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Abstract

We initiate the study of federated reinforcement learning under environmental heterogeneity
by considering a policy evaluation problem. Our setup involves N agents interacting with
environments that share the same state and action space but di�er in their reward functions
and state transition kernels. Assuming agents can communicate via a central server, we ask:
Does exchanging information expedite the process of evaluating a common policy? To answer
this question, we provide the first comprehensive finite-time analysis of a federated temporal
di�erence (TD) learning algorithm with linear function approximation, while accounting for
Markovian sampling, heterogeneity in the agents’ environments, and multiple local updates
to save communication. Our analysis crucially relies on several novel ingredients: (i) deriving
perturbation bounds on TD fixed points as a function of the heterogeneity in the agents’ underlying
Markov decision processes (MDPs); (ii) introducing a virtual MDP to closely approximate the
dynamics of the federated TD algorithm; and (iii) using the virtual MDP to make explicit
connections to federated optimization. Putting these pieces together, we rigorously prove that in
a low-heterogeneity regime, exchanging model estimates leads to linear convergence speedups in
the number of agents.

1 Introduction
In the popular federated learning (FL) paradigm [28, 38], a set of agents aim to find a common
statistical model that explains their collective observations. The motivation to collaborate stems
from the fact that if the underlying distributions generating the agents’ observations are “similar”,
then each agent can end up learning a “better” model than if it otherwise used just its own data.
This idea has been formalized by the canonical FL algorithm FedAvg (and its many variants)
where agents communicate local models via a central server while keeping their raw data private.
To achieve communication-e�ciency - a key consideration in FL - the agents perform multiple
local model-updates between two successive communication rounds. There is a rich literature that
analyzes the performance of FedAvg, focusing primarily on the aspect of statistical heterogeneity
that originates from di�erences in the agents’ underlying data distributions [25, 62, 22, 43, 6, 40, 39].
Notably, the above works focus on supervised learning problems that are modeled within the
framework of distributed optimization. However, for sequential decision-making with multiple agents
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interacting with potentially di�erent environments, little to nothing is known about the e�ect of
heterogeneity. This is the gap we seek to fill with our work.

The recent survey paper by [45] describes a federated reinforcement learning (FRL) framework
which incorporates some of the key ideas from FL in reinforcement learning (RL); applications of
FRL in robotics [34], autonomous driving [7], and edge computing [60] are discussed in detail in
this paper. As RL algorithms often require many samples to achieve acceptable accuracy, FRL
aims to achieve sample-e�ciency by leveraging information from multiple agents interacting with
similar environments. Importantly, as in standard FL, the FRL framework requires agents to
keep their personal experiences (e.g., rewards, states, and actions) private, and adhere to stringent
communication constraints. While FRL is a promising idea, to model realistic scenarios, one needs
to account for the crucial fact that di�erent agents may interact with non-identical environments.
Indeed, just as statistical heterogeneity is a major challenge in FL, environmental heterogeneity is
identified as a key open challenge in FRL [45].

To tackle this challenge, we focus on a policy evaluation problem. Our setup involves N agents
where each agent interacts with an environment modeled as a MDP. The agents’ MDPs share the
same state and action space but have di�erent reward functions and state transition kernels, thereby
capturing environmental heterogeneity. Each agent seeks to compute the discounted cumulative
reward (value function) associated with a common policy µ. Notably, the value functions induced by
µ may di�er across environments. This leads to the central question we investigate: Can an agent
expedite the process of learning its own value function by leveraging information from potentially
di�erent MDPs? This is a non-trivial question since the e�ect of combining data from non-identical
MDPs is poorly understood.

A typical application of the above FRL setup is that of an autonomous driving system where
vehicles in di�erent geographical locations share local models capturing their learned experiences to
train a shared model that benefits from the collective exploration data of all vehicles. Although the
vehicles (agents) essentially have the same operations (e.g., steering, braking, accelerating, etc.),
they can be exposed to di�erent environments (e.g., road and weather conditions, routes, driving
regulations etc.). This is precisely what contributes to environmental heterogeneity.

1.1 Our Contributions
We study a federated version of the temporal di�erence (TD) learning algorithm TD(0) [53]. The
structure of this algorithm, which we call FedTD(0), is as follows. At each iteration, each agent
plays an action according to the policy µ, observes a reward, and transitions to a new state based
on its own MDP. It then uses TD(0) with linear function approximation to update a local model
that approximates its own value function. To (potentially) benefit from other agents’ data in a
communication-e�cient manner, each agent periodically synchronizes with a central server, and
performs multiple local updates in between. Notably, as in FL, agents only exchange models
but never their personal observations. We perform a comprehensive analysis of FedTD(0) under
environmental heterogeneity, and make the following contributions:

E�ect of heterogeneity on TD(0) fixed points. Towards understanding the behavior of
FedTD(0), we start by asking: How does heterogeneity in the transition kernels and reward func-
tions of MDPs manifest into di�erences in the long-term behavior of TD(0) (with linear function
approximation) on such MDPs? Theorem 1 provides an answer by characterizing how perturbing a
MDP perturbs the TD(0) fixed point for that MDP. To arrive at this result, we combine results from
the perturbation theories of Markov chains and linear equations. Theorem 1 establishes the first
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perturbation result for TD(0) fixed points, and complements results of a similar flavor in the RL
literature such as the Simulation Lemma [23].

The Virtual MDP framework. In FL algorithms such as FedAvg, the average of the negative
gradients of the agents’ loss functions drives the iterates of FedAvg towards the minimizer of a
global loss function. In our setting, there is no such global loss function. So by averaging TD(0)
update directions of di�erent MDPs, where do we end up? To answer this question, we construct a
virtual MDP in Section 3.2, and characterize several important properties of this fictitious MDP
that aid our subsequent analysis. Along the way, we derive a simple yet key result (Proposition 1)
pertaining to convex combinations of Markov matrices associated with aperiodic and irreducible
Markov chains; this result may be of independent interest.

Analysis under an i.i.d. assumption. To isolate the e�ect of heterogeneity and build intuition,
we start by analyzing FedTD(0) under a standard i.i.d. assumption in the RL literature [9, 2, 11].
After T communication rounds with K local model-updating steps per round, we prove that FedTD(0)
guarantees convergence at a rate of Õ(1/NKT ) to a neighborhood of each agent’s optimal linear
approximation parameter; see Theorem 2. The size of the neighborhood depends on the level of
heterogeneity in the agents’ MDPs. The key implication of this result is that in a low-heterogeneity
regime, each agent can enjoy an N -fold speed-up in convergence via collaboration. To prove this result,
we introduce a new analysis technique that combines the virtual MDP idea with the optimization
interpretation of TD(0) dynamics in [2]. An important benefit of this technique is that it highlights
the connections between the dynamics of FedTD(0) and standard FL algorithms, allowing one to
leverage existing FL optimization proofs for federated RL.

Bias introduced by Heterogeneity. Our convergence result in Theorem 2 features a bias term
due to heterogeneity that cannot be eliminated even by making the step-size arbitrarily small. Is
such a term unavoidable? We explore this question in Theorem 3 by studying a “steady-state”
deterministic version of FedTD(0). Even for this simple case, we prove that a bias term depending
on a natural measure of heterogeneity shows up inevitably in the long-term dynamics of FedTD(0).
Moreover, unlike the standard FL setting where the e�ect of heterogeneity manifests itself only
when the number of local steps K is strictly greater than 1 [6], the bias term in Theorem 3 persists
even when K = 1. This reveals a key di�erence between our setting and federated optimization.

Analysis for the Markovian setting. Our most significant contribution is to provide the first
analysis of a federated RL algorithm (FedTD(0)) that simultaneously accounts for linear function
approximation, Markovian sampling, multiple local updates, and heterogeneity. The e�ect of het-
erogeneity coupled with complex temporal correlations makes this setting challenging to analyze.
Nonetheless, in Theorem 4, we prove that one can essentially recover the same guarantees as in the
i.i.d. setting (Theorem 2). Our result complements the myriad of federated optimization results
that account for heterogeneity [25, 62].

We now briefly discuss most directly related work; a detailed description is given in the Appendix.

Related Work. In [11, 35], the authors analyze multi-agent TD learning with linear function
approximation over peer-to-peer networks. Neither approach accounts for local steps nor Markovian
sampling. Very recently, the authors in [26] do study the e�ect of Markovian sampling for federated
TD learning. However, all of the above papers consider a homogeneous setting with identical MDPs
for all agents. The only paper we are aware of that performs any theoretical analysis of heterogeneity
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in FRL is [21]. However, their analysis is limited to the much more simpler tabular setting with no
function approximation.

2 Policy Evaluation in a Centralized Setting
Our RL setting is based on a Markov Decision Process (MDP) [54] defined by the tuple M =
ÈS, A, R, P, “Í, where S is a finite state space of size n, A is a finite action space, P is a set of
action-dependent Markov transition kernels, R is a reward function, and “ œ (0, 1) is the discount
factor. We consider the problem of evaluating the value function Vµ of a given policy µ, where
µ : S æ A. The policy µ induces a Markov reward process (MRP) characterized by a transition
matrix Pµ, and a reward function Rµ. Under the action of the policy µ at an initial state s, Pµ(s, sÕ)
is the probability of transitioning from state s to state sÕ, and Rµ(s) is the expected instantaneous
reward. The discounted expected cumulative reward obtained by playing policy µ starting from
initial state s is:

Vµ(s) = E
C

Œÿ

t=0
“tRµ(st)|s0 = s

D

,

where st is the state of the Markov chain at time t. From [57], we know that Vµ is the fixed point of
the Bellman operator Tµ : Rn æ Rn, i.e., TµVµ = Vµ, where for any V œ Rn,

(TµV )(s) = Rµ(s) + “
ÿ

sÕœS

Pµ(s, sÕ)V (sÕ), ’s œ S.

TD learning with linear function approximation. We consider the setting where the number
of states is very large, making it practically infeasible to compute the value function Vµ directly. To
mitigate the curse of dimensionality, a common approach [54] is to consider a low-dimensional linear
function approximation of the value function Vµ. Let {�k}d

k=1 be a set of d linearly independent
basis vectors in Rn, and � œ Rn◊d be a matrix with these basis vectors as its columns, i.e., the k-th
column of � is �k. A parametric approximation V̂◊ of Vµ in the span of {�k}d

k=1 is then given by
V̂◊ = �◊, where ◊ œ Rd is a parameter vector to be learned. Notably, this is tractable since d π n.
We denote the s-th row of � by „(s) œ Rd, and refer to it as the fixed feature vector corresponding to
state s. We write V̂◊(s) = „(s)€◊ and make the standard assumption [2] that Î„(s)Î2 Æ 1, ’s œ S.

The objective is to find the best linear approximation of Vµ in the span of {�k}d
k=1. More

precisely, we seek a parameter vector ◊ú that minimizes the distance between V̂◊ and Vµ (in a suitable
sense). When the underlying MDP is unknown, one of the most popular techniques to achieve this
goal is the classical TD(0) algorithm. TD(0) starts from an initial guess ◊0 œ Rd. Subsequently, at
the t-th iteration, upon playing the given policy µ, a new data tuple Ot = (st, rt = Rµ(st), st+1)
comprising of the current state, the instantaneous reward, and the next state is observed. Let us
define the TD(0) update direction as

gt(◊t) ,
1
rt + “„ (st+1)€ ◊t ≠ „ (st)€ ◊t

2
„ (st) .

Using a step-size –t œ (0, 1), the parameter ◊t is then updated as ◊t+1 = ◊t + –tgt(◊t). Under some
mild technical assumptions, it was shown in [57] that the TD(0) iterates converge asymptotically
almost surely to a vector ◊ú, where ◊ú is the unique solution of the projected Bellman equation
�DTµ(�◊ú) = �◊ú. Here, D is a diagonal matrix with entries given by the elements of the stationary
distribution fi of the Markov matrix Pµ. Furthermore, �D(·) is the projection operator onto the
subspace spanned by {„k}d

k=1 with respect to the inner product È·, ·ÍD.1

1We will use Î · Î2
D to denote the quadratic norm xT Dx induced by the positive definite matrix D, and Î · Î to

represent the standard Euclidean norm for vectors and ¸2 induced norm for matrices.
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Objective. We study a multi-agent RL problem where agents interact with similar, but non-
identical MDPs that share the same state and action space. All agents seek to evaluate the same
policy. Our goal is to understand: Can an agent evaluate the value function of its own MDP
in a more sample-e�cient way by leveraging data from other agents? Answering this question is
non-trivial since one needs to (i) model heterogeneity in the agents’ MDPs; and (ii) understand
the e�ects of such heterogeneity on the convergence of algorithms that combine information from
non-identical MDPs. Existing FL analyses that study statistical heterogeneity in supervised learning
fall short of resolving the above issues, since our problem does not involve minimizing a static loss
function. In the next section, we will formally introduce our setup and the key ideas needed for our
subsequent analysis.

3 Heterogeneous Federated RL
We consider a federated reinforcement learning setting comprising of N agents that interact with
potentially di�erent environments. Agent i’s environment is characterized by the following MDP:
M(i) = ÈS, A, R(i), P(i), “Í. While all agents share the same state and action space, the reward
functions and state transition kernels of their environments can di�er. We focus on a policy
evaluation problem where all agents seek to evaluate a common policy µ that induces N Markov
reward processes characterized by the tuples {P (i)

µ , R(i)
µ }iœ[N ].2 Agent i aims to find a linearly

parameterized approximation of its value function V (i)
µ . Trivially, agent i can do so without

interacting with any other agent by employing the TD(0) algorithm. However, the key question
we ask is: By using data from other agents, can it achieve a desired level of approximation with
fewer samples relative to when it acts alone? Naturally, the answer to the above question depends
on the level of heterogeneity in the agents’ MDPs. Accordingly, inspired by notions of bounded
heterogeneity in federated supervised learning [47], we make the following assumptions.

Assumption 1. (Markov Kernel Heterogeneity) There exists an ‘ > 0 such that for all agents
i, j œ [N ], it holds that |P (i)(s, sÕ) ≠ P (j)(s, sÕ)| Æ ‘|P (i)(s, sÕ)|, ’s, sÕ œ S. Here, for each i œ [N ],
P (i)(s, sÕ) represents the (s, sÕ)-th element of the matrix P (i).

Assumption 2. (Reward Heterogeneity) There exists an ‘1 > 0 such that for all i, j œ [N ], it
holds that ÎR(i) ≠ R(j)Î Æ ‘1.

Clearly, smaller values of ‘ and ‘1 capture more similarity in the agents’ MDPs. In line with the
standard communication architecture in FL [28, 38], suppose all agents can exchange information
via a central server. Via such communication, the standard FL task is to find one common model
that explains the data of all agents. In a similar spirit, our goal is to find one common parameter ◊

such that V̂◊ = �◊ approximates each V (i)
µ , i œ [N ]. There is a natural tension here. While using

data from multiple agents can help find an approximate model quickly, such a model may not
accurately capture the value function of any agent if the agents’ MDPs are very dissimilar. So
does more data help or hurt? It turns out that to answer the above question, we need to carefully
understand how the structural heterogeneity assumptions on the MDPs (namely, Assumptions 1
and 2) manifest into di�erences in the long-term dynamics of TD(0) on these MDPs. In the sequel,
we will comprehensively explore this topic.

2For simplicity of notation, we will henceforth drop the dependence of P (i) and R(i) on the policy µ.
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3.1 Impact of Heterogeneity on TD fixed points
Intuitively, if the MRPs induced by a common policy for two di�erent environments are similar, then
the long-term behavior of TD(0) on these two MRPs should also be similar. In particular, the TD(0)
fixed points of these MRPs should be close. As we shall see later, characterizing this “closeness” in
TD(0) fixed points will play a key role in understanding how environmental heterogeneity a�ects the
behavior of a federated TD algorithm. To proceed, we make the following standard assumption.

Assumption 3. For each i œ [N ], the Markov chain induced by the policy µ, corresponding to the
state transition matrix P (i), is aperiodic and irreducible.

The above assumption implies the existence of a unique stationary distribution fi(i) for each
i œ [N ]; let D(i) be a diagonal matrix with the entries of fi(i) on its diagonal. For each agent i,
we then use ◊ú

i to denote the solution of the projected Bellman equation �D(i)T
(i)
µ (�◊ú

i ) = �◊ú

i for
agent i. In words, ◊ú

i is the best linear approximation of V (i)
µ in the span of {„k}d

k=1. Based on
the discussion in Section 2, we know that the iterates of TD(0) on agent i’s MRP will converge
asymptotically (almost surely) to ◊ú

i . Our goal is to provide a bound on the gap Î◊ú

i ≠ ◊ú

j Î as a
function of the heterogeneity parameters ‘ and ‘1 appearing in Assumptions 1 and 2. The key
observation we will exploit is that for each i œ [N ], ◊ú

i is the unique solution of the linear equation
Āi◊ú

i = b̄i, where Āi = �€D(i)(� ≠ “P (i)�) and b̄i = �€D(i)R(i). For an agent j ”= i, viewing Āj

and b̄j as perturbed versions of Āi and b̄i, we can now appeal to results from the perturbation
theory of linear equations [19, Chapter 5.8] to bound Î◊ú

i ≠ ◊ú

j Î. To that end, we first recall a result
from the perturbation theory of Markov chains [42] which shows that under Assumption 1, the
stationary distributions fi(i) and fi(j) are close for any pair i, j œ [N ].

Lemma 1. Suppose Assumption 1 holds. Then, for any pair of agents i, j œ [N ], the stationary
distributions fi(i) and fi(j) satisfy:

Îfi(i) ≠ fi(j)Î1 Æ 2(n ≠ 1)‘ + O(‘2). (1)

We will now use the bound on Îfi(i) ≠ fi(j)Î1 in Lemma 1 to bound ÎĀi ≠ ĀjÎ and Îb̄i ≠ b̄jÎ.
To state our results, we make the standard assumption that for each i œ [N ], it holds that
|R(i)(s)| Æ Rmax, ’s œ S, i.e., the rewards are uniformly bounded. In [57], it was shown that ≠Āi is
a negative definite matrix; thus, there exists some ”1 > 0 such that ÎĀiÎ Ø ”1 holds for every agent
i œ [N ]. We also assume that there exists a constant ”2 > 0 such that Îb̄iÎ Ø ”2, ’i œ [N ]. We have
the following result on the perturbation of TD(0) fixed points.

Theorem 1. (Perturbation bounds on TD(0) fixed points) For all i, j œ [N ], we have:

(i) ÎĀi ≠ ĀjÎ Æ A(‘) , “
Ô

n‘ + (1 + “)[2(n ≠ 1)‘ + O(‘2)].

(ii) Îb̄i ≠ b̄jÎ Æ b(‘, ‘1) , Rmax
!
2(n ≠ 1)‘ + O(‘2)

"
+ O(‘1).

(iii) Suppose ÷H > 0 such that Î◊ú

i Î Æ H, ’i œ [N ]. Let Ÿ(Āi) denote the condition number of Āi.
Then:

Î◊ú

i ≠ ◊ú

j Î Æ �(‘, ‘1) , max
iœ[N ]

Y
]

[
Ÿ(Āi)H

1 ≠ Ÿ(Āi)A(‘)
”1

3
A(‘)
”1

+ b(‘, ‘1)
”2

4Z
^

\ .
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Discussion. Theorem 1 reveals how heterogeneity in the rewards and transition kernels of MDPs
can be mapped to di�erences in the limiting behavior of TD(0) on such MDPs from a fixed-point
perspective. It formalizes the intuition that if the level of heterogeneity - as captured by ‘ and ‘1 -
is small, then so is the gap in the TD(0) limit points of the agents’ MDPs. This result is novel, and
complements similar perturbation results in the RL literature such as the Simulation Lemma [23].3

In what follows, we will introduce the key concept of a virtual MDP, and build on Theorem 1 to
relate properties of this virtual MDP to those of the agents’ individual MDPs.

3.2 Virtual Markov Decision Process
One of the main goals of our paper is to draw explicit parallels between federated optimization and
FRL. Doing so would enable us to apply the rich set of ideas and techniques developed in standard
FL to our setting. However, drawing such parallels requires some e�ort. In a standard FL setting,
the goal is to typically minimize a global loss function f(x) = (1/N)

q
iœ[N ] fi(x) composed of the

local loss functions of N agents; here, fi(x) is the local loss function of agent i. In FL, due to
heterogeneity in the agents’ loss functions, there is a “drift” e�ect [5, 22]: the local iterates of each
agent i drift towards the minimizer of fi(x). However, when the heterogeneity is moderate, the
average of the agents’ iterates converges towards the minimizer of f(x). To develop an analogous
theory for FRL, we need to first answer: When we average TD(0) update directions from di�erent
MDPs, where does the average TD(0) update direction lead us? It is precisely to answer this question
that we introduce the concept of a virtual MDP.

To model a virtual environment that captures the “average” of the agents’ individual envi-
ronments, we construct an MDP M̄ = ÈS, A, R̄, P̄, “Í, where P̄ = (1/N)

qN
i=1 P(i), and R̄ =

(1/N)
qN

i=1 R(i). Note that the virtual MDP is a fictitious MDP that we construct solely for the
purpose of analysis, and it may not coincide with any of the agents’ MDPs, in general.

Properties of the Virtual MDP. When applied to M̄, let the policy µ that we seek to
evaluate induce a virtual MRP characterized by the tuple {P̄ , R̄}. It is easy to verify that P̄ =
(1/N)

qN
i=1 P (i), and R̄ = (1/N)

qN
i=1 R(i). The following result shows how the virtual MRP

inherits certain basic properties from the individual MRPs; the result is quite general and may be
of independent interest.

Proposition 1. Let {P (i)}N
i=1 be a set of Markov matrices associated with Markov chains that

share the same states, and are each aperiodic and irreducible. Then, for any set of weights {wi}N
i=1

satisfying wi Ø 0, ’i œ [N ] and
q

iœ[N ] wi = 1, the Markov chain corresponding to the matrix
q

iœ[N ] wiP (i) is also aperiodic and irreducible.

The above result immediately tells us that the Markov chain corresponding to P̄ is aperiodic
and irreducible. Thus, there exists an unique stationary distribution fī of this Markov chain; let D̄
be the corresponding diagonal matrix. As before, let us define Ā , �€D̄(� ≠ “P̄�), b̄ , �€D̄R̄,
and use ◊ú to denote the solution to the equation Ā◊ú = b̄. Our next result is a consequence of
Theorem 1, and characterizes the gap between ◊ú

i and ◊ú, for each i œ [N ].

Proposition 2. Fix any i œ [N ]. Using the same definitions as in Theorem 1, we have ÎĀi ≠ ĀÎ Æ
A(‘), Îb̄i ≠ b̄Î Æ b(‘, ‘1) and Î◊ú

i ≠ ◊úÎ Æ �(‘, ‘1).
3The simulation lemma tells us that if two MDPs with the same state and action spaces are similar, then so are

the value functions induced by a common policy on these MDPs.
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Algorithm 1 Description of FedTD(0)

1: Input: Policy µ, local step-size –l, global step-size –(t)
g at t-th communication round

2: Initialize: ◊̄0 = ◊0 and s(i)
0,0 = s0, ’i œ [N ]

3: for each round t = 0, . . . , T ≠ 1 do
4: for each agent i œ [N ] do
5: for k = 0, . . . , K ≠ 1 do
6: Agent i initializes ◊(i)

t,0 = ◊̄t

7: Agent i plays µ(s(i)
t,k), observes tuple O(i)

t,k = (s(i)
t,k, r(i)

t,k, s(i)
t,k+1),

8: and updates local model as ◊(i)
t,k+1 = ◊(i)

t,k + –lgi(◊(i)
t,k),

9: where gi(◊(i)
t,k) ,

1
r(i)

t,k + “„(s(i)
t,k+1)€◊(i)

t,k ≠ „(s(i)
t,k)€◊(i)

t,k

2
„(s(i)

t,k)
10: end for
11: send �(i)

t = ◊(i)
t,K ≠ ◊̄t back to the server

12: end for
13: Server computes and broadcasts global model ◊̄t+1 = �2,H

3
◊̄t + –

(t)
g

N

q
iœ[N ] �(i)

t

4

14: end for

We will later argue that the federated TD algorithm (to be introduced in Section 4) converges to
a ball centered around the TD(0) fixed point ◊ú of the virtual MRP. Proposition 2 is thus particularly
important since it tells us that in a low-heterogeneity regime, by converging close to ◊ú, we also
converge close to the optimal parameter ◊ú

i that minimizes the projected Bellman error for MDP
M(i). This justifies studying the convergence behavior of FedTD(0) on the virtual MRP. We end
this section with a result which follows in part from Proposition 1.

Proposition 3. For the virtual MRP, the following hold: (i) ⁄max(�€D̄�) Æ 1; and (ii) ÷ Ê̄ > 0
s.t. ⁄min(�€D̄�) Ø Ê̄.

4 Federated TD Algorithm
In this section, we describe the FedTD(0) algorithm, a federated version of TD(0). We outline its
steps in Algo. 1. The goal of FedTD(0) is to generate a model ◊ such that V̂◊ is a good approximation
of each agent i’s value function V (i)

µ , corresponding to the policy µ. In line with both standard FL
algorithms, and also works in MARL/FRL (in homogeneous settings) [11, 26], the agents keep their
raw observations (i.e., their rewards, states, and actions) private, and only exchange local models.

FedTD(0) starts from a common initial model and a common starting state for all agents.
Subsequently, in each round t, each agent i œ [N ] starts from a common model ◊̄t and uses its local
data to perform K local updates of the following form: at each local iteration k, each agent i takes
action µ(s(i)

t,k) and observes a data tuple O(i)
t,k =

1
s(i)

t,k, r(i)
t,k, s(i)

t+1,k

2
based on its own Markov reward

process, i.e., {P (i), R(i)}; we note here that observations are independent across agents. Using its
data tuple O(i)

t,k, each agent i updates its own local model ◊(i)
t,k along the direction gi(◊(i)

t,k); see line 7.
Since each agent seeks to benefit from the samples acquired by the other agents, there is

intermittent communication via the server. However, such communication needs to be limited as
communication-e�ciency is a key concern in FL. As such, the agents upload their local models’
di�erence �(i)

t to the server only once every K time-steps (line 11). On the server side, the model
di�erences {�(i)

t } are averaged, and a projection is carried out (line 13) to construct a global model
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◊̄t+1 that is then broadcast to all agents. Here, we use �2,H(·) to denote the standard Euclidean
projection on to a convex compact subset H µ Rd that is assumed to contain each ◊ú

i , i œ [N ], and
also ◊ú. Such a projection step on the server-side ensures that the global models do not blow up,
and is common in the literature on stochastic approximation [3] and RL [2, 11]. Each agent then
resumes its local updating process from this global model. We note that the structure of FedTD(0)
mirrors that of FedAvg (and its many variants) where agents perform multiple local model-updates
in isolation using their own data (to save communication), and synchronize periodically via a server.
From another perspective, the FedTD(0) algorithm, which seeks to find the fixed point of the average
of the TD update directions, can be grouped into the class of problems that seek to find fixed points
using information from di�erent sources [37]. However, there are significant di�erences in the
dynamics of standard FL algorithms and FedTD(0), making it quite challenging to derive finite-time
convergence results for the latter. We discuss some of these challenges below.

Challenges in Analysis. First, existing FL analyses are essentially distributed optimization
proofs; although our setting bears a cosmetic connection to optimization, federated TD learning
does not correspond to minimizing any fixed objective function. Second, unlike the FL setting
where the data seen by each agent are drawn i.i.d. from some distribution, the data tuples observed
by each agent in FedTD(0) are all part of one single Markovian trajectory. This creates complex
time-correlations that are challenging to deal with even in a centralized setting with just one agent.
Thus, we cannot directly appeal to standard FL proofs. Third, existing analyses in MARL/FRL
that go beyond the simple tabular setting all end up assuming that every agent interacts with the
same MDP, i.e., there is no heterogeneity e�ect at all to contend with in these works. Concretely,
the analysis for FedTD(0) we provide in the subsequent sections is unique in that it simultaneously
accounts for several key aspects: linear function approximation, Markovian sampling, multiple local
updates, and heterogeneity in MDPs.

5 Analysis of the I.I.D. Setting
To isolate the e�ect of heterogeneity and provide key insights regarding our main proof ideas, we will
analyze a simpler i.i.d. setting in this section. Specifically, we assume that for each agent i œ [N ],
the data tuples {O(i)

t,k} are sampled i.i.d. from the stationary distribution fi(i) of the Markov matrix
P (i). Such an i.i.d assumption is common in the finite-time analysis of RL algorithms [9, 2, 11]. To
proceed, for a fixed ◊ and for each i œ [N ], let us define ḡi(◊) , E

O
(i)
t,k≥fi(i) [gi(◊)] as the expected

TD(0) update direction at iterate ◊ when the Markov tuple O(i)
t,k hits its stationary distribution fi(i).

We make the following standard bounded variance assumption [2]; similar assumptions are also
made in FL analyses.

Assumption 4. EÎgi(◊) ≠ ḡi(◊)Î2 Æ ‡2 holds for all agents i œ [N ], in each round t and local
update k, and ’◊.

Let H denote the radius of the set H. Also, define G , Rmax + 2H and ‹ = (1 ≠ “)Ê̄, where Ê̄
is as in Proposition 3. We can now state our first main result for FedTD(0).

Theorem 2. (I.I.D. Setting) There exists a decreasing global step-size sequence {–(t)
g }, a fixed

local step-size –l, and a set of convex weights, such that a convex combination ◊̃T of the global models
{◊̄t} satisfies the following for each i œ [N ] after T rounds:

E
...V◊̃T

≠V◊ú
i

...
2

D̄
Æ Õ

1 G2

K2T 2 + ‡2

‹2NKT
+ ‡2

‹4KT 2 +Q(‘, ‘1)
2
, (2)
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where Q(‘, ‘1) = Õ(B(‘,‘1)G
‹ + �2(‘, ‘1)), B(‘, ‘1) = H

!Ô
n‘ + 2(n ≠ 1)‘ + O(‘2) + O(‘1)

"
, and

�(‘, ‘1) is as defined in Theorem 1.

There are several important messages conveyed by Theorem 2 that we now discuss.

Discussion. To parse Theorem 2, let us start by noting that the term Q(‘, ‘1) in Eq. (2) captures
the e�ect of heterogeneity; we will comment on this term later. When T ∫ N , the dominant term
among the first three terms in Eq. (2) is the ‡2/(‹2NKT ) term. To appreciate the tightness of this
term, we note that in a centralized setting (i.e., when N = 1), given access to KT samples, the
convergence rate of TD(0) is ‡2/(‹2KT ) [2]. Our analysis thus reveals that by communicating just
T times in KT iterations, each agent i can reduce the noise variance ‡2 further by a factor of N ,
i.e., achieve a linear speedup w.r.t. the number of agents. In a low-heterogeneity regime, i.e., when
Q(‘, ‘1) is small, we note that by combining data from di�erent MDPs, FedTD(0) guarantees fast
convergence to a model that is a good approximation of each agent’s value function; by fast, we
imply a N -fold speedup over the rate each agent would have achieved had it not communicated at
all. Thus with little communication, FedTD(0) quickly provides each agent with a good model that
it can then fine-tune for personalization. Theorem 2 is the first result to provide such a guarantee
in the context of MARL/FRL, and complements results of a similar flavor in FL [25, 62]. When all
the MDPs are identical, Q(‘, ‘1) = 0. But when the MDPs are di�erent, should we expect such a
heterogeneity term?

To further understand the e�ect of heterogeneity, it su�ces to get rid of all the randomness
in our setting. As such, suppose we replace the random TD(0) direction gi(◊(i)

t,k) of each agent i

in Algo. 1 by its steady-state deterministic version ḡi(◊(i)
t,k) = b̄i ≠ Āi◊

(i)
t,k, where Āi and b̄i are as

defined in Section 3.1. This leads to a deterministic version of FedTD(0) that we call mean-path
FedTD(0). For simplicity, we assume that there is no projection step in mean-path FedTD(0). In
our next result, we exploit the a�ne nature of the steady-state TD(0) directions to characterize the
e�ect of heterogeneity in the limiting behavior of FedTD(0).

Theorem 3. (Heterogeneity Bias) Suppose N = 2 and K = 1. Let the step-size – = –g–l be
chosen such that I ≠ –Â is Schur stable, where Â =

1
Ā1 + Ā2

2
/2. Define ei,t , ◊̄t ≠ ◊ú

i , i œ {1, 2}.
The output of mean-path FedTD(0) then satisfies:

lim
tæŒ

e1,t = 1
2Â≠1Ā2(◊ú

1 ≠ ◊ú

2); lim
tæŒ

e2,t = 1
2Â≠1Ā1(◊ú

2 ≠ ◊ú

1). (3)

Discussion: For the setting described in Theorem 3, the mean-path FedTD(0) updates follow the
deterministic recursion ◊̄t+1 = (I ≠–Â)◊̄t +–b̂, where b̂ = (1/2)(b̄1 + b̄2). This is a discrete-time linear
time-invariant system (LTI). The dynamics of this system are stable if and only if the state transition
matrix (I ≠ –Â) is Schur stable, justifying the choice of – in Theorem 3. The most important
message conveyed by this result is that the gap between the limit point of mean-path FedTD(0)
and the optimal parameter ◊ú

i of either of the two MRPs bears a dependence on the di�erence in
the optimal parameters of the MRPs - a natural indicator of heterogeneity between the two MRPs.
Furthermore, this term has no dependence on the step-size –, i.e., the e�ect of the bias introduced
by heterogeneity cannot be eliminated by making – arbitrarily small. Aligning with this observation,
notice that the heterogeneity term Q(‘, ‘1) in Eq. (2) is also step-size independent. The above
discussion sheds some light on the fact that a term of the form Q(‘, ‘1) is to be expected in Theorem
2. Notably, the bias term in Eq. (3) persists even when the number of local steps is just one, i.e.,
even when the agents communicate with the server at all time steps. This is a crucial di�erence with

10



the standard federated optimization setting where the e�ect of statistical heterogeneity manifests
itself only when the number of local steps K is strictly larger than 1 [6, 22, 40].

We end this section with a proof sketch for Theorem 2.

Proof Sketch for Theorem 2. To make a connection to the existing FL optimization proofs,
we start with a key observation made in [2]. In this paper, the authors showed that for each i œ [N ],
the mean-path TD(0) direction ḡi(◊) acts like a pseudo-gradient and drives the iterates towards ◊ú

i .
Unfortunately, however, the average (1/N)

qN
i=1 ḡi(◊) of the agents’ mean-path TD(0) directions

may not exactly correspond to the mean-path TD(0) direction of any MDP. Nonetheless, using
Proposition 2, we prove the following key result that comes to our aid.

Lemma 2. (Expected pseudo-gradient heterogeneity) For each ◊ œ H, we have:

...ḡ(◊) ≠ 1
N

Nÿ

i=1
ḡi(◊)

... Æ B(‘, ‘1), (4)

where B(‘, ‘1) is as in Theorem 2, and ḡ(◊) is the steady-state expected TD(0) direction of the virtual
MDP.

Lemma 2 is crucial to our analysis as it shows that at least in the steady-state, the resulting
FedTD(0) update direction can be closely approximated by the mean-path TD(0) direction of the
virtual MDP. Furthermore, the latter acts like a pseudo-gradient pointing towards ◊ú which is close
to each ◊ú

i based on Proposition 2. While this reasoning gives us hope, arriving at Eq. (2) requires a
lot of work as we still need to (i) establish a linear-speedup in reducing the variance ‡2 in the noisy
setting; and (ii) analyze a “client-drift” e�ect for our setting akin to what shows up in FL due to
statistical heterogeneity and multiple local steps. In the Appendix, we provide a careful analysis
that accounts for each of these issues.

6 Analysis of the Markovian Setting
Although the i.i.d. setting we discussed in Section 5 helped build a lot of intuition about the
dynamics of FedTD(0), our main interest is in analyzing the setting where for each agent i œ [N ],
the data tuples {O(i)

t,k} are all part of a single Markovian trajectory generated by P (i). The only
assumption we will make is that these trajectories are independent across agents, i.e., the agents’
observations are independent. Below, we briefly summarize some of the key di�culties that show
up in the analysis for the Markovian setting, and that merit technical innovations on our part.
To that end, let us write gi(◊(i)

t,k) more explicitly as gi(◊(i)
t,k, O(i)

t,k); this will make certain statistical
dependencies more transparent in our subsequent discussion.

Challenges in the Markovian analysis. First, our setting inherits all the di�culties in analyzing
Markovian behavior from the centralized case [2]; in particular, for each i œ [N ], the parameter
sequence {◊(i)

t,k} and the data tuples {O(i)
t,k} are intricately coupled. Second, the synchronization

step in FedTD(0) creates complex statistical dependencies between the local parameter of any given
agent and the past observations of all other agents. Third, just as in the centralized case, we need
to control the gradient bias (1/NK)

qN
i=1

qK≠1
k=0

!
gi(◊(i)

t,k, O(i)
t,k) ≠ ḡi(◊(i)

t,k)
"

and the gradient norm
EÎ(1/NK)

qN
i=1

qK≠1
k=0 gi(◊(i)

t,k)Î2. However to achieve the O(1/NKT )-type rate, i.e., to prove linear
speedup w.r.t. the number of agents N , we need to provide an analog of the variance reduction (i.e.,
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the second term in Eq (2)) in the i.i.d. setting, which requires a much more delicate analysis relative
to [2], since the observations of each agent i are correlated at di�erent local steps. Indeed, naively
bounding terms using the projection radius will not yield the linear speedup property. Finally,
we need to control the “client-drift” e�ect (due to environmental heterogeneity) under the strong
coupling between di�erent random variables discussed above.

In our analysis, we will make use of the geometric mixing property of finite-state, aperiodic, and
irreducible Markov chains [32]. Specifically, under Assumption 3, for each i œ [N ], there exists some
mi Ø 1 and fli œ (0, 1), such that for all t Ø 0 and 0 Æ k Æ K ≠ 1,

dT V

1
P

1
s(i)

t,k = · | s(i)
0,0 = s

2
, fi(i)

2
Æ mifl

tK+k
i , ’s œ S,

holds, where we use dT V (P, Q) to denote the total-variation distance between two probabil-
ity measures P and Q. For any ‘̄ > 0, let us define the mixing time for P (i) as ·mix

i (‘̄) ,
min

)
t œ N0 | miflt

i Æ ‘̄
*
. Finally, let ·(‘̄) = maxiœ[N ] ·mix

i (‘̄) represent the mixing time corre-
sponding to the Markov chain that mixes the slowest. As one might expect, and as formalized in
our main result below, it is this slowest-mixing Markov chain that dictates certain terms in the
convergence rate of FedTD(0).

Theorem 4. (Markovian Setting) There exists a decreasing global step-size sequence {–(t)
g }, a

fixed local step-size –l, and a set of convex weights, such that a convex combination ◊̃T of the global
models {◊̄t} satisfies the following for each agent i œ [N ] after T rounds:

E
...V◊̃T

≠ V◊ú
i

...
2

D̄
Æ Õ

A
·2G2

K2T 2 + cquad(·)
‹2NKT

+ clin(·)
‹4KT 2 + Q(‘, ‘1)

B

,

where · = Á ·mix(–2
T )

K Ë, –T = K–l–
(T )
g , cquad(·) and clin(·) are quadratic and linear functions in · ,

respectively, and Q(‘, ‘1) is as defined in Theorem 2.

Discussion: Other than the e�ect of the mixing time · which also shows up in a centralized
setting [2], the rate in Theorem 4 mirrors that for the i.i.d. case in Theorem 2. Theorem 4 is
significant in that it marks the first comprehensive analysis of environmental heterogeneity in FRL
under Markovian sampling.

Proof Sketch for Theorem 4. As mentioned earlier, we cannot naively use a projection bound
of the form EÎ(1/NK)

qN
i=1

qK≠1
k=0 gi(◊(i)

t,k)Î2 = O(G2) from the centralized analysis in [2] since
the local models may not belong to the set H. More importantly, going down that route will
obscure the linear speedup e�ect. As such, we depart from the analysis techniques in [2, 50] by
further decomposing the random TD direction of each agent i as gi(◊(i)

t,k) = bi(O(i)
t,k) ≠ Ai(O(i)

t,k)◊(i)
t,k.

Since Ai(O(i)
t,k) and bi(O(i)

t,k) only depend on the randomness from the Markov chain, and O(i)
t,k

and O(j)
t,k are independent, we can show that the variances of (1/NK)

qN
i=1

qK≠1
k=0 Ai(O(i)

t,k) and
(1/NK)

qN
i=1

qK≠1
k=0 bi(O(i)

t,k) get scaled down by NK (up to higher order terms). Furthermore, to
account for the fact that Ai(O(i)

t,k) and bi(O(i)
t,k) di�er across agents, we appeal to Lemma 2. Putting

these pieces together in a careful manner yields the final rate in Theorem 4.

7 Conclusion
In this work, we have studied the problem of federated reinforcement learning under environmental
heterogeneity and explored the question: Can an agent expedite the process of learning its own
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Figure 1: Performance of FedTD(0) under Markovian sampling with varying number of agents N . The MDP
M(1) of the first agent is randomly generated with a state space of size n = 100. The remaining MDPs are
perturbations of M(1) with the heterogeneity levels ‘ = 0.05 and ‘1 = 0.1. We evaluate the convergence in
terms of the running error et = Î◊̄t ≠ ◊ú

1Î2. Complying with theory, increasing N reduces this error. We
choose the number of local steps as K = 10.

value function by using information from agents interacting with di�erent MDPs? To answer
this question, we studied the convergence of a federated TD(0) algorithm with linear function
approximation, where N agents under di�erent environments collaboratively evaluate a common
policy. The main di�erences from the existing works are: (i) proposing a new definition of
environmental heterogeneity; (ii) characterizing the e�ect of heterogeneity on TD(0) fixed points; (iii)
introducing a virtual MDP to analyze the long-term behavior of the FedTD(0) algorithm; and (iv)
making an explicit connection between federated reinforcement learning and federated supervised
learning/optimization by leveraging the virtual MDP. With these elements, we proved that if the
environmental heterogeneity between agents’ environments is small, then FedTD(0) can achieve a
linear speedup under both the i.i.d and the Markovian settings, and with multiple local updates.

A few interesting extensions to this work are as follows. First, it is natural to study federated
variants of other RL algorithms beyond the TD(0) algorithm. Second, it would be interesting to
investigate whether the personalization techniques in the traditional FL optimization literature
can be applied to solve FedRL problems. Instead of learning a common value function/policy, can
we design personalized value functions/policies that might perform better in high-heterogeneity
regimes? We leave the exploration of this interesting question as future work.
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A Outline
This appendix provides a detailed literature survey, supporting results, and full proofs for all
theorems, lemmas, and propositions in the main text. A detailed survey of relevant works is
provided in Section B. The proofs to Theorem 1, Propositions 1-3, and Lemma 2 are shown in
sections C, D, and E respectively. In Section F, we provide some lemmas that are used in both
the i.i.d. and Markovian sampling settings. In section G, we introduce some notations which are
relevant to the proofs of the main theorems.

Our main result in the i.i.d. sampling regime is proven in Section H and involves several
key sub-results involving (amongst other things) a variance reduction result, and bounding the
“client-drift” term at each iteration. These results are provided in Section H.1 and the main result,
Theorem 2 is proven in Section H.2.

The heterogeneity bias theorem, Theorem 3, is proven in Section I.
In Section 6, several key intermediate steps to proving Theorem 4 are given in subsections J.2.1-

J.2.6, with the main result being proven in Section J.3. More simulation results are shown in
Section K.
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B Detailed Literature Survey
Federated Learning Algorithms. The literature on algorithmic developments in federated
learning is vast; as such, we only cover some of the most relevant/representative works here. The
most popularly used FL algorithm, FedAvg, was first introduced in [38]. Several works went on to
provide a detailed theoretical analysis of FedAvg both in the homogeneous case when all clients
minimize the same objective function [51, 59, 49, 46, 16, 61], and also in the more challenging
heterogeneous setting [24, 25, 17, 33, 27]. In the latter scenario, it was soon realized that FedAvg
su�ers from a “client-drift" e�ect that hurts its convergence performance [5, 6, 22, 58].

Since then, a lot of e�ort has gone into improving the convergence guarantees of FedAvg via a
variety of technical approaches: proximal methods in FxedProx [47]; operator-splitting in FedSplit
[43]; variance-reduction in Scaffold [22] and S-Local-SVRG [15]; gradient-tracking in FedLin [40];
and dynamic regularization in [1]. While these methods improved upon FedAvg in various ways,
they all fell short of providing any theoretical justification for performing multiple local updates
under arbitrary statistical heterogeneity. Very recently, [39] introduced the ProxSkip algorithm, and
showed that it can indeed lead to communication savings via multiple local steps, despite arbitrary
heterogeneity.

Some other approaches to tackling heterogeneous statistical distributions in FL include person-
alization [10, 12, 55, 18, 56], clustering [14, 48, 52, 20], representation learning [8], and the use of
quantiles [30].

Analysis of TD Learning Algorithms. The first work to provide a comprehensive asymptotic
analysis of the temporal di�erence learning algorithm with value function approximation was [57].
In this work, the authors employed the ODE method [4] that is typically used to study asymptotic
convergence rates of stochastic approximation algorithms. Providing finite-time bounds, however,
turns out to be a much harder problem. Some early e�orts in this direction were [29], [41], [9], and
[31]. While these works were able to establish finite-time bounds for linear stochastic approximation
algorithms (that subsume the TD learning algorithm), their analysis was limited to the i.i.d. sampling
model. For the more challenging Markovian setting, finite-time rates have been recently derived
using various perspectives: (i) by making explicit connections to optimization [2]; (ii) by taking
a control-theoretic approach and studying the drift of a suitable Lyapunov function [50]; and (iii)
by arguing that the mean-path temporal di�erence direction acts as a “gradient-splitting" of an
appropriately chosen function [36]. Each of these interpretations provides interesting new insights
into the dynamics of TD algorithms.
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C Perturbation bounds for TD(0) fixed points
C.1 Proof of Theorem 1
In this section, we prove the perturbation bounds on TD(0) fixed points shown in Theorem 1. We
start by observing that:

ÎĀi ≠ ĀjÎ = Î�€D(i)(� ≠ “P (i)�) ≠ �€D(j)(� ≠ “P (j)�)Î
Æ Î�€D(i)(� ≠ “P (i)�) ≠ �€D(i)(� ≠ “P (j)�) + �€D(i)(� ≠ “P (j)�) ≠ �€D(j)(� ≠ “P (j)�)Î
Æ Î�€D(i)(� ≠ “P (i)�) ≠ �€D(i)(� ≠ “P (j)�)Î
+ Î�€D(i)(� ≠ “P (j)�) ≠ �€D(j)(� ≠ “P (j)�)Î
(a)
Æ “Î�Î2ÎD(i)ÎÎP (i) ≠ P (j)Î + Î�Î2ÎD(i) ≠ D(j)ÎÎ(I ≠ “P (j))Î
(b)
Æ “

Ô
n‘ + (1 + “)[2(n ≠ 1)‘ + O(‘2)], (5)

where (a) follows from the triangle inequality. The first term in (b) uses the fact that Î�Î Æ 1,
ÎD(i)Î Æ 1, and

ÎP (i) ≠ P (j)Î Æ
Ô

nÎP (i) ≠ P (j)ÎŒ Æ ‘
Ô

nÎP (i)ÎŒ = ‘
Ô

n,

where we use Assumption 1 in the second inequality. The second term in (b) uses the the facts that
ÎI ≠ “P (j)Î Æ 1 + “, ÎD(i) ≠ D(j)Î Æ ÎD(i) ≠ D(j)Î1 Æ Îfi(i) ≠ fi(j)Î1, along with Lemma 1.

Next, we bound

Îb̄i ≠ b̄jÎ = Î�D(i)R(i) ≠ �D(j)R(j)Î
Æ Î�D(i)R(i) ≠ �D(i)R(j)Î + Î�D(i)R(j) ≠ �D(j)R(j)Î
Æ Î�ÎÎD(i)ÎÎR(i) ≠ R(j)Î + Î�ÎÎD(i) ≠ D(j)ÎÎR(j)Î

Æ ‘1 + Rmax
1
2(n ≠ 1)‘ + O(‘2)

2
, (6)

where we use Assumption 2 in the last inequality and follow the same reasoning as we used to bound
ÎĀi ≠ ĀjÎ above.

We are now ready to bound the gap between fixed points as:

Î◊ú

i ≠ ◊ú

j Î
Î◊ú

i Î Æ Ÿ(Āi)
1 ≠ Ÿ(Āi)ÎĀi≠ĀjÎ

ÎĀiÎ

A
ÎĀi ≠ ĀjÎ

ÎĀiÎ
+ Îb̄i ≠ b̄jÎ

Îb̄iÎ

B

. (7)

Here, we leveraged the perturbation theory of linear equations in [19] Section 5.8. Finally, for any
Î◊ú

i Î Æ H, we have

Î◊ú

i ≠ ◊ú

j Î Æ �(‘, ‘1) , Ÿ(Āi)H
1 ≠ Ÿ(Āi)A(‘)

”1

3
A(‘)
”1

+ b(‘, ‘1)
”2

4
,

where we used the fact that ”1 and ”2 are positive constants that lower bound ÎĀiÎ and Îb̄iÎ,
respectively.
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D Properties of the Virtual Markov Decision Process
D.1 Proof of Proposition 1
Before we prove this proposition, we present the following fact from [44]: a Markov matrix P is
irreducible and aperiodic if and only if there exists a positive integer k such that every entry of the
matrix P k is strictly positive, i.e., P k

s,sÕ > 0, for all s, sÕ œ S.

For every Markov matrix P (i), we know that there exists such an integer ki according to the
above fact and Assumption 3 in the paper. Then we define a set J = {i œ [N ]|wi > 0}. SinceqN

i=1 wi = 1, and wi Ø 0 holds for all i œ [N ], we know that J is a non-empty set. If we define
k̄ = miniœ[J ]{ki} and j = arg miniœ[J ]{ki}, then we have:

Q

a
ÿ

iœ[N ]
wiP

(i)

R

b
k̄

= wk̄
j

1
P (j)

2k̄

¸ ˚˙ ˝
positive

+ · · · · · ·¸ ˚˙ ˝
nonnegative

, (8)

where each entry of wk̄
j

1
P (j)

2k̄
is strictly positive while the other matrices in the summation are

non-negative. Thus, we can conclude that the Markov chain associated with the Markov matrixq
iœ[N ] wiP (i) is also irreducible and aperiodic.

D.2 Proof of Proposition 2
Following similar arguments as in Theorem 1, we bound ÎĀi ≠ ĀÎ:

ÎĀi ≠ ĀÎ = Î�€D(i)(� ≠ “P (i)�) ≠ �€D̄(� ≠ “P̄�)Î
(a)
Æ “Î�Î2ÎD(i)ÎÎP (i) ≠ P̄Î + Î�Î2ÎD(i) ≠ D̄ÎÎ(I ≠ “P̄ )Î
(b)
Æ “

Ô
n‘ + (1 + “)[2(n ≠ 1)‘ + O(‘2)] = A(‘), (9)

where inequality (a) follows the same reasoning as (a) in Eq. (5), (b) uses the same fact as (b) in
Eq. (5), and ÎP (i) ≠ P̄Î Æ 1

N

qN
j=1ÎP (i) ≠ P (j)Î Æ ‘

Ô
n and ÎD(i) ≠ D̄Î Æ 2(n ≠ 1)‘ + O(‘2).

Based on the above facts: (i) ÎR̄Î Æ 1
N

qN
i=1ÎR(i)Î Æ Rmax, (ii) ÎR(i) ≠ R̄Î Æ 1

N

qN
j=1ÎR(i) ≠

R(j)Î Æ ‘1 and (iii) ÎD(i) ≠ D̄Î Æ 2(n ≠ 1)‘ + O(‘2), we finish the proof by showing that Îb̄i ≠ b̄Î Æ
b(‘, ‘1). To do so, we follow the same steps as Eq. (6), and prove the bound on Î◊ú

i ≠◊úÎ by following
the same analysis as Eq. (7).

D.3 Proof of Proposition 3
Since the virtual MDP is an average of the agents’ MDPs, i.e., P̄ = 1

N

qN
i=1 P (i), the virtual

Markov chain is irreducible and aperiodic from Proposition 1. The maximum eigenvalue of a
symmetric positive-semidefinite matrix is a convex function. Then we have ⁄max(�€D̄�) Æ
q

sœS
fī(s)⁄max

1
„(s)„(s)€

2
Æ

q
sœS

fī(s) = 1.

To show that there exists Ê > 0 such that ⁄min(�€D̄�) Ø Ê > 0, we will establish that �€D̄� is
a positive-definite matrix. Since � is full-column rank, this amounts to showing that D̄ is a positive
definite matrix. From the definition of D̄, establishing positive-definiteness of D̄ is equivalent to
arguing that every element of the stationary distribution vector fī is strictly positive; here, fī€P̄ = fī.
To that end, from Proposition 1, we know that the Markov chain associated with P̄ is aperiodic
and irreducible. From the Perron-Frobenius theorem [13], we conclude that indeed every entry of fī
is strictly positive. If we choose Ê = minsœS{fī(s)} > 0, we have ⁄min(�€D̄�) Ø Ê > 0.
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E Pseudo-gradient heterogeneity: Proof of Lemma 2
For each ◊ œ H, we have:

...ḡ(◊) ≠ 1
N

Nÿ

i=1
ḡi(◊)

... =
...�T D̄(T̄µ�◊ ≠ �◊) ≠ 1

N

1 Nÿ

i=1
�T D(i)(T (i)

µ �◊ ≠ �◊)
2...

(a)
Æ 1

N

Nÿ

i=1

...�T D̄(T̄µ�◊ ≠ �◊) ≠ �T D(i)(T (i)
µ �◊ ≠ �◊)

...

(b)
Æ 1

N

Nÿ

i=1

.....D̄
Ë 1
N

Nÿ

j=1
R(j) + “

1
N

Nÿ

j=1
P (j)�◊ ≠ �◊

È
≠ D(i)(T (i)

µ �◊ ≠ �◊)
.....

Æ 1
N

Nÿ

i=1

.....D̄
Ë 1
N

Nÿ

j=1
R(j) + “

1
N

Nÿ

j=1
P (j)�◊ ≠ �◊

È
≠ D̄(T (i)

µ �◊ ≠ �◊)

+ D̄(T (i)
µ �◊ ≠ �◊) ≠ D(i)(T (i)

µ �◊ ≠ �◊)
.....

(c)
Æ 1

N

Nÿ

i=1

...D̄
Ë 1
N

Nÿ

j=1
R(j) + “

1
N

Nÿ

j=1
P (j)�◊ ≠ �◊

È
≠ D̄(T (i)

µ �◊ ≠ �◊)
...

+ 1
N

Nÿ

i=1

...D̄(T (i)
µ �◊ ≠ �◊) ≠ D(i)(T (i)

µ �◊ ≠ �◊)
...

Æ 1
N

Nÿ

i=1

...D̄
...
...

1
N

Nÿ

j=1
R(j) ≠ R(i)

... + “
...

1
N

Nÿ

j=1
P (j) ≠ P (i)

...
...�◊

...

+ 1
N

Nÿ

i=1

...D̄ ≠ D(i)
...
...T (i)

µ �◊ ≠ �◊
...

(d)
Æ 1

N

Nÿ

i=1

...
1
N

Nÿ

j=1
R(j) ≠ R(i)

...
2

+ “
...

1
N

Nÿ

j=1
P (j) ≠ P (i)

...
...�◊

...

+ 1
N

Nÿ

i=1

...D̄ ≠ D(i)
...
...T (i)

µ �◊ ≠ �◊
...

(e)
Æ

Ë
‘1 + “

Ô
n‘Î�◊Î +

Ë
2(n ≠ 1)‘ + O(‘2)

È
Î�◊Î

Æ H
Ë
O(‘1) + “

Ô
n‘ + 2(n ≠ 1)‘ + O(‘2)

È
= B(‘, ‘1). (10)

Inequalities (a) and (c) follow from the triangle inequality, (b) is due to Î�Î Æ 1; (d) is due to
the fact that ÎD̄Î Æ 1; and (e) uses the following facts: (i) ÎR(i) ≠ R̄Î Æ ‘1; (ii) ÎP (i) ≠ P (j)Î ÆÔ

nÎP (i) ≠ P (j)ÎŒ Æ ‘
Ô

nÎP (i)ÎŒ = ‘
Ô

n, which, in turn, follows from the proof of Theorem 1; (iii)
ÎD(i) ≠ D̄Î Æ 2(n ≠ 1)‘ + O(‘2), which, in turn, follows from the proof of Theorem 1 or Eq (5); and
(iv) Î◊Î Æ H for any ◊ œ H.

F Auxiliary results used in the I.I.D. and Markovian settings
We make repeated use throughout the appendix (often without explicitly stating so) of the following
inequalities:
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• Given any two vectors x, y œ Rd, for any — > 0, we have

Îx + yÎ2 Æ (1 + —)ÎxÎ2 +
3

1 + 1
—

4
ÎyÎ2. (11)

• Given any two vectors x, y œ Rd, for any — > 0, we have

Èx, yÍ Æ —

2 ÎxÎ2 + 1
2—

ÎyÎ2. (12)

This inequality goes by the name of Young’s inequality.

• Given m vectors x1, . . . , xm œ Rd, the following is a simple application of Jensen’s inequality:
.....

mÿ

i=1
xi

.....

2
Æ m

mÿ

i=1
ÎxiÎ2 . (13)

We prove the following result for the virtual MDP.

Lemma 3. For any ◊1, ◊2 œ Rd,

(◊2 ≠ ◊1)€ [ḡ(◊1) ≠ ḡ(◊2)] Ø (1 ≠ “)
...V̂◊1 ≠ V̂◊2

...
2

D̄
. (14)

Proof. Consider a stationary sequence of states with random initial state s ≥ fī and subsequent
state sÕ, which, conditioned on s, is drawn from P̄ (· | s). Define „ , „(s) and „Õ , „ (sÕ). Define
‰1 , V̂◊2(s) ≠ V̂◊1(s) = (◊2 ≠ ◊1)€ „ and ‰2 , V̂◊2 (sÕ) ≠ V̂◊1 (sÕ) = (◊2 ≠ ◊1)€ „Õ. By stationarity, ‰1
and ‰2 are two correlated random variables with the same same marginal distribution. By definition,
E

#
‰2

1
$

= E
#
‰2

2
$

=
...V̂◊2 ≠ V̂◊2

...
2

D̄
since s, sÕ are drawn from fī. And we have,

ḡ(◊1) ≠ ḡ(◊2) = E
Ë
„

!
“„Õ ≠ „

"€ (◊1 ≠ ◊2)
È

= E [„ (‰1 ≠ “‰2)] .

Therefore,

(◊2 ≠ ◊1)€ [ḡ(◊1) ≠ ḡ(◊2)] = E [‰1 (‰1 ≠ “‰2)]

= E
Ë
‰2

1
È

≠ “E [‰1‰2]

Ø (1 ≠ “)E
Ë
‰2

1
È

= (1 ≠ “)
...V̂◊2 ≠ V̂◊2

...
2

D̄
,

where we use the Cauchy-Schwartz inequality to conclude E [‰1‰2] Æ
Ò
E

#
‰2

1
$Ò

E
#
‰2

2
$

= E
#
‰2

1
$
.

Lemma 4. For any ◊1, ◊2 œ Rd, we have

Îḡ(◊1) ≠ ḡ(◊2)Î Æ 2
...V̂◊1 ≠ V̂◊2

...
D̄

. (15)

Proof. Following the analysis of Lemma 3, we have

Îḡ(◊1) ≠ ḡ(◊2)Î = ÎE [„ (‰1 ≠ “‰2)]Î
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Æ
Ò
E [Î„Î2]

Ú
E

Ë
(‰1 ≠ “‰2)2

È

Æ
Ò
E

#
‰2

1
$

+ “
Ò
E

#
‰2

2
$

= (1 + “)
Ò
E

#
‰2

1
$
, (16)

where the second inequality is due to Î„Î Æ 1 and the final equality is due to E
#
‰2

1
$

= E
#
‰2

2
$
. We

finish the proof by using the fact that E
#
‰2

1
$

=
...V̂◊2 ≠ V̂◊2

...
2

D̄
and 1 + “ Æ 2.

With this Lemma, we next show that the steady-state TD(0) update direction ḡ and ḡi are
2-Lipschitz.

Lemma 5. (2-Lipschitzness of steady-state TD(0) update direction) For any ◊1, ◊2 œ Rd, we have

Îḡ(◊1) ≠ ḡ(◊2)Î Æ 2 Î◊1 ≠ ◊2Î . (17)

And for each agent i œ [N ], we have

Îḡi(◊1) ≠ ḡi(◊2)Î Æ 2 Î◊1 ≠ ◊2Î . (18)

Proof. From Lemma 4, we can easily conclude that the steady-state TD(0) update direction ḡ for
the vitual MDP is 2-Lipschitz, i.e.,

Îḡ(◊1) ≠ ḡ(◊2)Î Æ 2 Î◊1 ≠ ◊2Î , (19)

based on the fact that ⁄max(�€D̄�) Æ 1. We can follow the same reasoning to prove Eq (18) since
Îḡi(◊1) ≠ ḡi(◊2)Î Æ 2

...V̂◊1 ≠ V̂◊2

...
Di

holds for each i œ [N ] from [2].

Next, we prove an analog of the Lipschitz property in Lemma 5 for the random TD(0) update
direction of each agent i.

Lemma 6. (2-Lipschitzness of random TD(0) update direction) For any ◊1, ◊2 œ Rd and i œ [N ], we
have

Îgi (◊1) ≠ gi (◊2)Î Æ 2 Î◊1 ≠ ◊2Î .

Proof. In this proof, we will use the fact that the random TD(0) update direction of agent i at
the t-th communication round and k-th local update is an a�ne function of the parameter ◊. In
particular, we have gi(◊) = bi(O(i)

t,k) ≠ Ai(O(i)
t,k)◊, where Ai(O(i)

t,k) = „(s(i)
t,k)(„€(s(i)

t,k) ≠ “„€(s(i)
t,k+1))

and bi(O(i)
t,k) = r(s(i)

t,k)„(s(i)
t,k). Thus, we have

Îgi (◊1) ≠ gi (◊2)Î =
...Ai(O(i)

t,k) (◊1 ≠ ◊2)
...

Æ
...Ai(O(i)

t,k)
... Î◊1 ≠ ◊2Î

Æ
3...„

1
si

t,k

2...
2

+ “
...„

1
si

t,k

2...
...„

1
si

t,k+1
2...

4
Î◊1 ≠ ◊2Î

Æ 2 Î◊1 ≠ ◊2Î ,

where we used that Î„(s)Î Æ 1, ’s œ S in the last step.
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G Notation
For our subsequent analysis, we will use F t

k to denote the filtration that captures all the randomness
up to the k-th local step in round t. We will also use F t to represent the filtration capturing all the
randomness up to the end of round t ≠ 1. With a slight abuse of notation, F t

≠1 is to be interpreted
as F t. Based on the description of FedTD(0), it should be apparent that for each i œ [N ], ◊(i)

t,k is
F t

k≠1-measurable and ◊̄t is F t-measurable. Furthermore, we use Et to represent the expectation
conditioned on all the randomness up to the end of round t ≠ 1.

For simplicity, we define ”t = 1
NK

qN
i=1

qK≠1
k=0

...◊(i)
t,k ≠ ◊̄t

... and �t = 1
NK

qN
i=1

qK≠1
k=0

...◊(i)
t,k ≠ ◊̄t

...
2
.

The latter term is referred to as the drift term. Note that (”t)2 Æ �t holds for all t via Jensen’s
inequality. Unless specified otherwise, Î · Î denotes the Euclidean norm.

Step-size: Throughout the paper, we encounter three kinds of step-sizes: local step-size –l, global
step-size –g, and the e�ective step-size –. Some of our results will rely on e�ective step-sizes that
decay as a function of the communication round t; we will use {–t} to represent such a decaying
e�ective step-size sequence. While the local step-size –¸ will always be held constant, the decay in
the e�ective step-size will be achieved by making the global step-size at the server decay with the
communication round. Accordingly, we will use {–(t)

g } to represent the decaying global step-size
sequence at the server. In what follows, unless specified in the subscript, all the step-sizes appearing
in the proofs refer to the e�ective step-size.
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H Proof of the i.i.d. setting
H.1 Auxiliary lemmas for Theorem 2
H.1.1 Variance reduction

Lemma 7. (Variance reduction in the i.i.d. setting). In the i.i.d. setting, under Assumption 4, at
each round t, we have E

... 1
NK

qN
i=1

qK≠1
k=0

Ë
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

È...
2

Æ ‡2
NK .

Proof. Define Y (i)
t,k , gi(O(i)

t,k, ◊(i)
t,k) ≠ ḡi(◊(i)

t,k). Since {O(i)
t,k} is drawn i.i.d. over time from its stationary

distribution fi(i), we have E[Y (i)
t,k ] = E

Ë
E[Y (i)

t,k | ◊(i)
t,k]

È
= 0. As we mentioned before, for each i œ [N ],

◊(i)
t,k is F t

k≠1-measurable. If we condition on F t
k≠1, we know that ◊(i)

t,k and ◊(j)
t,k are deterministic and

the only randomness in Y (i)
t,k and Y (j)

t,k come from O(i)
t,k and O(j)

t,k , which are independent. Therefore,
Y (i)

t,k and Y (j)
t,k are independent conditioned on F t

k≠1.
For every i ”= j œ [N ], we have

E
Ëe

Y (i)
t,k , Y (j)

t,k

fÈ
= E

Ë
E

Ëe
Y (i)

t,k , Y (j)
t,k

f
| F t

k≠1
ÈÈ (a)= E

Ëe
E[Y (i)

t,k | F t
k≠1],E[Y (j)

t,k | F t
k≠1]

fÈ
= 0, (20)

where (a) follows from the fact that Y (i)
t,k and Y (j)

t,k are independent conditioned on F t
k≠1. For every

k < l and i, j œ [N ],

E
Ëe

Y (i)
t,k , Y (j)

t,l

fÈ
= E

5
E

5e
Y (i)

t,k , Y (j)
t,l

f ---- F t
l≠1

66
= E

Ëe
Y (i)

t,k ,E[Y (j)
t,l | F t

l≠1]
fÈ

= 0. (21)

Then,

E
.....

1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

È.....

2

= E
.....

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Y (i)

t,k

.....

2

= 1
N2K2

Nÿ

i=1

K≠1ÿ

k=0
EÎY (i)

t,k Î2 + 2
N2K2

ÿ

i<j

K≠1ÿ

k=0
E[ÈY (i)

t,k , Y (j)
t,k Í]

¸ ˚˙ ˝
0

+ 2
N2K2

Nÿ

i,j=1

ÿ

k<l

E[ÈY (i)
t,k , Y (j)

t,l Í]
¸ ˚˙ ˝

0

Æ ‡2

NK
,

where the second equality is due to Eq (20) and Eq (21) and the last inequality is due to Assumption 4.

H.1.2 Per Round Progress

First, we characterize the error decrease at each iteration in the following lemma.

Lemma 8. (Per Round Progress). If the local step-size –l satisfies –l Æ (1≠“)Ê̄
48K , then the updates

of FedTD(0) with any global step-size –g satisfy

EÎ◊̄t+1 ≠ ◊úÎ2 Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 6–2E
...ḡ(◊̄t)

...
2
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+ 4–2
3 1

’1
+ 6

4
E[�t] + 2–2‡2

NK
+ 2–B(‘, ‘1)G + 6–2B2(‘, ‘1), (22)

where ’1 is any positive constant, and – is the e�ective step-size, i.e., – = K–l–g.

Proof.

EÎ◊̄t+1 ≠ ◊úÎ2 = E
...�2,H

A

◊̄t + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k) ≠ ◊ú

B ...
2

(updating rule)

Æ E
...◊̄t + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k) ≠ ◊ú

...
2

(projection is non-expansive)

= E
...◊̄t ≠ ◊ú

...
2

+ 2EÈ –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k), ◊̄t ≠ ◊úÍ + E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
...

2

= E
...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ

¸ ˚˙ ˝
C1=0

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k), ◊̄t ≠ ◊úÍ + E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
...

2

= E
...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k), ◊̄t ≠ ◊úÍ + E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
...

2

Æ E
...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k), ◊̄t ≠ ◊úÍ

+ 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

È ...
2

+ 2E
...

–

NK

Nÿ

i=1
ḡi(◊(i)

t,k)
...

2
(Young’s inequality (12))

(a)
Æ E

...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k), ◊̄t ≠ ◊úÍ + 2‡2

NK
+ 2E

...
–

NK

Nÿ

i=1
ḡi(◊(i)

t,k)
...

2

= E
...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k) ≠ ḡi(◊̄t) + ḡi(◊̄t) ≠ ḡ(◊̄t) + ḡ(◊̄t), ◊̄t ≠ ◊úÍ (23)

+ 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k)
...

2
+ 2–2‡2

NK

Æ E
...◊̄t ≠ ◊ú

...
2

+ 2–

NK

Nÿ

i=1

K≠1ÿ

k=0
EÈḡi(◊(i)

t,k) ≠ ḡi(◊̄t), ◊̄t ≠ ◊úÍ + 2–

N

Nÿ

i=1
EÈḡi(◊̄t) ≠ ḡ(◊̄t), ◊̄t ≠ ◊úÍ

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k)
...

2
+ 2–2‡2

NK

Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 1
’1
E

...
–

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
È ...

2
+ 2–B(‘, ‘1)G

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k)
...

2
+ 2–2‡2

NK
(Eq (12) and Lemma 2)
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Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 4–2

’1NK

Nÿ

i=1

K≠1ÿ

k=0
E

...◊(i)
t,k ≠ ◊̄t

...
2

+ 2–B(‘, ‘1)G

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k)
...

2
+ 2–2‡2

NK
(2-Lipschitz of ḡi in Lemma 5)

Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 4–2

’1
E[�t] + 2–2‡2

NK
+ 2–B(‘, ‘1)G

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 2E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t) + ḡi(◊̄t) ≠ ḡ(◊̄t) + ḡ(◊̄t)
È ...

2

Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 4–2

’1
E[�t] + 2–2‡2

NK
+ 2–B(‘, ‘1)G

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 6E
...

–

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
...

2

+ 6E
...

–

N

Nÿ

i=1

Ë
ḡi(◊̄t) ≠ ḡ(◊̄t)

È ...
2

+ 6E
...–ḡ(◊̄t)

...
2

(Eq (12) and Lemma 2)

Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 4–2

’1
E[�t] + 2–2‡2

NK
+ 2–B(‘, ‘1)G

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 24–2E[�t] (2-Lipschitz of ḡi)

+ 6–2B2(‘, ‘1) + 6–2E
...ḡ(◊̄t)

...
2

(Eq (12))

= (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 6–2E
...ḡ(◊̄t)

...
2

+ 4–2
3 1

’1
+ 6

4
E[�t] + 2–2‡2

NK
+ 2–B(‘, ‘1)G + 6–2B2(‘, ‘1), (24)

where (a) is due to Lemma 7. Furthermore, the reason why C1 = 0 is as follows:

C1 =
Nÿ

i=1

K≠1ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ

=
Nÿ

i=1

K≠2ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ +

Nÿ

i=1
EÈgi(◊(i)

t,K≠1) ≠ ḡi(◊(i)
t,K≠1), ◊̄t ≠ ◊úÍ

=
Nÿ

i=1

K≠2ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ +

Nÿ

i=1
E

Ë
E

Ë
Ègi(◊(i)

t,K≠1) ≠ ḡi(◊(i)
t,K≠1), ◊̄t ≠ ◊úÍ | F t

K≠1
ÈÈ

=
Nÿ

i=1

K≠2ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ +

Nÿ

i=1
E

S

WWU

K

◊̄t ≠ ◊ú,E
Ë
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k) | F t

K≠1
È

¸ ˚˙ ˝
0

L
T

XXV

=
Nÿ

i=1

K≠2ÿ

k=0
EÈgi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k), ◊̄t ≠ ◊úÍ.

We can keep repeating this procedure by iteratively conditioning on F t
K≠2, · · · , F t

1, F t
0.

H.1.3 Drift Term Analysis

We now turn to bounding the drift term �t.
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Lemma 9. (Bounded Client Drift) The drift term �t at the t-th round can be bounded as

E[�t] = 1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...◊(i)
t,k ≠ ◊̄t

...
2

Æ 27(‡2 + 3KB2(‘, ‘1) + 2KG2) –2

K–2
g
, (25)

provided the fixed local step-size –l satisfies –l Æ min (1≠“)Ê̄
48K .

Proof.

E
...◊(i)

t,k ≠ ◊̄t

...
2

= E
...◊(i)

t,k≠1 + –lgi(◊(i)
t,k≠1) ≠ ◊̄t

...
2

(updating rule)

= E
...◊(i)

t,k≠1 + –lḡi(◊(i)
t,k≠1) ≠ ◊̄t + –l

1
gi(◊(i)

t,k≠1) ≠ ḡi(◊(i)
t,k≠1)

2 ...
2

= E
...◊(i)

t,k≠1 + –lḡi(◊(i)
t,k≠1) ≠ ◊̄t

...
2

+ –2
l E

...gi(◊(i)
t,k≠1) ≠ ḡi(◊(i)

t,k≠1)
...

2

+ 2–l E
Ë
E

e
gi(◊(i)

t,k≠1) ≠ ḡi(◊(i)
t,k≠1), ◊(i)

t,k≠1 + –lḡi(◊(i)
t,k≠1) ≠ ◊̄t

--- F t
k≠1

fÈ È

¸ ˚˙ ˝
C2=0

(a)
Æ (1 + ’2)E

...◊(i)
t,k≠1 + –lḡ(◊(i)

t,k≠1) ≠ ◊̄t

...
2

+ (1 + 1
’2

)–2
l E

...ḡ(◊(i)
t,k≠1) ≠ ḡi(◊(i)

t,k≠1)
...

2

+ –2
l E

...gi(◊(i)
t,k≠1) ≠ ḡi(◊(i)

t,k≠1)
...

2

(b)
Æ (1 + ’2)(1 + ’3)E

...◊(i)
t,k≠1 + –lḡ(◊(i)

t,k≠1) ≠ ◊̄t ≠ –lḡ(◊̄t)
...

2
+ (1 + ’2)(1 + 1

’3
)–2

l E
...ḡ(◊̄t)

...
2

+ (1 + 1
’2

)–2
l E

...ḡ(◊(i)
t,k≠1) ≠ ḡ(◊̄t) + ḡ(◊̄t) ≠ ḡi(◊̄t) + ḡi(◊̄t) ≠ ḡi(◊(i)

t,k≠1)
...

2
+ –2

l ‡2

(c)
Æ (1 + ’2)(1 + ’3)E

...◊(i)
t,k≠1 + –lḡ(◊(i)

t,k≠1) ≠ ◊̄t ≠ –lḡ(◊̄t)
...

2
+ (1 + ’2)(1 + 1

’3
)–2

l E
...ḡ(◊̄t)

...
2

+ 3(1 + 1
’2

)–2
l E

...ḡ(◊(i)
t,k≠1) ≠ ḡ(◊̄t)

...
2

+ 3(1 + 1
’2

)–2
l E

...ḡ(◊̄t) ≠ ḡi(◊̄t)
...

2

+ 3(1 + 1
’2

)–2
l E

...ḡi(◊̄t) ≠ ḡi(◊(i)
t,k≠1)

...
2

+ –2
l ‡2

(d)
Æ (1 + ’2)(1 + ’3)

Ë
1 ≠ (2–l(1 ≠ “) ≠ 4–2

l )Ê̄
È
E

...◊(i)
t,k≠1 ≠ ◊̄t

...
2

+ (1 + ’2)(1 + 1
’3

)–2
l E

...ḡ(◊̄t)
...

2

+ 12(1 + 1
’2

)–2
l E

...◊(i)
t,k≠1 ≠ ◊̄t

...
2

+ 3(1 + 1
’3

)–2
l B2(‘, ‘1) + 12(1 + 1

’3
)–2

l E
...◊(i)

t,k≠1 ≠ ◊̄t

...
2

+ –2
l ‡2

= (1 + ’2)(1 + ’3)
C

1 ≠ (2–l(1 ≠ “) ≠ 4–2
l )Ê̄ +

24(1 + 1
’3

)–2
l

(1 + ’2)(1 + ’3)

D

E
...◊(i)

t,k≠1 ≠ ◊̄t

...
2

+ (1 + ’2)(1 + 1
’3

)–2
l E

...ḡ(◊̄t)
...

2
+ 3(1 + 1

’3
)–2

l B2(‘, ‘1) + –2
l ‡2

¸ ˚˙ ˝
D1

,

where we used the inequality in Eq (11) with any positive constant ’2 for (a); for (b), we used
Assumption 4 and the same reasoning as Eq (11) with any positive constant ’3; for (c), we used
the inequality in Eq (13) to bound the third term; and for (d), we used Lemma 3 and Lemma 4 to
bound the first term, the 2-Lipschitz property of ḡ, ḡi (i.e., Lemma 5) in the third term and the
fifth term, and the gradient heterogeneity bound from Lemma 2 in the fourth term. If we define
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’4 , (1 + ’2)(1 + ’3)
5
1 ≠ (2–l(1 ≠ “) ≠ 4–2

l )Ê̄ +
24(1+ 1

’3
)–2

l

(1+’2)(1+’3)

6
and define D1 as above, we have that

E
...◊(i)

t,k ≠ ◊̄t

...
2

Æ ’4E
...◊(i)

t,k≠1 ≠ ◊̄t

...
2

+ D1. (26)

Next, we set ’2 = ’3 = 1
K≠1 , K Ø 2, and choose the local step-size –l to satisfy

–l(1 ≠ “)Ê̄
2 Ø 4–2

l Ê̄ & –l(1 ≠ “)Ê̄
2 Ø

24(1 + 1
’3

)–2
l

(1 + ’2)(1 + ’3) ,

so that
5
1 ≠ (2–l(1 ≠ “) ≠ 4–2

l )Ê̄ +
24(1+ 1

’2
)–2

l

(1+’2)(1+’3)

6
Æ 1 ≠ –l(1 ≠ “)Ê̄. These inequalities hold when

–l Æ min (1≠“)Ê̄
48K . Then, Eq (26) becomes

E
...◊(i)

t,k ≠ ◊̄t

...
2

Æ (1 + 3
K ≠ 1) [1 ≠ –l(1 ≠ “)Ê̄]E

...◊(i)
t,k≠1 ≠ ◊̄t

...
2

+ D1.

If we unroll this recurrence above, using ◊(i)
r,0 = ◊̄t, we have that

E
...◊(i)

t,k ≠ ◊̄t

...
2

Æ
k≠1ÿ

s=0
D1

;
�k≠1

j=s+1(1 + 3
K ≠ 1) [1 ≠ –(1 ≠ “)Ê̄]

<

(e)
Æ

k≠1ÿ

s=0

Ë
–2

l ‡2 + 3K–2
l B2(‘, ‘1), +2–2

l KE
...ḡ(◊̄t)

...
2È

◊ �k≠1
j=s+1(1 + 3

K ≠ 1)[1 ≠ –l(1 ≠ “)Ê̄]

Æ
k≠1ÿ

s=0

Ë
–2

l ‡2 + 3–2
l KB2(‘, ‘1) + 2–2

l KE
...ḡ(◊̄t)

...
2È

(1 + 3
K ≠ 1)K≠1�k≠1

j=s+1[1 ≠ –l(1 ≠ “)Ê̄]

(f)
Æ 27(‡2 + 3KB2(‘, ‘1) + 2KE

...ḡ(◊̄t)
...

2
)

k≠1ÿ

s=0
–2

l ◊ �k≠1
j=s+1[1 ≠ –(1 ≠ “)Ê̄]

¸ ˚˙ ˝
Æ1

Æ 27(‡2 + 3KB2(‘, ‘1) + 2KG2)K–2
l (constant local step-size)

where we used the fact that (1 + ’2)(1 + 1
’3

) Æ 2K for (e) and (1 + 3
K≠1)K≠1 Æ 27 for (f). we finish

the proof by substituting –l = –
K–g

.

If we incorporate Eq (25) into Eq (22), we have that

E
...◊̄t+1 ≠ ◊ú

...
2

Æ (1 + ’1)E
...◊̄r ≠ ◊ú

...
2

+ 2–EÈḡ(◊̄r), ◊̄r ≠ ◊úÍ + 6–2E
...ḡ(◊̄r)

...
2

+ 108 –4

K–2
g
(6 + 1

’1
)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–2‡2

NK
+ 2–B(‘, ‘1)G + 6–2B2(‘, ‘1)

(27)

H.1.4 Parameter Selection

Lemma 10. Define ‹ , (1 ≠ “)Ê̄. If we choose any e�ective step-size – = K–g–l < (1≠“)Ê̄
96 , any

local step-size –l Æ min (1≠“)Ê̄
48K , and choose the constant ’1 = –‹, the updates of FedTD(0) satisfy

‹1E
...V◊̄t

≠V◊ú

...
2

D̄
Æ ( 1

–
≠ ‹1)E

...◊̄t ≠ ◊ú

...
2

≠ 1
–
E

...◊̄t+1 ≠ ◊ú

...
2

+ 2–‡2

NK¸ ˚˙ ˝
O(–1)
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+ 1080–2

K–2
g‹

(‡2 + 3KB2(‘, ‘1) + 2KG2)
¸ ˚˙ ˝

O(–2)

+ 2B(‘, ‘1)G + 6–B2(‘, ‘1)
¸ ˚˙ ˝

heterogeneity term

, (28)

where ‹1 = ‹
4 = (1≠“)Ê̄

4 .
Proof. From Eq (27) and ’1 = –‹, we know

E
...◊̄t+1 ≠ ◊ú

...
2

Æ (1 + ’1)E
...◊̄t ≠ ◊ú

...
2

+ 2–EÈḡ(◊̄t), ◊̄t ≠ ◊úÍ + 6–2E
...ḡ(◊̄r)

...
2

+ 108 –4

K–2
g
(6 + 1

’1
)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–2‡2

NK
+ 2–B(‘, ‘1)G + 6–2B2(‘, ‘1)

Æ (1 + –‹ ≠ 2–‹)E
...◊̄t ≠ ◊ú

...
2

+ 24–2E
...V◊̄t

≠ V◊ú

...
2

D̄
+ 2–2‡2

NK
(Lemma 3 and 4)

+ 108 –4

K–2
g
(6 + 1

–‹
)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–B(‘, ‘1)G + 6–2B2(‘, ‘1)

Æ (1 ≠ –‹

2 )E
...◊̄t ≠ ◊ú

...
2

≠ –‹

2 E
...◊̄t ≠ ◊ú

...
2

+ 24–2E
...V◊̄t

≠ V◊ú

...
2

D̄
+ 2–2‡2

NK

+ 108 –4

K–2
g
(6 + 1

–‹
)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–B(‘, ‘1)G + 6–2B2(‘, ‘1)

(a)
Æ (1 ≠ –‹

2 )E
...◊̄t ≠ ◊ú

...
2

≠ –‹

2 E
...V◊̄t

≠ V◊ú

...
2

D̄
+ –‹

4 E
...V◊̄t

≠ V◊ú

...
2

D̄
+ 2–2‡2

NK

+ 108 –4

K–2
g
(6 + 1

–‹
)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–B(‘, ‘1)G + 6–2B2(‘, ‘1),

where (a) comes from ⁄max(�T D̄�) Æ 1 and 24–2 Æ 24– (1≠“)w̄
96 = –‹

4 . Moving E
...V◊̄t

≠ V◊ú

...
2

D̄
(on

the right-hand side of (a)) to the left hand side of the above inequality yields:

–‹

4 E
...V◊̄t

≠V◊ú

...
2

D̄
Æ (1 ≠ –‹

2 )E
...◊̄t ≠ ◊ú

...
2

≠ E
...◊̄t+1 ≠ ◊ú

...
2

+ 2–2‡2

NK

+ 108( 6–4

K–2
g

+ –3

K–2
g‹

)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2–B(‘, ‘1)G + 6–2B2(‘, ‘1).

Dividing by – on both sides of the inequality above and changing ‹ into ‹1, we have:

‹1E
...V◊̄t

≠ V◊ú

...
2

D̄
Æ ( 1

–
≠ ‹1)E

...◊̄t ≠ ◊ú

...
2

≠ 1
–
E

...◊̄t+1 ≠ ◊ú

...
2

+ 2–‡2

NK

+ 108( 6–3

K–2
g

+ 4–2

K–2
g‹1

)(‡2 + 3KB2(‘, ‘1) + 2KG2) + 2B(‘, ‘1)G + 6–B2(‘, ‘1)

Æ ( 1
–

≠ ‹1)E
...◊̄t ≠ ◊ú

...
2

≠ 1
–
E

...◊̄t+1 ≠ ◊ú

...
2

+ 2–‡2

NK¸ ˚˙ ˝
O(–1)

+ 1080–2

K–2
g‹1

(‡2 + 3KB2(‘, ‘1) + 2KG2)
¸ ˚˙ ˝

O(–2)

+ 2B(‘, ‘1)G + 6–B2(‘, ‘1)
¸ ˚˙ ˝

heterogeneity term

,

where we used the fact that – Æ 1 in the last inequality.

With these lemmas, we are now ready to prove Theorem 2, which we restate for clarity.
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H.2 Proof of Theorem 2
Given a fixed local step-size –l = 1

2
(1≠“)Ê̄

48K , decreasing e�ective step-sizes –t = 8
‹(a+t+1) =

8
(1≠“)Ê̄(a+t+1) , decreasing global step-sizes –(t)

g = –t
K–l

, and weights wt = (a + t), we have that

E
...V◊̃T

≠ V◊ú
i

...
2

D̄
Æ Õ

A
G2

K2T 2 + ‡2

‹4KT 2 + ‡2

‹2NKT
+ B(‘, ‘1)G

‹
+ �2(‘, ‘1)

B

(29)

holds for any agent i œ [N ].

Proof. We take the e�ective step-size –t = 8
‹(a+t+1) = 2

‹1(a+t+1) for a > 0. In addition, we define
weights wt = (a + t) and define

◊̃T = 1
W

Tÿ

t=1
wt◊̄t,

where W =
qT

t=1 wt Ø 1
2T (a+T ). By convexity of positive definite quadratic forms (⁄min(�T D̄�) Ø

Ê̄ > 0), we have that

‹1E
...V◊̃T

≠ V◊ú

...
2

D̄
Æ ‹1

W

Tÿ

t=1
(a + t)E

...V◊̄t
≠ V◊ú

...
2

D̄

(28)
Æ ‹1(a + 1)(a + 2)G2

2W
+ 1

W

Tÿ

t=1

52(a + t)–t

NK
‡2

6

+ 1
W

Tÿ

t=1

C
1080(a + t)–2

t

K–2
g‹1

(‡2 + 3KB2(‘, ‘1) + 2KG2)
D

+ 1
W

Tÿ

t=1
(a + t)

Ë
2B(‘, ‘1)G + 6–tB

2(‘, ‘1)
È

Æ ‹1(a + 1)(a + 2)G2

2W
+ 2‡2

NKW

Tÿ

t=1
(a + t)–t

+ 1080(‡2 + 3KB2(‘, ‘1) + 2KG2)
K–2

g‹1W

Tÿ

t=1
(a + t)–2

t + 2B(‘, ‘1)G + 6B2(‘, ‘1)
W

Tÿ

t=1
(a + t)–t

Æ ‹1(a + 1)(a + 2)G2

2W
+ 4‡2

‹1NKW
· T

+ 4320(‡2 + 3KB2(‘, ‘1) + 2KG2)
K–2

g‹3
1W

· (1 + log(a + T )) + 2B(‘, ‘1)G + 12B2(‘, ‘1)
‹1W

· T,

where we used
...V◊̄0 ≠ V◊ú

...
2

D̄
Æ G2. Dividing by ‹1 on both sides, changing ‹1 into ‹, and using

W Ø T (a+T )
2 , we have:

E
...V◊̃T

≠ V◊ú

...
2

D̄
Æ Õ

A
G2

K2T 2 + ‡2

‹4KT 2 + ‡2

‹2NKT
+ B(‘, ‘1)G

‹

B

.

We finish the proof by using the following inequality: E
...V◊̃T

≠ V◊ú
i

...
2

D̄
Æ 2E

...V◊̃T
≠ V◊ú

...
2

D̄
+

2E
...V◊ú

i
≠ V◊ú

...
2

D̄
, in tandem with the third point in Theorem 1.
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I Heterogeneity bias: Proof of Theorem 3
In this section, we prove Theorem 3.

Proof of Theorem 3. As ◊ú
1 and ◊ú

2 are the TD(0) fixed points of agents 1 and 2, respectively,
we have ◊ú

1 = Ā≠1
1 b̄1 and ◊ú

2 = Ā≠1
2 b̄2 from Section 3.1. The output of mean-path FedTD(0) with

k = 1 and – = –g–l satisfies:

◊̄t+1 = ◊̄t + –(≠Â◊̄t + b̂)
=∆ ◊̄t+1 ≠ ◊ú

1 = ◊̄t ≠ ◊ú

1 + –(≠Â(◊̄t ≠ ◊ú

1 + ◊ú

1) + b̂)
=∆ e1,t+1 = (I ≠ –Â)e1,t ≠ –Â◊ú

1 + –b̂

=∆ e1,t+1 = (I ≠ –Â)e1,t ≠ –

A
Ā1 + Ā2

2

B

Ā≠1
1 b̄1 + –

b̄1 + b̄2
2

=∆ e1,t+1 = (I ≠ –Â)e1,t ≠ –
Ā2Ā≠1

1 b̄1
2 + –

b̄2
2

=∆ e1,t+1 = (I ≠ –Â)e1,t ≠ –Ā2
2

1
Ā≠1

1 b̄1 ≠ Ā≠1
2 b̄2

2

=∆ e1,t+1 = (I ≠ –Â)
¸ ˚˙ ˝

Ã

e1,t + –Ā2
2 (◊ú

2 ≠ ◊ú

1)
¸ ˚˙ ˝

Ỹ

. (30)

Let us now note that e1,t+1 = Ãe1,t + Ỹ can be viewed as a discrete-time linear time-invariant (LTI)
system where – is chosen s.t. Ã is Schur stable, i.e., |⁄max(Ã)| < 1. At the t-th iteration, we have:

e1,t = Ãte1,0 +
t≠1ÿ

k=0
ÃkỸ.

As t æ Œ, the small gain theorem tells us that because fl(Ã) < 1 (where fl(·) denotes the spectral
radius),

qt≠1
k=0 Ãk exists and is given by (I ≠ Ã)≠1. We can then conclude that

lim
tæŒ

e1,t = (I ≠ Ã)≠1Ỹ

=
1
–Â

2
≠1 –Ā2

2 (◊ú

1 ≠ ◊ú

2)

= 1
2Â≠1Ā2 (◊ú

1 ≠ ◊ú

2) . (31)

The limiting expression for e2,t follows the same analysis.
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J Proof of the Markovian setting
We now turn our attention to proving the main result of the paper, namely, Theorem 4.

J.1 Outline
As mentioned in the main body, one of the main obstacles to overcome in the analysis is that
in general, E[(1/N)

qN
i=1

!
gi(◊(i)

t,k, O(i)
t,k) ≠ ḡi(◊(i)

t,k)
"
] ”= 0. In order to show that a linear speedup is

achievable, we first decompose the random TD direction of each agent i as gi(◊(i)
t,k) = bi(O(i)

t,k) ≠
Ai(O(i)

t,k)◊(i)
t,k in subsection J.2.1 and show that the variances of (1/NK)

qN
i=1

qK≠1
k=0 Ai(O(i)

t,k) and
(1/NK)

qN
i=1

qK≠1
k=0 bi(O(i)

t,k) get scaled down by NK in subsection J.2.2. To decouple the randomness
between the parameter ◊(i)

t,k and the observations O(i)
t,k using the method called information theoretic

control of coupling in [2], we need to bound E
5...◊̄t ≠ ◊̄t≠·

...
26

in subsection J.2.3. As the analysis in
the i.i.d. setting and traditional FL, we characterize the drift term, per-iteration error decrease, and
parameter selection in subsections J.2.4, J.2.5 and J.2.6, respectively. Finally, we prove Theorem 4
in subsection J.3.

Additional Notation: Under Assumption 3, for each MDP i, there exists some mi Ø 1 and some
fli œ (0, 1), such that for all t Ø 0 and 0 Æ k Æ K ≠ 1, it holds that

dT V

1
P

1
s(i)

t,k = · | s(i)
0,0 = s

2
, fi(i)

2
Æ mifl

tK+k
i , ’s œ S.

Furthermore, we define fl = maxiœ[N ]{fli}, m = maxiœ[N ]{mi}.

J.2 Auxiliary lemmas for Theorem 4
J.2.1 Decomposition Form

The first step in our proof of Theorem 4 is to rewrite agent i’s update direction of FedTD(0) as:

gi(◊(i)
t,k) = ≠Ai(O(i)

t,k)◊(i)
t,k + bi(O(i)

t,k)

where Ai(O(i)
t,k) = „(s(i)

t,k)(„€(s(i)
t,k) ≠ “„€(s(i)

t,k+1)) and bi(O(i)
t,k) = r(s(i)

t,k)„(s(i)
t,k). Note that the steady-

state value of E[bi(O(i)
t,k)] is not equal to 0. For convenience, we apply appropriate centering to

rewrite gi as:

gi(◊(i)
t,k) = ≠Ai(O(i)

t,k)(◊(i)
t,k ≠ ◊ú

i ) + bi(O(i)
t,k) ≠ Ai(O(i)

t,k)◊ú

i¸ ˚˙ ˝
Zi(O(i)

t,k)

. (32)

Define Zi(O(i)
t,k) , bi(O(i)

t,k) ≠ Ai(O(i)
t,k)◊ú

i . As ḡi(◊) , E
O

(i)
t,k≥fi(i) [gi(◊)] , we have:

ḡi(◊(i)
t,k) = ≠Āi(◊(i)

t,k ≠ ◊ú

i ). (33)

where Āi = �€D(i)(� ≠ “P (i)�). Note that E
O

(i)
t,k≥fi(i)

Ë
Zi(O(i)

t,k)
È

equals to 0. Taking into account
the definitions above, we establish the following lemmas:
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Lemma 11. (Uniform norm bound) There exist some constants c1, c2, c3 Ø 0 such that
...Ai

1
O(i)

t,k

2 ... Æ

c1 := 1 + “ ,
...Āi

... Æ c2 := 1 + “ and
...Zi

1
O(i)

t,k

2 ... Æ c3 := Rmax + c1H holds for all i œ [N ].

Proof. Based on the definition and the fact that Î„(s)Î Æ 1, we have
...Ai

1
O(i)

t,k

2 ... =
...„(s(i)

t,k)(„€(s(i)
t,k) ≠ “„€(s(i)

t,k+1))
... Æ

...„(s(i)
t,k)

...
...„€(s(i)

t,k) ≠ “„€(s(i)
t,k+1)

... Æ 1 + “.

Similarly, making use of the fact that r(s) Æ Rmax for any s œ S, we apply the same reasoning to
conclude that ...Āi

... Æ 1 + “ &
...Zi

1
O(i)

t,k

2 ... Æ Rmax + c1H

.

Lemma 12. There exist some constants L1, L2 Ø 0 such that
...Āi ≠ E

Ë
Ai

1
O(i)

t2,k2

2
| F t1

k1

È... Æ L1fl(t2≠t1)K+k2≠k1 &
...Āi ≠ Et1

Ë
Ai

1
O(i)

t2,k2

2È... Æ L1fl(t2≠t1)K+k2 ,
...E

Ë
Zi

1
O(i)

t2,k2

2
| F t1

k1

È... Æ L2fl(t2≠t1)K+k2≠k1 &
...Et1

Ë
Zi

1
O(i)

t2,k2

2È... Æ L2fl(t2≠t1)K+k2

hold for any i œ [N ], 0 Æ k1, k2 Æ K ≠ 1 and t2 Ø t1 Ø 0.

Proof. We have:
...E

Ë
Zi

1
O(i)

t2,k2

2
| F t1

k1

È... =
....E

Ë
Zi

1
O(i)

t2,k2

2
| F t1

k1

È
≠ E

O
(i)
t2,k2

≥fi(i)

Ë
Zi

1
O(i)

t2,k2

2
| F t1

k1

È....

=
.....

ÿ

s
(i)
t2,k2

,s
(i)
t2+1,k2+1

1
fi(i)(s(i)

t2,k2
)P (s(i)

t2+1,k2+1 | s(i)
t2,k2

)

≠P (s(i)
t2,k2

= · | s(i)
t1,k1

)P (s(i)
t2+1,k2+1 | s(i)

t2,k2
)
2

Zi(O(i)
t2,k2

)
.....

Æ
ÿ

s
(i)
t2,k2

---fi(i)(s(i)
t2,k2

) ≠ P (s(i)
t2,k2

= · | s(i)
t1,k1

)
---
...Zi(O(i)

t2,k2
)
...

(a)
Æ

ÿ

s
(i)
t2,k2

---fi(i)(s(i)
t2,k2

) ≠ P (s(i)
t2,k2

= · | s(i)
t1,k1

)
--- (Rmax + c1H)

= 2(Rmax + c1H)dT V

1
P

1
s(i)

t2,k2
= · | s(i)

t1,k1
= s

2
, fi(i)

2

Æ 2(Rmax + c1H)mifl
(t2≠t1)K+k2≠k1
i

where (a) is due to Lemma 11 and the last step follows from Assumption 3. We finish the proof by
choosing L2 , maxiœ[N ]{2(Rmax + c1H)mi} = 2c3m. And we follow the same analysis to bound:

...Āi ≠ E
Ë
Ai

1
O(i)

t2,k2

2
| F t1

k1

È... =
....ÎE

Ë
Ai

1
O(i)

t2,k2

2
| F t1

k1

È
≠ E

O
(i)
t2,k2

≥fi(i)

Ë
Ai

1
O(i)

t2,k2

2
| F t1

k1

È....

=
.....

ÿ

s
(i)
t2,k2

,s
(i)
t2+1,k2+1

1
fi(i)(s(i)

t2,k2
)P (s(i)

t2+1,k2+1 | s(i)
t2,k2

)
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≠P (s(i)
t2,k2

= · | s(i)
t1,k1

)P (s(i)
t2+1,k2+1 | s(i)

t2,k2
)
2

Ai(O(i)
t2,k2

)
.....

Æ
ÿ

s
(i)
t2,k2

---fi(i)(s(i)
t2,k2

) ≠ P (s(i)
t2,k2

= · | s(i)
t1,k1

)
---
...Ai(O(i)

t2,k2
)
...

(b)
Æ 2c1dT V

1
P

1
s(i)

t2,k2
= · | s(i)

t1,k1
= s

2
, fi(i)

2

Æ 2c1mifl
(t2≠t1)K+k2≠k1
i

We finish the proof by choosing L1 , maxiœ[N ]{2c1mi} = 2c1m. We employ the same reasoning to
prove the remaining three inequalities.

J.2.2 Variance Reduction

We are now ready to present the variance reduction Lemma in the Markov setting. The following
Lemma establishes an analog of the variance reduction Lemma 7 in the i.i.d. setting. Based on the
assumption that trajectories are independent across agents, it is easy to understand that the variance
of (1/NK)

qN
i=1

qK≠1
k=0 Ai(O(i)

t,k) and (1/NK)
qN

i=1
qK≠1

k=0 bi(O(i)
t,k) can be scaled by the number of

agents N . However, it is not obvious that the variances can be scaled by K (the number of local
iterations), since the observations of each agent O(i)

t,k1
and O(i)

t,k2
are correlated at di�erent local steps

k1, k2. Due to the geometric mixing property of the Markov chain, the correlation between O(i)
t,k1

and O(i)
t,k2

will geometrically decay after the mixing time. Based on this fact, we show that the
variances of (1/NK)

qN
i=1

qK≠1
k=0 Ai(O(i)

t,k) and (1/NK)
qN

i=1
qK≠1

k=0 bi(O(i)
t,k) get scaled down by NK

with an additional additive, higher order term dependent on the mixing time · , which is formally
stated as follows:

Lemma 13. (Variance reduction in the Markovian setting) For any 0 < · < t, there exists d1, d2 > 0
such that:

Et≠·

C.....
1

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
Ai(O(i)

t,k) ≠ Āi

È.....

D

Æ d1Ô
NK

+ 2L1fl·K , (34)

Et≠·

S

U
.....

1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
Ai(O(i)

t,k) ≠ Āi

È.....

2T

V Æ d2
1

NK
+ 4L2

1fl2·K , (35)

Et≠·

C.....
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
.....

D

Æ d2Ô
NK

+ 2L2fl·K , and (36)

Et≠·

S

U
.....

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
.....

2T

V Æ d2
2

NK
+ 4L2

2fl2·K , (37)

where d1 ,
Ò

(c1 + c2)2 + 2(c1+c2)L1fl
1≠fl and d2 ,

Ò
c2

3 + 2c3L2fl
1≠fl .

Proof.

Et≠·

C.....
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
.....

D

= Et≠·

S

WWU

ı̂ııÙ
A

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
B€ A

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
B

T

XXV
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(a)
Æ

ı̂ııÙEt≠·

S

U
A

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
B€ A

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
BT

V

=

Y
_____]

_____[

Et≠·

S

WWWWWU

1
N2K2

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)€Zi(O(i)
t,k) + 2

N2K2

Nÿ

i=1

ÿ

k<l

Zi(O(i)
t,k)€Zi(O(i)

t,l )
¸ ˚˙ ˝

T1

+ 2
N2K2

ÿ

i<j

K≠1ÿ

k=0
Zi(O(i)

t,k)€Zj(O(j)
t,k )

¸ ˚˙ ˝
T2

+ 2
N2K2

ÿ

i<j

ÿ

k<l

Zi(O(i)
t,k)€Zj(O(j)

t,l )

¸ ˚˙ ˝
T3

T

XXXXXV

Z
_____̂

_____\

1
2

(38)

where (a) is due to the concavity of square root and Jensen’s inequality. Furthermore, the term T1
can be further bounded by:

Et≠· [T1] = Et≠·

S

U 2
N2K2

Nÿ

i=1

ÿ

k<l

Zi(O(i)
t,k)€Zi(O(i)

t,l )

T

V

= Et≠·

S

U 2
N2K2

Nÿ

i=1

ÿ

k<l

Zi(O(i)
t,k)€E

Ë
Zi(O(i)

t,l ) | F t
k

È
T

V

Æ Et≠·

S

U 2
N2K2

Nÿ

i=1

ÿ

k<l

...Zi(O(i)
t,k)

...
...E

Ë
Zi(O(i)

t,l ) | F t
k

È...

T

V (Cauchy–Schwarz inequality)

Æ Et≠·

S

U 2
N2K2

Nÿ

i=1

ÿ

k<l

c3L2fl(l≠k)

T

V ( Lemma 11 and 12)

Æ Et≠·

C
2

N2K2

Nÿ

i=1

K≠1ÿ

k=0

Œÿ

m=1
c3L2flm

D

= 2c3L2NK

N2K2
fl

1 ≠ fl
= 2c3L2fl

NK(1 ≠ fl) .

And T2 can be bounded by:

Et≠· [T2] = 2
N2K2

ÿ

i<j

K≠1ÿ

k=0
Et≠·

Ë
Zi(O(i)

t,k)
È€

Et≠·

Ë
Zj(O(j)

t,k )
È

(O(i)
t,k and O(j)

t,k are independent)

Æ 2
N2K2

ÿ

i<j

K≠1ÿ

k=0
L2

2fl2·K+2k (Lemma 12)

Æ 2
K

L2
2fl2·K .

Meanwhile, T3 can be bounded by:

Et≠· [T3] = 2
N2K2

ÿ

i<j

ÿ

k<l

Et≠·

Ë
Zi(O(i)

t,k)
È€

Et≠·

Ë
Zj(O(j)

t,l )
È

(O(i)
t,k and O(j)

t,l are independent)
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Æ 2
N2K2

ÿ

i<j

ÿ

k<l

L2
2fl2·K+k+l (Lemma 12)

Æ 2L2
2fl2·K

Substituting the upper bound of T1, T2 and T3 into Eq (38), we have:

Et≠·

C.....
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
.....

D

Æ
A

1
N2K2

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

Ë
Zi(O(i)

t,k)€Zi(O(i)
t,k)

È

+ 2c3L2fl

NK(1 ≠ fl) + 2
K

L2
2fl2·K + 2L2

2fl2·K
4 1

2

(a)
Æ

Û
NK

N2K2 c2
3 + 2c3Lfl

NK(1 ≠ fl) + 2
K

L2
2fl2·K + 2L2

2fl2·K

Æ
Û

1
NK

3
c2

3 + 2c3L2fl

1 ≠ fl

4
+ 4L2

2fl2·K (K Ø 1)

Æ
Û

1
NK

3
c2

3 + 2c3L2fl

1 ≠ fl

4
+

Ò
4L2

2fl2·K

=
Û

1
NK

3
c2

3 + 2c3L2fl

1 ≠ fl

4
+ 2L2fl·K .

where (a) used the fact that
...Zi

1
O(i)

t,k

2 ... Æ c3 mentioned in Lemma 11. The proof of other
inequalities follows the same reasoning.

J.2.3 Bounding E
5...◊̄t ≠ ◊̄t≠·

...
26

Lemma 14. (Bounding Î◊t ≠ ◊t≠· Î2) Consider · = Á ·mix(–2
T )

K Ë and choose the e�ective step-size

– Æ min
Ó 1

30c4(· + 1) ,
1

96c2
4·

, 1
Ô

where c4 = 3c1. For any t Ø 2· , we have the following bound:

Et≠2·

5...◊̄t ≠ ◊̄t≠·

...
26

Æ 8–2·2c2
4Et≠2·

5...◊̄t ≠ ◊ú

...
26

+ 14–2·2 d2
2

NK
+ 52L2

2–4·

1 ≠ fl2

+ 4–2c2
4·

·ÿ

s=0
Et≠2· [�t≠s] + 3200–2c2

4c2
1·3�2(‘, ‘1) + 4–2c2

1·2�2(‘, ‘1). (39)

Proof. For any l Ø 2· , we have

...◊̄l+1 ≠ ◊̄l

...
2

=
...�2,H

A

◊̄l + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

l,k)
B

≠ ◊̄l

...
2

Æ
...◊̄l + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

l,k) ≠ ◊̄l

...
2

= –2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
≠Ai(O(i)

l,k)
1
◊(i)

l,k ≠ ◊ú

i

2
+ Zi(O(i)

l,k)
È ...

2
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Æ 2–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
≠Ai(O(i)

l,k)
1
◊(i)

l,k ≠ ◊ú
2

+ Zi(O(i)
l,k)

È ...
2

+ 2–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
≠Ai(O(i)

l,k)
1
◊ú ≠ ◊ú

i

2È ...
2

(a)
Æ 2–2

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
≠Ai(O(i)

l,k)
1
◊(i)

l,k ≠ ◊ú
2

+ Zi(O(i)
l,k)

È ...
2

+ 2–2c2
1�2(‘, ‘1)

= 6–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Ai(O(i)

l,k)
1
◊(i)

l,k ≠ ◊̄l

2...
2

+ 6–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Ai(O(i)

l,k)
1
◊̄l ≠ ◊ú

2...
2

+ 6–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 2–2c2

1�2(‘, ‘1)

Æ 6–2
A

c1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊(i)
l,k ≠ ◊̄l

...

B2

+ 6–2c2
1
...◊̄l ≠ ◊ú

...
2

+ 6–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 2–2c2

1�2(‘, ‘1), (40)

where (a) comes from the upper bound of fixed points distance in Theorem 1 and the fact that...Ai

1
O(i)

t,k

2 ... Æ c1 in Lemma 11. Taking square root on both sides of the inequality above, we get:

...◊̄l+1 ≠ ◊̄l

... Æ 3

ı̂ııÙ–2
A

c1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊(i)
l,k ≠ ◊̄l

...

B2

+ 3
Ú

–2c2
1
...◊̄l ≠ ◊ú

...
2

+ 3
ı̂ıÙ–2

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+

Ò
2–2c2

1�2(‘, ‘1)

Æ 3–c1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊(i)
l,k ≠ ◊̄l

... + 3–c1
...◊̄l ≠ ◊ú

... + 3–
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
... + 2–c1�(‘, ‘1).

(41)

By using the fact that
...◊̄l+1 ≠ ◊ú

... Æ
...◊̄l ≠ ◊ú

... +
...◊̄l+1 ≠ ◊̄l

..., we have:

...◊̄l+1 ≠ ◊ú

... Æ (1 + 3–c1)
...◊̄l ≠ ◊ú

... + 3–c1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊(i)
l,k ≠ ◊̄l

... + 3–
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
... + 2–c1�(‘, ‘1).

(42)
For simplicity, we define c4 , 3c1 and ”l , 1

NK

qN
i=1

qK≠1
k=0

...◊(i)
l,k ≠ ◊̄l

.... Taking the square on both
sides of Eq (42), we have:

...◊̄l+1 ≠ ◊ú

...
2

Æ (1 + –c4)2
...◊̄l ≠ ◊ú

...
2

+ –2c2
4”2

l + 9–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 4–2c2

1�2(‘, ‘1)

+ 6–(1 + –c4)
...◊̄l ≠ ◊ú

...
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

¸ ˚˙ ˝
H1

+ 2–c4(1 + –c4)
...◊̄l ≠ ◊ú

...”l
¸ ˚˙ ˝

H2
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+ 6–2c4”l

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

¸ ˚˙ ˝
H3

+ 4–2c1c4”l�(‘, ‘1)
¸ ˚˙ ˝

H4

+ 4–c1(1 + –c4)
...◊̄l ≠ ◊ú

...�(‘, ‘1)
¸ ˚˙ ˝

H5

+ 12–2c1
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...�(‘, ‘1)

¸ ˚˙ ˝
H6

. (43)

We can further bound H1 as:

H1 = 6–(1 + –c4)
...◊̄l ≠ ◊ú

...
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

= 2
Ò

3–(1 + –c4)
...◊̄l ≠ ◊ú

... ·
Ò

3–(1 + –c4)
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

Æ 3–(1 + –c4)
...◊̄l ≠ ◊ú

...
2

+ 3–(1 + –c4)
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2

Æ 6–
...◊̄l ≠ ◊ú

...
2

+ 6–
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
. (44)

where we use the fact 1 + –c4 Æ 2 in the last inequality. Similary, we can bound H2 as:

H2 = 2–c4(1 + –c4)
...◊̄l ≠ ◊ú

...”l Æ 2–
...◊̄l ≠ ◊ú

...
2

+ 2–c2
4”2

l . (45)

And we bound H3 as:

H3 = 6–2c4”l

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
... Æ 3–2

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 3–2c2

4”2
l . (46)

For H4, H5, H6, we have:

H4 = 4–2c1c4”l�(‘, ‘1) Æ 2–2c2
4”2

l + 2–2c2
1�2(‘, ‘1),

H5 = 4–c1(1 + –c4)
...◊̄l ≠ ◊ú

...�(‘, ‘1) Æ 4–
...◊̄l ≠ ◊ú

...
2

+ 4–c2
1�2(‘, ‘1),

H6 = 12–2c1
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...�(‘, ‘1) Æ 6–2

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 6–2c2

1�2(‘, ‘1),

Substituting the upper bound of H1, H2, . . . , H6 into Eq (43) and noting that (1 + –c4)2 Æ 1 + 3–c4
because –c4 Æ 1, we have:

...◊̄l+1 ≠ ◊ú

...
2

Æ (1 + –(3c4 + 12))
...◊̄l ≠ ◊ú

...
2

+ (6–2 + 2–)c2
4”2

l

+ (18–2 + 6–)
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ (12–2 + 4–)c2

1�2(‘, ‘1)
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Æ (1 + –h1)
...◊̄l ≠ ◊ú

...
2

+ 8–c2
4”2

l + 24–
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2
+ 16–c2

1�2(‘, ‘1),

(47)

where we denote h1 , 3c4 + 12 for simplicity. For any t ≠ · Æ l Æ t, conditioning on Ft≠2· on both
sides of the above inequality, we have:

Et≠2·

...◊̄l+1 ≠ ◊ú

...
2

Æ (1 + –h1)Et≠2·

...◊̄l ≠ ◊ú

...
2

+ 24–Et≠2·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

l,k)
...

2

+ 8–c2
4Et≠2·

Ë
”2

l

È
+ –M3(‘, ‘1)

Æ (1 + –h1)Et≠2·

...◊̄l ≠ ◊ú

...
2

+ 24–

C
d2

2
NK

+ 4L2
2fl2(l≠t+2·)K

D

(Lemma 13)

+ 8–c2
4Et≠2·

Ë
”2

l

È
+ –M3(‘, ‘1)

(a)
Æ (1 + –h1)Et≠2·

...◊̄l ≠ ◊ú

...
2

+ 24–

C
d2

2
NK

+ 4L2
2–2fl2(l≠t+·)K

D

+ 8–c2
4Et≠2·

Ë
”2

l

È
+ –M3(‘, ‘1)

Æ (1 + –h1)Et≠2·

...◊̄l ≠ ◊ú

...
2

+ –ct(l) + 8–c2
4Et≠2·

Ë
”2

l

È
+ –M3(‘, ‘1), (48)

where we denote M3(‘, ‘1) , 16c2
1�2(‘, ‘1) and ct(l) = 24

Ë
d2

2
NK + 4L2

2–2fl2(l≠t+·)K
È

for simplicity.

Inequality (a) is due to fl2·K Æ –4
T Æ –2

t . In the following steps, we try to map Et≠2·

...◊̄l+1 ≠ ◊ú

...
2

to Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

for any t ≠ · Æ l Æ t. By applying Eq (48) recursively, we have:

Et≠2·

...◊̄l+1 ≠ ◊ú

...
2

Æ (1 + –h1)l+1≠t+· Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ –
lÿ

k=t≠·

(1 + –h1)l≠k (ct(k) + M3(‘, ‘1))

+ 8–c2
4Et≠2·

S

U
lÿ

k=t≠·

(1 + –h1)l≠k ”2
k

T

V

(b)
Æ (1 + –h1)·+1 Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ –
tÿ

k=t≠·

(1 + –h1)l≠k (ct(k) + M3(‘, ‘1))
¸ ˚˙ ˝

H7

+ 8–c2
4Et≠2·

S

U
tÿ

k=t≠·

(1 + –h1)l≠k ”2
k

T

V

¸ ˚˙ ˝
H8

(49)

where (b) is due to l Æ t. For H7, we have:

H7 Æ
tÿ

k=t≠·

(1 + –h1)t≠k (ct(k) + M3(‘, ‘1)) (l Æ t)

=
·ÿ

kÕ=0
(1 + –h1)·≠kÕ !

ct(kÕ + t ≠ ·) + M3(‘, ‘1)
"

( changing index k into kÕ with kÕ = k + · ≠ t)
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(a)
Æ 24

·ÿ

kÕ=0
(1 + –h1)·≠kÕ

C
d2

2
NK

+ 4L2
2–2fl2kÕK + M3(‘, ‘1)

D

= 24

S

U
A

d2
2

NK
+ M3(‘, ‘1)

B
(1 + –h1)·+1 ≠ 1

–h1
+ 4L2

2–2 (1 + –h1)·
·ÿ

kÕ=0

A
fl2K

1 + –h1

BkÕT

V

Æ 24
CA

d2
2

NK
+ M3(‘, ‘1)

B
(1 + –h1)·+1 ≠ 1

–h1
+ 4L2

2–2 (1 + –h1)·
·ÿ

kÕ=0
fl2kÕK

D

(1 + –h1 Ø 1)

Æ 24
CA

d2
2

NK
+ M3(‘, ‘1)

B
(1 + –h1)·+1 ≠ 1

–h1
+ 4L2

2–2 (1 + –h1)· 1
1 ≠ fl2

D

.

where (a) is due to the definition of ct(kÕ). Here we follow the analysis in [26]. Notice that for
x Æ log 2

· , we have (1 + x)·+1 Æ 1 + 2x(· + 1). If – Æ 1
4h1· Æ log 2

h1· and – Æ 1
2h1(·+1) , we have

(1 + –h1)·+1 Æ 1 + 2–h1(· + 1) Æ 2 and (1 + –h1)· Æ 1 + 2–h1· Æ 1 + 1/2 Æ 2. Hence, we have

H7 Æ 24
CA

d2
2

NK
+ M3(‘, ‘1)

B

2(· + 1) + 8L2
2–2

1 ≠ fl2

D

.

We apply the similar analysis to bound H8 as:

H8 =
·ÿ

k=0
(1 + –h1)·≠k ”2

t≠·+k Æ
·ÿ

k=0
(1 + –h1)· ”2

t≠·+k Æ
·ÿ

k=0
(1 + 2–h1·) ”2

t≠·+k Æ 2
·ÿ

k=0
”2

t≠k.

Substituting the upper bound of H7 and H8 into Eq (49), we have:

Et≠2·

...◊̄l+1 ≠ ◊ú

...
2

Æ 2Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ 24–

CA
d2

2
NK

+ M3(‘, ‘1)
B

2(· + 1) + 8L2
2–2

1 ≠ fl2

D

+ 16–c2
4

·ÿ

k=0
Et≠2· [”2

t≠k].

Then it is straightforward to bound Et≠2·

...◊̄l ≠ ◊ú

...
2

as:

Et≠2·

...◊̄l ≠ ◊ú

...
2

Æ 2Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ 24–

CA
d2

2
NK

+ M3(‘, ‘1)
B

4· + 8L2
2–2

1 ≠ fl2

D

+ 16–c2
4

·ÿ

k=0
Et≠2· [”2

t≠k]. (50)

Furthermore, based on the triangle inequality, we have:

...◊̄t ≠ ◊̄t≠·

...
2

Æ
A

t≠1ÿ

s=t≠·

...◊̄s+1 ≠ ◊̄s

...

B2

Æ ·
t≠1ÿ

s=t≠·

...◊̄s+1 ≠ ◊̄s

...
2

Æ ·
t≠1ÿ

s=t≠·

C

–2c2
4
...◊̄s ≠ ◊ú

...
2

+ –2c2
4”2

s + 6–2
...

1
NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

s,k)
...

2
+ 2–2c2

1�2(‘, ‘1)
D

where the last inequality is due to Eq (40) with c4 = 3c1. If we take the expectation on both sides,
we have:

Et≠2·

...◊̄t ≠ ◊̄t≠·

...
2

Æ ·
t≠1ÿ

s=t≠·

5
–2c2

4Et≠2·

...◊̄s ≠ ◊ú

...
2

+ –2c2
4”2

s
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+6–2Et≠2·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

s,k)
...

2
+ 2–2c2

1�2(‘, ‘1)
D

Æ ·–2c2
4

t≠1ÿ

s=t≠·

C

2Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ 24–

CA
d2

2
NK

+ M3(‘, ‘1)
B

4· + 8L2
2–2

1 ≠ fl2

D

+16–c2
4

·ÿ

k=0
Et≠2· [”2

t≠k]
D

(Eq (50))

+ 6–2·
t≠1ÿ

s=t≠·

A
d2

2
NK

+ 4L2
2fl2(s≠t+2·)K

B

(Lemma 13)

+ –2c2
4·

t≠1ÿ

s=t≠·

Et≠2· [”2
s ] + 2–2c2

1·2�2(‘, ‘1)

(a)
Æ ·2–2c2

4

C

2Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ 96
A

d2
2

NK
–· + 2L2

2–3

1 ≠ fl2

BD

+ 6–2·

C
d2

2
NK

· + 4L2
2–2

1 ≠ fl2K

D

+ –2c2
4·(1 + 16–·c2

4)
·ÿ

s=0
Et≠2· [”2

t≠s]

+ 96–2c2
4·3M3(‘, ‘1) + 2–2c2

1·2�2(‘, ‘1)
(b)
Æ 2·2–2c2

4Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ d2
2

NK
–2·2

1
96–·c2

4 + 6
2

+ 12L2
2–4·

1 ≠ fl2

1
16–c2

4· + 2
2

+ –2c2
4·(1 + 16–·c2

4)
·ÿ

s=0
Et≠2· [�t≠s] + 96–2c2

4·3M3(‘, ‘1) + 2–2c2
1·2�2(‘, ‘1)

(51)

Where we used the fact that fl2·K Æ –2 for (a) and (b), and that ”2
t Æ �t (via Jensens’ inequality)

for all t Ø 0 in the last inequality. Let us choose – such that 96–·c2
4 + 6 Æ 7, 16–c2

4· + 2 Æ 13
6 and

1 + 16–·c2
4 Æ 2, this holds when

– Æ min
Ó 1

96·c2
4
,

1
96c2

4·
,

1
16·c2

4
, 1

Ô
.

Based on the fact that Î◊̄t≠· ≠ ◊úÎ2 Æ 2Î◊̄t ≠ ◊̄t≠· Î2 + 2Î◊̄t ≠ ◊úÎ2 and the requirement on –, we
have

2–2·2c2
4Et≠2· Î◊̄t≠· ≠ ◊úÎ2 Æ 4–2·2c2

4Et≠2· Î◊̄t ≠ ◊̄t≠· Î2 + 4–2·2c2
4Et≠2· Î◊̄t ≠ ◊úÎ2

(a)
Æ 0.5Et≠2· Î◊̄t ≠ ◊̄t≠· Î2 + 4–2·2c2

4Et≠2· Î◊̄t ≠ ◊úÎ2

(b)
Æ ·2–2c2

4Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

+ 7d2
2

2NK
–2·2 + 13L2

2–4·

(1 ≠ fl2)

+ –2c2
4·

·ÿ

s=0
Et≠2· [�t≠s] + 48–2c2

4·3M3(‘, ‘1) + –2c2
1·2�2(‘, ‘1)

+ 4–2·2c2
4Et≠2· Î◊̄t ≠ ◊úÎ2 (52)

where (a) is due to 4–2·2c2
4 Æ 0.5, and (b) is due to Eq (51) and the choice of –. Putting the term

·2–2c2
4Et≠2·

...◊̄t≠· ≠ ◊ú

...
2

together by rearranging the terms, we have:

–2·2c2
4Et≠2· Î◊̄t≠· ≠ ◊úÎ2 Æ 7d2

2
2NK

–2·2 + 13L2
2–4·

(1 ≠ fl2)
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+ –2c2
4·

·ÿ

s=0
Et≠2· [�t≠s] + 48–2c2

4·3M3(‘, ‘1) + –2c2
1·2�2(‘, ‘1)

+ 4–2·2c2
4Et≠2· Î◊̄t ≠ ◊úÎ2 (53)

The proof is completed by substituting this inequality into Eq (51) and the definition of M3(‘, ‘1).
Note that we require the e�ective step-size

– Æ min
Ó 1

4h1·
,

1
2h1(· + 1) ,

1
96c2

4·
, 1

Ô

in this proof, which holds when – Æ min
Ó

1
30c4(·+1) , 1

96c2
4·

, 1
Ô

since c4 = 3c1 Ø 1.

J.2.4 Drift Term Analysis.

Now we bound the drift term as follows:

Lemma 15. (Bounded Client Drift) If –l Æ 1
2
Ô

2c1(K≠1) , the drift term satisfies

E[�t] = 1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...◊(i)
t,k ≠ ◊̄t

...
2

Æ 4–2

K–2
g

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

. (54)

Proof.

1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...◊(i)
t,k ≠ ◊̄t

...
2

= 1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...◊̄t + –l

k≠1ÿ

s=0
gi(◊(i)

t,s) ≠ ◊̄t

...
2

= –2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...
k≠1ÿ

s=0
≠Ai(O(i)

t,s)
1
◊(i)

t,s ≠ ◊ú

i

2
+ Zi(O(i)

t,s)
...

2

Æ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...
k≠1ÿ

s=0
≠Ai(O(i)

t,s)
1
◊(i)

t,s ≠ ◊ú

i

2...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
E

...
k≠1ÿ

s=0
Zi(O(i)

t,s)
...

2

Æ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
k

k≠1ÿ

s=0
E

...Ai(O(i)
t,s)

1
◊(i)

t,s ≠ ◊ú

i

2...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s=0
E

...Zi(O(i)
t,s)

...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s ”=sÕ

E
e
Zi(O(i)

t,s), Zi(O(i)
t,sÕ)

f

Æ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊ú

i

...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

3 (Lemma 11)

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s ”=sÕ

E
Ë
E

e
Zi(O(i)

t,s), Zi(O(i)
t,sÕ)

f -- F t
s

È

Æ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊ú

i

...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

3

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s ”=sÕ

E
Ëe

Zi(O(i)
t,s),E

Ë
Zi(O(i)

t,sÕ)
-- F t

s

È fÈ
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Æ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊ú

i

...
2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

3

+ 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s<sÕ

E
Ë...Zi(O(i)

t,s)
...
...E

Ë
Zi(O(i)

t,sÕ)
-- F t

s

È ...
È

Æ 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊̄t

...
2

+ 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊̄t ≠ ◊ú

i

...
2

(Eq (11))

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

3 + 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s<sÕ

c3L2flsÕ
≠s (Lemma 12)

Æ 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊̄t

...
2

+ 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
4kc2

1(K ≠ 1)H2

+ 2–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0
kc2

3 + 4–2
l

1
NK

Nÿ

i=1

K≠1ÿ

k=0

k≠1ÿ

s,sÕ=0
s<sÕ

c3L2flsÕ
≠s

¸ ˚˙ ˝
M1

(55)

where we used the property that ◊̄t, ◊ú

i œ H in the last inequality, i.e., Î◊̄tÎ Æ H2 and Î◊ú

i Î Æ H2.
We now bound M1 as:

k≠1ÿ

s,sÕ=0
s<sÕ

c3L2flsÕ
≠s = c3L2

k≠1ÿ

s=0

k≠1ÿ

sÕ=s+1
flsÕ

≠s = c3L2
k≠1ÿ

s=0

fl ≠ fls≠sÕ

1 ≠ fl
Æ c3L2

flk

1 ≠ fl
(56)

Define RK , qN
i=1

qK≠1
k=0 E

...◊(i)
t,k ≠ ◊̄t

...
2

and note that RK is monotonically increasing in K. With
this definition, if we plug in the upper bound of M1 into Eq (55), we have:

RK Æ 4–2
l

Nÿ

i=1

K≠1ÿ

k=0
kc2

1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊̄t

...
2

+ 4–2
l

Nÿ

i=1

K≠1ÿ

k=0
4kc2

1(K ≠ 1)H2

+ 2–2
l

Nÿ

i=1

K≠1ÿ

k=0
kc2

3 + 4–2
l

Nÿ

i=1

K≠1ÿ

k=0
c3L2

flk

1 ≠ fl

Æ 2–2
l (K ≠ 1)NK

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–2
l c2

1(K ≠ 1)
K≠1ÿ

k=1

Nÿ

i=1

k≠1ÿ

s=0
E

...◊(i)
t,s ≠ ◊̄t

...
2

¸ ˚˙ ˝
Rk

= 2–2
l (K ≠ 1)NK

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–2
l c2

1(K ≠ 1)
K≠1ÿ

k=1
Rk (57)

By the monotonicity of Rk, we have

RK Æ 2–2
l (K ≠ 1)NK

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–2
l c2

1(K ≠ 1)2RK≠1

Let us choose –l such that 4–2
l c2

1(K ≠ 1)2 Æ 1
2 , i.e., –l Æ 1

2
Ô

2c1(K≠1) , the following recursion holds:

RK Æ 1
2RK≠1 + 2–2

l (K ≠ 1)NK
5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

(58)
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for all k œ [K]. Next, we unroll the recurrence, go back K ≠ 1 steps and use the fact that R1 = 0,
we have:

RK Æ
I

Œÿ

l=1

31
2

4l
J 3

2–2
l (K ≠ 1)NK

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
64

= 4–2
l (K ≠ 1)NK

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

(59)

We finish the proof by dividing NK on both sides and substituting –l = –
K–g

.

J.2.5 Per Round Progress

Lemma 16. (Per Round Progress). If the local step-size –l Æ 1
2
Ô

2c1(K≠1) , and the e�ective step-size
– = K–l–g satisfies:

– Æ min{ ›1
24(c1 + c2)2 + 24›2

1 + 16 , 1,
›1(c1 + c2)

2L1 + 8·2c2
4
,

1
30c4(· + 1) ,

1
96c2

4·
, X }, 4

where

X = 2B(‘, ‘1)G + 3›1(c1 + c2)�2(‘, ‘1)
4B2(‘, ‘1) + 24(c1 + c2)2�2(‘, ‘1) + 2L1�(‘, ‘1)G + 6400c2

1c2
4·3�2(‘, ‘1) + 8c2

1·2�2(‘, ‘1) ,

and choose · = Á ·mix(–2
T )

K Ë, then we have,

Et≠2· Î◊̄t+1 ≠ ◊úÎ2 Æ (1 + 32–›1(c1 + c2))Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

¸ ˚˙ ˝
Expected progress for the virtual MDP

+ 9 + 28·2

NK
–2d2

2
¸ ˚˙ ˝

Linear speedup

+ –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

¸ ˚˙ ˝
High order terms: O(–3)

+ 4–3

K–2
g
(14

›1
+ 14›1)(c1 + c2)

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 4c2

1(K ≠ 1)H2
6

¸ ˚˙ ˝
drift term

+ 4–B(‘, ‘1)G + 6–›1(c1 + c2)�2(‘, ‘1)
¸ ˚˙ ˝

heterogeneity term

. (60)

where ›1 is any universal positive constant.

Proof. According to the updating rule and the fact that the projection operator is non-expansive,
we have:

Et≠·

...◊̄t+1 ≠ ◊ú

...
2

= Et≠·

...�2,H

A

◊̄t + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
B

≠ ◊ú

...
2

ÆEt≠·

...◊̄t + –

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k) ≠ ◊ú

...
2

4This requirement is very easy to satisfy since the denominator in X is composed by the heterogeneity terms, which
is quite small and thereby makes X large. Overall, the feasible set of the step-sizes is not empty.
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=Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2Et≠·

e –

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k), ◊̄t ≠ ◊ú
f

+ 2Et≠·

e –

NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

$
, ◊̄t ≠ ◊ú

f
+ –2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
...

2

ÆEt≠·

I...◊̄t ≠ ◊ú

...
2

+ 2
e –

N

Nÿ

i=1
ḡi(◊̄t), ◊̄t ≠ ◊ú

f
+ 2

e –

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t), ◊̄t ≠ ◊ú
fJ

¸ ˚˙ ˝
B1

+2–Et≠·

e 1
NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

$
, ◊̄t ≠ ◊ú

f

¸ ˚˙ ˝
B2

+–2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k)
...

2

¸ ˚˙ ˝
B3

(61)

We now begin to bound the gradient bias term B2 by decomposing this term into three terms:

e 1
NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

$
, ◊̄t ≠ ◊ú

f

=
e 1

NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

$
, ◊̄t ≠ ◊̄t≠·

f

¸ ˚˙ ˝
B21

+
e 1

NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ gi(◊(i)
t≠·,k) ≠ ḡi(◊(i)

t,k) + ḡi(◊(i)
t≠·,k)

$
, ◊̄t≠· ≠ ◊ú

f

¸ ˚˙ ˝
B22

+
e 1

NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t≠·,k) ≠ ḡi(◊(i)
t≠·,k)

$
, ◊̄t≠· ≠ ◊ú

f

¸ ˚˙ ˝
B23

. (62)

Next, we bound Et≠· [B21] as:

Et≠·

e 1
NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

$
, ◊̄t ≠ ◊̄t≠·

f
Æ Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

...
...◊̄t ≠ ◊̄t≠·

...

(a)= Et≠·

C...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
(≠Ai(O(i)

t,k) + Āi)(◊(i)
t,k ≠ ◊ú

i ) + Zi(O(i)
t,k)

...
...◊̄t ≠ ◊̄t≠·

...

D

Æ Et≠·

C...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
(Ai(O(i)

t,k) ≠ Āi)(◊(i)
t,k ≠ ◊ú

i )
...
...◊̄t ≠ ◊̄t≠·

...

D

+ Et≠·

C...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...
...◊̄t ≠ ◊̄t≠·

...

D

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

Ë...(Ai(O(i)
t,k) ≠ Āi)(◊(i)

t,k ≠ ◊ú

i )
...
...◊̄t ≠ ◊̄t≠·

...
È

+

–

2Et≠·

C...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
D

+ 1
2–

Et≠·

5...◊̄t ≠ ◊̄t≠·

...
26

(b)
Æ (c1 + c2)

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊ú

i

...
...◊̄t ≠ ◊̄t≠·

... + –

2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
+ 1

2–
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2
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Æ ›1(c1 + c2)
2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊ú

i

...
2

+ (c1 + c2)
2›1NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

(Young’s inequality (12))

+ –

2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
+ 1

2–
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

(c)
Æ 3›1(c1 + c2)

2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 3›1(c1 + c2)
2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊̄t ≠ ◊ú

...
2

+ 3›1(c1 + c2)
2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊ú ≠ ◊ú

i

...
2

+ (c1 + c2)
2›1NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ –

2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
+ 1

2–
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

= 3›1(c1 + c2)
2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 3›1(c1 + c2)
2 Et≠·

...◊̄t ≠ ◊ú

...
2

+ 3›1(c1 + c2)
2 �2(‘, ‘1)

+ (c1 + c2)
2›1

Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ –

2Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
+ 1

2–
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

(d)
Æ 3›1(c1 + c2)

2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 3›1(c1 + c2)
2 Et≠·

...◊̄t ≠ ◊ú

...
2

+ 3›1(c1 + c2)
2 �2(‘, ‘1)

+ c1 + c2
2›1

Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ –

2

C
d2

2
NK

+ 4L2
2fl2·K

D

+ 1
2–

Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

= 3›1(c1 + c2)
2NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 3›1(c1 + c2)
2 Et≠·

...◊̄t ≠ ◊ú

...
2

+ 3›1(c1 + c2)
2 �2(‘, ‘1)

+
3

c1 + c2
2›1

+ 1
2–

4
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ –

2

S

WWU
d2

2
NK

+ 4L2
2fl2·K

¸ ˚˙ ˝
Æ4L2

2–2

T

XXV , (63)

where (a) is due to gi(◊(i)
t,k) = ≠Ai(O(i)

t,k)(◊(i)
t,k ≠ ◊ú

i ) + Zi(O(i)
t,k), (b) is due to Lemma 12 (the upper

bound of Ai(O(i)
t,k) and Āi), (c) is due to Eq (13) and (d) is due to Lemma 13.

And we bound B22 as:

B22 =
e 1

NK

Nÿ

i=1

K≠1ÿ

k=0

#
gi(◊(i)

t,k) ≠ gi(◊(i)
t≠·,k) ≠ ḡi(◊(i)

t,k) + ḡi(◊(i)
t≠·,k)

$
, ◊̄t≠· ≠ ◊ú

f

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

...gi(◊(i)
t,k) ≠ gi(◊(i)

t≠·,k) ≠ ḡi(◊(i)
t,k) + ḡi(◊(i)

t≠·,k)
...
...◊̄t≠· ≠ ◊ú

... (Cauchy-Schwarz inequality)

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë...gi(◊(i)
t,k) ≠ gi(◊(i)

t≠·,k)
... +

...ḡi(◊(i)
t,k) ≠ ḡi(◊(i)

t≠·,k)
...
È ...◊̄t≠· ≠ ◊ú

...

(a)
Æ 1

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
2
...◊(i)

t,k ≠ ◊(i)
t≠·,k

... + 2
...◊(i)

t,k ≠ ◊(i)
t≠·,k

...
È ...◊̄t≠· ≠ ◊ú

...
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Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
4
...◊(i)

t,k ≠ ◊̄t

... + 4
...◊̄t ≠ ◊̄t≠·

... + 4
...◊̄t≠· ≠ ◊(i)

t≠·,k

...
È ...◊̄t≠· ≠ ◊ú

... (Triangle inequality)

Æ 4”t

...◊̄t≠· ≠ ◊ú

... + 4
...◊̄t ≠ ◊̄t≠·

...
...◊̄t≠· ≠ ◊ú

... + 4”t≠·

...◊̄t≠· ≠ ◊ú

...

(b)
Æ 2

›2
�t + 2

›2
�t≠· + (2›2 + 4›2)

...◊̄t≠· ≠ ◊ú

...
2

+ 2
›2

...◊̄t ≠ ◊̄t≠·

...
2

Æ 2
›2

�t + 2
›2

�t≠· + 12›2
...◊̄t ≠ ◊ú

...
2

+ (12›2 + 2
›2

)
...◊̄t ≠ ◊̄t≠·

...
2

(Eq 13) (64)

where (a) is due to the 2-Lipschitz property of steady-state ḡ (i.e., Lemma 5) and random direction
gi (i.e., Lemma 6), ”t = 1

NK

qN
i=1

qK≠1
k=0

...◊(i)
t,k ≠ ◊̄t

... and �t , 1
NK

qN
i=1

qK≠1
k=0 E

...◊(i)
t,k ≠ ◊̄t

...
2
, and (b)

is due to Young’s inequality (12) with constants ›2 and ”2
t Æ �t.

Now, we bound B23 as:

Et≠· [B23] =
e 1

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

#
gi(◊(i)

t≠·,k) ≠ ḡi(◊(i)
t≠·,k)

$
, ◊̄t≠· ≠ ◊ú

f

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊̄t≠· ≠ ◊ú

...
...Et≠·

Ë
gi(◊(i)

t≠·,k) ≠ ḡi(◊(i)
t≠·,k)

È ... (Cauchy-Schwarz inequality)

= 1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊̄t≠· ≠ ◊ú

...
...Et≠·

Ë
≠Ai(O(i)

t,k)(◊(i)
t≠·,k ≠ ◊ú

i ) + Zi(O(i)
t,k) + Āi(◊(i)

t≠·,k ≠ ◊ú

i )
È ...

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊̄t≠· ≠ ◊ú

...
Ó...Et≠· (Ai(O(i)

t,k) ≠ Āi)(◊(i)
t≠·,k ≠ ◊ú

i )
... +

...Et≠·

Ë
Zi(O(i)

t,k)
È ...

Ô

(a)
Æ 1

NK

Nÿ

i=1

K≠1ÿ

k=0

...◊̄t≠· ≠ ◊ú

...
Ó

L1fl·K+k
...◊(i)

t≠·,k ≠ ◊ú

i

... + L2fl·K+k
Ô

Æ 1
NK

Nÿ

i=1

K≠1ÿ

k=0

...◊̄t≠· ≠ ◊ú

...
Ó

L1fl·K+k
Ë...◊(i)

t≠·,k ≠ ◊̄t≠·

... +
...◊̄t≠· ≠ ◊ú

... +
...◊ú ≠ ◊ú

i

...
È

+ L2fl·K+k
Ô

(b)
Æ –2L1

...◊̄t≠· ≠ ◊ú

...”t≠· + –2L1
...◊̄t≠· ≠ ◊ú

...
2

+ –2L1�(‘, ‘1)G + –2L2G

Æ –2L1
...◊̄t≠· ≠ ◊ú

...
2

+ –2L1�t≠· + –2L1
...◊̄t≠· ≠ ◊ú

...
2

+ –2L1�(‘, ‘1)G + –2L2G

(c)
Æ 2–2L1G2 + –2L2G + –2L1�t≠· + –2L1�(‘, ‘1)G, (65)

where (a) is due to Lemma 12, (b) is due to the fact that ◊̄t≠· , ◊ú œ H, which radius is H Æ G
2 , and

· = Á logfl(–2
T )

K Ë (i.e., fl·K Æ –2) and (c) is due to the fact that ◊̄t≠· , ◊ú œ H. Then, the term B2 can
be bounded as:

Et≠· [B2] = Et≠· [B21 + B22 + B23]

Æ 3›1(c1 + c2)
2 Et≠· [�t] + 3›1(c1 + c2)

2 Et≠·

...◊̄t ≠ ◊ú

...
2

+ 3›1(c1 + c2)
2 �2(‘, ‘1)

+
3

c1 + c2
2›1

+ 1
2–

4
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ –

2

C
d2

2
NK

+ 4L2
2fl2·K

D
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+ 2
›2
Et≠· [�t] + 2

›2
Et≠· [�t≠· ] + 12›2Et≠·

...◊̄t ≠ ◊ú

...
2

+ (12›2 + 2
›2

)Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+ 2–2L1G2 + –2L2G + –2L1Et≠· [�t≠· ] + –2L1�(‘, ‘1)G

Æ
33›1(c1 + c2)

2 + 12›2

4
Et≠·

...◊̄t ≠ ◊ú

...
2

+
3

c1 + c2
2›1

+ 1
2–

+ 12›2 + 2
›2

4
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2

+
33›1(c1 + c2)

2 + 2
›2

4
Et≠· [�t] +

3 2
›2

+ –2L1

4
�t≠· + –

2

C
d2

2
NK

+ 4L2
2–2

D

+ 2–2L1G2 + –2L2G + 3›1(c1 + c2)
2 �2(‘, ‘1) + –2L1�(‘, ‘1)G (66)

Next, we bound B3 as:

Et≠· [B3] = Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k) + ḡi(◊(i)

t,k) ≠ ḡi(◊̄t) + ḡi(◊̄t) ≠ ḡ(◊̄t) + ḡ(◊̄t)
È ...

2

Æ 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
gi(◊(i)

t,k) ≠ ḡi(◊(i)
t,k)

2 ...
2

+ 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
2 ...

2

+ 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
ḡi(◊̄t) ≠ ḡ(◊̄t)

2 ...
2

+ 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡ(◊̄t)

...
2

(Eq 13)

= 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

Ë1
Āi ≠ Ai(O(i)

t,k)
2

(◊(i)
t,k ≠ ◊ú

i ) + Zi(O(i)
t,k)

È ...
2

+ 4Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
2 ...

2
+ 4Et≠·

...
1
N

Nÿ

i=1

1
ḡi(◊̄t) ≠ ḡ(◊̄t)

2 ...
2

¸ ˚˙ ˝
Lemma 2

+4Et≠·

...ḡ(◊̄t)
...

2

(a)
Æ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
Āi ≠ Ai(O(i)

t,k)
2

(◊(i)
t,k ≠ ◊ú

i )
...

2
+ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2

+ 16 1
NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 4B2(‘, ‘1) + 4Et≠·

...ḡ(◊̄t)
...

2

Æ 8
NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...Āi ≠ Ai(O(i)
t,k)

...
2...◊(i)

t,k ≠ ◊ú

i

...
2

+ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2

+ 16Et≠· [�t] + 4B2(‘, ‘1) + 4Et≠·

...ḡ(◊̄t)
...

2

Æ 8(c1 + c2)2

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊ú

i

...
2

+ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2

+ 16Et≠· [�t] + 4B2(‘, ‘1) + 4Et≠·

...ḡ(◊̄t)
...

2

Æ 24(c1 + c2)2

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊(i)
t,k ≠ ◊̄t

...
2

+ 24(c1 + c2)2

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊̄t ≠ ◊ú

...
2

+ 24(c1 + c2)2

NK

Nÿ

i=1

K≠1ÿ

k=0
Et≠·

...◊ú

i ≠ ◊ú

...
2

+ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2

+ 16Et≠· [�t] + 4B2(‘, ‘1) + 4Et≠·

...ḡ(◊̄t)
...

2
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= 24(c1 + c2)2Et≠· [�t] + 24(c1 + c2)2Et≠·

...◊̄t ≠ ◊ú

...
2

+ 24(c1 + c2)2�2(‘, ‘1)

+ 8Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0
Zi(O(i)

t,k)
...

2
+ 16Et≠· [�t] + 4B2(‘, ‘1) + 4Et≠·

...ḡ(◊̄t)
...

2

(b)
Æ (24(c1 + c2)2 + 16)Et≠· [�t] + 8( d2

2
NK

+ 4L2
2fl·K

¸ ˚˙ ˝
Æ4L2

2–2

) + 24(c1 + c2)2Et≠·

...◊̄t ≠ ◊ú

...
2

+ 4Et≠·

...ḡ(◊̄t)
...

2
+ 4B2(‘, ‘1) + 24(c1 + c2)2�2(‘, ‘1), (67)

where (a) is due to 2-Lipschitz of ḡi (i.e., Lemma 5) and the gradient heterogeneity (i.e., Lemma 2)
and (b) is due to Lemma 13.

Next, we bound B1 as:

Et≠· [B1] = Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2Et≠·

e –

N

Nÿ

i=1
ḡi(◊̄t), ◊̄t ≠ ◊ú

f
+ 2Et≠·

e –

NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t), ◊̄t ≠ ◊ú
f

Æ Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠·

e 1
N

Nÿ

i=1
ḡi(◊̄t) ≠ ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 2–Et≠·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f

+ 2–Et≠·

e 1
NK

Nÿ

i=1

K≠1ÿ

k=0
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t), ◊̄t ≠ ◊ú
f

Æ Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠·

...
1
N

Nÿ

i=1
ḡi(◊̄t) ≠ ḡ(◊̄t)

...
...◊̄t ≠ ◊ú

... + 2–Et≠·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f

+ –

›3
Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
2 ...

2
+ –›3Et≠·

...◊̄t ≠ ◊ú

...
2

(Young’s inequality Eq (12) with constant ›3)
(a)
Æ Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2–B(‘, ‘1)G + 2–Et≠·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f

+ –

›3
Et≠·

...
1

NK

Nÿ

i=1

K≠1ÿ

k=0

1
ḡi(◊(i)

t,k) ≠ ḡi(◊̄t)
2 ...

2
+ –›3Et≠·

...◊̄t ≠ ◊ú

...
2

(b)
Æ Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2–B(‘, ‘1)G + 2–Et≠·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–

›3
Et≠· [�t] + –›3Et≠·

...◊̄t ≠ ◊ú

...
2
,

(68)

where (a) is due to the fact that ◊̄t, ◊ú œ H and the gradient heterogeneity; (b) is due to 2-Lipschitz
property of function ḡ in Lemma 5.

Incorporating the upper of B1 from Eq (68), B2 from Eq (66) and B3 from Eq (67) into Eq (61),
we have:

Et≠·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠·

...ḡ(◊̄t)
...

2

+
1
–›3 + –(3›1(c1 + c2) + 24›2) + 24–2(c1 + c2)2

2
Et≠·

...◊̄t ≠ ◊ú

...
2

+ –
3

c1 + c2
›1

+ 1
–

+ 24›2 + 4
›2

4
Et≠·

...◊̄t ≠ ◊̄t≠·

...
2
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+ 9d2
2

NK
–2 + 36L2

2–4 + 4–3L1G2 + 2–3L2G +
34–

›2
+ 2–3L1

4
�t≠·

+ –
3 4

›3
+ 3›1(c1 + c2) + 4

›2
+ –2

1
24(c1 + c2)2 + 16

24
Et≠· [�t]

+ 2–B(‘, ‘1)G + 4–2B2(‘, ‘1) + 24–2(c1 + c2)2�2(‘, ‘1)
+ 3–›1(c1 + c2)�2(‘, ‘1) + 2–3L1�(‘, ‘1)G (69)

Conditioned on Ft≠2· and using Lemma 14 to give an upper bound of Et≠2·

...◊̄t ≠ ◊̄t≠·

...
2
, we

have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+
1
–›3 + –(3›1(c1 + c2) + 24›2) + 24–2(c1 + c2)2

2

¸ ˚˙ ˝
E1

Et≠2·

...◊̄t ≠ ◊ú

...
2

+ –
3

c1 + c2
›1

+ 1
–

+ 24›2 + 4
›2

4

¸ ˚˙ ˝
E2

I

8–2·2c2
4Et≠2·

5...◊̄t ≠ ◊ú

...
26

+ 14–2·2 d2
2

NK
+ 52L2

2–4·

1 ≠ fl2

+4–2c2
4·

·ÿ

s=0
Et≠2· [�t≠s] + 3200–2c2

1c2
4·3�2(‘, ‘1) + 4–2c2

1·2�2(‘, ‘1)
J

+ 9d2
2

NK
–2 + 36L2

2–4 + 4–3L1G2 + 2–3L2G +
34–

›2
+ 2–3L1

4
Et≠2· [�t≠· ]

+ –
3 4

›3
+ 3›1(c1 + c2) + 4

›2
+ –2

1
24(c1 + c2)2 + 16

24

¸ ˚˙ ˝
E3

Et≠2· [�t]

+ 2–B(‘, ‘1)G + 4–2B2(‘, ‘1) + 24–2(c1 + c2)2�2(‘, ‘1)
+ 3–›1(c1 + c2)�2(‘, ‘1) + 2–3L1�(‘, ‘1)G (70)

If we choose step-size – such that –E2 = –
1

c1+c2
›1

+ 1
– + 24›2 + 4

›2

2
Æ 2, ›1 = ›2 = ›3, E1 =

–›3 + –(3›1(c1 + c2) + 24›2) + 24–2(c1 + c2)2 Æ 28–›1(c1 + c2) + 24–2(c1 + c2)2 Æ 30–›1(c1 + c2)
(c1, c2 > 1) and E3 = 4

›3
+ 3›1(c1 + c2) + 4

›2
+ –2 !

24(c1 + c2)2 + 16
"

Æ ( 9
›1

+ 9›1)(c1 + c2), i.e.,

– Æ 11
c1+c2

›1
+ 24›2 + 4

›2

2 = ›1!
c1 + c2 + 24›2

1 + 4
"

– Æ min{ ›1
12(c1 + c2) , 1,

( 5
›1

+ 5›1)(c1 + c2)
24(c1 + c2)2 + 16 },

which is su�cient to hold when – Æ min{ ›1
24(c1+c2)2+24›2

1+16 , 1}, then we have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+ 30–›1(c1 + c2)Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2
I

8–2·2c2
4Et≠2·

5...◊̄t ≠ ◊ú

...
26

+ 14–2·2 d2
2

NK
+ 52L2

2–4·

1 ≠ fl2
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+4–2c2
4·

·ÿ

s=0
Et≠2· [�t≠s] + 3200–2c2

1c2
4·3�2(‘, ‘1) + 4–2c2

1·2�2(‘, ‘1)
J

+ 9d2
2

NK
–2 + 36L2

2–4 + 4–3L1G2 + 2–3L2G +
34–

›2
+ 2–3L1

4
Et≠2· [�t≠· ]

+ –
3 4

›3
+ 3›1(c1 + c2) + 4

›2
+ –2

1
24(c1 + c2)2 + 16

24
Et≠2· [�t]

+ 2–B(‘, ‘1)G + 4–2B2(‘, ‘1) + 24–2(c1 + c2)2�2(‘, ‘1)
+ 3–›1(c1 + c2)�2(‘, ‘1) + 2–3L1�(‘, ‘1)G

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+
1
30–›1(c1 + c2) + 16–2·2c2

4
2
Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2 + 36
3

1 + 3·

1 ≠ fl2

4
L2

2–4 + 4–3L1G2 + 2–3L2G

+
34–

›1
+ 2–3L1

4
Et≠2· [�t≠· ] + –( 9

›1
+ 9›1)(c1 + c2)Et≠2· [�t] + 8–2c2

4·
·ÿ

s=0
Et≠2· [�t≠s]

+ 2–B(‘, ‘1)G + 4–2B2(‘, ‘1) + 24–2(c1 + c2)2�2(‘, ‘1)
+ 3–›1(c1 + c2)�2(‘, ‘1) + 2–3L1�(‘, ‘1)G
+ 6400–2c2

1c2
4·3�2(‘, ‘1) + 8–2c2

1·2�2(‘, ‘1) (71)

if we choose the step-size – such that the high order O(–2) terms are dominanted by the first order
terms O(–), i.e., 4–2B2(‘, ‘1) + 24–2(c1 + c2)2�2(‘, ‘1) + 2–3L1�(‘, ‘1)G + 6400–2c2

1c2
4·3�2(‘, ‘1) +

8–2c2
1·2�2(‘, ‘1) Æ 2–B(‘, ‘1)G + 3–›1(c1 + c2)�2(‘, ‘1), i.e.,

– Æ min{ 2B(‘, ‘1)G + 3›1(c1 + c2)�2(‘, ‘1)
4B2(‘, ‘1) + 24(c1 + c2)2�2(‘, ‘1) + 2L1�(‘, ‘1)G + 6400c2

1c2
4·3�2(‘, ‘1) + 8c2

1·2�2(‘, ‘1) , 1}

we have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+
1
30–›1(c1 + c2) + 16–2·2c2

4
2
Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2 + 36
3

1 + 3·

1 ≠ fl2

4
L2

2–4 + 4–3L1G2 + 2–3L2G

+
34–

›1
+ 2–3L1

4
Et≠2· [�t≠· ] + –( 9

›1
+ 9›1)(c1 + c2)Et≠2· [�t] + 8–2c2

4·
·ÿ

s=0
Et≠2· [�t≠s]

+ 4–B(‘, ‘1)G + 6–›1(c1 + c2)�2(‘, ‘1) (72)

With Lemma (15), we have the upper bound of Et≠2· [�t], Et≠2· [�t≠· ] and ·
q·

s=0 Et≠2· [�t≠s].
Then we have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+
1
30–›1(c1 + c2) + 16–2·2c2

4
2

¸ ˚˙ ˝
E4

Et≠2·

...◊̄t ≠ ◊ú

...
2
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+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ 4–2

K–2
g

34–

›1
+ 2–3L1 + –( 9

›1
+ 9›1)(c1 + c2) + 8–2c2

4·2
4

¸ ˚˙ ˝
E5

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 4c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + 6–›1(c1 + c2)�2(‘, ‘1) (73)

If we choose step-size such that E4 = 30–›1(c1 + c2) + 16–2·2c2
4 Æ 32–›1(c1 + c2) and E5 =

4–
›1

+ 2–3L1 + –( 9
›1

+ 9›1)(c1 + c2) + 8–2c2
4·2 Æ –(14

›1
+ 14›1)(c1 + c2), i.e.,

– Æ min{›1(c1 + c2)
8·2c2

4
, 1,

( 1
›1

+ ›1)(c1 + c2)
2L1 + 8c2

4·2 },

which is su�cient to hold when – Æ ›1(c1+c2)
2L1+8·2c2

4
, then we have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+ 32–›1(c1 + c2)Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ 4–3

K–2
g
(14

›1
+ 14›1)(c1 + c2)

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + 6–›1(c1 + c2)�2(‘, ‘1). (74)

J.2.6 Parameter Selection

With Lemma 16, we have:

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ (1 + 32–›1(c1 + c2))Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ 4–3

K–2
g
(14

›1
+ 14›1)(c1 + c2)

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + 6–›1(c1 + c2)�2(‘, ‘1). (75)

Proposition 4. If – satisfies the requirement as Lemma 16, choose ›1 = (1≠“)Ê̄
32(c1+c2) and · =

Á ·mix(–2
T )

K Ë, we have:

‹1Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄
Æ ( 1

–
≠ ‹1)Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ 1
–
Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

+ 9 + 28·2

NK
–d2

2
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+ –2
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –2c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4B(‘, ‘1)G + ‹1�2(‘, ‘1) (76)

where ‹1 = ‹
4 = (1≠“)Ê̄

4 and c6 , 4
–2

g
(14

›1
+ 14›1)(c1 + c2).

Proof. Incorporating ›1 = (1≠“)Ê̄
32(c1+c2) , c6 , 4

–2
g
(14

›1
+ 14›1)(c1 + c2) and 6›1(c1 + c2) Æ ‹1 into Eq (75),

we have

Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 2–Et≠2·

e
ḡ(◊̄t), ◊̄t ≠ ◊ú

f
+ 4–2Et≠2·

...ḡ(◊̄t)
...

2

+ –(1 ≠ “)Ê̄Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1)
(a)
Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ 2–(1 ≠ “)Ê̄Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 16–2Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄

+ –(1 ≠ “)Ê̄Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1)

= Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
2 Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
2 Et≠2·

...◊̄t ≠ ◊ú

...
2

+ 16–2Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1)

Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
2 Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
2 Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄
+ 16–2Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1)
(b)
Æ Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
2 Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –(1 ≠ “)Ê̄
4 Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄

+ 9 + 28·2

NK
–2d2

2 + –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

56



+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1)

Æ (1 ≠ 2–‹1)Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ –‹1Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄
+ 9 + 28·2

NK
–2d2

2

+ –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1) (77)

where (a) is due to Lemma 3 and the selection of parameter; (b) is due to 16–2 Æ –(1≠“)Ê̄
4 .

Rearranging the terms and using the fact 1 ≠ 2–‹1 Æ 1 ≠ –‹1, we have:

–‹1Et≠2·

...V◊̄t
≠ V◊ú

...
2

D̄
Æ (1 ≠ –‹1)Et≠2·

...◊̄t ≠ ◊ú

...
2

≠ Et≠2·

...◊̄t+1 ≠ ◊ú

...
2

+ 9 + 28·2

NK
–2d2

2

+ –3
3

36L2
2 + 108·

1 ≠ fl2 L2
2 + 4L1G2 + 2L2G

4

+ –3c6
K

5
c2

3 + 2c3L2fl

1 ≠ fl
+ 8c2

1(K ≠ 1)H2
6

+ 4–B(‘, ‘1)G + –‹1�2(‘, ‘1) (78)

Then we finish the proof by dividing – on both sides.

With these Lemmas, we are now ready to prove Theorem 4.

J.3 Proof of Theorem 4.
Given a fixed local step-size –l Æ 1

4
Ô

2c1(K≠1) , decreasing e�ective step-sizes –t = 8
‹(a+t+1) =

8
(1≠“)Ê̄(a+t+1) , decreasing global step-sizes –(t)

g = –t
K–l

and weights wt = (a + t), we have:

E
...V◊̃T

≠ V◊ú
i

...
2

D̄
Æ Õ

A
·2G2

K2T 2 + cquad(·)
‹2NKT

+ clin(·)
‹4KT 2 + B(‘, ‘1)G

‹
+ �2(‘, ‘1)

B

(79)

Proof. We take the step-size –t = 8
‹(a+t+1) = 2

‹1(a+t+1) for a > 0. In addition, we define weights
wt = (a + t) and define

◊̃T = 1
W

Tÿ

t=1
wt◊̄t

where W =
qT

t=1 wt Ø 1
2T (a+T ). By convexity of positive definite quadratic forms (⁄min(�T D̄�) Ø

Ê̄ > 0), we have

‹1E
...V◊̃T

≠ V◊ú

...
2

D̄
Æ ‹1

W

Tÿ

t=1
(a + t)E

...V◊̄t
≠ V◊ú

...
2

D̄

Æ ‹1
W

2·≠1ÿ

t=1
(a + t)E

...V◊̄t
≠ V◊ú

...
2

D̄
+ ‹1

W

Tÿ

t=2·

(a + t)E
...V◊̄t

≠ V◊ú

...
2

D̄
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Æ ‹1
(2· ≠ 1)(a + 2· ≠ 1)G2

W
+ ‹1

W

Tÿ

t=2·

(a + t)E
...V◊̄t

≠ V◊ú

...
2

D̄

(76)
Æ ‹1

(2· ≠ 1)(a + 2· ≠ 1)G2

W
+ ‹1(a + 2·)(a + 2· + 1)G2
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K Additional Simulation Results
K.1 Simulation results for the I.I.D. setting
In this subsection, we provide numerical results for FedTD(0) under the i.i.d. sampling setting
to verify the theoretical results of Theorem 2. In particular, the MDP M(1) of the first agent is
randomly generated with a state space of size n = 100. The remaining MDPs are perturbations of
M(1) with the heterogeneity levels ‘ = 0.1 and ‘1 = 0.1. The number of local steps is chosen as
K = 20. We evaluate the convergence in terms of the running error et = Î◊̄t ≠◊ú

1Î2. Each experiment
is run 10 times. We plot the mean and standard deviation across the 10 runs in Figure 2.

Figure 2: Performance of FedTD(0) with i.i.d. sampling with varying number of agents N . Solid lines denote
the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 2, FedTD(0) converges for all choices of N . Larger values of N decreases the
error, which is consistent with our theoretical analysis in Theorem 2.
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K.2 Simulation results for the Markovian setting
In this subsection, we provide numerical results for FedTD(0) under the Markovian sampling setting
to verify the theoretical results of Theorem 4. Here we generate all MDPs in the same way as the
i.i.d setting and choose the number of local steps as K = 20. All the remaining parameters are kept
the same as those in the subsection K.1.

Figure 3: Performance of FedTD(0) with the Markovian sampling with varying number of agents N . Solid
lines denote the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 3, FedTD(0) converges for all choices of N . Larger values of N decreases the error,
which is consistent with our theoretical analysis in Theorem 4.
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