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Abstract

We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown,
distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost
while keeping their data private. To exploit the similarity of the agents’ dynamics, we propose to use
federated learning (FL) to allow the agents to periodically communicate with a central server to train policies
by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following
questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common
policy to each agent’s own optimal policy? (iii) Can each agent learn its own optimal policy faster by
leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm
named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents’
dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy
that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common
policy and each agent’s local optimal policy. Furthermore, we prove that when learning each agent’s optimal
policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a
low-heterogeneity regime, compared to the single-agent setting.

1 Introduction

In recent years, there has been significant progress in the application of model-free reinforcement learning (RL)
methods to fields such as video games (Mnih et al., 2015) and robotic manipulation (Rajeswaran et al., 2017,
Levine et al., 2016; Tobin et al., 2017). Although RL has shown impressive results in simulation, it often suffers
from poor sample complexity, thereby limiting its effectiveness in real-world applications (Dulac-Arnold et al.,
2019). To resolve the sample complexity issue and accelerate the learning process, federated learning (FL) has
emerged as a popular paradigm (Konecny et al., 2016a; McMahan et al., 2017), where multiple similar agents
collaboratively learn a common model without sharing their raw data. The incentive for collaboration arises
from the fact that these agents are “similar” in some sense and hence end up learning a “superior” model than if
they were to learn alone. In the RL setting, Federated Reinforcement Learning (FRL) aims to learn a common
value function (Wang et al., 2023) or produce a better policy from multiple RL agents interacting with similar
environments. In the recent survey paper (Qi et al., 2021), FRL has empirically shown great success in reducing
the sample complexity in applications such as autonomous driving (Liang et al., 2022), IoT devices (Lim et al.,
2020), and resource management in networking (Yu et al., 2020).
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Lately, there has been a lot of interest in applying RL techniques to classical control problems such as the
Linear Quadratic Regulaor (LQR) problem (Anderson and Moore, 2007). In the standard control setting, the
dynamical model of the system is known and one seeks to obtain a controller that stabilizes the closed-loop
system and provides optimal performance. RL approaches such as policy gradient (Williams, 1992; Sutton et al.,
1999) (which we pursue here) differ in that they are “model-free”, i.e., a control policy is obtained despite not
having access to the model of the dynamics. Despite the lack of convexity in even simple problems, policy
gradient (PG) methods have been shown to be globally convergent for certain structured settings such as the
LQR problem (Fazel et al., 2018). While this is promising, a major challenge in applying PG methods is that
in general, one does not have access to exact deterministic policy gradients. Instead, one relies on estimating
such gradients via sampling based approaches. This typically leads to noisy gradients that can suffer from high
variance. As such, reducing the variance in PG estimates to achieve “good performance" may end up requiring
several samples.

Motivation. The main premise of this paper is to draw on ideas from the FL literature to alleviate the high
sample-complexity burden of PG methods (Agarwal et al., 2019; Wang et al., 2019; Liu et al., 2020), with the
focus being on model-free control. As a motivating example, consider a fleet of identical robots produced by the
same manufacturer. Each robot can collect data from its own dynamics and learn its own optimal policy using,
for instance, PG methods. Since the fleet of robots shares similar dynamics, and more data can potentially lead
to improved policy performance (via more accurate PG estimates), it is natural to ask: Can a robot accelerate
the process of learning its own optimal policy by leveraging the data of the other robots in the fleet? The answer
is not as obvious as one might expect since in reality, it is unlikely that any two robots will have exactly the same
underlying dynamics, i.e., heterogeneity in system dynamics is inevitable. The presence of such heterogeneity
makes the question posed above both interesting and non-trivial. In particular, when the heterogeneity across
agents’ dynamics is large, leveraging data from other agents might degrade the performance of a single agent.
Indeed, large heterogeneity may make it impossible to learn a common stabilizing policy'. Moreover, even
when such a stabilizing policy exists, it may deviate from each agent’s local optimal policy, rendering poor
performance and discouraging participation in the FL process. Thus, to understand whether more data” helps or
hurts, it is crucial to characterize the effects of heterogeneity in the federated control setting.

With this aim in mind, we study a multi-agent model-free LQR problem based on policy gradient methods.
Specifically, there are M agents in our setup, each with its own distinct yet similar linear time-invariant (LTT)
dynamics. Inspired by the typical objective in FL, our goal is to find a common policy which can minimize the
average of the LQR costs of all the agents. With this setup, we seek to answer the following questions.

Q1. Is this common policy stabilizing for all the systems? If so, under what conditions?
Q2. How far is the learned common policy from each agent’s locally optimal policy?

Q3. Can an agent use the common policy as an initial guess to fine-tune and learn its own optimal policy
faster (i.e., with fewer overall samples) than if it acted alone?

Challenges: There are several challenges to answering the above questions. First, even for the single agent
setting, the policy gradient-based LQR problem is non-convex, and requires a fairly intricate analysis (Fazel
et al., 2018). Second, a key distinction relative to standard federated supervised learning stems from the need to
maintain stability — this problem is amplified in the heterogeneous multi-agent scenario we consider. It remains
an open problem to design an algorithm ensuring that policies are simultaneously stabilizing for each distinct
system. Third, to reduce the communication cost, FL algorithms rely on the agents performing multiple local
update steps between successive communication rounds. When agents have non-identical loss functions, these

!See Section 3 for more details on the underlying intuition and necessity behind the low heterogeneity regime.
*In accordance with both FL & FRL frameworks, the agents in our problem do not exchange their private data (e.g., rewards, states,
etc.). Instead, each agent only transmits its policy gradient.



local steps lead to a “client-drift" effect where each agent drifts towards its own local minimizer (Charles and
Konecny, 2020a, 2021a). While several works in FL have investigated this phenomenon (Li et al., 2020; Khaled
et al., 2019a, 2020; Li et al., 2019a; Karimireddy et al., 2020; Pathak and Wainwright, 2020a; Wang et al., 2020a;
Acar et al., 2021; Gorbunov et al., 2021; Mitra et al., 2021; Mishchenko et al., 2022; Laguel et al., 2021), the
effect of “client-drift" on stability remains completely unexplored. Unless accounted for, such drift effects can
potentially produce unstable controllers for some systems.

Our Contributions: In response to the above challenges, we propose a policy gradient method called
FedLOQR to solve the (model-based and model-free) federated LQR problem, and provide a rigorous finite-time
analysis of its performance that accounts for the interplay between system heterogeneity, multiple local steps,
client-drift effects, and stability. Our specific contributions in this regard are as follows.

o Iterative stability guarantees. We show via a careful inductive argument that under suitable requirements
on the level of heterogeneity across systems, the learning rate schedule can be designed to ensure that FedLQR
provides a stabilizing controller at every iteration for all systems. Theorem 3 provides a proof in the model-based
setting, and Theorem 5 provides the model-free result.

¢ Bounded policy gradient heterogeneity in the LQR problem. We prove in Lemma 3 that, for each
pair of agents 7, j € [M], the policy gradient direction (in the model-based setting) of agent i is close to that of
agent j, if their dynamics are similar (i.e., Definition 1). This is the first result to observe and characterize this
bounded gradient heterogeneity phenomenon in the multi-agent LOR setting.

¢ Quantifying the gap between the FedLQR output and locally optimal policies. Building on Lemma 3,
we prove that when the agents’ dynamics are similar, the common policy returned by FedLQR is close to each
agent’s optimal policy; see Theorem 4. In other words, we can leverage the federated formulation to help each
agent find its own optimal policy up to some accuracy depending on the level of heterogeneity. Our work is the
first to provide a result of this flavor.

o Linear speedup. As our main contribution, we prove that in the model-free setting, FedLQR converges
to a solution that is in a neighborhood of each agent’s optimal policy, using M -times fewer samples relative to
when each agent just uses its own data (see Theorem 5). The radius of this neighborhood captures the level
of heterogeneity across the agents’ dynamics. The key implication of this result is that in a low-heterogeneity
regime, FedLQR (in the model-free setting) reduces the sample-complexity by a factor of M w.r.t. the centralized
setting (Fazel et al., 2018; Malik et al., 2019), highlighting the benefit of collaboration.® Simply put, FedLOR
enables each agent to quickly find an approximate locally optimal policy; as in standard FL (Collins et al., 2022),
the agent can then use this policy as an initial guess to fine-tune based on its own data.

In summary, we provide a new theoretical framework that quantitatively characterizes the interplay between
the price of heterogeneity and the benefit of collaboration for model-free control.

Related Work: There has been a line of work (Fazel et al., 2018; Malik et al., 2019; Hambly et al., 2021;
Mohammadi et al., 2021; Gravell et al., 2020; Jin et al., 2020; Ju et al., 2022) that explores various RL algorithms
for solving the model-free LQR problem. However, their analysis is limited to the single-agent setting. Most
recently, Ren et al. (2020) solves the model-free LQR tracking problem in a federated manner and achieves a
linear convergence speedup with respect to the number of agents. However, they consider a simplified setting
where all agents follow the same dynamics. As such, the stability analysis of Ren et al. (2020) follows from
arguments for the centralized setting. In sharp contrast, to establish the linear speedup for FedLQR, we need to
address the key technical challenges arising from the effect of heterogeneity and local steps on the stability of
distinct systems. This requires new analysis tools that we develop. For related work on multi-agent RL (that do
not specifically look at the control setting) we point the reader to (Lin et al., 2021; Zhang et al., 2021) and the

3Throughout this paper, we use the terms “centralized” and “single-agent" interchangeably.



references therein. A more detailed description of related work is given in the Appendix.

2 Problem Setup

(i),“

Notation: Given a set of matrices { S}, we denote ||S||max := max; ||S
All vector norms are Euclidean and matrix norms are spectral, unless otherwise stated.

Classical control approaches aim to design optimal controllers from a well-defined dynamical system model.
The model-based LQR is a well-studied problem that admits a convex solution. In this work, we consider the
LQR problem but in the model-free setting. Moreover, we consider a federated model-free LOR problem in
which there are M agents, each with their own distinct but “similar’ dynamics. Our goal is to collaboratively
learn an optimal controller that minimizes an average quadratic cost. We seek to characterize the optimality of
our solution as a function of the “difference” across the agent’s dynamics. In what follows, we formally describe
our problem of interest.

Federated LQR: Consider a system with M agents. Associated with each agent is a linear time-invariant
(LTI) dynamical system of the form

20 = 4020 4 B 0 LD =1, 0,
with A € R7%=>ne B() ¢ R *"u We assume each initial state xéi) is randomly generated from the same

distribution D. In the single-agent setting, the optimal LQR policy ugi) =-K l*xgl) for each agent is given by
the solution to

s.t. ngl = A(i)xii) + B(i)ugi), ugi) = —Kxgi), m(()i) ~ D, (1)

K* = arg m}}n {CWK) —F [Z xgz')Tngi) + ugi)TRugi)
t=0

where Q € R"*™ and R € R™*™ are known positive definite matrices. In our federated setting, the
objective is to find an optimal common policy {u;}72, to minimize the average cost of all the agents Cyyg :=
LM CO(K) without knowledge of the system dynamics, i.e., (A®, B(). Classical results (Anderson and
Moore, 2007) from optimal control theory show that, given the system matrices A(i), B (i), () and R, the optimal
policy can be written as a linear function of the current state. Thus, we consider a common policy of the form

(1) -K x( ) The objective of the federated LQR problem can be written as:
K* — . ' E (4)
argmin {C’dvg Z Z :ct Q:Bt Rut }

s.t. :L'gle = AC ):L'g D B(’)uy), ugi) = —Kxg ), x(()) ~D. 2

The rationale for finding K™ is as follows. Intuitively, when all agents have similar dynamics, K* will be
close to each K. Thus, K* will serve to provide a good common initial guess from which each agent ¢ can then
fine-tune/personalize (using only its own data) to converge exactly to its own locally optimal controller ' . The
key here is that the initial guess K* can be obtained guickly by using the collective data of all the agents. We
will formalize this intuition in Theorem 5.

We make the standard assumption that for each agent, (A(i), B(i)) is stabilizable. In addition, we make the
following assumption on the distribution of the initial state:



Assumption 1. Let p := opin (Ew(i>NDx(()i)x(()i)T> and assume i > 0. For each i € [M], the initial state
0

a;g) ~ D and distribution D satisfy

@1 =0, E_pladel)") = jly,. and ||o§)) < H almost surely
LBO ~

We quantify the heterogeneity in the agent’s dynamics through the following definition:

Definition 1. (Bounded system heterogeneity) There exist positive constants €, and €3 such that

max |[A® — AU)|| < 1, and max |BY — BY)| < e,.
i,j€[M] i, j€[M]

We assume that €7 and ey are finite. Similar bounded heterogeneity assumptions are commonly made in
FL (Karimireddy et al., 2020; Khaled et al., 2020; Reddi et al., 2020). However, unlike typical FL works where
one directly imposes heterogeneity assumptions on the agents gradients, in our setting, we need to carefully
characterize how heterogeneity in the system parameters (A(i), B(i)) translates to differences in the policy
gradients; see Lemma 3.

Before providing our solution to the federated LQR problem, we first recap existing results on model-free
LQR in the single-agent setting.

The single-agent setting: When there is only one agent, i.e., M = 1, let us denote the system matrix as
(A, B). If (A, B) is known, the optimal controller K* can be computed by solving the discrete-time Algebraic
Riccati Equation (ARE) (Anderson and Moore, 2007).

Strikingly, (Fazel et al., 2018) show that policy gradient methods can find the globally optimal LQR policy
K* despite the non-convexity of the problem. Tthe policy gradient of the LQR problem can be expressed as:

VCO(K) = 2Ex Sk = 2 ((R + BTPKB) K- BTPKA) Sk,

where Py is the positive definite solution to the Lyapunov equation: Px = Q4+ K RK 4+ (A — BK) " Py (A —
BK), Ex = (R+B"PxB) K — B'PgA, and S = Eyyup > o xezy . The policy gradient method
K «+ K —nVC(K) will find the global optimal LQR policy, i.e., K — K*, provided that E,,.p[rox ] is full
rank and an initial stabilizing policy is used. When the model is unknown, the analysis technique employed
by Fazel et al. (2018) is to construct near-exact gradient estimates from reward samples and show that the sample
complexity of such a method is bounded polynomially in the parameters of the problem.

In contrast to the single-agent setting, the heterogeneous, multi-agent scenario we consider here is consider-
ably more difficult to analyze. First, designing an algorithm satisfying the iterative stability guarantees becomes
a complex task. Second, since each agent in the system has its own unique dynamics and gradient estimates,
it can be difficult to aggregate these directions in a manner that ensures the updating direction moves toward
the average optimal policy K*. Nonetheless, in the sequel, we will overcome these challenges and provide a
finite-time analysis of FedLQR.

3 Necessity of the Low Heterogeneity Requirement

In our main theorems, we require certain bounds on the parameters €; and e, that define the heterogeneity of
the M dynamical systems we work with. Here, we point out that, unlike standard federated learning settings,
these bounds are necessary for convergence. From a control and dynamical systems viewpoint, these bounds



are perhaps intuitive: if the systems are too different, then there is no reason to believe there exists a stabilizing
controller, i.e., there is no solution to the problem (2). In what follows, we will formalize this point. To do
so, let us define an “instance” of our FedLQR problem via a parameter M that characterizes the number of
agents/systems and the set of corresponding system matrices { A(), B (i)}ie[ M] A

We now prove a couple of simple impossibility results. Our first result shows that even when the input
matrices are identical across agents, heterogeneity in the state transition matrices can lead to the non-existence
of simultaneously stabilizing controllers, thereby rendering the FedLQR problem infeasible.

Proposition 1. There exists an instance of the FedLQR problem with M = 2 and ey = 0, such that if e; > 2,
then it is impossible to find a common linear state-feedback gain K that simultaneously stabilizes all systems.

Proof: Consider an instance with just two scalar systems defined by:

(1) M 4,0 (2) (2) (2)

Ty = axy ¢ and  z,) = —ax” tuy,

for some o > 0. By simple inspection, note that in this case €; = 2a and e = 0. Thus, €1 > 2 = o > 1.
Now for a controller ugl) = —k::zzgz) to stabilize both systems, the spectral radius conditions are |ow — k| < 1 and
|ao + k| < 1. Trivially, there exists no gain k that satisfies both these requirements when « > 1. This completes

the proof.

To complement the above result, we now show that the effect of heterogeneity is not just limited to the state
transition matrices. In particular, even when the state transition matrices are identical across agents, (arbitrarily
small) heterogeneity in the input matrices can also lead to the non-existence of simultaneously stabilizing control
gains. We formalize this below.

Proposition 2. There exists an instance of the FedLQOR problem with M = 2 and €1 = 0, such that if e > 0,
then it is impossible to find a common linear state-feedback gain K that simultaneously stabilizes all systems.

Proof: Consider an instance with two scalar systems defined by:
1 1 1 2 2 2
o = a4 ) and o2, =

for some 3. By simple inspection, note that in this case ¢; = 0 and e = 2f5. Thus, 2 > 0 = § > 0. Now
for a controller ugl) = —kxgl) to stabilize both systems, the spectral radius conditions are |1 — 8k| < 1 and
|1 + Bk| < 1. Trivially, there exists no gain k that satisfies both these requirements when /5 > 0. This concludes
the proof.

The above example suggests that in certain settings, we can tolerate no heterogeneity whatsoever in the
input matrices. More generally, the main take-home message from this section is that the requirement of a
“low-heterogeneity regime" is fundamental to the problem and not merely an artifact of our analysis.

4 The FedLQR algorithm

In this section, we introduce our algorithm FedLQR, formally described by Algorithm 1, to solve for K* in (2) .
First, we impose the following assumption regarding the algorithm’s initial condition Kjy:

M

Assumption 2. We can access an initial stabilizing controller, Ky, which stabilizes all systems {(A(i), B (i)) i1

i.e., the spectral radius p(A"Y) — BOKy) < 1 holds for all i € [M].

4 Although technically the cost matrices @ and R are also part of a FedLQR problem formulation, they are not needed to establish the
necessity of a low-heterogeneity requirement. As such, we do not include them here in our definition of an instance.



Algorithm 1 Model-free Federated Policy Learning for the LQR (FedLQR)

1: Input: initial policy Ky, local step-size 1; and global step-size 7,.
2: Initialize the server with K¢ and 7,
3: forn=0,...,N—1 do

4: for each system i € [M] do

5 for(=0,---,L —1do

6: Agent 1n1tlahzes KU 2) K,

7: Agent i estimates VC' (@) (K ( )) = 20(K, @ 2 i) and updates local policy as
8 K, = K —mvei (k)

9: end for '
10: send Agf ) — T(LZ)L — K, back to the server

11: end for ,

12: Server computes and broadcasts global model K, 1 = K, + % Zf‘il Ag )
13: end for

Algorithm description: At a high level, FedLQR follows the standard FL algorithmic template: a server
first initializes a global policy, K¢, which it sends to the agents. Each agent proceeds to execute multiple PG
updates using their local data. Once the local training is finished, agents transmit their model update to the
server. The server aggregates the models and broadcasts an averaged model to the clients. The process repeats
until a termination criterion is met. Prototypical FL algorithms that adhere to this structure include, for instance,
FedAvg (Khaled et al., 2020) and FedProx (Li et al., 2020).

With this template in mind, we now dive into the details: FedLQR initializes the server and all agents with
K éfg = Ky — a controller that stabilizes all agent’s dynamics. In each round n, starting from a common global
policy K, each agent 7 independently samples n trajectories from its own system at each local iteration [ and
performs approximate policy gradient updates using the zeroth-order optimization procedure (Fazel et al., 2018)
which we denote ZO; see line 7. For clarity, we present the explicit steps of using the zeroth-order method to
estimate the true gradient in Algorithm 2, which will be discussed shortly. Between every communication round,
each agent updates their local policy L times. Such an L is chosen to balance between the benefit of information
sharing and the cost of communication. After L local iterations, each agent ¢ uploads its local policy difference
Agf ) (line 10) to the server. Once all differences are received, the server averages these differences {Agf )} (line
12) to construct a new global policy K, 1. The whole process is repeated N times.

Zeroth-order optimization (Conn et al., 2009; Nesterov and Spokoiny, 2017) provides a method of optimiza-
tion that only requires oracle access to the function being optimized. Here, we briefly describe the details of
our zeroth-order gradient estimation step’ in Algorithm 2. To get a gradient estimator at a given policy K, we
sample trajectories from the ¢-th system n; times. At each time s, we use the perturbed policy K s (line 3) and
a randomly generated initial point zo ~ D to simulate the i-th closed-loop system for 7 steps. Thus, we can
approximately calculate the cost by adding the stage cost from the first 7 time steps on this trajectory (line 4),
and then estimating the gradient as in line 6.

Discussion of Assumption 2: Assumption 2 is commonly adopted in the LQR (Fazel et al., 2018; Dean et al.,
2020; Agarwal et al., 2019; Ren et al., 2020) and robust control literature (Boyd et al., 1994; Lu et al., 1996;
Doyle et al., 1989). In addition, there exist efficient ways to find such a stabilizing policy Ky; (Boyd et al., 1994;
Perdomo et al., 2021; Zhao et al., 2022) each address the model-based setting, while (Jing et al., 2021) address
this problem in the RL setting of heterogeneous multi-agent systems, and (Lamperski, 2020) in the single-agent,

3See Appendix F for more discussions about zeroth-order optimization.



model-free setting. Moreover, it is well-known that the sample complexity of finding an initial stabilizing policy
only adds a logarithmic factor to that for solving the LQR problem (Zhao et al., 2022; Mohammadi et al., 2021).

Challenges in FedLQR analysis: Although FedLQR is similar in spirit to FedAvg (Li et al., 2019b;
McMahan et al., 2017) (in the supervised learning setting), it is significantly more difficult to analyze the
convergence of FedLQR for the following reasons.

* First, the problem we study is non-convex. Unlike most existing non-convex FL optimization results (Karim-
ireddy et al., 2020) which only guarantee convergence to stationary points, our work investigates whether
FedLQR can find a globally optimal policy.

* Second, standard convergence analyses in FL (McMabhan et al., 2017; Karimireddy et al., 2020; Wang et al.,
2020b; Li et al., 2020) rely on a “bounded gradient-heterogeneity” assumption. For the LQR problem, it is not
clear a priori whether similar bounded policy gradient dissimilarity still holds. In fact, this is something we
prove in Lemma 3.

* Third, the randomness in FL usually comes from only one source: the data obtained by each agent are drawn
i.i.d. from some distribution; we call this randomness from samples. However, in FedLQR, there are three
distinct sources of randomness: sample randomness, initial condition randomness, and randomness from the
smoothing matrices. To reason about these different forms of randomness (that are intricately coupled), we
provide a careful martingale-based analysis.

* Finally, we need to determine whether the solution given by FedLQR is meaningful, i.e., to decide whether
the policy generated at each (local or global) iteration will stabilize all the systems.

To tackle these difficulties, we first define a stability region in our setting comprising of M heterogeneous
systems as:

Definition 2. (The stabilizing set) The stabilizing set is defined as G° := mf‘ilg ) where

g = (i : CO(K) - CO(K7) < B (CV (k) — COEY) ) ).

As in (Malik et al., 2019), G° is defined as the intersection of sub-level sets containing points K whose
cost gap is at most 3 times the initial cost gap for all systems. It was shown in (Hu et al., 2022) that this is
a compact set. Each sub-level set corresponds to a cost gap to agent ¢’s optimal policy K, which is at most
/3 times the initial cost gap C?)(Ky) — C'Y) (K ). Note that 3 can be any positive finite constant. Since any
finite cost function indicates that K is a stabilizing controller, we conclude that any K € G stabilizes all the
systems. Following from Assumption 2, there exists a constant 3 such that G° is nonempty. Moreover, it is worth
remarking that the LQR cost function in the single-agent setting is coercive. That is, the cost acts as a barrier
function, ensuring that the policy gradient update remains within the feasible stabilizing set G(). By defining the
stabilizing set GY as above, the cost function C (1) (K) retains its coerciveness on GO for the federated setting
considered in this paper.

In order to solve the federated LQR problem and provide convergence guarantees for FedLQOR, we first need
to recap some favorable properties of the LQR problem in the single-agent setting that enables PG to find the
globally optimal policy.

5 Background on the centralized LQR using PG

In the single-agent setting, it was shown that policy gradient methods (i.e., model-free) can produce the global
optimal policy despite the LQR problem being non-convex (Fazel et al., 2018). We summarize the properties



Algorithm 2 Zeroth-order gradient estimation (Z0O)

1: Input: K, number of trajectories ng, trajectory length 7, smoothing radius r, dimension n, and n,,, system

index 1.
2. fors=1,...,ns do
Sample a policy Ky = K + U,, with Uy drawn uniformly at random over matrices whose (Frobenius)
norm is 7.

4:  Simulate the i-th system for 7 steps starting from z¢ ~ D using policy K s. Let 55 be the empirical
estimate: C Zt 1 ¢t, where ¢; := {Et (Q + K TRK ) x; on this trajectory.

5: end for . R

6: Return the estimate: ~VC(K) = - Y0 "2 U,.

Ng

that make this possible and which we also exploit in our analysis.

Lemma 1. (Local Cost and Gradient Smoothness) Suppose K’ is such that | K’ — K|| < ha(K) < co. Then,
the cost and gradient function satisfy:

|C(K') = C(K)| < heou(K) | K" — K],
|VC (K') = VC(K)|| < hgraa (K)||All and [|[VC (K') = VC(K)|| p < hgraa(K) | Al £,
respectively, where ha (K), heos(K) and hgrqq(K) are some positive scalars depending on C(K).

Lemma 2. (Gradient Domination) Let K* be an optimal policy. Then,

el
_4M mm( )

holds for any stabilizing controller K, i.e., any K satisfying the spectral radius p(A — BK) < 1

C(K) - C(K") < IVCE)|7

For simplicity, we skip the explicit expressions in these lemmas for ha (K), hcost(K), and hgraq(K) as
functions of the parameters of the LQR problem. Interested readers are referred to the Appendix for full details.
With Definition 2 of the stabilizing set in hand, we can define the following quantities:

Bgrad = sup hgrad(K), Reost := SUp heost(K), and by := inf ha(K).
Kego Kego Keg?

With these quantities, we can transform the local properties of the LQR problem discussed in Lemmas 1-2 into
properties that hold over the global stabilizing set G°. For convenience, we use letters with bar such as hgrad to
denote the global parameters. We are now ready to present our main results of FedLQR in the next section.

6 Main results

To analyze the performance of FedLQR in the model-free case, we first need to examine its behavior in the
model-based case. Although this is not our end goal, these results are of independent interest.

6.1 Model-based setting

When (A(i), B (i)) are available, exact gradients can be computed, and so the ZO scheme is no longer needed. In
this case, the updating rule of FedLQOR reduces to

L-1

M
- (z
Ko = UL lgllEOVCK



where 1 := Lngn;. Intuitively, if two systems are similar, i.e., satisfy Assumption I, their exact policy gradient
directions should not differ too much. We formalize this intuition as follows.

Lemma 3. (Policy gradient heterogeneity) For any i,j € [M], we have:
IVCO(K) = VOUNE)|| < e1hj(K) + eahip, (K), 3)

where h}, (K) and h}

het het (IC) are positive bounded functions depending on the parameters of the LOR problem.°

By Lemma 3 (the proof of which is deferred to appendix E), if K belongs to a bounded set, the right-hand
side of Eq. (3) is of the order O(e; + €2). In other words, the exact gradient direction of agent ¢ can be well-
approximated by the gradient direction of agent ;7 when the heterogeneity constants €; and €3 are small. This
justifies why it is beneficial to use other agents’ data under the low-heterogeneity setting. Moreover, we can
immediately conclude that the exact update direction of our FedLQR algorithm is also close to each agent’s
policy gradient direction based on Lemma 3. This fact is crucial for analyzing the convergence of FedLQR since
we can map the convergence of FedLOR to that of the centralized LQR problem (with only one agent). However,
Lemma 3 alone is not sufficient to provide the final guarantees since we still need to consider the impact of
multiple local updates and stability concerns with heterogeneous systems. Nevertheless, by overcoming these
difficulties, we establish the convergence of FedLQOR in the model-based setting as follows:

Theorem 3. (Model-based) When the heterogeneity level satisfies’ (€1 1_1% ot 62]_1% et)z < 712 o » there exist constant

step-sizes 14 and 1; such that FedLOR enjoys the following performance guarantees over N rounds:

N
3 3 2 min R 1 7 *
cWNch@u¢>§<lmm;()> (CD(Ko) — CO(KT)) + cunig % Bler, €2),
K}

I 1 2 V2,000 71 . 1 72 . 2 .
where B(e1, €2) 1= m(elhhet—kahm) with hy,, := SUp gego Mo, (K), hijyy := supgego by, (K), v :=

min{ng, ny, }, and i is a universal constant. Moreover, we have K,, € G foralln=0,---, N.

Main Takeaways: Theorem 3 reveals that the output K, of FedLOR can stabilize all M systems at each
round n. However, FedLQR can only converge to a ball of radius B(ej, €2) around each system’s optimal
controller K, regardless of the choice of the step-sizes. The term B(e;, e2) captures the effect of heterogeneity
and becomes zero when each agent follows the same system dynamics, i.e., €, = €2 = 0. When there is no
heterogeneity, the convergence rate matches the rate of the centralized setting (Fazel et al., 2018) up to a constant
factor. But, since there is no noise introduced by the zeroth-order gradient estimate, there is no expectation of
obtaining a benefit from collaboration. Nonetheless, understanding the model-based setting provides valuable
insights for exploring the model-free setting. The proof of Theorem 3 is given in appendix E.2. Next, we
establish the gap between the average optimal policy K*, i.e., the solution to (2), and each agent’s individual
locally optimal policy K.

Theorem 4. (Closeness between K* and K) The closeness in cost between optimal solutions K* of (2)
and (1)’s optimal solution, K}, is on the order of O(e€1 + €2); specifically

Ecost HEK:
(2 Omin(RR)

B _ C
hl h2 VUmax
(61 her T €2 hel‘) + Mzamin(R)O'min(Q)

holds for all i € [M], where Ciayx 1= SUPK g0 ic[M] CY(K) and v is as defined in Theorem 3.

COI") = CO(KT) <

(61 }_Lllzet + € Bl?let)2

SFor simplicity, we write hi,, b, as a function of only K since only K changes during the iterations while other parameters remain
fixed.
"The notation hy,, is a positive scalar depending on the parameters of the LQR problem; see Appendix E.2 for full details.
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The main message conveyed by Theorem 4 is that K™ is close to K" as long as system matrices are similar,
i.e., €1 and eo are small. Unlike the traditional FL literature, where the average optimal point matters, we also
characterize the distance between the average optimal point and each agent’s optimal solution. By converging
close to the average optimal K*, Theorem 4 tells us that we can leverage samples from all agents in the
model-free case and converge to a ball around each K. To the best of our knowledge, this is the first result that
quantifies the closeness in cost between K* and K.

How to ensure FedLQR’s stability? We briefly discuss our proof technique for ensuring the iterative
stability guarantees. The main idea is to leverage an inductive argument. We start from a stabilizing global policy
K,, € G°. We aim to show that the next global policy K, is stabilizing. This is achieved by demonstrating
that K, 1 can reduce each system’s cost function compared to K,,. To achieve this goal, we take the following
steps: (1) at each iteration, initiate from the globally stabilizing controller computed at the previous iterate, (2)
determine a small global step-size such that inequalities in Section 5 can be applied; (3) use Lemma 3 to provide a
descent direction to reduce each system’s cost function; (4) bound the drift term ﬁ Zf\il ZlL:_Ol HKS% — K, |”.
Step (4) can be accomplished using a small local step-size 7; such that each local policy is a small perturbation
of the global policy K,,. Equipped with these results, we are now ready to present our main results of the
model-free setting.

6.2 Model-free setting

We now analyze FedLQR’s convergence in the model-free setting, where the policy gradient steps are approx-
imately computed using zeroth-order optimization (Algorithm 2), without knowing the true dynamics, i.e.,
A® | B are not available and so VC) (K (i)) can’t be directly computed) . The key point in this setting is to
bound the gap between the estimated gradient and the true gradient. In the centralized setting (Fazel et al., 2018),
the gap can [can be made arbitrarily accurate with enough trajectory samples ng, sufficiently long trajectory
length 7, and small smoothing radius 7.

We aim to achieve a sample complexity reduction for each agent by utilizing data from other similar but
non-identical systems with the help of the server. This presents a significant challenge, as averaging gradient
estimates from multiple agents may not necessarily reduce the variance even for homogeneous systems due to
the high correlation between local gradient estimates. This challenge is compounded in our case as the gradient
estimates are not only correlated but also come from non-identical systems. As a result, the variance reduction
and sample complexity reduction for the FedLOR algorithm is not obvious a priori. After addressing these
challenges using a martingale-type analysis, we show that one can establish variance reduction for our our setting
as well. This is formalized in the next result:

Lemma 4. (Variance Reduction Lemma) Suppose the smoothing radius r and trajectory length T from

ANz Ny

Algorithm 2 satisfy r < h, (i) andt > h; ( e ), respectively.® Moreover, suppose the sample size satisfies:®

h € 6 H?
sample,trunc \ 1> DL ~p

ML

ng >

C)

Then, when K,, € G°, with probability 1 — §, the estimated gradients satisfy:

M L-1 —
1 ; 7 7 %
vz X [0ty - veoud]| <o
i=1 1=0 F

8The notation hr, hr, Rsample rune and h..in Lemma 4 and Theorem 5 are polynomial functions of the LQR problem, depending on .
For simplicity, we defer their definition to the Appendix.
°For the convenience of comparison with existing literature, we use the same notation as (Fazel et al., 2018; Gravell et al., 2020).
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We prove this result and provide the definition of the parameters of hgumpie,trunc in Appendix G. The most
important information conveyed by our variance reduction lemma is that each agent at each local step only needs
to sample ﬁ fraction of samples required in the centralized setting. Notably, this lemma plays an important
role in showing that FedLQR can help improve the sample efficiency. Equipped with Lemma 4, we now present
the main convergence guarantees for FedLQR:

re/
ANz Ny

Theorem 5. (Model-free) Suppose the trajectory length satisfies T > h. ( ) , the smoothing radius

satisfies v < hl, ( %’) , and the sample size of each agent n satisfies Eq. (4) with € = \/ W - €. When
K*

the heterogeneity level satisfies (e1h},, + eah2, ) < h3,, then, given any § € (0,1), with probability 1 — 4,

het’
there exist constant step-sizes 1g and 1, which are independent of €', such that FedLQR enjoys the following

performance guarantees:

1. (Stability of the global policy) The global policy at each round n is stabilizing, i.e., K,, € G°;

2. (Stability of the local policies) All the local policies satisfy K\ € G° for all i and I;

uni, Y * (2) _0®) *
3. (Convergence rate) After N > ‘ ;H ‘Kl g (2(C (o) ; O] ))> rounds, we have
nyw Umm(R) €
CO(Kn) — CO(K}) < € + cunia % Bler, e2), Vi € [M], (5)

where Cuni2, Cuni 3, Cuni,a are universal constants and B(e1, €2) is as defined in Theorem 3.

This theorem establishes the finite-time convergence guarantees for FedLQR. The first two points in
Theorem 5 provide the iterative stability guarantees of FedLOQR, i.e., the trajectories of FedLQR will always stay
inside the stabilizing set GO. The third point implies that when heterogeneity is small, i.e., B(e1, €2) is negligible,
FedLQR converges to each system’s optimal policy with a linear speedup w.r.t. the number of agents M, which
we discuss further next.

Discussion: For a fixed desired precision €, we denote N to be the number of rounds such that the first
term ¢ in Eq (5) is smaller than e. In what follows, we focus on analyzing the total sample complexity of
FedLQR for each agent, which can be calculated by N x L x ns. Note that IV, in our case, is in the same
order as the centralized setting. However, in terms of the sample size n; requirement at each local step, it is
only a ﬁ—fraction of that needed in the centralized setting, as presented in the variance reduction Lemma 4.
Therefore, in a low-heterogeneity regime, where B(eq, €2) is negligible, our FedLOR algorithm reduces the
sample complexity of learning the optimal LQR policy by (7)(%) of the centralized setting (Fazel et al., 2018;
Malik et al., 2019).'% Specifically, FedLQR improves the sample cost required by each agent from @(E%) to
@(ﬁ) up to a small heterogeneity bias term. This result is highly desirable since the number of agents in FL is
usually large; leading to a significant speedup due to collaboration.

It is important to mention that our results also capture the cost of federation embedded in the term B(eq, €3).
That is when two systems exhibit significant differences from each other, leveraging data across them may not
be beneficial in finding a common stabilizing policy that applies to both. In a summary, Eq. (4)—(5) provide an
explicit interplay between the price of heterogeneity and the benefit of collaboration. The trade-off in Theorem 5
is explored in the simulation study presented in the next section.

"In (Fazel et al., 2018), the sample complexity of policy gradient method is (5(}4), this was later improved to (5(}2) by Malik et al.
(2019). We compare our results to the refined analysis in Malik et al. (2019).
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7 Numerical Results

The following section describes the experimental setup and results when applying FedLQR in the model-free
setting.!!

7.1 System Generation

Numerical experiments are conducted to illustrate and evaluate the effectiveness of FedLQOR (Algorithm 1). The
simulations involve different and unstable dynamical systems described by discrete-time linear time-invariant
(LTT) models, as in (2), where each system has n, = 3 states and n,, = 3 inputs. To generate different systems
while respecting the bounded heterogeneity assumption (Assumption 1), the following steps are followed:

1. Given nominal system matrices (A, By), generate random variables 7@ ~U(0,¢€1) and vgi) ~U(0, €2),
Vi € [M], with €; and ey being predefined dissimilarity parameters.

2. The random variables generated above are combined with modification masks Z; € R3*3 and Z, € R3*3
to generate the different systems matrices (A, B®) for all i € [M].

3. The systems (A(i), B (i)) for 0 < ¢ < M are then constructed by perturbing the nominal systems according
to: AW = Ay + 'yy) Z, and BY = By + ’752)22, where Z; and Z are defined in step 2.

4. The nominal system matrices are included in the set of generated systems as (A", BM) = (A, By).
In particular, we consider

1.20 0.50 0.40 )
Ap= 1001 075 030\, Bo=Is, Q=2I R=_I;
0.10 0.02 1.50

for the nominal system matrices and cost matrices respectively. The optimal controller for the nominal system
(A, BM) is
1.0056 0.4293 0.3570
K} = [0.0262 0.6239 0.2657| ,
0.1003 0.0298 1.2960

and was obtained by solving the discrete algebraic Riccati equation (DARE).

7.2 Algorithm Parameters

For the gradient estimation step in the zeroth-order algorithm (Algorithm 2), we set the initial state for cost

computation as a random sample from a standard normal distribution, denoted as D N (0, I3), for all systems
i € [M]. Additionally, we consider ns = 5 trajectories, where each trajectory has a rollout length of 7 = 15,
and we set the smoothing radius » = 0.1 for the zeroth-order gradient estimation.

Throughout our simulations, we consider the following‘ initial stabiljzing controller Ky = 1.62I3 (Line
1 in Algorithm 1). Note that although the control action ugz) = —Koxgz) may not be optimal for any of the
M systems. For example, the suboptimality of K applied to the nominal system is evidenced by its cost of

'Code can be downloaded from https://github.com/jd-anderson/FedLOR
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CM(Kp) = 18.4049, compared to the optimal cost of C'") (K7) = 9.5220, when computed from an initial state

:c(()l) =[1 1 1] and time horizon T' = 500. However, it is important to note that K is still stabilizing all M
systems. Note that we will use K as the initial controller for all of the experiments in this paper.

7.3 Experiments

To assess the performance of FedLOR, we evaluate the normalized gap between the current cost C'(!) (K,,) of the

nominal system when using the common stabilizing controller K, and its corresponding optimal cost C'(!) (K7).

. . C(K,)—CM(KF) . . .
This metric is represented as CO R for each global iteration n € [N]. In our experiments, we set
1

the step sizes as 9, = 1 x 1072, with an adaptive decrease of 0.05% per global iteration, and n = 1 x 1074,
and employ a single local iteration L = 1 for each communication round between the systems and the server.
Further details regarding other parameters, such as the number of systems M, heterogeneity levels (€1, €2), and
modification masks Z; and Zs, will be provided in the figures and the subsequent discussion.

—— Single system (M=1)
—— Multiple systems (M=10)
—— Multiple systems (M=50)

)

6 x 1071

*
1

1)

C(l)(K

4 x 1071,

CO(K,) — CD(K

3x1071

0 1000 2000 3000 4000 5000
Number of global iterations (n)

Figure 1: Gap between the current and optimal cost with respect to the number of global iterations. Varying the number of
systems for a fixed heterogeneity level €; = 0.5, ea = 0.5.

Figures 1 and 2 present the normalized distance between the current cost associated with the common
stabilizing controller and the optimal cost for the nominal system, plotted with respect to the number of global
iterations. These figures demonstrate the impact of varying the number of systems M and the heterogeneity
parameters (€1, €2) on the convergence and performance of Algorithm 1.

In Figure 1, we specifically investigate the effect of the number of systems M participating in the collabo-
ration to compute a common controller K* on the convergence of our algorithm. In this analysis, we set the
heterogeneity parameters as €; = 0.5 and ez = 0.5 and consider modification masks Z1 = Z3 = I3. The figure
reveals a noticeable reduction in the gap between the current and optimal cost as the number of participating
systems M increases. This numerical result aligns with our theoretical findings, which indicate that the number
of samples required to achieve reliable estimation for the cost function’s gradient can be scaled down with the
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D)

CO(K,) — CD(K

4 x 1071,

0 1000 2000 3000 4000 5000
Number of global iterations (n)

Figure 2: Gap between the current and optimal cost with respect to the number of global iterations. Varying the
heterogeneity level among the systems, with a fixed number of systems M = 10.

number of systems participating in the collaboration. Consequently, as the number of systems involved increases,
there is a considerable reduction in the gap between the common computed controller and the optimal one.

Figure 2 illustrates the influence of the heterogeneity parameters (e;,€2) on the convergence rate of
Algorithm 1. In this analysis, we set the number of systems as M = 10, and the modification masks
Zy = diag([3.5 1 0.1]) and Zy = diag([l.5 0.1 1]). Consistent with our theoretical findings, we
observe that an increase in the dissimilarity among the systems results in a significant gap between the com-
mon and optimal controller. This discrepancy arises due to the additive effect of system heterogeneity on the
convergence rate of our algorithm, as elaborated in Theorem 5.

8 Conclusions and Future Work

We investigated the problem of learning a common and optimal LQR policy with the objective of minimizing an
average quadratic cost. The primary focus of this paper was to thoroughly examine and provide comprehensive
answers to the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close
is the learned common policy to each agent’s own optimal policy? (iii) Can each agent learn its own optimal
policy faster by leveraging data from all agents? To address these questions, we proposed a federated and
model-free approach, FedLQR, where M heterogenous systems collaborate to learn a common and optimal
policy while keeping the system’s data private. Our analysis tackles numerous technical challenges, including
system heterogeneity, multiple local gradient descent updates, and stability. We have demonstrated that FedLQR
produces a common policy that stabilizes (Theorem 5) all systems and converges to the optimal policy (Theorem
4) of each agent up to a heterogeneity bias term. Furthermore, FedLQR achieves a reduction in sample complexity
proportional to the number of participating agents M (Lemma 4). We also have provided numerical results to
effectively showcase and evaluate the performance of our FedLQR approach in a model-free setting.
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Future work will address the assumption of requiring full-state information to extend our results to the
Linear Quadratic Gaussian (LQG) problem in a federated setting. We are currently investigating data-driven and
system-theoretic metrics for heterogeneity, as well as personalization-based methods to mitigate the impact of
system heterogeneity on the performance of the proposed approach.
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A Appendix Roadmap

This appendix is organized as follows. Section B offers a comprehensive and detailed overview of the relevant
literature related to this paper. Sections C and D present important auxiliary norm inequalities and lemmas that
play a key role in proving the main results of this paper. The proof of our main results related to the model-based
setting is provided in Section E, while Section G is dedicated to the corresponding results in the model-free
setting. Additional details on the zeroth-order optimization method are provided in Section F.

A.1 Notation Recap

For convenience we briefly recap and summarize our notation. We use ||.S||qz to denote the maximum spectral
norm taken over the family of matrices S, ..., S)_ All norms for matrices and vectors are spectral and
Euclidean respectively, unless otherwise stated. The integer sequence 1,2, ..., N is denoted as [IV]. The spectral
radius of a square matrix is denoted by p(+).

Symbol Meaning
M number of systems
L number of local updates (counter: [)
N number of rounds of averaging (counter: n)
K, averaged controller at round n
K} optimal controller for system (A®) B®))
K nZ% controller for system ¢ after [ local iterations and n averaging rounds

B Related Work

This section provides a more detailed and comprehensive literature survey on the key topics closely related to the
subject matter of this paper. We aim to explore and summarize the main ideas presented in the existing literature
pertaining to federated learning (FL), policy gradient (PG), federated reinforcement learning (FRL), as well as
model-based and model-free linear quadratic control.

* Federated Learning (FL):

In this work, we employ the federated learning (FL) paradigm to facilitate collaborative learning among
systems without the need to share raw data with other participants or a server (Konecny et al., 2016a;
McMabhan et al., 2017; Konecny et al., 2016b; Bonawitz et al., 2019). Despite FL being a relatively recent
creation, it has already garnered significant attention and boasts a wealth of literature. Below we highlight
work that is most relevant to our problem setting.

Federated averaging (FedAvqg) stands as the pioneering and most widely adopted algorithm in FL.
Originally proposed by McMahan et al. in (McMahan et al., 2017), FedAvg has demonstrated its
effectiveness in homogeneous settings (Stich, 2018; Wang and Joshi, 2021; Spiridonoff et al., 2020;
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Reisizadeh et al., 2020; Haddadpour et al., 2019) where all participating clients aim to minimize the
same objective function. However, ensuring convergence guarantees for FedAvg becomes notably more
challenging in the presence of heterogeneity (Khaled et al., 2019b, 2020; Haddadpour and Mahdavi, 2019;
Li et al., 2019b), thus necessitating additional assumptions on the gradient and Hessian dissimilarity
bounds (Li et al., 2019b; Li and Orabona, 2019; Khaled et al., 2019b; Karimireddy et al., 2020). This
difficulty arises primarily due to a "client-drift" effect, which is inherent to the FedAvg algorithm and
has a detrimental impact on its convergence performance (Charles and Kone¢ny, 2020b, 2021b). As a
result of the challenges posed by FedAvg, several alternative algorithms have been proposed to address
its limitations. Notable examples of these algorithms include FedProx (Li et al., 2020), Scaffold
(Karimireddy et al., 2020), FedSplit (Pathak and Wainwright, 2020b), FedDR (Tran Dinh et al., 2021),
FedADMM (Wang et al., 2022a), FedLin (Mitra et al., 2021), and S-Local-SVRG (Gorbunov et al.,
2021). Each of them introduces unique techniques and modifications to the original FedAvg algorithm,
aiming to enhance convergence guarantees while handling communication cost concerns, statistical
heterogeneity, client dropout, and sample complexity more effectively.

Applying federated learning (FL) to control systems introduces a novel research direction that comes
with its own set of challenges. Control systems exhibit unique characteristics, such as non-iid and non-
isotropic data, as well as system instability, which arise due to the dynamic nature of the systems. These
characteristics pose specific challenges when attempting to leverage data from multiple systems for tasks
such as system identification (Wang et al., 2022b) or control synthesis (Ren et al., 2020).

Although Ren et al. (2020) addresses the model-free LQR tracking problem in a federated manner, it fo-
cuses on a significantly simpler scenario where all agents follow identical dynamics (i.e., no heterogeneity).
In contrast, our present work introduces new analysis techniques to achieve linear speedup in FedLQR
when dealing with heterogeneous dynamical systems and multiple local updates per communication round.

Policy Gradient (PG):

The policy gradient (PG) approach is a fundamental component of the success of reinforcement learning
(RL) and plays a crucial role in policy optimization (PO). This approach directly optimizes the policy to
improve system-level performances through gradient ascent steps. The concept of policy optimization
has been influential in RL (Sutton et al., 1999) with some well-known algorithms such as REINFORCE
(Williams, 1992), trust-region policy optimization TRPO (Schulman et al., 2015), actor-critic methods
(Konda and Tsitsiklis, 1999), and proximal policy optimization PPO (Schulman et al., 2017). We highlight
an important difference between standard MDP models and control models in RL. In control, one requires
the policy to provide closed-loop stability, i.e., all trajectories of the system must converge for a given
policy. In contrast, convergence in the MDP setting requires irreducibly and aperiodicity properties that
are assumed before a policy is selected. As a result, the control task is significantly more challenging.

The extensive body of literature on policy optimization for reinforcement learning (RL) and its adaptability
to the model-free setting paves the way for leveraging policy gradient methods in the pursuit of learning
optimal control policies for classical control problems (Hu et al., 2022; Perdomo et al., 2021). Despite the
non-convex nature of the formulation involved in policy gradient methods, recent work (Fazel et al., 2018;
Malik et al., 2019; Hambly et al., 2021; Mohammadi et al., 2021; Gravell et al., 2020; Jin et al., 2020;
Ju et al., 2022; Perdomo et al., 2021; Lamperski, 2020) has demonstrated global convergence in solving
the model-free LQR problem via policy gradient methods. This convergence is achieved due to certain
properties of the quadratic cost function inherent in the LQR problem as introduced in (Fazel et al., 2018).
In contrast to the aforementioned work, which exclusively focus on the centralized control setting, our
paper offers convergence guarantees for the multi-agent setting. In this context, each agent follows similar,
but not identical, dynamics, thereby distinguishing it from the simpler scenario in (Ren et al., 2020).
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* Federated Reinforcement Learning (FRL):

The flexibility of policy gradient methods in the model-free RL setting has paved the way for a relatively
recent research direction known as federated reinforcement learning (FRL), which aims to address practical
implementation challenges of RL through the use of federated learning (Qi et al., 2021). FRL focuses on
learning a common value function (Wang et al., 2023; Fabbro et al., 2023) or improving the policy by
leveraging multiple RL agents interacting with similar environments. The empirical evidence presented
in the survey paper (Qi et al., 2021) demonstrates the significant success of FRL in reducing sample
complexity across various applications such as autonomous driving (Liang et al., 2022), IoT devices (Lim
et al., 2020), resource management in networking (Yu et al., 2020), and communication efficiency (Gatsis,
2022). However, it is important to note that existing recent works in this field do not specifically tackle
the challenge of finding a common and stabilizing optimal policy that is suitable for all RL agents in a
heterogeneous setting.

¢ Model-free Linear Quadratic Control:

The linear quadratic regulator (LQR) problem is a well-studied classical control problem that has gained
significant attention due to its wide applicability and its role as a baseline for more complex control
strategies (Anderson and Moore, 2007). Recently, to address the non-convex nature of the policy gradient
LQR, (Sun and Fazel, 2021) has proposed convexifying the corresponding optimal control problem to
efficiently solve the model-based LQR problem via policy gradient. Furthermore, the model-free LQR has
attracted considerable interest after (Fazel et al., 2018) provided guarantees on the global convergence of
policy gradient methods for both model-based and model-free LQR settings. This breakthrough paved the
way for subsequent works (Malik et al., 2019; Hambly et al., 2021; Mohammadi et al., 2021; Gravell et al.,
2020; Jin et al., 2020; Ju et al., 2022; Perdomo et al., 2021; Lamperski, 2020) that analyze convergence
guarantees and sample complexity in the context of the model-free LQR problem. Notably, (Dean et al.,
2020) characterizes the sample complexity of the LQR problem.

Another line of work explores certainty equivalent control (Mania et al., 2019; Simchowitz and Foster,
2020), providing regret bounds to demonstrate the quality of the designed linear quadratic regulator in
terms of the accuracy of the estimated system model. However, the key distinction between these works
and the present paper lies in the consideration of multiple and heterogeneous systems. Moreover, (Mania
et al., 2019; Simchowitz and Foster, 2020) use the regret framework, which is different from the PAC
learning-based framework (Fiechter, 1997) exploited in our paper.
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C Useful Norm Inequalities

* Given any two matrices A, B of the same dimensions, for any £ > 0, we have

1
4+ Bl < L+ 1Al + (14 ¢ ) 112 ©
* Given any two matrices A, B of the same dimensions, for any £ > 0, we have
A,B) < &A1+ 282
(A,B) < 2| HF""%H I7- (7
This inequality goes by the name of Young’s inequality.
* Given m matrices A1, ..., A,, of the same dimensions, the following is a simple application of Jensen’s
inequality:
m 2 m
DA <m) 1A,
i=1 i=1
m 2 m
5= <3z ®
i=1 F i=1
« Given any two vectors z,y € R?, for any constant ¢ > 0, we have
1
o ol < @4 Ol + (14 2) Il ©
» Given any two vectors z,y € R, for any constant ¢ > 0, we have
Cpomz o Ly
<2 — . 10
{@,y) < Zll=lI” + 2CHyH (10)
D Useful Lemmas and Constants
Lemma 5. For each i € [M], we have that:
, CO(K , CO(K
s < Sy py < CCE) (11)
Omin (Q) H

Proof: The proof of this lemma is explained in detail in the proof of Lemma 13 of the supplemental

materials in (Fazel et al., 2018).

0

Lemma 6. (Uniform bounds for VC(K) and ||K||) For each agent i € [M), the gradient VC') (K) and || K ||

can be bounded as follows:

IVCOE)| < VOO (EK)||p < ha(K) and ||K| < ha(K),

where h1(K), and ho(K) are some positive scalars depending on the function C (K
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Proof: In this Lemma, h;(K), and ho(K) are the functions defined as:

\/|RK||max max< ) — Cinin (K)

I

K) oK) = ho(K) + || BT Px Al

max

hl(K) = Umin(R) )

Omin (Q) ’

where || Ri||max := max; || R + BT P BO)

IVCO(K)|? < Tr (EE;QE() E9% ) Hz

CO(K) i 0T ()
< (%m(@) T (BT ER) .

By Lemma 11 of (Fazel et al., 2018), we obtain

r (Eﬁ?%ﬁ?)

- R+ BOTPOBO| (0O)(K) — CO (K7)

which proves the first claim:

(CO(K) — CW (k7))

4 DT p) B
C(z)(K) J HR+ B( )TPK B(

VoK) <
IVeO )] < - ;
)T p@ pe) B .
Omax(K)J HR+B P BO|  (Conax(K) = Cinin (K))‘
o Umin(Q) 1

On the other hand, by exploiting Lemma 11 of (Fazel et al., 2018) we can also write
1K < H(R+B(Z)TP(’)B H H R+B(“TP(’)B )KH

o) | (R BT PEBO) 1]

Umln

ot (H(RJFB( TP (z')) K — BOTpW 40)

Umm
HEK HB@ TP AW
" Gmin(R) " Omin(R)
0T gl ) HBu TP AG)
oomB)  omm(R)
\/(C@(K)—cm k7)) |R+ BOTPYBO |87 PY ¢
VHOmin(R) Omin(R) ’

which completes the proof for the second claim. g

+ HB@')TP}?A@')

)

Tr (E

It is worth noting that the local cost and gradient smoothness, and gradient domination properties in Lemma 1
and Lemma 2 not only hold for the single-agent setting but also hold for the multi-agent setting. Moreover, we
will make use of the following matrix Martingale concentration inequality:
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Lemma 7. (Rectangular Matrix Freedman (Tropp, 2011)). Consider a matrix martingale {Yy : k =0,1,2,...}
whose values are matrices with dimension dy X ds, and let { X}, : k = 1,2,3, ...} be the difference sequence.
Assume that the difference sequence is uniformly bounded:

I Xkl < R almost surely  fork =1,2,3,....

Define two predictable quadratic variation processes for this martingale:

k
Weol ks 1= E E;j—1 (XjX;) and
j—l

rowk ZE] 1 XX fork=1,2,3,...

Then, for allt > 0 and a2 >0,

B {3k > 0: [[¥ill > ¢ and max {|Weor 4], [ W,

—t2/2
}<o?} < (di+d) 'eXP{—UQ_i_Rt/s}-

D.1 Proof of Lemma 1
Proof: In this proof, we aim to show
CO (K") = COK)| < heow( KK = K],

ch (K") — veo H<hgrad( )|A] and

VO (K') = VCOK)| < heraa(K) 1A
hold for all agents ¢ € [M] and K" satisfying | K/ — K|| < ha(K) < oc.

The term ha (K) is the polynomial defined as

Umln(Q)M
4[| Bl[maxCmax(K) (/|4 — BK||

the term hcosi (K') and hgrad(K) are defined as

4Tr (EO) Cmax(K)HRH (H H
MO min (Q)

ha(K) :=

Y
max )

ha(K)
heost (K) 1= 5+ [BllmaxlIK[* (|4 - BK]|

max

Crax(K)
) Namin(Q) )

P () = 4 ( S22 [l + 1 e (14T + 1B (1] + 25 (FO))
hcost (K)Cmax(K) CmaX(K)
( Tr (EO) > + ”BHmaxi]
Cmax(K) HBHmax(HA BKHmax )
w5 (Gm3) ; L

For the single-agent (i.e., M = 1) setting, the proof is explained in detail in the proof of Lemma 24 and Lemma
25 of the supplemental materials in (Fazel et al., 2018). For the multi-agent setting (i.e., M > 1), we can
complete the proof by taking the maximum over the clients i € [M] of all the system-dependent parameters,
such as || B||max- O
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D.2 Proof of Lemma 2

Proof: For the single-agent (i.e., M = 1) setting, the proof is explained in the proof of Lemma 11 of the
supplemental materials in (Fazel et al., 2018). For the multi-agent setting (i.e., M > 1), it is easy to see that

. . Y .
oK) — 0 (k1 < 2Kl g0
COK) = 0 (K7) < Ly S IVOD )
holds for any stabilizing controller K and any agent i € [M]. O
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E The model-based setting

We first introduce the following operators on a symmetric matrix X,

[e.e]

. . . N y t
T(X) =3 (4D — BOR) X [(A(’) - BYK)T|,
t=0
]-"}?(X) — (A(i) _ B(i)K)X(A(i) — B(i)K)T. (12)

We also define the induced norms of 7 and F as

17Ol

[ F k|| = sup
x X

Lemma 8. When (A" — BOK) has spectral radius smaller than 1, we have

7 = (1 #)
holds for each i € [M].

Proof: The proof is explained in detailed in the proof of Lemma 18 in Fazel et al. (2018). ([l

Lemma 9. If!?

HT}Q) % (13)

ot -
holds for any system i, j € [M], then we have

(5 -7) o] =2

|7 - 72| |7 )
< 2|7 2\

7 = F2)|1 x.

Proof: Define A = I—}"I(?, and B = ]-}(? — .7-"[(?. In this case A~ = 7}(;) and (A—B)~t = T[((j). Hence,
the condition H’TI(;)H H.F](? — f}ﬁ’H < 3 translates to the condition ||A~!|| B < 3.

First, we observe that

(14
where f o g denotes the composition f(g(z)). Since (I — A1 o B)_l =I+A 1 oBo(I-A1o B)_l, we
have:

|[a-aton) | <1+ atos|[a-aton) | <1+ % [a=aten™| a3

"2This lemma has a similar flavor to that of Lemma 20 in (Fazel et al., 2018). It is worthwhile to mention that the inequality (13)
imposes certain conditions on heterogeneity. Note that the constant % can be changed into any finite constant. Thus, this heterogeneity
requirement can be subsumed by that in Eq.(21).
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Now rearranging terms in Eq.(15), we obtain

’(I - Ato B)flu < 2. Therefore, we have

[1-a-atom) | = |4 oBo - a7t om) Y < 4151 (1 -4 05) 7
< 2[[A7H[1IBII,

and so |
HI— (I—_A*l OB)—1H <9 H‘AilH 1B = 2 HT[((Z)

|72 =72 (16)
Then, we have
|(7 - 7) 0| = (A —a-B)7) (0]
21~ 0-aten) )| oo

(22“7}{“

|73 =7 7' o

<alrf o -2l e
where (a) is due to Eq.(14) and (b) is due to Eq.(16). This completes the proof of Lemma 9. 0.

E.1 Proof of Lemma 3

Proof: First, we know that VC'?) (K) and VCU) (K) are given by,

vOeO(K)=2EYsY and vOU(K) = 2EY5Y)

K
where,
EY = (R+BOTPYBOY K — BOTPY AG),
and
i > ) )T
20 = o 3 e
t=0

Thus, we can write,
IVCO(K) — Ve (K)|| = |2EW s — 280 x D)
<2(|EY - EQN|SR1+ 1B 1= - S21D.
S~ =
B1 B2
From Eq. (11) we can upper bound HE&? || as:

. (@)

() CY(K)
Yl < ——=5.

|| || - Jmin(CQ)

With the definition of Eg) — RK + BU )TPI(g )BOK — BU )TP}(g ) AU ), we can use triangle inequality to write,

NED|| < |IRK]| + || BO||[|PD|[I|BOK|| + || B[ PL])]|AD)|
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BO||I0W) (K , .
where ||PY)|| < % from Eq. (11), with 1 = oin (S5).

With the notation that we introduced previously, we can write

Crnax (K)
Omin (Q) ’

61 = ||Zg?|| < ||EK||rnax <
and,

; B «Crax (K
By = 1ED|| < 1Bkl lmax < |IRINE] + ”mﬂm( ) (1Bl -+ 1Al ),

where Chax (K) := max; O (K).
Next we will derive an upper bound for HE}? — Eg) [|.

Upper bound for HE;? - Eg) ||: We can first use the definition of E}? and Eg) to write,

Eﬁ? _ Eﬁﬁ) - B(J’)Tp]((j)(A(j) — BUEK) - B(i)TPI((i)(A(i) — BYK)
— _B(i)TpI((i)(A(i) ~ BYK) + B(i)TpI((i)(A(j) — BUK) — B(i)TpI(;) (A9 — BOK)
+ B(i)TpI(g)(A(j) —~ BUK) - B(i)TPI(g)(A(J') - BUK) + B(j)TP[(g)(A(j) — BUK).
Then, by using triangle inequality, we obtain the following expression:

HE%) _ Eg)” < B(i)TP[((i)(A(i) — BYK) — B(i)TP[((i)(A(j) — BYEK) ||

Hy

+ 1| B(i)TpI(;)(A(j) — BUK) - B(i)TpI((j)(A(j) — BUEK)
Ho

+ B(i)Tp[((j)(A(j) — BUK) - B(j)TPI((j)(A(j) — BUYEK)).
Hs

Incorporating the heterogeneity bounds from assumption 1 gives
1#:] < [IBOYNPL Nl (e + eall KD,
to which we apply the max-norm definition to arrive at
(L[] < [[B|lmax (€1 + €| K[| P | Imax- (17
Similarly, we can also derive upper bounds for || Hs|| and || H3]||, as follows,
1] < |BOY[PY = PPIAD = BOK]|| < ||Blluax| PY = P[4 = BE|[max ~ (18)
and

[1Hs|| < ex]|AD — BOK[||PR2]| < ea| A — BE] [ma| Picl[max (19)
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To bound Hs, we need to derive an upper bound for ||Pj((i) — Pl(g ) ||. For this purpose, we have that for any fixed
system ¢ € [M]

1P = PR = |7 (@ + KTRE) - T (@ + KTRK) |
Thus, by using Lemma 9, we can write,

1PQ - Pl <2 |70

7 - 72| |e+ KTRK

I

where [|T,0)|| < S0 < Cnaxld) (qeailed in Lemma 17 of (Fazel et al., 2018)). With the following upper

bound for || 7 — 2|

I(Fi = FEOI = [(AY = BOR)X (49 — BOK)T
— (AU — BORKYX (AU — BO KT
< 2e1 + el |[K|DIIX 14 — BE s,

we have

7 ] CmaxK 2
|!P§<)—P§?)|!§4< ( >) (€1 + 2| K|))]|A — BK | lmax(1|QI] + || BRI K12, 20)

O'Inin(CQ),u

Plugging in Eq. (20) into Hy and adding the upper bounds of H; (Eq. 17), Hy (Eq. 18) and Hs (Eq. 19)
together, we have

HE&? - E%)H < g1(€17627K)7

where g; is a linear in €1, €2 and polynomial in the remaining problem data. Specifically,

(et ca 1) = o (PlloComlB) [y (Gl (14— o 11+ 11N 1IP)|

H Tmin(Q) 1
o (LBl I [y (Comnl) : e )
v ; 4 () (1A= BR s (1Q1 + IRIIIE) |+ 114 = B )
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In what follows, we will derive an upper bound for HE? - Z%) ||:
Upper bound for HE;? - Z(f? ||: From the previous definitions in Eq.(12) and Lemma 9, we have,
. . . . 12
15 = =11 = 17 (S0) - T o)l < 2|7

|72 - 72| ol
C 2

< 4 —max K A BE||ullS

<a (S} et allKIDIA - BE ol

N (AT
where Yo = }Ex[()i)N,D [x((f)xéz) ] .

Thus, we have the following upper bound for HZ&? — E%)

bl

HE&? - 2%)" < g2(€1, €2, K)

with,

Cmax(K)

Cmax(K
Omin (Q)M

) 2
amin(Q)u> (4[|A = BK||max]|2ol]) -

2
galer 60, K) — 1 ( ) (4114 = BEllmaxIZo]l) + e2lIK | (

Therefore, we can finally write an upper bound for ||VC® (K) — VCU)(K)
IVCO () = VED (K| < f(er, €2, K)

, which is:

where,
fler, e2, K) = 2(Brgi(€1, €2, K) + Baga(er, €2, K)).
After some rearrangement, we have that
fler,e2, K) = ethpg (K) + €1 hje (K),
where htllet = his + hoy and hﬁet = h3y + hyy, and

2Bl o KD [, (Coas ) (14 e 2
= 2B Com By g (Ll 14— B (1014 RIIKTP)|
_ 2 (Conx (BN
tay =2 (L)) a4~ Bl

[ BllmaxCrmax (K)

hay =2 (HRHHKH + (15 o + HA\max>)

1B a1 Cna () Conax(K)
S ) ET

B maXCmaX(K)
bug =2 (Rl + Lo ) ¢

) (114 = BElma)® (1011 + ||R||||K||2)] . BKHmax) ,

Crnax(K)
O'min(Q),U

2
) (41} A = BE]Jmas]|Zo )
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E.2 Proof of Theorem 3

In this theorem, we consider the setting where (e1hi,, + eahZ,)? < b, with

N ) CRICOR ) e
(= 1min .
P el 4[Sx; [ min{ng, n}

Outline: To prove Theorem 3, we first introduce some lemmas: Lemma 10 establishes stability of the local
policies; Lemma 11 provides the drift analysis; Lemma 12 quantifies the per-round progress of our FedLQOR
algorithm. As a result, we are able to present the iterative stability guarantees and convergence analysis of
FedLQR in the model-based setting.

Lemma 10. (Stability of the local policies) Suppose K,, € G. Ifthe local step-size satisfies n; < min{%, ﬁd}
gra

and the heterogeneity level satisfies (€1h},, + e2h2,)? < h3,, then K 7(;% € GO holds for all i € [M] and | € [L].

Proof: Since K, € G°, based on the local Lipschitz property in Lemma 1, we have:

h I d(Kn) )
= 2 ’K’r(l,)l - Kn

hgrad (Kn)
2

2

COKL) = CO(Ky) < (VCOD(Ky), K ~ Ko ) +

n, n,

F

IA

_ <V0(j) (Kn),mVC(“(Kn)> + HmVC(i)(Kn) i

(22)

< ha < ha(K,), which holds when

holds for any i, j € [M], if Hmvcw (%)

) (a) _ ()
H"?lVC(Z)(Kn) - < mhi(Ky) < mhy < ha,

where (a) comes from Lemma 6 and (b) holds because of the requirement on 7); in the statement of the lemma.

Following the analysis in Eq (22), we have

c) (K(i

n,

D) = COK) < —n (VOO(K,), VOI(K,))
=0 (VOO (K,), VCO (k) ~ VOV (K.))

Ty
h K, . 2
, Peraa(Kn) ‘mVC’(I)(Kn) (23)
2 F
Now T} can be bounded as
7 <[ VOO K | |[VOO (K — VED (K|
< muy/min{ng, ) ch)(Kn)HFch@(Kn) ~VCU(K,)
(c) . _ _
< mv/min{ng, m, VOO ) | (@1 + b (24)

where (c) is due to Lemma 3. Plugging in the upper bound of 7} into (22), we have:

C(J’)(K(i)l) ~ CU(K,) < —n <VC'(j)(Kn), VC(j)(Kn)>
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+ my/min{ng, n, }
(@ . . .
< = (VOO (K,), VO (Ky) ) +miy/min{ng, ma}
+ hgrad(Kn) (j)(KN)
© , |
< = (VEO(K,), VOO (Ky) )+ miy/min{ng, n}
) (Kn)

- w1500+ B

hgraa(Kn) ) 2
mend 2l v e () |

‘vc(j) (K»)

F(Elﬁlllet + 6277“}216t) +

‘VCU)(Kn) H (€1hher + €2hie)

2
P + hgrad(K )

YK~ Ve (5|

)VC(J') (Ky)

F(elﬁlllet + 6277’}21&)

2 _ _
+ 17 hgrad (K p) o 1 hgrad (KCp) min{ng, nut (e1hie + €2hipey)”

2 _ _
. +m min{nmv nu}(elh}llet + 6Qh‘]%et)Q

+ﬁ%mVdWKML+ﬁ%mmﬂMmdwﬂwﬂﬁ$V
. . 2

= = (VO (K,), VOO (K) ) + (7 + 0 hea) | VCD ()|

+ (m + U?Bgrad) min{n,, nu}(flﬁ}%et + E2hhet)

(9) . 2 _ _

< _%ch(ﬂ)(Kn)HF + 2m; min{n,, nu}(elhlllet + GQh%et>27

which implies

i 7 i * (h) 2 2 min R i i * . T T
o0 (D) — () € (1 - 2moninlB) ) (06) () - 0O(K)) + 2 minfng, m} (e il + 2l

=
(25)
where (d) is due to Eq. (8) (e) is due to Lemma 3; (f) is due to Eq.(10) with ¢ = 1; (g) is due to the choice
of step-size such that n?hgraq < L, which holds when 7, < 47— and (h) is due to Lemma 2 and the fact that

K, € G°. If ¢; and €5 are small enough that

120min (R) (C(j)(Ko) _ C(j)(K;))

T je[M] 4||ZK}‘Hmin{nmanu}

we have that
cO(KD) - cU)(K,) < CU)(Kq) — CO(KF),

holds for any j € [M].

(i)

The above inequality implies K, € GY as long as K,, € G'. Then we can use the induction method to

obtain that K (1)2 € GY since K (@) S QO As a result, an identical argument can be used from K (i )1 to K r(L )2

n,1
Therefore, by repeating this step for L times, we have that all the local polices K @ € G% holds for all i € [M]
and! = 1,--- , L, when the global policy K,, € G°. g

j i ind 11 hxn  log2 _ 0 -
Lemma 11. (Drift term analysis) If n; < min { Thow 2 h? L(hgon +1)} and K,, € G°, the difference between

the local policy and global policy can be bounded as follows Vi € [M] andl € [L]:
2

(@)
HK”ZZ — K F

< 2771LHVC(“(Kn) ; =

e,
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Proof: We have
i 2 i i i
16— k! = [0 K~ mwe )

. 2 - . : ;
= Kr(u%—l - Ky I 2m _<VC(Z)(K7(L,% 1) Ki%—l - Kn>}

¢ avevit |

= [ = 2 = 2w (VOO - vc<'>< >K<%1—Kn>}

— oy [<V0(i)(Kn),K7(3 L= K )| + [mve@ H

2
HKfjl - F+2mch<l (Kfﬁ_l)—vcﬂl) Kn H HK b= K|
ot ) et

+ 2771 hgrad( )

(a) () 2
< ’Kn,lfl - Ky nl 1

HK K,

»

F

o ch“‘) (K,)

! - +wmvc o,

K. e

< (14 2mhgraa (K )+m)‘ |- oy (m + 2n})

. i i 2
+ 20| |VOO(KL) ) - ve (k)

F
(@) 2 2 0) 2
(1+ 2mhgraa(K) + ) || K o+ (O + 209)||VCO (K |
m2h O g
+ 21, grad( ) n,l—1 n
< (Ut 2mgra + o+ 20R3) K, — K|+ e+ 20 [V (1)

(@ _ (4)
< (1 + 3mihgraa + 1) HKn,lfl

2
; (26)
F

an 4 on HV(J@)(KH)‘

where (a) and () are due to Lemma 1; (c) is due to the fact that K, € QO (d ) is due to the choice of step-size
such that 2n? hgrad < Mihgrad and 2n? < 1, which hold when 7; < min{-~— g’ 2 11. Therefore, we have

2 2

’

- < (1+3771hgrad+m H Z% 1_K H +277ZHVC ) F

2

< (1+37]lhgrad+nl) HKS})_KH F

——
=0

-1
— . . 2
+2 37 (14 Bufgaa + m)” n[VCO (1)
§=0
7 l
< (1 + 377lhgrad + 771) -
- (1 + 3"’/lhgrdd + 771) -
(%) 2 % 1+ l(3nlhgrad + 77[
Shgrad +1

< oL |[veO (K, |

12771ch<i>(Kn) 2F

—[vevus],

i
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where, for (a), we used the fact that (1 + z)""t < 1 + 2z(7 + 1) holds for z < k’%? In other words,
(1 + 3771Bgrad + 771)l <1+ 1(3771Bgrad + m) holds when 3nlﬁgrad +n < log log2 O

2 .
.e. < 55—,
7, 1.e., when g < LhgatD)

Lemma 12. (Per round progress) Suppose K,, € GV. If we choose the local step-size as

1 . 1 1 ha log 2 1
M= mny —=—55,7 > T ) 79 ;
2 Ahgraa’ 2" 1’ L(3hgraa +1)" 8OLRZ,

choose n = % min @—A, 1, , and the global step-size as 1, = +-, then, for all i € [M], it holds that
2 hl g Lm

_2
3hgrad

. . 2 : . . — —
CO (Kpr) — OO (K, < — om0 (06 (g, y 00 (K7)) + 3ymin{ng, (e + e2i)’.

TR o
Proof:
(a) horad (K7,
COHir) ~ OO () € (VOO (), Ko — o)+ " e e

M L-1 M L—-1

= {(VCOK), Y e () ) 4 M B | 1SS Gt (10|

ML Pl 2 ML o F

M L-1

- <vc<” (K 317 20 2 [VOOED) - VOO (K,)| > — | v,
7=11=0

hgrad(Kn) 1 L& ) (4) 2

T ‘ML i ve (K"’Z)HF
M L-1

- - <vo<z> (Ka) 517 20 D VDKL) = VOV (K,) + VOO (K,) = VOO (K, | >
j=11=0

_ 2 haa(Kn) | 7 M L-1 )
_ (%) grad G (W)
”ch (K”)HF+ 2 ’ML;;VCJ (Ko, )HF
M L—-1
. 1 .
<ol J5f; £ 5 [renin- s,
=1 1=0




(K)o 3 S [ve k) - v )|
7j=11=0
M 2
3n h;r;}(Kn) ]zzjl HVC(J)( ) VC( )( ) ;+ 3n hgr;d(Kn) ’vc(i)(Kn) i
2 vl + 35 -
M
s ) S ens-ven,
o
ofeeouf + S S S - k. i+ Eveoul;
(i) —%HVC’@)(K”) 2 577 hgrdd Z ch(j

+2n min{nma nU}(Elhhet + 6thet)

(e 3n . 2 1017 h2 d 2
2 _on (K, gra H () @) (f
8Hv0( )| Zvc - Ve )|
10n?h2 o _ _
+ 7gd ‘VC l) Ky) HF + 2n min{n,, nu}(elhl’llet + €2hk2let)2
(f) . 71 72 12
HVC Kn) - + 3nmin{ng, ny }(€1hye + €2hier)

Omin (2 i i % . - -
a _TWHEK*()(C( )(Kn) - C( )(Kz )) +3n mln{nam nu}(elhtllet + 62h121et)2'

In the above steps, (a) is due to the choice of step-size 7 such that

M L-1
n i i -
[+t — Kl = ||m > v )(KT(L})H < nhy < hp,
i=1 1=0

holds when n < < B por (b), we use the Lipschitz property of the gradient (Lemma 1) in the first line, and use
Eq.(10) with ¢ = 5 1n the second line, and for the third and forth lines we use Eq. (8); (¢) is due to Lemma 1

o
and 7 hg”" <% (d) is due to Lemma 3, Lemma 11 and the choice of step-size such that 3 hg“’d <Z<n(e)

We use the

0n2h?
is due to Eq.(8); and for ( f), we use the fact that . o ——¢ < 1 <7, which holds when r; < 0L hgrad

gradient domination property (Lemma 2) in the last equahty. (|

With this lemma, we are now ready to provide the convergence guarantees for FedLQR in the model-based
setting.

Proof of the iterative stability guarantees of FedLQR: Here we leverage the method of induction to prove
FedLQR’s iterative stability guarantees. First, we start from an initial policy Ky € G°. At round n, we assume

K, € G°. According to Lemma 10, we can show that all the local policies K r(f% € G°. Furthermore, by choosing

39



the step-sizes properly in Lemma 12, we have that

(CO(K,) — CO(K}))

max

+ 3n min{n,, nu}(elﬁfllet + egﬁﬁet)2.

for any i € [M].

Then, for any fixed system i € [M], with (e1hi,, + e2h2,)? < k.., we have that

CD (K1) — CO(KG) < (1 - W) (CD(K,) — CO(KY))

+ 3nmin{n,, nu}(elﬁﬁet + EQEﬁet)2

< (1 - W;‘;ﬁj@) (CO(Ky) - OO (k7))

¢ e ominlB) (00 1) — 0 (xr))

< CO(Ko) — CO(KT).

With this, we can easily see that the global policy K, at the next round n + 1 is also stabilizing, i.e.,
K,i1 € G° by using the definition of G° (Definition 2). Therefore, we can complete proving FedLQR’s
iterative stability property by inductive reasoning.

Proof of FedLQR’s convergence: From Eq.(27), we have

CO(Kpy1) — CO(KT) < (1 - M) (C9(K,) — C(KT))

+ 3nmin{n,, nu}(elﬁﬁet + EQEﬁet)z.

Under the assumptions in Lemma 12, FedLQOR thus enjoys the following convergence guarantee after N
rounds:

N
CO(Ky) — CO(KT) < (1 _ W‘Qamm(R)> (D (Ko) — OO (KF))

3min{ng, n,} HEKZ-*
(2 omin(RR)

(Elhlllet + E1hlglet)2'

3 ex
Thus, we finish the proof of Theorem 3 with cyyi1 = 12 and B(eq, €2) := M(el héet + elh%et)Q. O

40



E.3 Proof of Theorem 4

Proof: First, we provide the analysis for per-round cost function decrease with one local update, i.e., L = 1. For
any fixed system i € [M], the cost decrease C')) (K, 1) — C()(K,,) can be bounded as

CY (K1) = OV (Ky) = (O (Knp1) = CY(Kny)) + (CY (Kngr) — CV(K))

Ty Ts

where

Kni1 = K, —nVCY(K,,),
M

_ " (i)
Knp1 = Kn = 3- Z;vc (Ky,).

The term T can be bounded as

77M2 Omin (R)

- HEK* (C(i)(Kn) - O(i)(Ki*))a

T <

max
based on the gradient domination property in Lemma 2. It is evident that K ni1 € GO holds.

By using a small step-size 7 such that HKn+1 — f(n+1 H < ha, we can bound T as follows:

(i) W 3Dy
Tl =C (Kn—i-l) -C (Kn-i—l) < hcost

Kpi1 — f(nﬂH

nh

M
< e ; |VeO(K,) - Ve (k)

o _ _
< nhcost(Kn)(Elhtllet(Kn) + EQhﬁet(Kn))

where (a) is due to the smoothness of the cost function in Lemma 1, and (b) is due to the bound on the policy
gradient heterogeneity in Lemma 3.

Plugging in the upper bounds of 77 and 75, after some rearrangement, we have

CO(Kp 1) — CO(KF) < (1 = 7““’““) (CO(K,) — CO(K7))

+ nﬁcost(Kn)(flﬁlllet(Kn) + GQEI%et(Kn))‘

max

By properly choosing the step-size 7, we can ensure that the sequence of control gains (/) remains inside
the sub-level set G°. Thus, for any i € [M], we have the sequence {C®)(K,)} " is bounded, based on the
definition of the stabilizing set GY. Then, we have:

. . Bcost HEK.* - =
lim sup ) (K,,) — CO(K}) < I () B + €0hiey)- 28
1TIln_>Sol<l>p (Kn) (K7) < 120 min(R) (€1hher + €2hher) (28)

From the gradient domination Lemma 11 in (Fazel et al., 2018), we know that
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CO(K*) — limsup C® (K,) = lim inf [C@ (K*) — @ (Kn)]

n—00 n—ro0
= liminf | -E A(Z)* (m uK") 29
it -8 ) A (" ui 29)
where {xf” , uf"} denotes the system’s state and input induced by the control action u; = — K, xy. Moreover,

for any z, the advantage function A (z, K'z) is defined as

A (2, K'2) =227 (K' = K) Exa+ 2" (K' = K)' (R+BTPgB) (K~ K) .

Following the analysis above in Eq. (29), we have that

{ A T . . . A\ —1 ;
C(Z)(K*) — lim sup CW (K (K,) < lim 1nfEZTr <xt n (:vf( ) Eé?; (R + B(Z)TPI(QB(Z)) Eﬁ?*)

n—00 n—00

n—00
<t [ | v (07 (r+B0TEREY) " B2

@ Crmax )T p) R0\ ! DT
< liminf H (R+BOTPLBY) HTr (B B

n—o0 Umln

—hmlnfTr( nW ()T <R+B()TP()B()) E}Q)

< ma v (BT B
o Umin( _) mln( ) ( K K )
_ max Ty E(Z)* —1vc(i)T K* VC(Z) K* 2(7')* -1
— D) (<K> (K VOO (K )
(®) 9 . :
< Cna T (Ve (k) vei (k)
Umin(R) ( )Umln <Z[2*>
Cia .
< VOO (K3
Zom(R )Jmm( )|| (K97
2
© c 2
< max = j K* K* (4) K*
= p20min(R)omin(Q) HM ;VC’ ( +ch E:: ve
T1=0
(d) min{nx,nu}émax Ve ﬁévc(] K*
B M2Umin<R)Umin<Q) j=1
min{ng, ny}Cmax , 71 72 2
= ,UQO'min(R)O'min(Q) <€1hhet + 6Qh‘het) : 30)
Here we use the uniform upper bound of HE%)" ie., HE | < i(m?n((l(gs) < CH‘(E*C’.}) in Eq.(11) for (a); we
use HE%)* HE Ty 3’30 H > w for (b); we bound the Lo norm with Frobenius norm for (c¢); we use the

policy gradient heterogeneity bound in Lemma 3 for (d). Note that 7; = 0 since K™* is the optimal solution to
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the FL problem in Eq. (2). Therefore, by adding Eq. (30) and Eq. (28) together, we have that

min{ng, ny }Crax

M2 Omin (R) Omin (Q)

. . ]_1 st EK.* — -
CO(K*) — CO(KF) < — [ max (¢l + eahZy) +

= 20min (R) (e1 El%et + 62]_1}21&)2-

Thus, we complete the proof of Theorem 4.
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F Zeroth-order optimization

To prepare for the model-free setting where the controllers only have access to the system’s trajectories, we first
quickly recap the basic idea behind zeroth-order optimization. Say our goal is to minimize a loss function f(x),
where 2 € R?. When one has access to exact deterministic gradients of this loss function via an oracle, the
standard approach for minimization would be to query the gradient oracle at each iteration, and run gradient
descent. Concretely, one would run the following iterative scheme: x;11 = xy — nV f(x;), where 7 is a
suitably chosen learning-rate/step-size. While such first-order optimization schemes have a rich history, there
has also been a growing interest in understanding the behavior of derivative-free (zeroth-order) methods that can
only query function values, as opposed to the gradients. Two immediate reasons (among many) for studying
zeroth-order optimization are as follows: (i) in practice, one may only have access to a black-box procedure that
cannot evaluate gradients; and (ii) computing gradients might prove to be too computationally-expensive.

Given two or more function evaluations, the basic idea behind zeroth-order algorithms is to construct an
estimate of the true gradient for evaluating and updating model parameters. For instance, a typical zeroth-order
scheme with single-point function evaluation would take the following form (Polyak, 1987):

[ 4 pyu) — f(%)) U
Mt

Ti41 = Tt — Mt <

In the expression above, {7;} is the learning-rate sequence, {1} is a sequence typically chosen in a way
such that 1y — 0, and w is a random vector distributed uniformly over the unit sphere. For details about the
convergence of zeroth-order optimization algorithms such as the one above, we refer the interested reader
to (Nesterov and Spokoiny, 2017; Duchi et al., 2015; Bach and Perchet, 2016).

We now turn to briefly describing the model-free setup for our LQR problem. Fazel et al. (2018) propose a

zeroth-order-based algorithm (Algorithm 1 in (Fazel et al., 2018)) to compute an estimation VC'(K') and i; for
both VC(K) and X, for a given K. Algorithm 1 in (Fazel et al., 2018) exploits a multiple-trajectory-based
technique that uses a Gaussian perturbed cost function (i.e., producing a Gaussian smoothing function) to
estimate VC(K) from cost function perturbed values. That is, given the cost function C'(K'), we can define its
perturbed function as,

Cr(K) =Eyp, [C(K +U)]

where B, is the uniform distribution over all matrices with Frobenius norm at most r and U is a random matrix
with proper dimension and generated from B,.. For small r, the smooth cost C,.(K) is a good approximation
to the original cost C'(K). Due to the Gaussian smoothing, the gradient has a particularly simple functional
form (Gravell et al., 2020):

nacnu

VCT(K) = 2 EUNBT[C(K—FU)U]

Therefore, this expression implies a straightforward method to obtain an unbiased estimate of VC,.(K), through
obtaining the infinite-horizon rollouts. However, in practice, we can only obtain the finite-horizon rollouts to
approximate the gradient. Thanks to (Fazel et al., 2018), they showed that the approximation error of the exact
gradient can be reduced to arbitrary accuracy if the number of sample trajectories ns and the length of each
rollout 7 are sufficiently large, and the smoothing radius r is small enough.
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G The model-free setting

For notational brevity we rewrite VC(@)(K) as VC)(K) where

— ~ 1 Ns A
(4) = — ()Y 7@
VCO(K) = VC = EI: (K+U )Us,
and introduce two new gradient-based terms:
; 1 X ngn
0D (K = — 7w ~(@),(7) (| @) 7@
V'O (K) ns?l:r ol ( Lyl )U,
~ . 1 n.n )
(K .= — LYol ON e @) 7@
Ve (K) nss§:1j et ( Ul )US,
where C'(1):(7) (K +yl )) - 01 (xgi)Tngi) 4 ugi)TRuti)) with xf) _ (K_’_U(i))ugi)’ C():(7) <K n Ug(i)) _
E 2D < TQaf” 4+ uf" Rugz)) and C(* <K + Us(l)> =K oD > 20 (xt Q2! + u!! )TRugl))

G.1 Auxiliary Lemmas

Lemma 13. (Approximating CY(K) and Eg? with finite horizon) Suppose K is such that C\) (K) is finite.
Define the finite horizon estimates,

NG

i

th T, )T] and CO(T =E [Z 277 Q! + o RulY

for all systems i € [M]. Now, let € be an arbitrarily small constant such that

- (CO(K))* Nz - (Crax(K))?
T>h16::max L == — ;
> hr(€) z‘e[M}{ e(omin(Q))? et(omin(Q))?
such that ) )
HE%)V(T) _ Zy{) <e
If

7 > h2(€) := max
€[ M]

ng - (COE)?(IQI + IRIIEN?) || _ 7o - (Conax(K))*(1QU + IRIIE 1)
et (min(Q))* ep(omin(@Q))? 7

we have

COM (K - C(i)(K)‘ <e

where Crax (K) 1= max;e(a) CO(K).

Proof: The proof for this lemma is detailed in the proof of Lemma 23 in (Fazel et al., 2018). U
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Lemma 14. (Estimating VC @) (K) with finitely many infinite-horizon rollouts) Given an arbitrary tolerance €
and probability 8, suppose the radius r satisfies

€ C_' €
<h, (7) — mi ha, _max7 _ :
h= 2 e {A hcost 2hgrad }

and the number of samples ng satisfies,

Ng > hsample (57 0 2

~ 2

2 x by~ max 7 2

0—% = <M> + (E + hl)
T

€ 80% min(ny, ny) [nw + nu]
) : log
€

Then with a high probability of at least 1 — 0, the estimate

= 1 1 = x !ty
VC(Z)(K): Z?’L n

Ur

satisfies o '
IVCO(K) = VCO(K)|F < e

for any system i € [M] and K € G°.
Proof: The proof for this lemma is detailed in Lemma B.6 of (Gravell et al., 2020). It is worthwhile to

mention that, in (Gravell et al., 2020), the number of samples ng satisfies

ng >

80% min(ng, 1) N 8 min(ny, ny,) Ree . {nx + nu}

€2 €2 )

min(ng, ny)

~~

T

Ts

with R¢ = % + 5+ h1. In the analysis throughout the paper, we only keep the dominant term 77 in 7,
since 71 is in the order O(e~2) while T% is in the order O(¢~1).

By taking the maximum over K’ inside G, we make the local parameters become the global parameters, e.g.,
Chax := SUP g0 ie[M] C(l)(K) ]

Lemma 15. (Estimating VC'® (K) with finitely many finite-horizon rollouts): Given an arbitrary tolerance €
and probability §, suppose that the smoothing radius r satisfies,

€ = C’ €
< hr <*> = mi h 7ﬂ’ T )
"= 4 e { A hcost 4hgrad }

and the trajectory length T satisfies

> h ( re ) _ mum Con(K)) (191 -+ NRINE)
4715,;’0“ Teﬂamin(Q)
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According to Assumption 1, the distribution of the initial states satisfies x(()i) ~ D and Hx(()i) H < H almost surely.

Thus, for any given realization x, l) 13 of 93 and for any system i € [M], we have

b (o)) (o) = L eef).

(@)
Hx[],s
As a result, the summation over the finite-time horizon

T—1
Z (:L”,EJ)TQ:B —|—u£J)TRu§zJ)) < Ifc(i) (K n Uj@) .
t=0

Furthermore, suppose the number of samples n satisfies

€ H2 320‘2~ mil’l(n;m nu) Ng +n
Ng > hsample,trunc <4’67 /~L> = = €2 log |: - 4 u] 7

where - )
2n,n, H*C, € - \?
2 x Ty max
~ = —_— - h ) )
g ( " > + (2 +
then, with a high probability of at least 1 — 6, the estimated gradient

oK) = — i e (K +u®)ul

satisfies

IVCO(K) = VCO ()| < €
for any system i € [M] and K € G°.

Proof: The proof for this lemma is detailed in Lemma B.7 of (Gravell et al., 2020). As in Lemma 14, we
only keep the dominant term in the requirement of sample size n,. By taking the maximum over K inside G°,
all the local parameters inside the polynomials such as h,.(§) become global parameters. g

G.2 Proof of Lemma 4

Proof: For our subsequent analysis, we will use F;* to denote the filtration that captures all the randomness up
to the [-th local step in round n. We have

1 M L—-1 M L—1
“ ZZ |:VC 7(:% —vc® Kr(llg H ZZ vc(z K(z VC()(KRZ%)}
ML= =~ ’ P i
< 35 ety v

i=1 (=0

T

3The notation 1:(() ") denotes s-th sample of the initial state from i-th system.
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M L-1

ST Ve - veouhl,
=1 =0
Ty
1 M L-1
+ |z 22 [Fe0uh - v |,
i=1 1=0
T

Next, we will bound T1, T», and T3, respectively.

Bounding 75: From the proof of Lemma B.7 in (Gravell et al., 2020), we have

M L-1

T < ML SoY e - ek <5 31)
i=1 1=0
holds as long as 7 > h, (4nmu> .
Bounding 75 : To precede, we bound 75 as
| ML= .
7= |3z 2 X [V v uc] |,
le 271 | MLl ' ' ‘ '
<[5t 5 S [revsth - vt oty 3o 5 vty - e,
i=1 1=0 i=1 =0

) Bias term @
Variance term

(32)
where VO (K1) .= b0, [V(ﬂ (K + U ))}
For the bias term @, since the smoothing radius r < h, (i), we have that
D = |[ve@ ) - e KD < hea( KD < hoar < 5. (33)

For the variance term, @, we will exploit the matrix Freedman inequality (Lemma 7) to bound it. For simplicity,
we denote
el(l) = [VC(”( ( )) VC(’)( (l))} e 1= e

7

1
ML

Then, we have

1 M L-1 ) () () L—1
— Ve ( — VKN =3 e
ML;;[ ’l] ;l

Next, we aim to prove the following claims:
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ClaimI: Y; := Zf:o e; is a martingale w.rt 7' fort =1,--- L —land ¢; := Zf\il el(i) is a martingale
difference sequence.

Proof: Note that E[VC®) (K T(L%)] vol )( (@ )) Then we can easily have E[e;] = 0forl =0,--- ,L — 1.
]

As a result, we have IE[Yt | Fi 1] = Y1 since YV; = Y;_1 + e;. In other words, Y; := Zl:o e; is a martingale
wrt F fort=1,--- L —1.

Claim II: HE [elel

2
FiL 1} ‘ iz Where U2v is as defined in Lemma 14.

Proof: From Lemma B.7 in (Gravell et al., 2020), we can write

e

and based on this fact, we have

bt ||

l(ﬁ ) )

y R B

Gall ]
(4) ()

where we use the fact that 7} = 0 because ¢;* and e;”’ are independent, if we conditioned on F;*. An identical

E [el—rel .7-"1”_1}

2
\4
neML?’

‘ o

argument holds for

Dﬁmﬂ%M:EjOEF@WFWJMMwa:Zfﬂ{gq

]-"l”l] , then we have

o2 g%
HWroth ~

”Wcol,tH <

v
nsML’ ML

Claim III: |le)]| < 25 where R, = 2tamuConsx 4 6 4 .

Proof: From Lemma B.7 in (Gravell et al., 2020), we have HelZ | < LV With this fact, we have

M
|mug§:kp
i=1

With Claim L, IT and Claim IIT and the matrix Freedman inequality (7), we have, for all € > 0,

2 2
O¢ —€~/2
P {Elt >0 Amax (Y2) > e and max {||Weor ¢l s [|Wrow ]|} < nSJ\VIL} < (ng + ny) exp —M
nsML 3nsL
(34)
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Therefore, rephrasing Eq.(34), if

2 .
> 320 min (N Ny N 32LR¢+/min (ng, ny) ML(n, + ny) ’ 35)
M Le? 12M Le )
T5 T6
we have that
M L-1

I¥elle =577 Zz[vc - Ve ED] I < 3 (36)

holds with probability 1 — §. As we dlscussed in Lemma 14, we only keep the dominant term 7% in the
requirement of the sample size n; (as in Eq.(35)). Because 75 is in the order (9(6_2) while T§ is in the order
O(e1). Then, T when compared to T5 is negligible.

In summary, if ng >

320% min(ng,ny) |:ML(7L.:(‘+7/LU):| — hsample (55 ML)
: =

MLe? ML !
1 M L-1 ‘ ¢
@- gz L & [ty -verey]], 5
i=1 1=0

holds with probability 1 — 4.

\ o

"
As aresult, we have T3 < § holds with probability 1 — §, when r < h,. (i) and ng > hsample ( ) . In what

follows, we will provide an upper bound on the term 77.

Bounding 77: We can follow the same analysis of bounding @ in T3 to bound 7. Different from the
filtration we define in analyzing @, we need to define a new filtration .7:"l"_1, where .7:"l"_1 = F,uU" and

i=1,--,N
upr {U @ } . Note that U;" is the sigma-field generated by the randomness of all random smoothing

n,l,s
N 5:17"'7ns

(4)

matrices Un ls 14 from all the systems at the n-th global iteration and I-th local iteration. Replacing U% Eq.(35)

with into a% and R¢ with Rg, we have that

7=z % 3 VeOr) -veED] | <3 (38)

holds with probability 1 — § when

. e & H?
320% min(ng, 1y,) ML(ng +n,)] hsample.trunc (17 ML 7)
©8 5 ML

Nng >

- M Le?

Combing the upper bound of 77 (Eq.(38)), 75 (Eq.(31)) and 73 (Eq.(33) and (37)), we have
M L—1

Z 3 [vc V) — vt >(K,j})] <STi+T+T5<e
i=1 =0 F
when the trajectory length 7 satisfies 7 > h, (W) , the smoothing radius satisfies < h, (i) and the size of
2 2
. Posamy le,trunc £7L’Hi hsample ( £ . Psam le,trunc E’L7Hi
samples satisfies ns; > max { - ]&2 MEn ) , A arp) | Pt ]SfL MET n ) . Thus, we complete

the proof of Lemma 4.

“Here we use the index s to denote s-th sample. Note that in each local iteration I, we need to generate the random smoothing
matrices ns times.
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G.3 Proof of Theorem 5

Outline: To prove Theorem 5, we first introduce some lemmas: Lemma 16 establishes stability of the local
policies; Lemma 17 provides the drift analysis; Lemma 18 quantifies the per-round progress of our FedLQR
algorithm. As a result, we are able to present the iterative stability guarantees and convergence analysis of
FedLQR in the model-free setting.

Lemma 16. (Stability of the local policies) Suppose Ky, € G and the heterogeneity level satisfies (61]_1}116, +
€9 hh et) < hi . Where h,?; ., 15 as defined in Eq.(21). If the local step-size 1, satisfies

< min hap !
"= H? (hl + \/g) ’ 9Bgrad ’

the smoothing radius satisfies

r < min{mm E[A%[L] ( 0),ﬁA, - (f) } ;
cost

the trajectory length satisfies T > h.; ( ) , and the number of the sample size satisfies

> h Ve o h ve o
max c VIR T AL 5 0 T
Nns = Mma sample,trun. AR sample 9T

where we choose a fixed error tolerance € to be

30w (R) (CU)(Ko) = CO(K7))
€ := min

jelM] 5[ Xk | 7

then with probability 1 — 0, where 6 € (0,1), K l) € GY holds forall i € [M] andl=0,1,--- ,L — 1.

Proof: For any i,j € [M], according to the local Lipschitz property in Lemma 1, we have that

4 . ; h ; 2
cU )(Knl)l) CU(K,) < <VC(3)(Kn),Knl7)1 — Kn> + % )KS)1 - K, . (Local lipschitz)
h 2
= —(VCOD (K, mVCD () ) + =5 0O (i) |

holds if Hnﬁcw (Ky)

p < ha < ha(K,,). Note that this inequality holds when 7; satisfies

nu Ty

HmﬁC(i)(Kn)H —THH*

C)(7) (K g )> U

T F

n L;Zl”i?“(?(’(ff o
= 1 [veow),
< L[], + v - veouw|
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/\
\/

771H2

e i

V]

”ZH i (1 + V7) (39)

where!” (a) is due to Lemma 15; according to Lemma 14, (b) holds with high probability, when the number of
the sample size satisfies ng > hgample (‘2/, L) The last inequality follows from the uniform upper gradient

bound in Lemma 6. Then we can easily conclude that HmVC O)(K,)

hap
- < h holds when n; < THOEVGE

Following the analysis in Eq (22), we have

COKL) = CO(K,) < —n (VED (1K), VOV (K.))

n,

= (VO (K,), VO (k) = VOO (K.,) )

T

v,

; hra n
_m<v0(1)( K,),VOO(K,) — VOO (K )>+M .

T

where T} can be upper bounded as
T < || Ve )| |veR ) - veO )|
< V min{nxa nu}

where we use the policy gradient heterogeneity bound in Lemma 3 and the fact that K, € G°.

’VC'(j)(Kn)

71 7.2
F(Elhhet + 62hhet)?

We can bound 75 as follows

TzSﬁlHVC(j)(

ch@ W) — VOO (K,)
Fx/é

F
< mHVC(j)( K,)

where it holds with probability 1 — §. Here we use the Cauchy-Schwarz inequality in the first inequality, and
the second inequality is due to Lemma 15 since 15 > Rgample,trunc ( %, d, H72> , the smoothing radius satisfies

r < h, (f) and the length of trajectories satisfies 7 > h.; ( rve ) .

AngNy

Plugging the upper bounds of 7} and 75 in Eq (23), we have:

2
. + M min{nza nu}

3h
= grad (Kn) 77[ ‘

A i A (a) .
COIK) = CO(K) < —mi|| veO ()

‘Vc(j) (K,)

P (61 B%et + 62B}21et)

+mch<J'>(Kn) i

\vc K,) — VOO (K )HF

3h ray 2
+%ch K) — VC(J)( K,) .

3h,. 2
+%MHVCJ) 2|,

SFor sake of the notation, we ignore the dependence on the local iteration I and global iteration n when we index U, s(i) in this part.
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(0)

. 2 . _ _
< [ V0| + mmingi. [V K, (e1b + o)
: 3hgraan}
+mHVC(J) Ka)| %dnlg
3h xy Ny 3h 2
Gl m;n{n & }(61hhet+62hhet) + gradnl HVC’U )| s

where (a) follows from Eq.(8); (b) follows from the same reasoning as we bound 7' and 75 and the fact that

h 2
K,, € G°. If we choose the local step-size 7; satisfies 7; < Shgroa

97& -, ie., =55~ < L, we have

. 4 . (a) , 2
COK) — CO(Ky) < —m|| Ve (k)

M| o) 2
+ 3 \vc ()|

nzHVC(j)(Kn) ?

3 min{nm nu}

- - 3me  m_
: (e1hiy + eah2)? + c E 4 5 T ¢
min{ng, n, 2
m{6}(€1hhet + €2hhet ’VC’ (Ky) -
2 Bpyymin{ng, n, 5my _
< —fHVC K,) - + L ; }(Elh’het + 62hhet) + %e
®)  2momin(R) i 4 N 5 min{ng, 1y 5y
< _HEK(*H)(C(J)(KH) - C(])<Kj )+ Z{3 }(elhhet + Ethet) + 36
j

where (a) follows from the Young’s inequality in Eq.(9); and (b) follows from the gradient domination in
Lemma 2.

Therefore, if the heterogeneity satisfies (¢; Efllet + €9 Bﬁet)2 hﬁet, then we have

€1hhe; + €2hi)” < min :
(€17 het) Je[M] 5]|2K;Hm1n{na;,nu}

320 min(R) (CV) (ko) — CV)(K7)) }

Since the error tolerance

o {Su2amin(R) (C(j)(KO) - C(j)(K;)> }

5| X kx|

we have

N el D 20> omin(R : )¢
C(J)(K&) _ C(J)(Kj) < (1 _ U) (C(K,) — C(J)(Kj))

Tl " =l
@ (1  2npPowmin(R)
: [=x

= CY(Ko) — CY(K7}),vj € [M],

2120 min(R) (C(j)(Ko) - C(j)(K;)>
]

) (CO(1o) — COK)) +

53



where we use the fact that K, € GY in (a). The above inequality implies K 7(;)1 € G° with high probability 1 — &
when K, € G°. Then we can use the induction method to obtain that K (Z)Q € G°, since K. 7(:)1 € GV, By repeating

this step for L times, we have that all the local polices K @) € GY holds for all i € [M]and[ =0,1,--- ,L —1,
when the global policy K,, € G°. O

Lemma 17. (Drift term analysis) Suppose K,, € G°. If n; < min { 471;14’ %, 7 (3}—12%; ) } , the number of the

sample size ng satisfies
hsample,trunc (%7 > 7)
- ML '
the smoothing radius satisfies v < h, <‘[) and the length of trajectories satisfies T > h; (%) , given any

Ns

0 € (0,1), the difference between the local policy and global policy can be bounded by

Jrei 1

i +ML6:| _ 2 [HV(J@(Kn)HQ +ML6:|
F Mg F

i <2nL [HVC@(Kn)

holds, with probability 1 — 6, foralli € [M]andl =0,1,--- | L — 1.

Proof:
AR
o L RER)

= [ &9 - [ -2 [(FOOES ) - veO &) ) K - K]

n,

n,l

=2 [(VCO(KL) ) = VOO K, K) = K )| =2 [(VOO (K, KY) - K]

<[ - g o [(FeORE) ) - vOO K, KO - K]
+2m | VeD (k) = veO i) | K8~ K|+ 2m|[ Ve )| |58 - K

C oy [(VOOKY ) - VOO K ) K - K]

(4)
r HKnZ,lfl -

I RIS (40)

2

+ 277[hgrad(Kn) K( ), I =+ anvC(Z)<Kn)

F

where we use Cauchy—schwarz inequality for (a); and for (b), we use Eq. (9).

Following the analysis in Eq.(40), we have

-

i [ Ve (k) ’

( +277lhgrad( +77l H nl 1 - K, P

54



— 0[SO ) = OO K. K~ )] + e,
(a)

2 .
< (1 + 277lhgrad(K —|— l H nl 1 - K, + anVC(Z) K

|
\_/

F

o [[FEO L) - veO )| [, -

+2nf| | VOO ) - vot ’(Kff% o[, + 2t [ve® (Kﬁ,i_l)HzF
< (Ut 2nhgra(K) ) )

%
-1

o

+771‘

7

+ | Ve (k) - vc<i>(K“>_1)H +mH K,

5

+ 20 [V (K()_) - VOO H

n 417?”v0<i>(Kfj3_1) . VC(Z)(Kn) e 4m2HVC(“(Kn) H2

) 2
(1+277lhgrad( +771 HK -1~ Kn P

| SO0 &Y~ voO &G+ | K

n,l— F n,l—1

20 [FeO ) ) - veO )|+ arphgaa(Fa?|| KU~ K|

)

—
S
=

. . 2
(1 -+ 2mma () + 201+ A0 haraa(Kn)) || L)y = Kl |+ () [V CO () |

+ (m o+ 2m7) | VEOKS) )~ VOO (K 1)er

9 (i) 2
—l— (m +4m)HVC’ (K,) .

< (1 + 2mhgrad + 2 + 47712hgrad HK(Zl 1~ K

Y

~ . . 2
+ (i +207) [[VCO () - OO )|

N~

T

where we use Cauchy-Schwarz inequality and Eq.(6) for (a); for (b), we use Eq.(6) and (8); for (c), we use the
gradient smoothness lemma in Lemma 1; and for (d), we use the fact that K, € G°.

From Lemma 15, we can bound 73 term as follows

T = [VeO (k) ) - ve® (ng_l)Hi < MLe,

)

\/E5H2

hsam e,trunc \ "4 Y T . . . €
where it holds with probability 1 — 4, since ns > o M<L4 H ) , the smoothing radius satisfies r < h, (%)
and the length of trajectories satisfies 7 > h., ( 4;;/§u) .
Then we have
(&) _ 2 7 279 (i) 9 @) 2
HK TL r= (1 + 277lhgrad + 277l + 477[ hgrad) HKnl 1 Kn + (771 + 477[ )ch ! (KTL) F

<
+ (i + 2n7) M Le

(a) - j
< (1+ 3nihgrad + 277l)HK7(zlg—l - Kn

)

2 . 2
2 HVC@ (K| +2midLe
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< (1 + 3nfigraa + 21! HK,(L)O K,

F
—_——
=0
-1 ~ 4 A 9
+2m ) (1+ 3nhgrag + 2m)’ [chw (K») HF + MLE]
7=0

(1 + 3"7lﬁgrad + 2771)l -1
(1 + 3771hgrad + 277[) -1

% (1 + 377lﬁgrad + 2771)l -1

<2 %

[ch@ (K,)

2
+ ML€:|
F

chm(Kn)Hi + MLe]

37‘Lgr21d'+‘2

(b) 1+ 1(3nheraa +2m) — 1 [ : 2

< 9% + ( nlig d+ 77l) ch(z)(Kn) +ML€:|
3hgrad+2 L F

. 2 1
<onl [HVC’(Z)(Kn) L+ MLe|,

where (a) is due to the choice of local step-size which satisfies 21 hgraq + 21 + 47} Bzrad < 3nhgrad + 2 and

20 <m+4n? < 2m,ie,m < min {ﬁd, %} . For (b), we used the fact that (1+z)7"! < 1+2z(7+1)
gra

— l — —
holds for z < @. In other words, (1 + 31 hgrad + 2771) < 14 1(3mhgraa + 2m;) when 3mhgraq + 2 < long,
i.e., m S I

log 2 ]
(3hgrad+2) )

Lemma 18. (Per round progress) Suppose K,, € G°. If we choose the local step-size as

m:1min{ hap 11 log 2 1 }

2 H2 (hl + \ﬁ) ’ gﬁgmd’ Z’ L(Sﬁgmd + 2) ’ 256[/7152”“‘1

hap 1
H2(hi+y/e€) 7 32hg

in;eran CO (K,
rSmin{mm e[]\}ilyj] ( O)ahAahr (f)}?
cost

with step-size 1 := Lnng = % min{ - }, and the smoothing radius'®

r/e
ANz Ny
Ve 5§ H?
hsample,trunc (Ta > 7)
ng = ML 5
then with probability 1 — 6, for any small 6 € (0, 1), the FedLQOR algorithm provides the following convergence
guarantee:

where the trajectory length satisfies T > h ( ) , and the number of the sample size satisfies

. . 2 N . .
CO(Kni1) — CO(K}) < (1 - ’7’“’“1) (CO(K,) = CO(KT)) + 2ne

+ 2nmin{ng, ny }(e1hp,, + €1h2y,).2 41)

Peost

!5The exact requirement of r is 7 < min { yhas b (%) y hr (%) } Here, without loss of generality, we drop

the A, (%) term from the min expression. This can be done because the error tolerance e is usually small, and so h, (%) < h, (%)
holds. The assumptions on 7 and ns follow similarly.
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Proof: For any ¢ € [M], according to the local Lipschitz property in Lemma 1, we have that

3 ) h’ 1é Kn
OO (K1) = CO(Ky) < (VOO (Kn), Kt — Kn) + gddg( )HKnH ~ K%
M L-1 -
, h
<vc =SS VO (k) >+ e (8 ZZ WED| @
j=1 1=0 =1 1=0
holds when H T ZJ S Ve (K H < ha < ha(Ky). Following the same analysis as Eq.(39), this
inequality holds when
hatt [ mingepg C9(Ko)
Ak < = ha ¢ -
"SE WV S m‘“{ Fow 2
Following the analysis in Eq.(42), we have
M L-1 M L-1 '
O (K1) — OV (K,) < <vc<@><Kn>, 1L 2o 2 VOV KD — S Y v0<f><K£{2>>
j=11=0 J=11=0

j=1
| o)) 0 f jzo s (k)|
@ | MLl ,
2 oo, |1 3552 [Foth - vevsd]

A 1 ]]\4_1Ll—:10 ) )
e )| 5z o3 [Fewd) - ver ] |,

j=11=0
+[veix,) HJ\Z% (VOO (K, Vo )] || v )|
j=1
N hgrag(Kn) u ;z:j: e
1 | ML , 2
< Aveus) |, a5z 3 3 [veuh - verasi] |,
j=11=0
+ g vei(K,) i thgﬁ(LKnP ﬁ;g ‘ Kr(L]l) - K,
+ v, |+ é”vc‘(”(ffn)—c“)(f(n) ;
ol + e S5 sco
e



where (a) is due to Cauchy—Schwarz inequality; and (b) is due to Cauchy—Schwarz inequality and Eq.(7).
Moreover, we have

COKar) - O (K,) € 2w 1, 4] o1z >y [veO ) - v w D) [
j=11=0
et S
+ | vetx,) “ ni |vew ) - C(’)(Kn)Hi
2
e, g S se
j=1 1=0
2 el v e S s e

(43)

where () follows from the gradient Lipschitz property in Lemma 1; and (c) follows from the policy gradient
heterogeneity property in Lemma 3, Lemma 4 and Lemma 17.

Following the analysis in Eq.(43), we have

O (K Ok, L g (x| s S~ g et (k| + 2z
(1) = COI) < = |VOOUR | e+ =20 B | [V )|+ pae
+n min{nm, nu}(elhlllet + 6lhl%et)2
Phgad | 1 S8 ) ) 0 ()
e | 3 S VRS - e (k||
7=11=0
1Phgrad || 1 RS o) ) ) 2
5 MLZ veUl(kY)) —veU) (K,
7=11=0
A" Nrgraa () (g |]P 4 47 hed || o
o ;HVC (Kn) = VOOK,)|| + == [ve® (k)|
© 300 n6) |2 27 1 g - e ?
_§HVC (K,) F+(17+27] herad)€ + Y] Jz; [HVC’ (Ky) F-f—MLe}
_ _ . 2
+(n+ 2772hgrad) min{ngg, nu}(ﬁlhlllet + elhlzlet)2 + 2772hgrad VC(Z)<KH) F
An2h 1 M L] , , , 2
L 2grad mZZVC(J)(ng))_VC(J)(K") .
j=11=0

) 3 - .
< - <77 + 2n2hgmd) Hvdl)(Kn)

2 _
2 o (1 + 20°hgraa )€
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4n%h? M 2 _
+ 7 ]\‘?d Z HVC’(J)(KH) . + MLe] + (n+ 2n2hgrad) min{n,, nu}(elhﬁet + elhﬁet)2
g j=1
a2h2 | M L= .
grad ()
oML Z HKM — K
j=1 1=0

(9) 3 2 _
< - < 2y hgmd> HVC )|+ 0+ 20 hma)e

4n?h? arad T 4n3h?

grad ch n) 2 4 MLe
ngM = F
+ (n + 2772Bgrad) min{n, nu}(ﬁlhhet + elﬁlzlet)27 (44)

where (d) is due to Eq.(8); (e) is due to variance reduction property in Lemma 4 and policy gradient heterogeneity
in Lemma 3; (f) is due to gradient Lipschitz property in Lemma 1; (g) is due to drift term analysis in Lemma 17.

Continuing the analysis in Eq.(44), we have that

) . 3 _ . 2 _
c@uqﬂjc@uq>s(;7HM%WQHVC@GQWF+m+2ﬁ%mk

477 hgmd +477 hgrad [Hvo ) 2
ngM = Kn F

+(n+ 2772]_1grad) min{nx, nu}(elhhet + ‘Elf_lget)2

(%) B (377 n 2772hgrad> HVC( )

+ MLG]

2 _
" + (n+ 2772hgrad)f

8

477 h grad + 47] hgrad
+
ngM

[chﬂ ) — VOO (K,,) i+2ch<i>(Kn)

2
+ ML€:|
F
7=1
+(n+ 2772}71grad) min{nx, nu}(flhlllet + 515}21&:02

® SRR+ sPR2 e
s—(?+%%mw77wd TR ) 9ot (K,)

Mg F
4772;L?grad + 4n3h§rad ML) ¢

Mg

8772h grad + 877 h‘grad
Mg

+ (77 + 2n2iLgrad + ) min{n$7 nu}(elhl:}let + 61B}21€t)2

(C)
fvcousy

(? M Omin(R)
T PR

2 _ _
I + 2ne + 27 min{nm nu}(elh}llet + 61hl21et)2

(CO(K,) = COUKT)) + 2ne + 2nmin{ng, nu} (@1 hhe + €1hie)®s  (45)

where (a) is due to Eq.(8); (b) is due to pohcy gradlent heterogeneity in Lemma 3; and (c¢) is due to the choice

. 2p2 +8
of step-size such that %’7 + 2n? hgrad + W < 7 and

_ 8n2h2_ .+ 8n3h?
n+ 2"’/thrad + T g 7 g <2
Mg
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which holds when 1 < min{ ,1} and g < ; for (d) we use the gradient domination lemma in

S L
32hgrad 256LhZ, 4

Lemma 2.

In conclusion, we have that

) (CV(Kn) — CV(KY)) + 2ne

+ 2nmin{n,, nU}(Elﬁl’llet + elﬁﬁet)27

holds when the step-size, smoothing radius, trajectory length, and sample size satisfy the requirements mentioned
above and those in Lemma 16 and Lemma 17. 0

With this lemma, we are now ready to provide the convergence guarantees for the FedLQOR under the
model-free setting.

Proof of the iterative stability guarantees of FedLQR: Here, we leverage the method of induction to prove

FedLQR’s iterative stability guarantees. First, we start from an initial policy Ky € G°. At round n, we assume

K, € Ggo. According to Lemma 16, we have that all the local policies K 7(3 € GY. Furthermore, frame the

hypotheses of in Lemma 18, we have that

77N2 Omin (1)
=

+ 2nmin{n,, nu}(elﬁﬁet + elﬁﬁet)2.

CO(Kpi1) — CO(K]) < <1 - ) (CO(K,) — CO(KF)) + 2ne

. 71 72 \2 ~ 73
Since (€1hye + €2h4e)” < hpyy, We have

; i * 2 min R % i *
OO (Kypn) — CO(KT) < (1 - WHZK()> (CO (o) — CO(KT) +20e
2
MU Omin(12) i 0 (e
S e () — )

(@) . 4
< CY(Ko) - CO(K7),

where (a) follows from the fact that e can be arbitrarily small by choosing a small smoothing radius, sufficient
long trajectory length, and enough samples. g

With this, we can easily have that the global policy K41 at the next round n + 1 is also stabilizing, i.e.,
K1 € G°. Therefore, we can finish proving FedLQR’s iterative stability property by inductively reasoning.

Proof of FedLQR’s convergence: From Eq.(41), we have

. . 2 N . .
CO(K) ~ OO (K7) < (1 - ”‘“’“R)) (€9 (1)~ CO(T)) + 20e

+2n min{nl’v nU}(elﬁlllet + Elhﬁet)2a
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Using the above inequality recursively, FedLOR enjoys the following convergence guarantee after /V rounds:

2|[=x;
NQUmin(R)

N
CO (k) — COKY) < <1 : M) (CO(Ky) - CO(K)) +

2min{ng, n,} H YKy
(120 min (R)

(e1 Blllet + 617”21&)2.

’

Suppose the trajectory length satisfies 7 > h, ( re’ ) , the smoothing radius satisfies r < h/, (%) , where

ANy

/ S (3) /
p (€N ) mingeppy O (Ko) ¢
h. <4> := min { T shs b 1) (

and the number of the sample size of each agent ng satisfies

h ¢ o H?
sample,trunc \ 75 7L 1

e = ML ’
with 6/ — B2 0min (R) .
e
Cuni, Y (%) —_c@) * . .
When the number of rounds N > WQ:;’ . IE’R) log (2(0 (Ko)e, CTKD) ), our FedLQR algorithm enjoys the

following convergence guarantee:

/

N
CO(Ky) — CO(KY) < (1 - M) (CO(K) ~ CO(K?) + 5

[pi%e

2min{n,, n,} HEKZ-*

(61 h}11et +é haet)2

,UJQUmin(R>
2min{n,, n,} HEK*
<€+ 2 (erhiy, + €1h2)%
MQUmin(R) ( het het)
Thus, we complete the proof with cyni2 = 2, cuni;z3 = 1 and cypia = 1. O
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