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Abstract

Embedding tables dominate industrial-scale recommendation model sizes, using
up to terabytes of memory. A popular and the largest publicly available machine
learning MLPerf benchmark on recommendation data is a Deep Learning Recom-
mendation Model (DLRM) trained on a terabyte of click-through data. It contains
100GB of embedding memory (25+Billion parameters). DLRMs, due to their sheer
size and the associated volume of data, face difficulty in training, deploying for
inference, and memory bottlenecks due to large embedding tables. This paper
analyzes and extensively evaluates a generic parameter-sharing setup (PSS) for
compressing DLRM models. We show theoretical upper bounds on the learnable
memory requirements for achieving approximations to the embedding table. Our
bounds indicate exponentially fewer parameters suffice for a good approxima-
tion. To this end, we demonstrate a PSS DLRM reaching 10000× compression
on criteo-tb without losing quality. Such a compression, however, comes with a
caveat. It requires 4.5 × more iterations to achieve the same saturation quality. The
paper argues that this tradeoff needs more investigation as it might be significantly
favorable. Leveraging the small size of the compressed model, we show a 4.3×
improvement in training latency leading to similar overall training times. Thus,
in the tradeoff between the system advantage of a small DLRM model vs. slower
convergence, we show that scales are tipped towards having a smaller DLRM
model, leading to the same quality, faster inference, easier deployment, and similar
training times.

1 Introduction

Recently, recommendation systems have emerged as one of the largest workloads in machine learning
[1]. Recommendation systems form the backbone of a good user experience on online platforms such
as e-commerce and web search, where there is a flood of information. Thus, considerable effort goes
into building recommendation systems. Deep learning recommendation models give a state-of-the-art
performance. However, recommendation models suffer from a critical challenge - sparse features
with millions of categorical values[2, 3] These state-of-the-art [2, 4, 5, 6, 7, 8] methods learn a dense
representation of the categorical values in a parameter structure called embedding table.

Most parameters in recommendation models come from embedding tables. For example, in the
popular Criteo-tb MLPerf benchmark model, the embedding tables are around 100GB, whereas other
parameters only amount to 10MB. Industrial-scale recommendation models are one of the largest
models built, and the size of the embedding table can go as large as hundreds of terabytes. For
example, a research article from Facebook discusses training a model of size 50TB over 128 GPUs [3].
The scale of these models leads to some unfavorable effects - slower inference time, slower training
time per iteration, and significant engineering challenges in training/deployment. In light of these
issues, many works have investigated learning of compressed representation of embedding tables
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using various principles : (1) compositional embeddings [9] (2) exploiting power-law in the observed
frequencies of tokens [10, 11, 12, 13, 14, 15] (3) low-rank decomposition [16], and parameter-sharing
methods [17, 18]. Parameter-sharing methods will be the focus of our paper.

We discuss the tradeoffs of parameter-sharing-based compressed recommendation models in terms of
quality, inference, and training times. The general idea in machine learning has primarily shifted to
larger models and more data. Larger models lead to better capacity, faster convergence, and better
generalization. However, the community is realizing that the current route to DL is unsustainable[19].
We must proceed cautiously on this path of building larger models. The large-scale nature of DLRM
comes from blown-up embedding parameters - a seemingly inadvertent effect of naive usage of
embedding tables. While using large embedding tables gives faster convergence in terms of iterations,
the inference is slow and cumbersome. On the other hand, while compressed embedding tables are
guaranteed to provide faster inference, it must be seen if they will maintain quality and suffer from
slow training times due to slower convergence. In this paper, we make two contributions. First, we
theoretically analyze the existence of low-memory PSS for approximating the embedding tables.
We find that exponentially fewer parameters are required for good approximations. Secondly, we
leverage the system advantage of small models and make hardware-informed implementation choices
to combat their slow convergence. We are able to achieve similar training times for compressed
recommendation models. In our experiments, we obtain high compression for embedding tables.
Additionally, the compressed DLRM models seemingly have no downside in quality and training time
while improving inference latency, requiring simple hardware, and reducing costs. We summarize
our results below.

We analyze two types of approximations to the embedding table E ∶ n × d. Firstly, we look at a
macro-(ϵ, δ) PSS approximation which encapsulates the effect of the entire embedding table inside

the model. Here, we evaluate the preservation of inner products of the form ⟨Ex,Ey⟩, x, y ∈ Rd

under compression. We see that with a memory of O(d(d + log(1/δ))ϵ−2), the embedding table can
be approximated up to ϵ relative error with probability (1 − δ). Secondly, we look at a micro-(ϵ, δ, ρ)
PSS approximation which looks at how individual embeddings are approximated under compression.
Here, we evaluate the preservation of computations of the form ⟨E∥i∥, x⟩ x ∈ Rd. We see that with a
memory ofO(d(log(n)+ log(1/δ))ϵ−2) we can approximate these computations for important (high
norm) embeddings up to an ϵ relative approximation with probability (1 − δ). This result motivates
us to evaluate the extents of compression that can be achieved for embedding tables. We can obtain
10000× compression (10MB embedding tables) on the criteo-tb dataset to achieve the same target
quality - an order of magnitude higher compression than previously reported. This small model
improves inference time, eliminates engineering challenges, and makes the models easy to deploy on
low-resource devices. However, as expected, this 10 MB sized embedding model requires 4.5 epochs
to train.

Consistent with a general observation in machine learning that the number of iterations required to
converge decreases with an increase in parameters, the compressed recommendation models suffer
from slow convergence. We observe that the higher the compression, the slower the convergence.
For instance, a 1000× compressed DLRM model requires 1.9 epochs to converge, while a 10000×
compressed model requires 4.5 epochs to converge. This is worrisome as training times are one
of the significant aspects of the model. However, a highly compressed model completely changes
the storage of model parameters (e.g., multiple nodes to a single node, RAM to GPU, etc.). Hence,
we observe a steep decrease in the latency of embedding lookup/gradient update operations. An
illustration of this tradeoff is presented in figure 1. We investigate how this improvement in latency
compensates for increased training iterations. Unfortunately, existing parameter-sharing methods
do not demonstrate much training time per iteration improvement due to various reasons such as
high algorithmic complexity, poor cache efficiency, and sub-optimal implementation strategies not
cognizant of the underlying hardware. We evaluate various implementation choices and demonstrate
that the advantage of faster training time per iteration almost compensates for the slower convergence
in compressed models. For instance, for a 1000× compressed model, we can lower the training
latency by 1.7×, making the overall training time only 1.1× original model. Similarly, we can improve
the training latency 4.3× for a 10000× compressed model making the overall training time 1.04×

2 Parameter-shared embedding tables

In this section, we analyze the parameter-shared embedding tables. We start with a few definitions.
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Definition 3 (Micro (ϵ, δ, ρ)-PSS). A PSS (M,M) is a Micro (ϵ, δ, ρ)-PSS for an embedding table
E if the following holds with probability (1 − δ),

∀x ∈ Rd
∀i ∈ {0, .., n − 1}, s.t ρ(i) > ρ ∣⟨M(M, i), x⟩ − ⟨E∥i∥, x⟩∣ ≤ ϵ∣∣E∥i∥∣∣2 ∣∣x∣∣2

where ρ(i), the importance factor for embedding i, is defined by,

ρ(i) ≙
∣∣E∥i∥∣∣2
σ(E)

where σ(E) is the maximum singular value of the embedding matrix.

The Micro-PSS captures the effect of compression on each embedding on the model individually.
Note that it is impossible to guarantee good recovery for all the embeddings from the embedding
table. Thus, we define Micro-PSS with an additional parameter ρ, which measures the importance
threshold of embeddings. As we will see, we can guarantee good recovery in logarithmic memory for
embeddings with importance (as defined in the above definition) higher than ρ.

Interestingly, the Micro (ϵ, δ, ρ)-PSS for embedding table E also preserves the pairwise inner products
between the embeddings of different tokens, as is mentioned in the following result.

Theorem 4. Let (M,M) be a Micro (ϵ, δ, ρ)-PSS for embedding table E, we have ,

∀i, j ∈ {0, ..., n−1}, s.t ρ(i), ρ(j) > ρ

∣ ∣⟨M(M, i),M(M,j)⟩ − ⟨E∥i∥,E∥j∥⟩∣ ≤ (ϵ2 + 2ϵ)∣∣E∥i∥∣∣2∣∣E∥j∥∣∣2

Proof. Presented in the appendix

Micro-PSS caters to the practical embedding tables in which a few embeddings are much more
important than a long tail of non-important embeddings. In our formulation, we characterize this
importance by the norm of the embeddings. It has found different manifestations in literature.
For instance, mixed-dimensional embeddings [10, 11, 12, 13, 14, 15] have longer embeddings and
tensor-train recommendation have higher rank for important tokens. In existing methods, we have
to pre-identify the important tokens, which is usually done by looking at the frequencies of their
occurrence in data. On the contrary, in PSS, this happens naturally, and we do not have to identify
these tokens beforehand.

2.1 (ϵ, δ)-PSS via Johnson±Lindenstrauss Transforms (JLT)

This section is dedicated to analyzing the existence of (ϵ, δ)-PSS for embedding tables leveraging
JLT matrix-based sketching. We will use the following definition of JLT from [20]

Definition 5. A randomly generated matrix S ∈ Rk×n is a JLT (ϵ, δ, f) if with probability at least
(1 − δ), for any f -element subset V ⊂ Rn the following holds,

∀v1, v2 ∈ V ∣⟨Sv1, Sv2⟩ − ⟨v1, v2⟩∣ ≤ ϵ∣∣v1∣∣2 ∣∣v2∣∣2

JLT matrices directly give us a bound on the number of parameters required for a Macro (ϵ, δ)-PSS.
It is stated in the following theorem,

Theorem 6. Let the embedding table be E ∈ Rn×d. Consider a matrix S which is JLT (ϵ, δ,9d)).
Then M andM defined by

M≙SE M(M, i)≙(Sei)
⊺(M)

is a Macro(ϵ, δ)-PSS.

Proof. The property of S that we are interested in is called l2-subspace embeddings[20]. We leverage
the result from [20] that JLT (ϵ, δ,9d) is a l2-subspace embedding matrix. More details are in the
appendix

Using independent standard normal variables to instantiate S[20], we can construct a JLT (ϵ, δ,9d)
matrix S of size k × n where k ≙ Ω((d + log(1/δ))ϵ−2). Thus the model size ∣M ∣ ≙ ∣SE∣ is
kd ≙ Ω(d(d + log(1/δ))ϵ−2). Thus, with JLT matrix sketching, we can obtain a Macro-(ϵ, δ)-PSS in
space ∣M ∣ ≙ O(d2ϵ−2). This might be an explanation as to why we can achieve high compression
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in embedding tables. We will discuss the storage cost and execution ofM shortly. However, we
want to note here that we can relax the restrictions on the distribution of S so that the storage cost of
∣M∣ ≙ O(1) and the cost of applyingM is O(kd)

The Macro-PSS does not discuss the individual embedding vector quality; hence, we analyze the
Micro-PSS for embedding tables in the following theorem.

Theorem 7. Let the embedding table be E ∈ Rn×d. Consider a matrix S which is JLT (ρϵ, δ,9d+n))
Then M andM defined by

M≙SE M(M, i)≙(Sei)
⊺(M)

is a Micro (ϵ, δ, ρ)PSS where ei ∈ R
n is a one-hot encoding of integer i (i.e ei∥i∥ ≙ 1 and rest all

elements of ei are 0).

Proof. The complete proof is presented in the appendix. The intuition is that we want to maintain
the computations of the form e⊺iEx, which can be seen as an inner product between ei ∈ R

n and
Ex ∈ Rn. So the inner products between vectors of sets A ≙ {e0, ..., en−1} and column space of E
need to be preserved. Once we observe this, we apply JLT to the set of n discrete points and the
1/2 − net of column space of E, which contains less than 9d points, and get our result.

Using S constructed by standard normal variables [20], we can construct a JLT (ϵρ, δ,9d +n) matrix

S of size k × n where k ≙ Ω((log(9d + n) + log(1/δ))ρ−2ϵ−2). Thus the model size ∣M ∣ ≙ ∣SE∣ is
kd ≙ Ω(d((log(9d + n) + log(1/δ))ρ−2ϵ−2)). Thus, we can obtain a Micro-(ϵ, δ, ρ)-PSS in space
O(max(d, log(n))dϵ−2ρ−2)). Next, we will discuss the storage and execution cost ofM.

Storage of JLT matrices and relaxations. In using PSS in end-to-end training, we would learn the
memory M while keeping the mappingM constant. Thus, unlike in sketching for linear algebra [20],
we care about the costs of (1) storage of learnable parameters ∣M ∣, (2) Cost of storing mapping ∣M∣,
and (3) cost of computingM(M, i). It is clear that using standard normal JLT is not feasible due to
storage of matrix S (≙ kn) will be more expensive than storing E itself! There are a lot of sparse
JLT(ϵ, δ, f) matrices S which will reduce the storage cost of S [21, 22, 23]. [23] showed that the
matrix needs to have a minimum column sparsity of Ω(ϵ−1log(f/δ)log(1/ϵ)) and hence the cost of
storing S while using JLT matrices is lower bounded by Ω(nϵ−1log(f/δ)log(1/ϵ)) which can still be
considerably high. However, the issue with storage costs of S can be alleviated in practice by relaxing
the complete independence condition on entries of S. For example, the JLT matrix (which requires
the same bound on k as given in theorem 7) suggested by [21], which selects each entry to be 0 with
probability 2/3, ±1 with probability 1/6 independently can be generated on-the-fly using universal
hashing. [24] analyze why simpler hash functions can work well with data having enough entropy.
The benefit of using universal hashing is that mappingM can now be stored in O(1) memory. Thus
using the [21] sparse sketching with relaxed independence, we can store JLT (ϵ, δ, f) matrix in
O(1) memory. Thus, total memory for Macro-PSS would be ∣M ∣ + ∣M∣ ≙ O(d2ϵ−2), whereas, total
memory for Micro-PSS would be ∣M ∣+ ∣M∣ ≙ O(d(max(d, log(n)))ϵ−2ρ−2). In both cases, the cost
of applying mappingM to recover an embedding is O(kd).

2.2 Training end-to-end (ϵ, δ) PSS for embedding table E

The above discussion directly gives us an algorithm to compute a (ϵ, δ) PSS from a trained embedding
table E. We just need to compute M ≙ SE and while retrieving an embedding computeM(M, i) ≙
(Sei)

⊺M . We can also directly train an (ϵ, δ) PSS in an end-to-end manner. The idea is to train the

compressed M directly. Thus, we have a matrix of learnable weights M ∈ Rk×d. Let us now look at
how the forward and backward pass of embedding retrieval mappingM looks like

forward(i) ≙ (Sei)
⊺M

The forward function takes an integer i and returns a R1×d array which is embedding of i.

backward(i,∆) ≙ (Sei)∆

The backward pass takes in all the arguments of the forward pass along with the ∆ ∈ R1×d, which are
gradients of loss with respect to the output of the forward pass. We can back-propagate further to W
using the above formulation. The result of the backward pass is a k × d matrix.

If we use a sparse S such as with sparse JLT, we can achieve sparse gradients of W. That is, only a
few W’s gradient entries are non-zero. As we will see in section 3, whether to propagate sparse or
dense gradients is a vital implementation choice. We were able to achieve better training per iteration
by exploiting this choice.

5



Table 1: State of the art in embedding compression on criteo datasets. * are not PSS )

Method Dataset Compression Quality

HashingTrick Crieto Kaggle 4× worse

QR Trick Criteo Kaggle 4× similar/slightly worse

MD Embedding* Criteo Kaggle 16× better/similar

TT-Rec* Criteo kaggle/Criteo TB 112× / 117 × better/simiar

ROBE Criteo Kaggle/Criteo TB 1000× better/similar

2.3 Practical PSS and existing SOTA methods

Existing parameter-sharing based embedding compression methods can also be seen as PSS with
varied distributions over S. We state a few of them below.

• Hashing Trick In this method, entire embeddings for a token i is drawn from a randomly hashed
location. In terms of PSS, we can define the mapping functionMh over a 2D matrixMh ∈ R

k×d

where k < n.

Mh(Mh, i)∥∶∥ ≙Mh∥h(i), ∶∥

where h is a hash function.
• QR decomposition[9]. In this method, embedding for a token i is drawn in chunks from separate

memory vectors. In terms of PSS, we can define the mapping functionMq over, say l, pieces of

2D memory M1,M2, ..Ml ∈ R
k×d/l as follows

Mq({M1,M2, ..Mk}, i)∥j ∗ (d/l) ∶ (j + 1) ∗ (d/l)∥ ≙Mj∥hj(i), ∶∥ (1)

In words, the jth chunk of ith embedding is recovered using the chunk at the location hj(i) in
memory Mr

• HashedNet [17] and ROBE-Z [18] : In HashedNets, authors proposed mapping model weights
randomly into a parameter array. ROBE-Z extended this idea by hashing chunks of embedding
vector instead of individual elements. In terms of PSS, we can define the mapping functionMr

over 1D memory Mr as

Mr(Mr, i)∥j ∗Z ∶ (j + 1) ∗Z∥ ≙Mr∥h(i, j) ∶ h(i, j) +Z∥

That is, the jth chunk of ith embedding is recovered using the chunk at the location h(i, j) from
Mr. Here, h ∶ N2

→ {0, .., ∣Mr ∣} is a hash function. If we set Z ≙ 1, then we get the mapping
function for HashedNet.

We can summarize the state-of-the-art embedding compression in the table 1. Our Micro-PSS theory
suggests that we should be able approximate the embedding table in memory of the order ofO(log(n)).
Thus, it is important to question if 1000× compression is the best compression we can achieve on a
dataset like CriteoTB where we have large (∼400GB sized) embedding tables. As we shall see, one
of the significant roadblocks in aiming to achieve higher compression is training time. The higher the
compression, the more iterations are needed to train the model to a certain quality. In the next section,
we discuss how to overcome this bottle-neck preventing training of highly compressed PSS.

3 Road to 10000× compression with PSS

Table 3 shows the quality of embeddings for the criteo-kaggle dataset over varying compression rates
across different popular recommendation models. We can see that the state-of-the-art compression of
the criteo-kaggle dataset is 1000×. It is a consequence of PSS theory that larger embedding tables
(prevalent in industrial scale recommendation models), such as those for criteo-tb, should obtain
more compression. We aim to study higher compression for large embedding tables and improve
over existing SOTA (1000x).

A significant roadblock in building highly compressed embedding tables is the slow convergence.
Table 3 shows that the number of iterations required to converge increases with higher compression
across different deep-learning recommendation models. Specifically, for 1000× compression, it takes
up to 4× iterations, and for models with 10000× compression, most models do not converge in 15
epochs. If a model does not converge, it is hard to judge if the convergence is too slow or if its capacity
is consumed. In order to be able to train for larger iterations, we should be able to train the highly
compressed models faster. Indeed, we expect some system benefits with highly compressed models,
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Table 2: These experiments are run on a single GPU for a simple embedding lookup and loss is taken
to be sum of all retrieved elements with a batch size of 10240 and embedding dimension=128. ∎
higher latency (worse) ∎ lower latency (better)

(a) forward pass (d) forward pass

nÐ→ 4M 8M 16M 32M 64M 128M 256M 4M 8M 16M 32M 64M 128M 256M

10× 0.40 0.36 0.37 0.37 0.37 0.37 1 0.68 0.75 0.77 0.80 0.92 0.88 0.88

102× 0.31 0.32 0.31 0.25 0.37 0.37 0.36 4 0.55 0.54 0.54 0.54 0.65 0.65 0.65

103× 0.27 0.29 0.30 0.31 0.30 0.32 0.31 16 0.31 0.31 0.31 0.24 0.37 0.37 0.36

104× 0.27 0.27 0.27 0.26 0.28 0.29 0.30 32 0.31 0.31 0.31 0.23 0.37 0.37 0.36
(b) backward pass (sparse = false) (e) backward pass (sparse = false)

10× 2.55 4.81 9.15 17.81 35.10 69.73 1 1.29 1.56 2.02 2.96 4.69 8.15 15.17

102× 0.59 0.83 1.27 2.13 3.85 7.42 14.34 4 0.80 1.07 1.54 2.40 4.13 7.70 14.61

103× 0.35 0.37 0.41 0.54 0.73 1.08 1.78 16 0.58 0.82 1.27 2.12 3.85 7.43 14.34

104× 0.35 0.35 0.34 0.35 0.36 0.40 0.47 32 0.57 0.80 1.27 2.12 3.85 7.42 14.34
(c) backward pass (sparse = true) (f) backward pass (sparse = true)

10× 2.67 2.53 2.52 2.51 2.51 2.52 2.54 1 3.17 3.41 3.56 3.68 3.94 3.98 4.00

102× 2.48 2.58 2.68 2.64 2.66 2.65 2.52 4 2.61 2.64 2.74 2.73 2.91 2.77 2.74

103× 2.56 2.48 2.58 2.56 2.63 2.65 2.53 16 2.50 2.66 2.54 2.53 2.52 2.51 2.53

co
m

p
re

ss
io

n

104× 2.52 2.53 2.45 2.55 2.60 2.54 2.62

ch
u

n
k

si
ze

32 2.48 2.61 2.62 2.50 2.64 2.60 2.50

as shown in figure 1. We find that existing methods cannot train highly compressed embedding tables
because of the implementation choices. We propose the following implementation choices.

Hashing chunks is better than hashing elements: As suggested in [18], we find that hashing chunks
instead of individual elements is indeed helpful in reducing the latency of PSS systems. As shown in
table 2(d,e), both forward and backward passes are affected a lot by chunk sizes. It is also interesting
to note that the effect of chunk sizes diminishes after size 16. Hence, we can choose a chunk size of
32 for hashing.

Dense gradients are suitable for highly compressed PSS Generally, in embedding tables, im-
plementations use sparse gradients. Dense gradients are particularly wasteful in embedding tables,
where in each iteration, only a few weights are involved in the computation. However, the same
does not apply to highly compressed PSS. In the case of PSS, the algorithm for sparse gradient
computation is more involved than that for dense gradients. The algorithms for sparse and dense
gradient computation are specified in algorithm 1. Also, the scatter operation is much faster when the
memory size of embeddings is smaller. Hence, dense gradients work well with higher compressions.
From table 2(b,c), we can see that at higher compression rates, the backward pass is up to 8× faster
with dense gradients as compared to sparse gradients.

Algorithm 1 Backward Pass for PSS

Require: GO ∈ R
B×d, I ∈ RB×d, sparse ∈ {True,False}, M: compressed memory.

▷ GO is the gradient w.r.t output, and I is the mapping matrix showing the locations from
which the output was accessed

Ensure: Gi is gradient w.r.t input.
if sparse then

unique, invIdx← findUnique(I.flatten(), returnInverse ≙ True)
g ← Tensor((unique.shape, ))
g.scatter_add(invIdx,Go.flatten()
Gi ≙ sparseTensor(location ≙ unique,values ≙ g, size ≙M.size)

else if dense then
Gi ← Tensor(M.size)
Gi.scatter_add(0,I.flatten(),Go.flatten())

end if

Forward/Backward kernel optimizations Latency for PSS, and CUDA kernels in general, is very
sensitive to the usage of shared memory, occupancy, and communication between CPU and GPUs.
We also optimize our PSS code to minimize the data movement costs, implement custom kernels to
fuse operations to improve shared memory usage, and optimize CUDA grid sizes to obtain the best
performance.

With the implementation choices mentioned above, we are ready to train a 10000× compressed PSS
for criteo-tb. We implement our PSS using ROBE-style hashing.
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Table 3: Criteo-kaggle: Quality and convergence on of 5 popular models vs. compression. The
standard deviation of all AUC results is within 0.0009. (left) Quality of models for criteo-kaggle
dataset is largely maintained till 1000x compression after which either the convergence is too slow /
capacity of model drops (max 15 epochs) (right) Epochs needed to converge to target AUC set to
minimum of value achieved by original model. (max 15 epochs)

Quality of models (15 epochs max) Epochs to reach target AUC

ORIG 10× 102× 103× 104× Target AUC ORIG 10× 102× 103× 104×
DLRM 0.8031 0.8032 0.8029 0.8048 0.8001 0.8029 1.00 1.52 1.78 2.78 -
DCN 0.7973 0.7982 0.7978 0.7991 0.7967 0.7973 1.00 1.00 1.87 1.93 -

AUTOINT 0.7968 0.7972 0.7968 0.7987 0.7957 0.7968 1.00 1.00 2.00 2.50 14.93
DEEPFM 0.7957 0.7961 0.7953 0.7951 0.7943 0.7951 1.00 1.00 1.00 3.93 -

XDEEPFM 0.8007 0.8016 0.7998 0.7989 0.795 0.7989 1.62 1.50 1.74 3.93 -
FIBINET 0.8016 0.8021 0.8011 0.8011 0.7963 0.8011 1.00 0.93 1.00 2.99 -

4 Experimental results on Criteo datasets

We perform experiments on criteo-kaggle and criteo-tb datasets in order to confirm the following
hypothesis,

1. Theory in section 2 dictates that important embeddings in table (E ∈ Rn×d) can be represented in
memory logarithmic in n. High compression should be possible in these datasets. Specifically,
higher compression should be possible in larger embedding tables.

2. The system advantage of smaller PSS should compensate for the convergence advantage of the
original model.

Datasets: Criteo-kaggle and criteo-tb datasets have 13 integer and 26 categorical features. criteo-
kaggle data was collected over seven days, whereas the criteo-tb dataset was collected over 23 days.
criteo-tb is one of the largest recommendation datasets in the public domains with around 800 million
token values making the embedding tables of size around 400GB. (with d = 128). criteo-kaggle is
smaller and has a 2 GB-sized embedding table. Note that industrial-scale models are much larger
than the DLRM model we talk about here. For example, Facebook recently published a model sized
50TB [3]. One can extrapolate the benefits of PSS to industrial-scale models based on this case study.

Models: Facebook MLPerf DLRM[2] model, available under Apache-2.0 license, for the criteo-tb
dataset, achieves the target AUC (0.8025) with the embedding memory of around 100GB. This model
uses a maximum cap of 40M indices per embedding table, leading to a total of 204M embeddings.
This model cannot be trained on a single GPU (like V100) and is trained using multiple GPUs (4 or
8). For the criteo-tb dataset, we use the DLRM MLPerf model. For criteo-kaggle dataset, we use an
array of state-of-the-art models DLRM[2], DCN[4], AUTOINT[5], DEEPFM [6], XDEEPFM [8]
and FIBINET. We use our PSS implementation described in 3 as a compressed model.

Quality of model vs. Excess parameters: Tables 3(b) and 4(b) show the results for the two datasets
across different values of compression. In table 3(b), we can see that across different models, the
quality of the model is maintained until 1000× compression. As criteo-tb embedding tables are
much larger than the criteo-kaggle dataset, according to the section 2, we should see larger values
of compression. Indeed, we obtain a 10000× compression without loss of quality of the model for
criteo-tb. This level of compression is unprecedented in embedding compression literature. These
experiments validate our first hypothesis and provide a new state-of-the-art embedding compression.
In the rest of the section, we evaluate how the system advantage of PSS compares against the original
embeddings in various aspects.

Inference time In figure 2a, we compare the inference time of test data (89M samples) in the criteo-tb
dataset with a batch size of 16384 with PSS on a single Quadro RTX-8000 GPU and the original
model on 8 Quadro RTX-8000 GPUs. The total time for inference for the original model is around
203 seconds, whereas PSS is around 97 seconds. In the original model trained on 8GPUs, embedding
lookup is model-parallel, whereas the rest of the computation ( bot-mlp, top-mlp, and interactions) is
data-parallel. There is a steep improvement of over 3× in embedding time lookup as we move from a
distributed GPU setup for embedding tables to a PSS on a single GPU. The extra computation time in
PSS is much smaller than all-to-all communication costs in the original embedding table lookup. We
include the time required for data distribution (initial) in bot-mlp and data-gather (final) in top-mlp
timings. This communication cost is high, and we can see that we are better off performing the entire
computation on a single GPU.
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Table 4: Criteo-tb : Quality and convergence on criteo-tb with DLRM vs. compression. The standard
deviation of AUC results is within 0.0009. (1) 104× compression also reaches the target AUC. For
105× convergence is too slow/mode capacity is reached. (max 15 epochs) } (2) Epochs required to
reach 0.8025 AUC for DLRM model on criteo-tb dataset. Relative time computes the ratio of A*B to
original model

ORIG 102× 103× 104× 105×
Target reached Yes Yes Yes Yes No

Epochs to reach target (A) 1.00 1.94 1.9 4.55 -

Time / 1000 iteration (B) 50.6 31.04 29.6 11.6 -

Relative Time (C = A B) 1 1.19 1.11 1.04 -

Model training time per iteration vs excess parameters Figure 2b records the time-taken for 1000
iterations of training. While using embedding tables, we can choose to back-propagate sparse or
dense embedding gradients. The general idea is to use sparse gradients when very few gradients
are non-zeros. In the original model, we can only use sparse gradients as using dense gradients is
prohibitive w.r.t to computation and communication. In PSS, however, we compare both modes for
gradient back-propagation. We see that dense gradients perform exceptionally well at higher rates of
compression. The performance of sparse gradients is constant across different compression rates as
the workload is similar. Generally, it seems good to use dense gradients for PSS when the effective
memory size (i.e., the final memory of compressed embedding tables ) is small. It is noteworthy
that the training time per iteration reduces significantly with higher compression. For example, with
1000x compression, the training time is 1.7× lesser than the time taken by the original model, whereas
with 10000x compression, the time per iteration is 4.37 × lesser.

Model convergence and overall time vs. excess parameters We observe a consistent trend in
convergence: as the number of excess parameters in the models reduces, the convergence becomes
slower. This can be seen across models and datasets as shown in tables 3(a) and 4(a). As an
example, table 4 shows that with 10000× compression, we require 4.55 epochs as compared to the
original model’s one epoch. This might seem unfavorable at first. However, as seen in the previous
section, there is a significant gain in training time per iteration. As seen in table 4, this gain largely
compensates for the disadvantage in terms of convergence, making the overall training times similar.
For example, while we need 4.55 epochs with 10000× compressed PSS, the training time per iteration
goes down by a factor of 4.37. Hence, the overall training time is only 1.04× original time.

Engineering challenges and costs vs. excess parameters: The excess parameters in a recommen-
dation model primarily appear due to the construction of embedding tables. The industrial-scale
embedding tables can go as large as hundreds of terabytes. With the increase in the model’s size,
the model needs to be distributed across different nodes and GPUs. The complexities of efficiently
running a distributed model training include many considerations, such as non-uniform memory
allocation and communication costs. The increasing literature detailing the engineering solutions to
training such models is evidence of the fact that training such models require engineering ingenuity
to solve the challenges involved [3, 25, 26, 27, 28, 29]. For example, in [3], the authors detail their
solution to train a model of size 50TB on a new distributed system. Similarly, in [25], authors talk
about their optimizations of recommendation models on CPU clusters. In this paper, we argue that
the large-scale nature of embedding-based recommendation models appears due to embedding tables
where a complete n × d table with blown up n does not add value to model capacity while adding
significant engineering challenges. Distributed systems also imply significant energy costs. PSS can
avoid these downsides by fitting entire learnable parameters on a single GPU/node.

Discussion on the model-training speed with different methods. Most of the other compression
techniques, such as pruning, low-precision quantized embeddings, TT-REC, and MD embeddings,
are limited in the amount of compression they offer. For instance, methods like pruning, TT-REC,
and MD embeddings cannot offer a compression more than d× for an embedding table E ∶ n × d.
Low-precision embeddings cannot offer compression of more than 32×. Thus, for industrial scale
models where n is very large, it is unlikely that these compression techniques will be able to eliminate
model-parallel training. Parameter sharing methods such as hashing trick and QR embeddings, while
they can give arbitrary compression in theory, have failed to maintain quality beyond 4× compression
and thus cannot eliminate model-parallel training. In the case of criteo-tb embedding compression in
literature, TT-REC gives the compression of 117×. Paraphrasing from TT-REC [16], they are able to
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