, dormitory residence and class year may play a role in

network partitions by using assortativity coefficients. We, therefore, use these three user attributes

as the covariates Xi = (Xi1, Xi2, Xi3)
>, where Xi1 =binary indicator for gender, Xi2 =multi-

category variable for dorm number (e.g., “202”, “203”, etc.), and Xi3 =integer valued variable for

class year (e.g., “2004”, “2005”, etc.). We use the dataset of Rice University to identify the latent

community structure interacted with the covariates by our proposed method.

We use the dataset to fit the model:

Yij = 1{εij ≤ τn +Θ∗
0,ij +W1,ijΘ

∗
1,ij}, i > j, (18)

where Yij is the observed value (0 or 1) of the adjacency matrix in the dataset, and W1,ij =
{∑3

k=1(2Dij,k/∆k)
2}1/2, where ∆k = max(Dij,k) − min(Dij,k) and Dij,k = Xik − Xjk for

k = 1, 2, 3.13 In this model, (τn,Θ
∗
0,ij ,Θ

∗
1,ij) are unknown parameters, and Θ∗

0,ij and Θ∗
1,ij have

the latent group structures Θ∗
0 = ZB∗

0Z
> and Θ∗

1 = ZB∗
1Z

>, respectively. Following model 2 in

the simulation, we impose that Θ∗
0 and Θ∗

1 share the same community structure. It is worth noting

that Roy et al. (2019) fit a similar regression model as (18) but let the coefficient of the pairwise

covariate be an unknown constant with respect to (i, j) such that Θ∗
1,ij = Θ∗

1. Although Roy et al.’s

2019 model can take into account the covariate effect for community detection, it does not consider

possible interaction effects of the observed covariates and the latent community structure. As a re-

sult, it may cause the number of estimated groups to be inflated. In the dataset of Rice University,

we delete the nodes with missing values and with degree less than 10, and consider the class year

from 2004 to 2009. After the cleanup, there are n = 3073 nodes and 279916 edges in the dataset

for our analysis.

9.2.2 ESTIMATION RESULTS

We first use the eigenvalue ratio method to obtain the estimated number of groups for Θ∗
0 and Θ∗

1:

K̂0 = 4 and K̂1 = 4.
Next, we use our proposed method to obtain the estimated membership for each node. Table

6 presents the number of students in each estimated group for female and male, for different class

years, and for different dorm numbers. It is interesting to observe that most female students belong

to either group 2 or group 4, and most male students belong to either group 1 or group 3. There

is a clear community division between female and male; within each gender category, the students

are further separated into two large groups. Moreover, most students in the class years of 2004 and

2005 are in either group 1 or group 2, while most students in the class years of 2008 and 2009 are in

either group 3 or group 4. Students in the class years of 2006 and 2007 are almost evenly distributed

across the four groups, with a tendency that more students will join groups 3 and group 4 when they

13. We note that W1,ij takes 1512 distinctive values. Given there are just 3073 nodes in the dataset, we can view W1,ij

as continuous.
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are in later class years. This result indicates that students tend to be in different groups as the gap

between their class years becomes larger. Last, Table 7 shows the estimates of B∗
0 and B∗

1 and their

standard errors (s.e.). We obtain the p-value< 0.01 for testing each coefficient in B∗
1 equal to zero,

indicating that the three covariates are useful for identifying the community structure.

Table 6: The number of persons in each estimated group for female and male, for different class

years, and for different dorm numbers.

gender class year

female male 2004 2005 2006 2007 2008 2009

group 1 1 515 112 139 147 110 37 1

group 2 540 4 103 135 116 165 50 2

group 3 4 1050 38 79 152 178 277 300

group 4 958 1 30 62 125 156 288 271

dorm number

202 203 204 205 206 207 208 209 210

group 1 71 67 36 42 41 50 57 59 93

group 2 65 98 53 46 20 63 56 56 84

group 3 94 116 142 138 129 130 121 101 83

group 4 92 72 124 125 139 95 122 110 83

Table 7: The estimates of B∗
0 and B∗

1 and their standard errors (s.e.).

B∗
0,11 B∗

0,12 B∗
0,13 B∗

0,14 B∗
0,22 B∗

0,23 B∗
0,24 B∗

0,33 B∗
0,34 B∗

0,44

estimate -0.730 4.912 -1.543 6.197 -0.751 4.123 -1.624 -1.702 5.933 -1.419

s.e. 0.018 0.112 0.024 0.171 0.017 0.195 0.024 0.017 0.207 0.016

B∗
1,11 B∗

1,12 B∗
1,13 B∗

1,14 B∗
1,22 B∗

1,23 B∗
1,24 B∗

1,33 B∗
1,34 B∗

1,44

estimate -3.397 -6.381 -4.398 -5.656 -3.600 -5.628 -4.387 -6.384 -6.704 -7.567

s.e. 0.042 0.102 0.057 0.155 0.042 0.180 0.059 0.059 0.196 0.060

10. Conclusion

In this paper, we proposed a network formation model which can capture heterogeneous effects of

homophily via a latent community structure. When the expected degree diverges at a rate no slower

than rate-log n, we established that the proposed method can exactly recover the latent community

memberships almost surely. By treating the estimated community memberships as the truth, we can

then estimate the regression coefficients in the model by existing methods in the literature.
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Appendix

Appendix A. Proofs of the Main Results

In this Appendix, we prove the main results in the paper. Given the fact that our proofs involve a

lot of constants defined in the assumptions and proofs, we first provide a list of these constants in

Appendix A.1. Then we prove Lemma 2.1 and Theorems 4.1–5.1 in Appendices A.2–A.6,

respectively.

A.1 List of constants

Before we prove the main results, we first list the frequently used constants in Table 8. We specify

each constant to illustrate that all our results hold as long as
√

log n/(nζn) ≤ cF ≤ 1
4 for some

sufficiently small constant cF . Apparently, if log n/(nζn) → 0, cF can be arbitrarily small as long

as n is sufficiently large. Then all the rate requirements in the proof hold automatically. However,

log n/(nζn) → 0 is sufficient but not necessary.

Table 8: Table of Constants

Name Description

MW |W1,ij | ≤MW .

M maxi∈[n],l=0,1 |Θ∗
l,ij | ≤M, used in the definition of fM (·) and Assumption 2.

Cλ Used in the definition of λ
(1)
n .

CM Used in the definition of T(1).

Cσ, cσ, C1, c1 Defined in Assumption 3.

κ Defined in Assumption 4.

c, c, cF Defined in Assumption 5.

Cφ, cφ Defined in Assumption 6.

CF , CF,1, CF,2 Defined in Theorem 4.1.

C∗
1 Defined in Theorem 4.2.

Ch,u, Ch,v Defined in Theorem 4.3.

CΥ Defined in Lemma B.1.

A.2 Proof of Lemma 2.1

We prove the results for Ul first. Let Πl,n = Z>
l Zl/n = diag(πl,1n, · · · , πl,Kln). Then,

(n−1Θ∗
l )(n

−1Θ∗
l )

> = n−1ZlB
∗
l Πl,nB

∗
l Z

>
l .

Consider the spectral decomposition of χ ≡ Π
1/2
l,n B

∗
l Πl,nB

∗
l Π

1/2
l,n : χ = S′

lΩ̃
2
l (S

′
l)
>. Let

Ul = Zl(Z
>
l Zl)

−1/2S′
l , where Sl is a Kl ×Kl matrix such that (S′

l)
>S′

l = IKl
. Then, we have

U1Ω̃
2
l U>

l = n−1ZlΠ
−1/2
n SlΩ̃

2
l S

>
l Π

−1/2
n Z>

l = n−1ZlB
∗
l ΠnB

∗
l Z

>
l = (n−1Θ∗

l )
2.

In addition, note that U>
l Ul = IKl

and Ω̃2
l is a diagonal matrix. This implies Ω̃2

l = Σ2
l (after

reordering the eigenvalues) and Ul is the corresponding singular vector matrix. Then, by definition,

Ul =
√
nUlΣl = Zl(Πl,n)

−1/2S′
lΣl.

36



DLC

Similarly, by considering the spectral decomposition of (n−1Θ∗
l )

>(n−1Θ∗
l ), we can show that

Vl = Zl(Πl,n)
−1/2Sl for some rotation matrix Sl. Parts (2) and (3) can be verified directly by

noting that Sl and S′
l are orthonormal, Πl,n is diagonal, and Assumption 3 holds.

A.3 Proof of Theorem 4.1

We focus on the split-sample low-rank estimators. The full-sample results can be derived in the

same manner. Denote Qn,ij(Γij) = −[Yij log(Λ(W
>
ij Γij)) + (1− Yij) log(1− Λ(W>

ij Γij))],

which is a convex function for each element in Γij = (Γ0,ij ,Γ1,ij)
>. In addition, we note that the

true parameter Γ∗(I1) ∈ T
(1)(0, log n). Denote Γ̃(1) = {Γ̃(1)

ij }i∈I1,j∈[n], Γ̃
(1)
ij = (Γ̃

(1)
0,ij , Γ̃

(1)
1,ij)

>

and ∆ij = Γ̃
(1)
ij − Γ∗

ij ≡ (∆0,ij ,∆1,ij)
>, for i ∈ I1, j ∈ [n]. Then, we have

λ(1)n

1∑

l=0

(
||Γ∗

l (I1)||∗ − ||Γ̃(1)
l ||∗

)
≥ 1

n1(n− 1)

∑

i∈I1,j∈[n],i 6=j

(
Qn,ij(Γ̃

(1)
ij )−Qn,ij(Γ

∗
ij)
)

≥ 1

n1(n− 1)

∑

i∈I1,j∈[n],i 6=j

(
∂ΓijQ

>
n,ij(Γ

∗
ij)
)>

∆ij

=
−1

n1(n− 1)

∑

i∈I1,j∈[n],i 6=j

(
Yij − Λ(W>

ij Γ
∗
ij)
)
W>
ij∆ij

≡ −1

n1(n− 1)

1∑

l=0

trace(Υ>
l ∆l), (19)

where ∂ΓijQ
>
n,ij(Γ

∗
ij) = ∂Qn,ij(Γ

∗
ij)/∂Γij , Υl is an n1 × n matrix with (i, j)-th entry

Υl,ij =

{(
Yij − Λ(W>

ij Γ
∗
ij)
)
Wl,ij if i ∈ I1, j ∈ [n] , j 6= i

0 if i = j ∈ I1
,

and trace(·) is the trace operator. By (19), we have

0 ≤λ(1)n
1∑

l=0

(
||Γ∗

l (I1)||∗ − ||Γ̃(1)
l ||∗

)
+

1

n1(n− 1)

∣∣∣∣∣

1∑

l=0

trace(Υ>
l ∆l)

∣∣∣∣∣

≤λ(1)n
1∑

l=0

(
||Γ∗

l (I1)||∗ − ||Γ̃(1)
l ||∗

)
+

1

n1(n− 1)

1∑

l=0

||Υl||op||∆l||∗. (20)

For some generic n1 × n matrix ∆, let M(1)
l (∆) and P(1)

l (∆) be the residual and projection

matrices of ∆ with respect to Γ∗
l (I1), as defined in Assumption 4. By Chernozhukov et al. (2020,

Lemma D.2) and the fact that Γ∗
0(I1) and Γ∗

1(I1) are exact low-rank matrices with ranks upper

bounded by K0 + 1 and K1, respectively, we have ∆l = M(1)
l (∆l) + P(1)

l (∆l),

rank(M(1)
0 (∆0)) ≤ 2K0 + 2, rank(M(1)

1 (∆1)) ≤ 2K1, and for l = 0, 1,

||∆l||2F = ||M(1)
l (∆l)||2F + ||P(1)

l (∆l)||2F and ||Γ∗
l (I1)+P(1)

l (∆l)||∗ = ||Γ∗
l (I1)||∗+ ||P(1)

l (∆l)||∗.
(21)
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This implies that

||Γ∗
l (I1)||∗ − ||Γ̃(1)

l ||∗ =||Γ∗
l (I1)||∗ − ||Γ∗

l (I1) +M(1)
l (∆l) + P(1)

l (∆l)||∗
≤||M(1)

l (∆l)||∗ − ||P(1)
l (∆l)||∗, l = 0, 1. (22)

Therefore, combining (20), Lemma B.1, and (22), we have

0 ≤ λ(1)n

1∑

l=0

(
||M(1)

l (∆l)||∗ − ||P(1)
l (∆l)||∗

)

+
CΥMW (

√
ζnn+

√
log n)

n1(n− 1)

1∑

l=0

(
||M(1)

l (∆l)||∗ + ||P(1)
l (∆l)||∗

)
.

Noting that λ
(1)
n = Cλ(

√
ζnn+

√
logn)

n1(n−1) and Cλ > CΥMW , the last inequality implies that

(Cλ − CΥMW )
1∑

l=0

||P(1)
l (∆l)||∗ ≤ (Cλ + CΥMW )

1∑

l=0

||M(1)
l (∆l)||∗, (23)

and that (∆0,∆1) ∈ C(c̃) for c̃ = Cλ+CΥMW
Cλ−CΥMW

> 0, with a slight abuse of notation.

Next, we first aim to show

1

n
(

1∑

l=0

||∆l||2F )1/2 ≤ 17CF

(
log(n)√
nζn

+
(log n)3/2

nζn

)
,

where CF =
√
K̄(MW+1)(Cλ+CΥMW )

cκ +
√

c3
κ +

√
c2. We suppose (∆0,∆1) /∈ C1(c2), i.e.,

1∑

l=0

||∆l||2F > c2n log(n)/ζn, (24)

otherwise,

1

n
(

1∑

l=0

||∆l||2F )1/2 ≤
√
c2 log(n)

nζn
< 17CF

(
log(n)√
nζn

+
(log n)3/2

nζn

)
,

and we are done.

Now we consider the second-order Taylor expansion of Qn,ij(Γij), following the argument in

Belloni et al. (2017). Let fij(t) = log{1 + exp(W>
ij (Γ

∗
ij + t∆ij))}, where

∆ij = (∆0,ij , · · · ,∆p,ij)
>. Note

Qn,ij(Γ̃
(1)
ij )−Qn,ij(Γ

∗
ij)− ∂ΓijQ

>
n,ij(Γ

∗
ij)∆ij = fij(1)− fij(0)− f ′ij(0)

and that fij(·) is a three times differentiable convex function such that for all t ∈ R,

|f ′′′

ij (t)| =|W>
ij∆ij |3Λ(W>

ij (∆ij + t∆ij))(1− Λ(W>
ij (∆ij + t∆ij)))|1− 2Λ(W>

ij (∆ij + t∆ij))|
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≤|W>
ij∆ij |f

′′

ij(t).

Then, by Bach (2010, Lemma 1) we have

fij(1)− fij(0)− f ′ij(0) ≥
f

′′

ij(0)

(W>
ij∆ij)2

[
exp(−|W>

ij∆ij |) + |W>
ij∆ij | − 1

]

=Λ(W>
ij Γ

∗
ij)(1− Λ(W>

ij Γ
∗
ij))

[
exp(−|W>

ij∆ij |) + |W>
ij∆ij | − 1

]

≥cζn
[
exp(−|W>

ij∆ij |) + |W>
ij∆ij | − 1

]

≥cζn
(

(W>
ij∆ij)

2

4(maxi,j |W>
ij∆ij | ∨ log(2))

)

≥
ζnc(W

>
ij∆ij)

2

8(MW + 1) log n
, (25)

where the third inequality holds by Lemma B.2 and the last inequality holds because of

Assumption 5 and the fact that

|W>
ij∆ij | ≤ |Γ̃0,ij − Γ0,ij |+MW |Γ̃1,ij − Γ1,ij | ≤ 2(MW + 1) log n. Therefore, w.p.a.1,

Fn(∆0,∆1)

≡ 1

n1(n− 1)

∑

i∈I1,j∈[n],j 6=i

[
Qn,ij(Γ̃

(1)
ij )−Qn,ij(Γ

∗
ij)− ∂ΓijQ

>
n,ij(Γ

∗
ij)∆ij

]

≥ ζnc

8n1(n− 1)(MW + 1) log n

∑

i∈I1,j∈[n],j 6=i
(W>

ij∆ij)
2

≥ ζnc

8n1(n− 1)(MW + 1) log n

[
κ

1∑

l=0

||∆l||2F − 4(MW + 1)2(log n)2n1 − c3n log(n)/ζn

]
,

(26)

where the last inequality holds by Assumption 4, (24), and the fact that |∆l,ii| ≤ 2 log n, i ∈ I1.

On the other hand, by (19),

Fn(∆0,∆1)

≤ λ(1)n

1∑

l=0

(
||Γ∗

l (I1)||∗ − ||Γ̃(1)
l ||∗

)
+

∣∣∣∣∣
1

n1(n− 1)

1∑

l=0

trace(Υ>
l ∆l)

∣∣∣∣∣

≤ λ(1)n

1∑

l=0

(
||M(1)

l (∆l)||∗ − ||P(1)
l (∆l)||∗

)
+

1

n1(n− 1)

1∑

l=0

||Υl||op||∆l||∗

≤
√
ζnn+

√
log n

n1(n− 1)

[
1∑

l=0

(Cλ + CΥMW )||M(1)
l (∆l)||∗ −

1∑

l=0

(Cλ − CΥMW )||P(1)
l (∆l)||∗

]

≤
√
ζnn+

√
log n

n1(n− 1)
(Cλ + CΥMW )(

1∑

l=0

||M(1)
l (∆l)||∗)
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≤
√
ζnn+

√
log n

n1(n− 1)
(Cλ + CΥMW )

√
2K̄(

1∑

l=0

||M(1)
l (∆l)||F )

≤
√
ζnn+

√
log n

n1(n− 1)
(Cλ + CΥMW )

√
2K̄(

1∑

l=0

||∆l||F )

≤
√
ζnn+

√
log n

n1(n− 1)
(Cλ + CΥMW )2

√
K̄(

1∑

l=0

||∆l||2F )1/2, (27)

where K̄ = max(K0 + 1,K1), the first inequality is due to (19), the second inequality is due to

(22) and the trace inequality, the third inequality holds by the definition of λ
(1)
n and Lemma B.1,

the fourth inequality is due to the fact that Cλ − CΥMW > 0, the fifth inequality is due to the fact

that rank(M(1)
l (∆l)) ≤ 2K̄, the second last inequality is due to (21), and the last inequality is due

to the Cauchy’s inequality.

Combining (26) and (27), we have



(

1∑

l=0

||∆l||2F

)1/2

− 8
√
K̄(MW + 1)(Cλ + CΥMW )

cκ

log n[
√
nζn +

√
log n]

ζn



2

≤ K̄

[
8(MW + 1)(Cλ + CΥMW )

cκ

]2( log n[
√
nζn +

√
log n]

ζn

)2

+
4n1(MW + 1)2(log n)2

κ
+
c3n log(n)

κζn
,

and thus,

1

n
(

1∑

l=0

||∆l||2F )1/2 ≤ 17CF

(
log n√
nζn

+
(log n)3/2

nζn

)
w.p.a.1. (28)

Then,

|τ̃ (1)n − τn| =

∣∣∣∣∣∣
1

n1n

∑

i∈I1,j∈[n]
(Γ̃0,ij − τn)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1

n1n

∑

i∈I1,j∈[n]
(Γ̃0,ij − Γ∗

0,ij)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

n1n

∑

i∈I1,j∈[n]
Θ∗

0,ij

∣∣∣∣∣∣

≤ 1√
n1n

||∆0||F +M ≤ 30CF

(
log n√
nζn

+
(log n)3/2

nζn

)

≤30CF (cF + c2F )
√
log n w.p.a.1, (29)

where the last inequality follows Assumption 5.3.

Next, we rerun the nuclear norm regularized logistic regression with the parameter space

restriction T
(1)(0, log n) replaced by T

(1)(τ̃
(1)
n , CM

√
log n). First, we note that the true parameter

Γ∗(I1) ∈ T
(1)(τ̃

(1)
n , CM

√
log n) because |Γ∗

1,ij | ≤ CM
√
log n and

|Γ∗
0,ij − τ̃ (1)n | ≤ |Θ∗

0,ij |+ |τ̃ (1)n − τn| ≤ |Θ∗
0,ij |+ 30CF (cF + c2F )

√
log n ≤ CM

√
log n, (30)

where we use the fact that cF , and thus, 30(cF + c2F )CF is sufficiently small.
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Therefore, following the same arguments used to obtain (23), we can show that

∆̂ ≡ (∆̂0, ∆̂1) ∈ C(c̃), where ∆̂l = Γ̂
(1)
l − Γ∗

l (I1). Let ∆̂ij = (∆̂0,ij , ∆̂1,ij)
>. Now let

fij(t) = log(1 + exp(W>
ij (Γ

∗
ij + t∆̂ij))). We aim to show that

1

n

(
1∑

l=0

||∆̂l||2F

)1/2

≤ 17CF,1ηn w.p.a.1, (31)

where with CF,1 =
√
K̄(MW+CM )(Cλ+CΥMW )

cκ +
√

c3
κ +

√
c2 and ηn =

√
logn
nζn

+ logn
nζn

. Following

the same argument as before, we can suppose that (∆̂0, ∆̂1) /∈ C1(c2). Then, following (25),

fij(1)− fij(0)− f ′ij(0) ≥ cζn

(
(W>

ij ∆̂ij)
2

4(maxi,j |W>
ij ∆̂ij | ∨ log(2))

)
≥

ζnc(W
>
ij ∆̂ij)

2

8(CM +MW )
√
log n

,

where the last inequality holds because of (30) and uniformly in (i, j)

|W>
ij ∆̂ij | ≤|Γ̂(1)

0,ij − Γ∗
0,ij |+MW |Γ̂(1)

1,ij −Θ∗
1,ij |

≤|Γ̂(1)
0,ij − τ̃ (1)n |+ |τ̃ (1)n − Γ∗

0,ij |+MW (
√

log n+M) ≤ 2(CM +MW )
√
log n.

Then, similar to (26) and (27),

Fn(∆̂0, ∆̂1)

≡ 1

n1(n− 1)

∑

i∈I1,j∈[n],j 6=i

(
Qn,ij(Γ̂

(1)
ij )−Qn,ij(Γ

∗
ij)− ∂ΓijQ

>
n,ij(Γ

∗
ij)∆̂ij

)

≥ ζnc

8n1(n− 1)(MW + CM )
√
log n

[
κ

(
1∑

l=0

||∆̂l||2F

)
− 4(MW + CM )2 log(n)n1 − c3 log(n)n/ζn

]

and

Fn(∆̂0, ∆̂1) ≤
√
ζnn+

√
log n

n1(n− 1)
(Cλ + CΥMW )2

√
K̄(

1∑

l=0

||∆̂l||2F )1/2.

Therefore, we have



(

1∑

l=0

||∆̂l||2F

)1/2

− 8
√
K̄(MW + CM )(Cλ + CΥMW )

cκ

(√
log n(

√
nζn +

√
log n)

ζn

)

2

≤ K̄

[
8(MW + CM )(Cλ + CΥMW )

cκ

]2(√
log n(

√
nζn +

√
log n)

ζn

)2

+
4(MW + CM )2 log(n)n1

κ
+
c3 log(n)n

κζn
,

and thus, (31) holds. Then, similar to (29) and by Assumption 5.4, we have

|τ̂ (1)n − τn| ≤ 1√
n1n

||∆̂0||F + o(ηn) ≤ 30CF,1ηn. This establishes the first result in Theorem 4.1.
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In addition,

1

n
||Θ̂(1)

1 −Θ∗
1(I1)||F

≤ 1

n


 ∑

(i,j)∈I1×I1,i 6=j

(
1

2
(Γ̂

(1)
1,ij + Γ̂

(1)
1,ji)−Θ∗

1,ij

)2

+
∑

(i,j):i∈I1,j /∈I1
(Γ̂

(1)
1,ij −Θ∗

1,ij)
2



1/2

+
1

n


∑

i∈I1
Θ∗2

1,ii




1/2

≤ 1

n


 ∑

i∈I1,j∈[n],i 6=j
(Γ̂

(1)
1,ij −Θ∗

1,ij)
2



1/2

+
1

n


∑

i∈I1
Θ∗2

1,ii




1/2

≤ 1

n

(
1∑

l=0

||∆̂l||2F

)1/2

+

√
M2

3n
≤ 18CF,1ηn w.p.a.1,

where the first inequality holds due to the facts that fM (·) is 1-Lipschitz continuous, Θ∗
1 = (Θ∗

1)
>,

and |Θ∗
1,ij | ≤M . Similarly,

1

n
||Θ̂(1)

0 −Θ∗
0(I1)||F

≤ 1

n


 ∑

(i,j)∈I1×I1,i 6=j

(
1

2
(Γ̂

(1)
0,ij+Γ̂

(1)
0,ji)−Θ∗

0,ij − τ̂ (1)n

)2

+
∑

(i,j):i∈I1,j /∈I1
(Γ∗

0,ij − τ̂ (1)n −Θ∗
0,ij)

2



1/2

+
1

n


∑

i∈I1
Θ∗2

0,ii




1/2

≤ 1

n


 ∑

i∈I1,j∈[n],i 6=j
(Γ̃

(1)
0,ij − Γ∗

0,ij)
2



1/2

+ |τ̂ (1)n − τn|+
√
M2

3n
≤ 48CF,1ηn w.p.a.1

Then, by the Weyl’s inequality, maxk=1,··· ,Kl
|σ̂(1)k,l − σk,l| ≤ 48CF,1ηn w.p.a.1 for l = 0, 1.

Last, noting that V̂
(1)
l consists of the first Kl eigenvectors of ( 1nΘ̂

(1)
l )>( 1nΘ̂

(1)
l ), we have

∥∥∥∥
1

n
Θ̂

(1)>
l

(
1

n
Θ̂

(1)
l

)
− 1

n
Θ∗>
l (I1)

(
1

n
Θ∗
l (I1)

)∥∥∥∥
op

≤ 2Cσ
n

||Θ̂(1)
l −Θ∗

l (I1)||F ≤ 96CF,1Cσηn.

Then by the Davis-Kahan sinΘ Theorem (Su et al. (2020, Lemma C.1)), we have

||Vl − V̂(1)
l Ô

(1)
l ||F ≤

√
Kl||Vl − V̂(1)

l Ô
(1)
l ||op ≤

96
√
2KlCF,1Cσsηn

σ2Kl,l
− 96CF,1Cσηn

≤ 96
√
2KlCF,1Cσsηn

c2σ − 96CF,1Cσηn
≤ 136

√
KlCF,1Cσηn
c2σ
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≤ 136CF,2ηn, (32)

where CF,2 = maxl=0,1

√
KlCF,1Cσc

−2
σ , and the third inequality holds due to Assumption 5 and

the second last inequality is due to the fact that we can set cF to be sufficiently small to ensure that

1− 96
√
2CF,1Cσ(cF + c2F )c

−2
σ ≥ 96

√
2

136 .

Recall that V̂
(1)
l =

√
nV̂(1)

l and Vl =
√
nVl, we have the desired result that

||Vl − V̂
(1)
l Ô

(1)
l ||F ≤ 136CF,2

√
nηn. �

A.4 Proof of Theorem 4.2

First, we prove the first result in the theorem. Let ∆i,l = (Ô
(1)
l )>û(1)i,l − ui,l for l = 0, 1, and

∆iu = (∆>
i,0,∆

>
i,1)

>. Denote

Λ̂n,ij = Λ(τ̂n +
1∑

l=0

u>i,l(Ô
(1)
l )>v̂(1)j,l Wl,ij). (33)

Recall that Λn,ij = Λ(τn +
∑1

l=0 u
>
i,lvj,lWl,ij) = Λ(τn +Θ∗

0,ij +Θ∗
1,ijW1,ij). Let

Λ̃n,ij = Λ(ȧn,ij), (34)

where ȧn,ij is an intermediate value that is between τn +Θ∗
0,ij +Θ∗

1,ijW1,ij and

τ̂n +
∑1

l=0 u
>
i,l(Ô

(1)
l )>v̂(1)j,l Wl,ij . Define

φ̂
(1)
ij =

[
(Ô

(1)
0 )>v̂(1)j,0

(Ô
(1)
1 )>v̂(1)j,1W1,ij

]
and Φ̂

(1)
i =

1

n2

∑

j∈I2,j 6=i
φ̂
(1)
ij (φ̂

(1)
ij )>.

Let Λ̃
(1)
ij (µ) = Λ(τ̂n +

∑1
l=0 µ

>
l (Ô

(1)
l )>v̂(1)j,l Wl,ij) and `

(1)
ij (µ) = Yij log(Λ̃

(1)
ij (µ))

+(1− Yij) log(1− Λ̃
(1)
ij (µ)). Define Q̃

(1)
in (µ) = −1

n2

∑
j∈I2,j 6=i `

(1)
ij (µ) . Then,

0 ≥ Q
(0)
in,U (û

(1)
i,0 , û

(1)
i,1 )−Q

(0)
in,U ((Ô

(1)
0 )ui,0, (Ô

(1)
1 )ui,1)

= Q̃
(1)
in (ui,0 +∆i,0, ui,1 +∆i,1)− Q̃

(1)
in (ui,0, ui,1)

≥ −1

n2

∑

j∈I2,j 6=i
(Yij − Λ̂n,ij)(φ̂

(1)
ij )>∆iu

+
1

n2

∑

j∈I2,j 6=i
Λ̂n,ij(1− Λ̂n,ij)

[
exp(−|(φ̂(1)ij )>∆iu|) + |(φ̂(1)ij )>∆iu| − 1

]

≥ −1

n2

∑

j∈I2,j 6=i
(Yij − Λ̂n,ij)(φ̂

(1)
ij )>∆iu

+
c′ζn
n2

∑

j∈I2,j 6=i

[
exp(−|(φ̂(1)ij )>∆iu|) + |(φ̂(1)ij )>∆iu| − 1

]

≥ −1

n2

∑

j∈I2,j 6=i
(Yij − Λ̂n,ij)(φ̂

(1)
ij )>∆iu +

c′ζn
n2

∑

j∈I2,j 6=i

[
((φ̂

(1)
ij )>∆iu)

2

2
−

|(φ̂(1)ij )>∆iu|3
6

]

(35)
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where the second inequality is due to Bach (2010, Lemma 1), the third inequality is due to the fact

that exp(−t) + t− 1 ≥ 0 and Lemma B.3(2), the constant c′ is defined in Lemma B.3, and the last

inequality is due to the fact that exp(−t) + t− 1 ≥ t2

2 − t3

6 . The following argument follows

Belloni et al. (2017). Let

F (∆iu) = Q̃
(1)
in (ui,0 +∆i,0, ui,1 +∆i,1)− Q̃

(1)
in (ui,0, ui,1) +

1

n2

∑

j∈I2,j 6=i
(Yij − Λ̂n,ij)(φ̂

(1)
ij )>∆iu,

which is convex in ∆iu. Let

qin = inf
∆

[
1
n2

∑
j∈I2,j 6=i((φ̂

(1)
ij )>∆)2

]3/2

1
n2

∑
j∈I2,j 6=i((φ̂

(1)
ij )>∆)3

and δin =


 1

n2

∑

j∈I2,j 6=i
((φ̂

(1)
ij )>∆iu)

2



1/2

. (36)

If δin ≤ qin, then 1
n2

∑
j∈I2,j 6=i((φ̂

(1)
ij )>∆iu)

3 ≤ δ2in, and thus F (∆iu) ≥ c′ζn
3 δ2in. On the other

hand, if δin > qin, let ∆̃iu = ∆iuqin
δin

, then
[

1
n2

∑
j∈I2,j 6=i((φ̂

(1)
ij )>∆̃iu)

2
]1/2

≤ qin. Then, we have

F (∆iu) = F (
δin∆̃iu

qin
) ≥ δin

qin
F (∆̃iu) ≥

c′ζnδin
3n2qin

∑

j∈[n],j 6=i
((φ̂

(1)
ij )>∆̃iu)

2 =
c′ζnqinδin

3
.

Therefore, by Lemma B.4,

F (∆iu) ≥ min

(
c′ζnδ2in

3
,
c′ζnqinδin

3

)
≥ min

(
c′cφζnc||∆iu||2

6
,
c′ζnqin

√
cφ||∆iu||

3
√
2

)
. (37)

On the other hand, we have |F (∆iu)| ≤
∣∣∣ 1n
∑

j∈I2,j 6=i(Yij − Λ̂n,ij)(φ̂
(1)
ij )>∆iu

∣∣∣ ≤ Ii + IIi, where

Ii =

∣∣∣∣∣∣
1

n

∑

j∈I2,j 6=i
(Yij − Λn,ij) (φ̂

(1)
ij )>∆iu

∣∣∣∣∣∣
and IIi =

∣∣∣∣∣∣
1

n

∑

j∈I2,j 6=i
(Λ̂n,ij − Λn,ij)(φ̂

(1)
ij )>∆iu

∣∣∣∣∣∣
.

We aim to upper bound Ii and IIi uniformly in i below.

We first bound IIi. Note that

IIi ≤
1

n2

∑

j∈I2,j 6=i
Λ̃n,ij(1− Λ̃n,ij)

(
|τ̂n − τn|+

1∑

l=0

∣∣∣u>i,l((Ô
(1)
l )>v̂(1)j,l − vj,l)Wl,ij

∣∣∣
)
|(φ̂(1)ij )>∆iu|

≤2c′M(1 +MW )ζn||∆iu||
n2cσ

∑

j∈I2,j 6=i

(
|τ̂n − τn|+

1∑

l=0

∣∣∣u>i,l((Ô
(1)
l )>v̂(1)j,l − vj,l)Wl,ij

∣∣∣
)

≤2c′M(1 +MW )ζn||∆iu||
cσ


48CF,1ηn + cII

1∑

l=0

1

n2

∑

j∈I2,j 6=i

∥∥∥(Ô(1)
l )>v̂(1)j,l − vj,l

∥∥∥




≤2c′M(1 +MW )ζn||∆iu||
cσ

[
48CF,1ηn + cII

1∑

l=0

1√
n2

∥∥∥V̂ (1)
l Ô

(1)
l − Vl

∥∥∥
F

]
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≤CII ||∆iu||ζnηn, (38)

where cII =M(1 +MW ), CII = 2c′M(1 +MW )ζn (48CF,1 + 136cIICF,2) c
−1
σ , the first

inequality holds by the Taylor expansion, the second inequality holds by Lemma B.3

max
i,j∈I2,i 6=j

||φ̂(1)ij || ≤ max
i,j∈I2,i 6=j

(
||Ô(1)

0 v̂
(1)
j,0 ||+MW ||Ô(1)

1 v̂
(1)
j,1 ||

)

≤2Mσ−1
K0,0

+ 2MWMσ−1
K1,1

≤ 2M(1 +MW )c−1
σ , (39)

the third inequality is due to Theorem 4.1 and the fact that ||u>i,lWl,ij || ≤ cII , the fourth inequality

is due to Cauchy’s inequality, and the last inequality is due to Theorem 4.1. Note that the constant

CII does not depend on i, the above upper bound for IIi holds uniformly over i.
Next, we turn to the upper bound for Ii. Let Fn be the σ-field generated by

{Xi}ni=1 ∪ {εij}i∈I1,j∈[n],j 6=i ∪ {eij}1≤i,j≤n and Hij = (Yij − Λn,ij)φ̂
(1)
ij . Further note that, for

i ∈ I2, {εij}j∈I2,j 6=i is independent of Fn. Therefore, conditional on Fn, {Hij}j∈I2,j 6=i only

depends on {εij}j∈I2,j 6=i, and thus, is a sequence of independent random vectors. Note that

Ii ≤ || 1
n2

∑
j∈I2,j 6=iHij ||||∆iu||. Let Hk,ij be the k-th coordinate of Hij where k ∈ [K0 +K1] and

An = {max
j∈I2

||(Ô(1)
l )>v̂(1)j,l || ≤ 2Mσ−1

Kl,l
} ∈ Fn.

By Lemma B.3, P(An) → 1. Under An and Assumption 5, we have

max
1≤i,j≤n

|Hk,ij | ≤
[
2M(1 +MW )c−1

σ + 1
]2

(1 + c) ≡ CH (40)

and
∑

j∈I2,j 6=i E(H
2
k,ij |Fn) ≤ CHζnn2. Therefore, by the Bernstein inequality, for any t > 0,

P


max

i∈I2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≥ n2t

∣∣∣∣Fn


 1{An} ≤

∑

i∈I2
2 exp

(
−

n2
2t

2

2

CHζnn2 +
CH tn2

3

)
.

Taking t = 4CH

√
ζn logn

n , we have

P


max

i∈I2

1

n2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≥ t

∣∣∣∣Fn


 1{An} ≤2n2 exp


−

16C2
Hζn lognn2

2
2n

CHζnn2 +
4C2

H

√
ζn logn

n
n2

3




≤ 2n2 exp

(
−8 log n

7

)
≤ n−1.1,

where the second inequality holds because log n/(nζn) ≤ cF < 1 and CH > 1. Then, we have

P


max

i∈I2

1

n2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≥ t


 ≤P


max

i∈I2

1

n2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≥ t,An


+ P(Ac

n)

≤E


P


max

i∈I2

1

n2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≥ t

∣∣∣∣Fn


 1{An}


+ P(Ac

n)
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≤n−1.1 + P(Ac
n) → 0.

This means

max
i∈I2

Ii ≤ max
i∈I2

1

n2

∣∣∣∣∣∣

∑

j∈I2,j 6=i
Hk,ij

∣∣∣∣∣∣
≤ 4CH

√
log nζn
n

w.p.a.1. (41)

Combining (38) and (41), we have

|F (∆iu)| ≤ (4CH + CII)ζnηn||∆iu||. (42)

Then, (37) and (42) imply

(4CH + CII)ζnηn||∆iu|| ≥ min

(
ccφζn‖|∆iu||2

6
,
c
√
cφζnqin||∆iu||

3
√
2

)
. (43)

On the other hand, we have

lim inf
n

min
i∈I2

c′
√
cφζnqin||∆iu||

3
√
2

≥ cσc
′cφζn||∆iu||

24M(1 +MW )
> (4CH + CII)ζnηn||∆iu||,

where the first inequality holds by Lemma B.5 and the second inequality holds due to the fact that

cF is sufficiently small so that

(4CH + CII)(cF + c2F ) <
c′cφcσ

24M(1 +MW )
.

Therefore, (43) implies

||(Ô(1)
l )>û(1)i,l − ui,l|| ≤ ||∆u|| ≤

6(4CH + CII)

ccφ
ηn ≡ C∗

1ηn w.p.a.1. (44)

Because the constant C∗
1 does not depend on index i, the above inequality holds uniformly over

i ∈ I2.

Now, we prove the second result in the theorem. The proof follows that of the first result with a

notable difference: the regressors {û(1)i,l }i∈I2,l=0,1 obtained from the previous step are not

independent of the observations {Yij} given the covariates. Thus, the conditional Bernstein

inequality argument above cannot be used again. Recall that

(v̇
(0,1)
j,0 , v̇

(0,1)
j,1 ) = argminQ

(0)
jn,V (ν0, ν1),

where Q
(0)
jn,V (ν) with ν = (ν>0 , ν

>
1 )

> is defined in Section 3.1.2. Let

Λ̃
(0)
ij (ν) = Λ(τ̂n +

1∑

l=0

ν>l (Ô
(1)
l )>û(1)i,l Wl,ij)

and

`
(0)
ij (ν) = Yij log(Λ̃

(0)
ij (ν)) + (1− Yij) log(1− Λ̃

(0)
ij (ν)).
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Define Q̃
(0)
jn,V (ν) =

−1
n2

∑
j∈I2,j 6=i `

(1)
ij (ν) . Then

Q
(0)
jn,V (ν0, ν1) = Q̃

(0)
jn,V ((Ô

(1)
0 )>ν0, (Ô

(1)
1 )>ν1).

Recall that Λn,ij = Λ(τn +
∑1

l=0 u
>
i,lvj,lWl,ij) = Λ(τn +Θ∗

0,ij +Θ∗
1,ijW1,ij). Let

Λ̇n,ij = Λ(τ̂n +
∑1

l=0 v
>
j,l(Ô

(1)
l )>û(1)i,l Wl,ij) and Λ̃n,ij = Λ(ȧn,ij), where ȧn,ij is an intermediate

value that is between τn +Θ∗
0,ij +Θ∗

1,ijW1,ij and τ̂n +
∑1

l=0 v
>
j,l(Ô

(1)
l )>û(1)i,l Wl,ij . Define

ψ̇ij =

[
(Ô

(1)
0 )>û(1)i,0

(Ô
(1)
1 )>û(1)i,1W1,ij

]
and Ψ̇j =

1

n2

∑

i∈I2,i 6=j
ψ̇ij(ψ̇ij)

>.

Let ∆jv ≡ (∆>
j,0,∆

>
j,1)

>, where ∆j,l = (Ô
(1)
l )>v̇(0,1)j,l − vj,l for l = 0, 1. Then we have

0 ≥Q(0)
jn,V (v̇

(0,1)
j,0 , v̇

(0,1)
j,1 )−Q

(0)
jn,V ((Ô

(1)
0 )>vj,0, (Ô

(1)
1 )>vj,1)

=Q̃
(0)
jn,V ((Ô

(1)
0 )>v̇(0,1)j,0 , (Ô

(1)
1 )>v̇(0,1)j,1 )− Q̃

(0)
jn,V (vj,0, vj,1)

≥−1

n

∑

i∈I2,i 6=j
(Yij − Λ̇n,ij)(ψ̇ij)

>∆v +
c′ζn
n

∑

i∈I2,i 6=j

[
((ψ̇ij)

>∆v)
2

2
− |(ψ̇ij)>∆v|3

6

]
.

By the first result that maxi∈I2 ||(Ô
(1)
l )>û(1)i,l − ui,l|| ≤ C∗

1ηn, we have

max
i∈I2

||(Ô(1)
l )>û(1)i,l Wl,ij || ≤MW max

i∈I2

[
||(Ô(1)

l )>û(1)i,l − ui,l||+ ||ui,l||
]
≤MW (C∗

1ηn+M) <∞.

Therefore, similar to (52), we have

||Ψ̇j −Ψj(I2)|| ≤
2MW (C∗

1ηn +M)

n

1∑

l=0

∑

i∈I2
||(Ô(1)

l )>û(1)i,l − ui,l||

≤MW (C∗
1ηn +M)C∗

1ηn w.p.a.1.

As cF is sufficiently small so that MW (C∗
1ηn +M)C∗

1 (cF + c2F ) ≤ cφ/2 can be ensured and

Assumption 7 holds, we have minj∈[n] λmin(Ψ̇j) ≥ cφ/2 w.p.a.1.
Let

F (∆jv) = Q̃
(0)
jn (vj,0 +∆j,0, vj,1 +∆j,1)− Q̃

(0)
jn (vj,0, vj,1) +

1

n

∑

i∈I2,i 6=j
(Yij − Λ̇n,ij)(ψ̇ij)

>∆jv.

Following the same argument in the proof of Theorem 4.2, we have

F (∆jv) ≥ min

(
c′cφζnc||∆jv||2

6
,
c′ζnqjn

√
cφ||∆jv||

3
√
2

)
,

where qjn = inf∆

[
1
n2

∑
i∈I2,i 6=j((ψ̇ij)

>∆)2
]3/2

1
n2

∑
i∈I2,i 6=j((ψ̇ij)>∆)3

. For the upper bound of F (∆jv), we can show that

F (∆jv) ≤

∣∣∣∣∣∣
1

n2

∑

i∈I2,i 6=j
(Yij − Λn,ij) (ψ̇ij)

>∆jv

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

n2

∑

i∈I2,i 6=j
(Λ̇n,ij − Λn,ij)(ψ̇ij)

>∆jv

∣∣∣∣∣∣
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≡ Ĩj + ĨIj .

We first bound ĨIj . Following Lemma B.3(1), we have

||v>j,l(Ô
(1)
l )>û(1)i,l Wl,ij || . ||(Ô(1)

l )>û(1)i,l − ui,l||+ ||ui,l|| ≤ C <∞.

Then, by the same argument in the proof of Lemma B.3(2), we have

c′ζn ≥ Λ̇n,ij ≥ c′ζn and c′ζn ≥ Λ̃n,ij ≥ c′ζn,

for some constants ∞ > c′ > c′ > 0. Following (38) and by noticing that
1
n2

∑
i∈I2,i 6=j ||(Ô

(1)
l )>û(1)i,l − ui,l|| ≤ C∗

1ηn, we have

ĨIj ≤ C ′
IIζnηn||∆jv||, (45)

for some constant C ′
II > 0.

The analysis of Ĩj is different from that of Ii as we no longer have the independence between ψ̇ij

and Yij − Λn,ij given {W1,ij}1≤i<j≤n. Instead, we let ψij =

[
ui,0

ui,1W1,ij

]
. Note that ψij is

deterministic given {W1,ij}1≤i<j≤n. In addition, maxi,j∈[n],i 6=j ||ψ̇ij − ψij || ≤ (1 +MW )C∗
1ηn.

Therefore,

Ĩj ≤



∥∥∥∥∥∥
1

n2

∑

i∈I2,i 6=j
(Yij − Λn,ij)ψij

∥∥∥∥∥∥
+

1

n2

∑

i∈I2,i 6=j
|Yij − Λn,ij | ||ψ̇ij − ψij ||


 ||∆jv||.

For the first term in the square brackets, by the conditional Bernstein inequality given

{W1,ij}1≤i<j≤n, we have

max
j∈[n]

∥∥∥∥∥∥
1

n2

∑

i∈I2,i 6=j
(Yij − Λn,ij)ψij

∥∥∥∥∥∥
≤ C ′

H

√
log nζn
n

w.p.a.1, (46)

where C ′
H = 4(1 + c)2 [CuCσ(MW + 1) + 1]4. For the second term in the square brackets, we

have

1

n2

∑

i∈I2,i 6=j
|Yij − Λn,ij | · ||ψ̇ij − ψij ||

≤ (1 +MW )C∗
1ηn

n2

∑

i∈I2,i 6=j
|Yij − Λn,ij |

≤ (1 +MW )C∗
1ηn


 1

n2

∑

i∈I2,i 6=j
(Yij − Λn,ij) +

2

n2

∑

i∈I2,i 6=j
Λn,ij




≤ (1 +MW )C∗
1ηn

(
4c

√
ζn log n

n
+ 2cζn

)

≤ 3(1 +MW )cC∗
1ηnζn,
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where the second last inequality is due to the Bernstein inequality and Assumption 5, and the last

inequality holds because 4
√

logn
nζn

≤ 4cF ≤ 1.

Combining the two estimates, we have uniformly in j and

Ĩj ≤
(
C ′
H

√
log n

nζn
+ 3(1 +MW )cC∗

1

)
ηnζn||∆v|| ≤ 4(1 +MW )cC∗

1ηnζn||∆jv|| w.p.a.1,

where the last inequality holds because cF is sufficiently small so that

C ′
H(cF + c2F ) ≤ (1 +MW )cC∗

1 .

Combining the upper and lower bounds for F (∆jv), we have, w.p.a.1,

[4(1 +MW )cC∗
1 + C ′

II ]ηnζn||∆jv|| ≥ min

(
c′cφζnc||∆jv||2

6
,
c′ζnqjn

√
cφ||∆jv||

3
√
2

)
. (47)

By the same argument in Lemma B.5, we have

qjn ≥ inf
∆

√√√√
c2σ
n

∑
i∈I2,i 6=j((ψ̇ij)

>∆)2

16(1 +MW )2M2||∆||2 ≥ cσ
√
cφ/2

4(1 +MW )M
> 0.

In addition, because cF can be made sufficiently small to ensure

(4(1 +MW )cC∗
1 + C ′

II)(cF + c2F ) <
cσc′

√
cφ

24(1+MW )M , we have

(4(1 +MW )cC∗
1 + C ′

II)ηnζn||∆jv|| ≤ (4(1 +MW )cC∗
1 + C ′

II)(cF + c2F )ζn||∆jv||

<
cσc

′cφζn||∆jv||
24(1 +MW )M

≤
c′
√
cφζnqjn||∆jv||

3
√
2

.

Then, (47) implies

||∆jv|| ≤
6(4(1 +MW )cC∗

1 + C ′
II)

c′cφc
ηn ≡ C0,vηn w.p.a.1. (48)

Note the constant C0,v on the right hand side does not depend on j so that the desired result holds

uniformly over j ∈ [n]. �

A.5 Proof of Theorem 4.3

We can establish the desired results by induction. Given

maxj∈[n] ||(Ô(1)
l )>v̇(h−1,1)

j,l − vj,l|| ≤ Ch−1,vηn w.p.a.1, we can readily show that

max
i∈[n]

||(Ô(1)
l )>u̇(h,1)i,l − ui,l|| ≤ Ch,uηn.

Then, given maxi∈[n] ||(Ô(1)
l )>u̇(h,1)i,l − ui,l|| ≤ Ch,uηn w.p.a.1, we can show that

max
j∈[n]

||(Ô(1)
l )>v̇(h,1)j,l − vj,l|| ≤ Ch,vηn.

As the regressors in both iteration steps have the uniform bound, the proof of Theorem 4.3 is

similar to that of the second result in Theorem 4.2, and is thus omitted for brevity. �
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A.6 Proof of Theorem 5.1

Let v∗j =

(
(Ô

(1)
1 vj,1)

>

||Ô(1)
1 vj,1||

,
(Ô

(2)
1 vj,1)

>

||Ô(2)
1 vj,1||

)>
. Then we have

||vj − v∗j || ≤
∥∥∥∥∥
v̇
(H,1)
j,1

||v̇(H,1)j,1 ||
− Ô

(1)
1 vj,1

||Ô(1)
1 vj,1||

∥∥∥∥∥+
∥∥∥∥∥
v̇
(H,2)
j,1

||v̇(H,2)j,1 ||
− Ô

(2)
1 vj,1

||Ô(2)
1 vj,1||

∥∥∥∥∥

=

∥∥∥∥∥
(Ô

(1)
1 )>v̇(H,1)j,1

||(Ô(1)
1 )>v̇(H,1)j,1 ||

− vj,1
||vj,1||

∥∥∥∥∥+
∥∥∥∥∥

(Ô
(2)
1 )>v̇(H,2)j,1

||(Ô(2)
1 )>v̇(H,2)j,1 ||

− vj,1
||vj,1||

∥∥∥∥∥

≤
2
∥∥∥(Ô(1)

1 )>v̇(H,1)j,1 − vj,1

∥∥∥

||(Ô(1)
1 )>v̇(H,1)j,1 ||

+
2
∥∥∥(Ô(2)

1 )>v̇(H,2)j,1 − vj,1

∥∥∥

||(Ô(2)
1 )>v̇(H,2)j,1 ||

≤ 4CH,vηn
||vj,1|| − CH,vηn

≤ 5C
−1/2
1 CH,vηn, (49)

where the last inequality is due to the fact that ||vj,1|| ≥ C
−1/2
1 and

CH,vηn ≤ CH,v(cF + c2F ) ≤ C
−1/2
1 /5 as cF can be made sufficiently small. In addition, by

Lemma 2.1, for zi 6= zj ,

||v∗j − v∗i || =



∥∥∥∥∥
Ô

(1)
1 vi,1

||Ô(1)
1 vi,1||

− Ô
(1)
1 vj,1

||Ô(1)
1 vj,1||

∥∥∥∥∥

2

+

∥∥∥∥∥
Ô

(2)
1 vi,1

||Ô(2)
1 vi,1||

− Ô
(2)
1 vj,1

||Ô(2)
1 vj,1||

∥∥∥∥∥

2


1/2

(50)

=

[∥∥∥∥
vi,1

||vi,1||
− vj,1

||vj,1||

∥∥∥∥
2

+

∥∥∥∥
vi,1

||vi,1||
− vj,1

||vj,1||

∥∥∥∥
2
]1/2

= 2. (51)

Given (49) and (50), the result of Theorem 5.1 is a direct consequence of Su et al. (2020, Theorem

II.3). In particular, we only need to verify their Assumption 4 holds with c1n = 2,

c2n = 5C
−1/2
1 CH,vηn, and M = 2. Note when cF is sufficiently small,

2(5C
−1/2
1 c

1/2
1 CH,vηn)

1/2 ≤ 2
[
5C

−1/2
1 c

1/2
1 CH,v(cF + c2F )

]1/2
≤ K

3/4
1

√
2.

Then their Assumption 4 holds as

(2c2nc
1/2
1 + 16K

3/4
1 M1/2c

1/2
2n )2 ≤ (17K

3/4
1 M1/2c

1/2
2n )2 = 1734K

3/2
1 C

−1/2
1 CH,vηn

≤ 1734K
3/2
1 C

−1/2
1 CH,v(cF + c2F ) ≤ 2c1

when cF is sufficiently small. �

Appendix B. Some Technical Lemmas

Lemma B.1 Let CΥ be an sufficiently large and fixed constant. Suppose that the assumptions in

Theorem 4.1 hold. Then

max
l=0,1

||Υl||op ≤ CΥMW (
√
ζnn+

√
log n) w.p.a.1.
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Proof. Let C = {Xi}ni=1 ∪ {eij}1≤i<j≤n and rn = CΥMW

√
log(n)ζnn for some sufficiently

large constant CΥ whose value will be determined later. In addition, we augment the n1 × n matrix

Υl to a symmetric n× n matrix Υl with (i, j)-th entry

Υl,ij =





Υl,ij if i ∈ I1, j = 1, · · · , n
Υl,ji if j ∈ I1, i ∈ [n]/I1

0 if i /∈ I1, j /∈ I1.

Then, by construction, ||Υl||op ≤ ||Υl||op. Therefore,

P(max
l=0,1

||Υl||op ≥ rn) ≤2max
l=0,1

P(||Υl||op ≥ rn) ≤ 2max
l=0,1

E [P(||Υl||op ≥ rn|C)]

≤2max
l=0,1

E
[
P(||Υl||op ≥ rn|C)

]
.

Next, we bound P(||Υl||op ≥ rn|C). Recall

I1 = {(i, j) ∈ I1 × I1, j > i} ∪ {(i, j) : i ∈ I1, j /∈ I1}. Given C, the only randomness of Υl

comes from {εij}(i,j)∈I1×[n], which is an i.i.d. sequence of logistic random variables. In addition,

{εij}(i,j)∈I1×[n] is independent of C,

σ̃2 ≡ max
i∈[n]

E

(
n∑

l=1

Υ
2
l,ij |C

)
≤ max

i∈[n]

n∑

j=1

Λn,ijM
2
W ≤ cM2

Wnζn

and |Υl,ij | ≤MW . Then, by Bandeira and van Handel (2016, Corollary 3.12 and Remark 3.13),

there exists a universal constant c̃ such that

P

(
||Υl||op ≥ 3

√
2σ̃ + t|C

)
≤ n exp

(
− t2

c̃M2
W

)
.

Choosing t = 3
√
c̃MW , we have

2P
(
||Υl||op ≥ 3MW

√
2cnζn + 3

√
c̃ log(n)MW |C

)
≤ n−1.1,

and thus,

||Υl||op ≤ 3MW (
√

2cnζn +
√
c̃ log(n)) ≤ CΥMW (

√
nζn +

√
log(n)) w.p.a.1. �

Lemma B.2 Suppose M ≥ t ≥ 0, then Then exp(−t) + t− 1 ≥ t2

4(M∨log(2)) .

Proof. First, suppose M ≥ log(2). Let f(t) = exp(−t) + t− 1− t2

4M . Then,

f ′(t) = 1− exp(−t)− t
2M . We want to show f ′(t) ≥ 0 for t ∈ [0,M ]. This implies that

mint∈[0,M ] f(t) = f(0) = 0. Note that

f ′(M) = 0.5− exp(−M) ≥ 0.

In addition, we note that f ′(t) is concave so that for any t ∈ [0,M ],

f ′(t) ≥ f ′(M)t

M
≥ 0.
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This leads to the desired result.

Next, suppose M < log(2). Then, we have

exp(−t) + t− 1 ≥ t2

2
− t3

6
≥ (3− log(2))t2

6
≥ t2

4 log(2)
.

This concludes the proof. �

Lemma B.3 Suppose that the Assumptions in Theorem 4.1 hold. Then, w.p.a.1,

1. maxj∈I2 ||(Ô
(1)
l )>v̂(1)j,l || ≤ 2Mσ−1

Kl,l
;

2. There exist some constants ∞ > c′ > c′ > 0 such that

c′ζn ≥ Λ̂n,ij ≥ c′ζn and c′ζn ≥ Λ̃n,ij ≥ c′ζn,

where Λ̂n,ij and Λ̃n,ij are defined in (33) and (34), respectively.

Proof. 1. Note that

||(Ô(1)
l )>v̂(1)j,l || =||v̂(1)j,l || ≤ σ̂−1

Kl,l
||Σ̂(1)

l v̂
(1)
j,l ||

=n−1/2σ̂−1
Kl,l

∥∥∥[(Û (1)
l )>Θ̂(1)

l ]·j
∥∥∥ ≤ n−1/2σ̂−1

Kl,l

∥∥∥[Θ̂(1)
l ]·j

∥∥∥ ≤ 2Mσ−1
Kl,l

,

where the first equality holds because Ô
(1)
l is unitary, the second equality holds because

n−1/2(Û (1)
l )>Θ̂(1)

l = Σ̂
(1)
l

√
n(V̂(1)

l )> ≡ Σ̂
(1)
l (V̂

(1)
l )>,

the second inequality holds because ||Û (1)
l ||op ≤ 1, and the last inequality holds because

|Θ̂l,ij | ≤M by construction and that by Theorem 4.1 and the fact that cF is sufficiently small so

that 48CF,1ηn ≤ σKl,l/2, and thus,

|σ̂−1
Kl,l

− σ−1
Kl,l

| ≤ |σ̂Kl,l − σKl,l|
σKl,l(σKl,l − |σ̂Kl,l − σKl,l|)

≤ σ−1
Kl,l

w.p.a.1.

As the constant M does not depend on j, the result holds uniformly over j = 1, · · · , n.

2. By Theorem 4.1 and the previous result,

∣∣∣∣∣τ̂n +
1∑

l=0

u>i,l(Ô
(1)
l )>v̂(1)j,l Wl,ij − τn

∣∣∣∣∣ ≤ |τ̂n − τn|+
∣∣∣∣∣

1∑

l=0

u>i,l(Ô
(1)
l )>v̂(1)j,l Wl,ij

∣∣∣∣∣ ≤ 30CF,1ηn + C,

and thus, there exist some constants ∞ > c′ > c′ > 0 such that

c′ζn ≥ Λ̂n,ij ≥ c′ζn.

For the same reason, we have c′ζn ≥ Λ̃n,ij ≥ c′ζn. �
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Lemma B.4 Suppose Assumptions 1–6 hold. Recall that

Φ̂
(1)
i =

1

n2

∑

j∈I2,j 6=i

[
(Ô

(1)
0 )>v̂(1)j,0

(Ô
(1)
1 )>v̂(1)j,1W1,ij

][
(Ô

(1)
0 )>v̂(1)j,0

(Ô
(1)
1 )>v̂(1)j,1W1,ij

]>
.

Then, for the constant cφ defined in Assumption 6,

min
i∈I2

λmin(Φ̂
(1)
i ) ≥ cφ/2 w.p.a.1.

Proof. By Lemma B.3(1), ||(Ô(1)
l,U )

>v̂(1)j,l || ≤ 2Mσ−1
Kl,l

for l = 0, 1. Then, we have, w.p.a.1,

||Φ̂(1)
i − Φi(I2)|| ≤

4M

n2

1∑

l=0

∑

j∈I2
σ−1
Kl,l

||(Ô(1)
l )>v̂(1)j,l − vj,l||

≤4M

1∑

l=0

σ−1
Kl,l

n
−1/2
2 ||V̂lÔ(1)

l − Vl||F

≤1088
√
2MCF,2c

−1
σ ηn, (52)

where the second inequality holds due to Cauchy’s inequality, and the last inequality holds due to

Theorem 4.1. As cF is sufficiently small so that 1088
√
2MCF,2c

−1
σ (cF + c2F ) ≤ cφ/2, we have,

w.p.a.1,

min
i∈I2

λmin(Φ̂
(1)
i ) ≥ min

i∈I2
λmin(Φi(I2))−

(
544(

√
K0 +

√
K1)CσMCF,1c

−3
σ

)
ηn ≥ cφ/2 �

Lemma B.5 Let qin be defined in (36). Suppose that Assumptions 1–6 hold. Then,

lim inf
n

min
i∈I2

qin ≥
√
cφ/2cσ

4M(1 +MW )
> 0 w.p.a.1,

where c and M are two constants in Assumption 6 and Lemma B.3, respectively.

Proof. Note

qin ≥ inf
∆

√√√√c2σ
1
n2

∑
j∈I2,j 6=i((φ̂

(1)
ij )>∆)2

16M2(1 +MW )2||∆||2 ≥ cσ lim infnmini∈I2 λmin(Φ̂
(1)
i )

4M(1 +MW )
≥

√
cφ/2cσ

4M(1 +MW )
> 0,

where the first inequality is due to Lemma B.3(1) and the second inequality is due to Lemma B.4.

�

Appendix C. Proof of Theorem 6.1

Theorem 6.1 is the direct consequence of Graham (2017, Theorem 1). Note that Assumptions 1–3

in Graham (2017) hold in our setup. Although Graham (2017) requires that Wl,ij = gl(Xi, Xj),
his proof remains valid if we have Wl,ij = gl(Xi, Xj , eij) for some i.i.d. random variable eij such

that eij = eji and eij ⊥⊥ (Xi, Xj , εij). In addition, Assumption 4(i)-(ii) in Graham (2017) hold as

we have nζn = Ω(log n). His Assumption 4(iii) is the same as our Assumption 9. �
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Appendix D. Proof of Theorem 6.2

Let B = vech(B∗) + u(n2ζn)
−1/2 for some K × 1 vector u. Then, by the change of variables, we

have û =
√
n2ζn(B̂ − vech(B∗)) and

û = argmax
u

[
Qn

(
vech(B∗) + u(n2ζn)

−1/2
)
−Qn(vech(B∗))

]
.

We divide the proof into two steps. In the first step, we show that for each u,

Qn

(
vec(B∗) + u(n2ζn)

−1/2
)
−Qn(vec(B∗)) + υ>n u− u>Hu

2
= op(1), (53)

where υn = Op(1) and H is positive definite. Then, by noticing that Qn
(
vec(B∗) + u(n2ζn)

−1/2
)

is convex in u, we can apply the convexity lemma of Pollard (1991) and conclude that

û−H−1υn = op(1). (54)

In the step second, we derive the asymptotic distribution of H−1υn.

Step 1. By Taylor expansion,

Qn

(
vec(B∗) + u(n2ζn)

−1/2
)
−Qn(vec(B∗))

=− 1√
n2ζn

∑

1≤i<j≤n
(Yij − Λn,ij)ω

>
iju+

1

2
u>

1

n2ζn

∑

1≤i<j≤n
Λn,ij(ũ)(1− Λn,ij(ũ))ωijω

>
iju

≡− υ>n u+
1

2
u>Hnu,

where Λn,ij = Λn,ij(0), ũ is between 0 and u, and the definitions of υn and Hn are evident. By

Assumption 10, Hn
p−→ H. In addition, Eυn = E(E(υn|ωij)) = 0 and Var(υn) <∞, implying

that υn = Op(1). Therefore, we have established (53), and thus (54).

Step 2. H is positive definite by Assumption 10. Noting that, {εij}1≤i<j≤n ⊥⊥ {W1,ij}1≤i<j≤n,

and {εij}1≤i<j≤n is independent across (i, j), we have

1

n2ζn
E

[
(Yij − Λn,ij)

2ωijω
>
ij |{W1,ij}1≤i<j≤n

]
=

1

n2ζn

∑

1≤i<j≤n
Λn,ij(1− Λn,ij)ωijω

>
ij

p−→ H,

and for any ε > 0, there exists n0 sufficiently large so that for all n ≥ n0 and k ∈ [K],

1

n2ζn

∑

1≤i<j≤n
E

[
(Yij − Λn,ij)

2ω2
k,ij1{|(Yij − Λn,ij)

2ω2
k,ij | ≥

√
n2ζnε}

]

≤M2
W1{M2

W ≥
√
n2ζnε} = 0,

where ωk,ij denotes the k-th element of ωij . Therefore, by the Lindeberg-Feller central limit

theorem, υn  N (0,H) conditionally on {W1,ij}1≤i<j≤n. As H is deterministic, the above weak

convergence holds unconditionally too. Therefore, û N (0,H−1) = Op(1). In addition, by

Assumption 10,

1

n2ζn
Ĥn =

1

n2ζn

∑

1≤i<j≤n
Λn,ij(û)(1− Λn,ij(û))ωijω

>
ij

p−→ H.

It follows that Ĥ−1/2
n (B̂−vec(B∗)) N (0, IK). �
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Appendix E. Algorithm for the Nuclear Norm Regularization

We apply the optimization algorithm proposed in Cabral et al. (2013) to obtain the nuclear norm

penalized estimator given in (12). For any given rl ≥ Kl and rl ≤ n, Γl can be written as

Γl = UlV
>
l , where Ul ∈ R

n×rl and Vl ∈ R
rl×n, for l = 0, ..., p. We consider the optimization

problem:

Q(1)
n (Γ) +

λ
(1)
n

2

p∑

l=0

γl(||Ul||2F + ||Vl||2F ), (55)

where Γ = (Γl, l = 0, ..., p), and

Q(1)
n (Γ) =

∑

i∈I1,j∈[n],i 6=j

[
−Yij(W>

ij Γij) + log{1 + exp(W>
ij Γij)}

]
,

subject to Γl = UlV
>
l for l = 0, ..., p. Let λ

(1)
n = Cλ(

√
ζnn+

√
log n).

Let Γ∗
l for l = 0, ..., p be an optimal solution of (12) with rank(Γ∗

l ) = K∗
l . Cabral et al. (2013)

shows that any solution Γl = UlV
>
l for l = 0, ..., p of (55) with rl ≥ K∗

l is a solution of (11). Next

we apply the Augmented Lagrange Multiplier (ALM) method given in Cabral et al. (2013) to solve

(55). The augmented Lagrangian function of (55) is

Q(1)
n (Γ) +

λ
(1)
n

2

p∑

l=0

γl(||Ul||2F + ||Vl||2F ) +
p∑

l=0

〈
∆l,Γl − UlV

>
l

〉
+
ρ

2

p∑

l=0

||Γl − UlV
>
l ||2F ,

where ∆l are Lagrange multipliers and ρ is a penalty parameter to improve convergence.

1. At step m+ 1, for given (Uml , V
m
l ,∆m

l ,Θ
m, l = 0, ..., p), (Γm+1) minimizes

Ln(Γ) = Q(1)
n (Γ) +

p∑

l=0

〈
∆m
l ,Γl − Uml V

m>
l

〉
+
ρ

2

p∑

l=0

||Γl − Uml V
m>
l ||2F + C.

Moreover, for i ∈ I1, j ∈ [n] , i 6= j,

∂Ln(Γ)

∂Γl,ij
= (µij − Yij)Wl,ij +∆m

l,ij + ρ(Θl,ij − V m>
l,ij U

m
l,ij),

where µij = exp(
∑1

l=0Wl,ijΓl,ij){1 + exp(
∑1

l=0Wl,ijΓl,ij)}−1, and

∂2Ln(Γ)

∂Γ2
l,ij

= µij(1− µij)W
2
l,ij + ρ,

∂2Ln(Γ)

∂Γl,ijΓl′,ij
= µij(1− µij)Wl,ijWl′,ij , for l 6= l′

For i = j ∈ I1,
∂Ln(Γ)

∂Γl,ij
= ∆m

l,ij + ρ(Γl,ij − V m>
l,ij U

m
l,ij),
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∂2Ln(Γ0,Γ1)
∂Γ2

l,ij
= ρ and

∂2Ln(Γ0,Γ1)
∂Γl,ijΓl′,ij

= 0. Then,

Γm+1 = −(
∂2Ln(Γ

m)

∂ΓijΓ>
ij

)−1(
∂Ln(Γ

m)

∂Γij
) + Γm,

where Γij = (Γ0,ij , ...,Γp,ij)
>. Update

Γ
m+1

l,ij = Γ
m+1

l,ij I{|Γ
m+1

l,ij | ≤ log n}+ log nI{|Γm+1

l,ij | > log n}.

2. For given (Uml , V
m
l ,∆m

l ,Γ
m+1, l = 1, 2), Um+1

l minimizes

λ
(1)
n

2

1∑

l=0

γl(||Ul||2F + ||V m
l ||2F )+

1∑

l=0

〈
∆m
l ,Γ

m+1
l − UlV

m>
l

〉
+
ρ

2
||Γm+1

l −UlV m>
l ||2F +C.

Then

Um+1
l = (∆m

l + ρΓm+1
l )V m

l (λ(1)n γlIrl + ρV m>
l V m

l )−1.

Similarly, V m+1
l = (∆m

l + ρΓm+1
l )>Um+1

l (λ
(1)
n γlIrl + ρUm+1>

l Um+1
l )−1.

3. Let ∆m+1
l = ∆m

l + ρ(Θm+1
l − Um+1

l V m+1>
l ).

4. Let ρ = min(ρµ, 1020).
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