
Robust Testing for Cyber-Physical Systems using Reinforcement
Learning

Xin Qin

University of Southern California

Los Angeles, USA

xinqin@usc.edu

Nikos Aréchiga

Toyota Research Institute

Los Altos, USA

nikos.arechiga@tri.global

Jyotirmoy Deshmukh

University of Southern California

Los Angeles, USA

jdeshmuk@usc.edu

Andrew Best

Toyota Research Institute

Los Altos, USA

andrew.best@tri.global

ABSTRACT
In this paper, we propose a testing framework for cyber-physical

systems (CPS) that operate in uncertain environments. Testing such

CPS applications requires carefully defining the environment to

include all possible realistic operating scenarios that the CPS may

encounter. Simultaneously, the process of testing hopes to identify

operating scenarios in which the system-under-test (SUT) violates

its specifications. We present a novel approach of testing based

on the use of deep reinforcement learning for robust testing of a

given SUT. In a robust testing framework, the test generation tool

can provide meaningful and challenging tests even when there

are small changes to the SUT. Such a method can be quite valu-

able in incremental design methods where small changes to the

design does not necessitate expensive test generation from scratch.

We demonstrate the efficacy of our method on three example sys-

tems in autonomous driving implemented within a photo-realistic

autonomous driving simulator.

ACM Reference Format:
Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best. 2023.

Robust Testing for Cyber-Physical Systems using Reinforcement Learning.

In 21st ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE ’23), September 21–22, 2023, Hamburg, Germany.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3610579.3611087

1 INTRODUCTION
Autonomous and semi-autonomous cyber-physical systems (CPSs)

such as vehicles with advanced driver assist systems (ADAS), un-

manned aerial vehicles (UAVs), and medical devices use sophisti-

cated control and planning algorithms to safely accomplish their

mission objectives. However, in order to enable autonomous op-

eration in uncertain and previously unseen environments, such

CPSs increasingly use learning-enabled components (LECs) for per-

ception and decision-making. There have been many approaches

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0318-8/23/09.

https://doi.org/10.1145/3610579.3611087

for open-loop testing of LECs (See [10, 21, 31] for excellent sur-

veys on this topic). Of greater relevance to this paper is work on

closed-loop testing of learning-enabled CPSs. The closed-loop test-

ing problem seeks to identify environment scenarios under which

the CPS behaves in an undesired fashion.

Most techniques for closed-loop testing (including the one pre-

sented in this paper) are search-based methods; they can be divided

into two classes based on the LEC that is being tested: (1) tech-

niques to test perception components [13, 14, 36], and (2) those to

test decision-making/control logic [6, 7, 23, 35]. Irrespective of the

LEC being tested, a key challenge for closed-loop testing is appro-

priately scoping the search problem. If the environment model to

generate test scenarios is allowed to be too liberal, falsifying safety

conditions of the CPS becomes a trivial exercise. For example, con-

sider the ADAS subsystem of adaptive cruise control (ACC); here,

the system-under-test (SUT) or the ego car attempts to maintain

a safe following distance from a lead vehicle. If the lead vehicle is

allowed to travel backwards on a highway, then it is impossible to

design safe ACC logic, and finding SUT violations of safety is trivial.

Furthermore, it is important to have an unambiguous mathematical

description of the desired behavior of the SUT. In this paper, we

address both challenges through the use of the logic-based speci-

fication language of Signal Temporal Logic (STL) [26] to express

both constraints on the environment as well as safety specifications

for the SUT.

At a high level, our approach is similar to input-constrained

falsification of STL properties [2, 17]. Falsification of STL properties

is a well-studied area with many approaches (see [3, 8] for surveys).

More recent work on falsification has focused on the use of deep
reinforcement learning (RL) for falsifying STL formulas [1][37, 38].

Related work on adaptive stress testing [7] also uses deep RL, but

the authors incorporate environment constraints and undesirable

behavior bymanually encoding them in the reward function used by

the deep RL algorithm. However, none of the previous approaches

have considered the robust closed-loop testing problem.

In closed-loop testing, the emphasis is on identifying not only the

environment scenarios that cause the SUT to violate its safety spec-

ifications, but also to discover a test policy that can react to changes

in the SUT. For example, we would like a test generation algorithm

to be produce vulnerable scenarios even when there is a change to

the initial conditions of the SUT’s state variables, changes to the

https://doi.org/10.1145/3610579.3611087
https://doi.org/10.1145/3610579.3611087

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best

SUT’s system dynamics, or minor changes to the LECs. Such an ap-

proach is particularly useful in industrial development techniques

that rely on the paradigm of continuous integration and pre-merge

tests. Here, changes to the software of the CPS should be small, and

each should pass a suite of pre-merge tests before they are allowed

to be merged into the main development branch. More complex

tests and analytics may be run nightly or on longer timelines, but

pre-merge tests are meant to be lightweight, and need to be able to

run quickly to avoid hindering developer productivity. Running a

full falsification procedure at pre-merge time is not feasible, and

pre-recorded falsification traces are not robust to changes in the

SUT.

In this paper, we show that our specific use of STL-based en-

vironment constraints and SUT specifications allows us to train

adversarial policies that are robust test generators. In other words,

the policy learned by our deep RL algorithm transfers to the modi-

fied model under certain conditions that characterize the degree

of model change. Thus, our procedure has the potential to be in-

valuable in an incremental design framework where restarting

closed-loop testing from scratch after every modification to the

LEC may be expensive. Furthermore, the value function induced

by the RL policy allows quantifying regions of the state space that

are more sensitive to counterexamples, allowing designers to focus

on those simulation-based scenarios that are likely to transfer to

real-world settings.

In summary, our main contributions are:

(1) We propose a deep reinforcement learning based framework

where various sources of uncertainties in the environments are

modeled as (one or more) agents that behave according to a reactive
policy that we train through simulations.

(2) We restrict the agents to respect dynamic constraints (expressed

in STL) while causing an ego agent to violate its specification (also

expressed in STL).

(3) We formulate an automatic reward shaping mechanism that

guarantees that the joint behavior of the environment agents and

the SUT is such that: the environment constraints are satisfied,

while the SUT violates its specifications.

(4) We identify assumptions under which the learned adversarial

policies are robust. In particular we show that if the learned adver-

sarial policy demonstrates a violation of the SUT specification, then

this policy will transfer to agents that (1) start from nearby initial

configurations, and (2) have different dynamics than the original

ego agent.

(5) We demonstrate the efficacy of our approach on three case-

studies from the autonomous driving domain. We show that aspects

such as other cars, traffic lights, pedestrians, etc. can be modeled

as adversarial agents. We consider (1) an adaptive cruise control

example where the leading car is modeled as an adversarial agent,

(2) a controller that ensures safety during a lane merge scenario, and

(3) a controller that ensures safety during a yellow light scenario.

The rest of the paper is organized as follows. In Section 2 we provide

the background and problem definition. We define rewards to be

used by our RL-based testing procedure in Sec. 3. We show how

the adversarial agents generalize in Section 4, and provide detailed

evaluation of our technique in Sec. 5. Finally, we conclude with a

discussion on related work in Section 6.

2 PROBLEM STATEMENT AND BACKGROUND
We first introduce the formal description of a multi-agent system

as a collection of deterministic dynamical agents.

Definition 2.1 (Deterministic Dynamical Agents). An agent H is

a tuple (𝑋,𝐴,𝑇 , 𝑋init, 𝜋), where 𝑋 is a set of agent states, 𝐴 is the

set of agent actions, 𝑇 is a set of transitions of the form (x, 𝑎, x′),
where 𝑎 ∈ 𝐴, 𝑋init ⊆ 𝑋 is a set of designated initial states for the

agent, and finally the policy
1 𝜋 is a function mapping a state in 𝑋

to an action in 𝐴.

A multi-agent system S = {ego, ado1, . . . , ado𝑘 } is a set of

agents, with a designated ego agent ego, and a non-empty set of ad-

versarial agents ado1, . . . , ado𝑘 . The state-space of the multi-agent

system can be constructed as a product space of the individual

agent state spaces, and the set of transitions of the multi-agent sys-

tem corresponds to the synchronous product of the transitions of

individual agents. The transitions of the multi-agent system when

projected to individual agents are consistent with individual agent

behaviors. A behavior trajectory for an agent is thus a finite or infi-

nite sequence (𝑡0, x0), (𝑡1, x𝑖), . . ., where x𝑖 ∈ 𝑋 and 𝑡𝑖 ∈ R≥0. We

use 𝑠 to denote a trajectory variable, i.e. a function mapping 𝑡𝑖 to x𝑖 ,
i.e. 𝑠 (𝑡𝑖) = x𝑖 . In many frameworks used for simulating multi-agent

systems, it is common to consider timed trajectories with a finite

time horizon 𝑡𝑁 , and a fixed, discrete time step, Δ = 𝑡𝑖+1 − 𝑡𝑖 ,∀𝑖 .
Signal Temporal Logic. Signal Temporal Logic (STL) [27] is a

formalism to describe properties of real-valued, dense-time trajec-

tories. STL formulas are evaluated over behavior trajectories. An

atomic STL formula is a predicate of the form 𝑓 (𝑠) ∼ 𝑐 , where 𝑠 is
a trajectory variable, 𝑓 is a real-valued function from 𝑋 to R, ∼ is a

comparison operator, i.e. ∼∈ {<, ≤, >, ≥} and 𝑐 ∈ R. STL formulas

are constructed recursively using the Boolean logical connectives

such as negations (¬) and conjunctions (∧) and the temporal oper-

ator (U). It is often convenient to define Boolean connectives such

as disjunction (∨), implication (⇒) using the usual equivalences

for Boolean logic. It is also convenient to define temporal operators

F𝐼𝜑 as shorthand for ⊤U𝐼𝜑 , and G𝐼𝜑 as shorthand for ¬F𝐼¬𝜑 . Each
temporal operator is indexed by the time interval

2 𝐼 of the form

[𝑎, 𝑏], where 𝑎, 𝑏 ∈ R≥0.
STL has both Boolean semantics that recursively define the truth

value of the satisfaction of an STL formula in terms of the satisfac-

tion of its subformulas and quantitative semantics that are used to

map a trajectory and a formula to a real value known as the robust

satisfaction value or simply, the robustness. Intuitively, the robust-
ness is proportional to the distance between a given signal 𝑠 and

the set of signals satisfying the formula 𝜑 [15]. There are numerous

definitions for quantitative semantics of STL, for example [22, 28].

The actual definition to be used is irrelevant to this paper as long as

it is efficiently computable. We will assume that the robustness has

1
Our framework can alternatively include stochastic dynamical agents, where 𝑇 is

defined as a distribution over (𝑋 × 𝐴 × 𝑋) , and the control policy 𝜋 is a stochastic

policy representing a distribution over actions conditioned on the current state of the

agent, i.e. 𝜋 (𝑎 | x) . Also, states 𝑋 and actions 𝐴 can be finite sets, or can be dense,

continuous sets.

2
Traditional syntax of STL permits intervals that are open on either or both sides;

for signals over discrete-time steps, this provision is not required. Furthermore, we

exclude intervals that are not bounded above as we intend to evaluate STL formulas

on finite time-length traces.

Robust Testing for Cyber-Physical Systems using Reinforcement Learning MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

(a) Case Study I: Driving in lane with lead ve-
hicle.

(b) Case Study II: Left vehicle merges in front. (c) Case Study III: Yellow light running.

Figure 1: Simulation environments for case studies in the CARLA simulator[12].

been clamped to be in an interval [𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥], where 𝜌𝑚𝑎𝑥 > 0

and 𝜌𝑚𝑖𝑛 = −𝜌𝑚𝑎𝑥 .

When evaluating an STL formula, each time step requires an

application of the functions 𝑓 that appear in the formula. We denote

a signal 𝑠 satisfying a formula 𝜑 at time 𝑡 by 𝑠, 𝑡 |= 𝜑 , and 𝑠 |= 𝜑 is

by convention defined as 𝑠, 0 |= 𝜑 . In [11, 15], the authors show that

𝜌 (𝜑, 𝑠) ≥ 0 =⇒ 𝑠 |= 𝜑 , and 𝜌 (𝜑, 𝑠) < 0 =⇒ 𝑠 ̸ |= 𝜑 . Following
the notation in [11], we call the signal variables appearing in the

formulas as primary signals, and the intermediate results that arise

from function applications as secondary signals.

Problem Definition: Testing with Dynamically Constrained
Adversaries. Given a behavior of the multi-agent system, let the

projection of the behavior onto agentH be denoted by the signal

variable 𝑠H . Formally, the problem we wish to solve can be stated

as follows:

(1) Given a spec𝜓ego on the ego agent,

(2) Given a set of constraints 𝜑ado𝑖 on adversarial agentH𝑖 ,

(3) Find a multi-agent system policy that can generate behaviors

such that: ∀𝑖 : 𝑠ado𝑖 |= 𝜑ado𝑖 ∧ 𝑠ego ̸ |= 𝜓ego.
In other words, we aspire to generate a compact representation

for a possibly infinite number of counterexamples to the correct

operation of the ego agent.

2.1 Adversarial Testing through Policy
Synthesis

In contrast to falsification approaches, we assume a deterministic

(or stochastic) dynamical agent model for the adversarial agents

(as defined in Def. 2.1), i.e. the 𝑖𝑡ℎ adversarial agent is specified

as a tuple of the form (𝑋𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑋init𝑖 , 𝜋𝑖). We assume that ini-

tially all agents have a randomly chosen policy 𝜋𝑖 . For adversarial

agent ado𝑖 , let Π𝑖 = 𝐴
𝑋𝑖

𝑖
denote the set of all possible policies. Let

Π𝑖 (𝜑ado𝑖) be the set of policies such that for any 𝜋 ∈ Π𝑖 (𝜑ado𝑖), us-
ing 𝜋 guarantees that the sequence of states of agent ado𝑖 satisfies
𝜑ado𝑖 . Similarly, let Π𝑖 (¬𝜓ego) be the set of policies that guarantees
that the sequence of states for the ego agent ego does not satisfy
𝜓ego. The problem we wish to solve is: for each 𝑖 , find a policy in

Π𝑖 (¬𝜓ego) ∩ Π𝑖 (𝜑ado𝑖).
One approach to solve this problem is to use a reactive synthesis

approach, when specifications are provided in a logic such as LTL

or ATL [4, 9, 25]. There is limited work on reactive synthesis with

STL objectives [18, 32], mainly requiring encoding STL constraints

as Mixed-Integer Linear Programs; this may suffer from scalability

in multi-agent settings. We defer detailed comparison with reactive

synthesis approaches to futurework. In this paper, we propose using

the framework of deep reinforcement learning (RL) for controller

synthesis with a procedure for automatically inferring rewards

from specifications and constraints.

2.2 Policy synthesis through Reinforcement
Learning

Reinforcement learning (RL) [34] and related deep reinforcement

learning (DRL) [29] are procedures to train agent policies in deter-

ministic or stochastic environments. In our setting, given a mul-

tiagent system S = {ego, ado1, . . . , ado𝑘 }, we wish to synthesize

a policy 𝜋𝑘 for each adversarial agent ado𝑘 . We can model mul-

tiple adversarial agents as a single agent whose state is an ele-

ment of the Cartesian product of the state spaces of all agents, i.e.,

𝑋 = 𝑋ego×𝑋ado1×· · ·×𝑋ado𝑘 , and the action of this single agent is a
tuple of actions of all adversarial agents, i.e.𝐴 = 𝐴ado1 × . . .×𝐴ado𝑘 .

In each step, we assume that the agent is in state x ∈ 𝑋 and

interacts with the environment by taking action 𝑎 ∈ 𝐴. Then, the
environment (i.e., the transition relation of the adversarial and the

ego agents) picks a next state x′ s.t. (x, 𝑎, x′) ∈ 𝑇 , and a reward

𝑅(x, 𝑎). The reward provides reinforcement for the constrained

adversarial behavior, and will be elaborated in Section 3. The goal

of the RL agent is to learn a deterministic policy 𝜋 (x), such that

the long term payoff of the agent from the initial state (i.e. the

discounted sum of all rewards from that state) is maximized. As is

common in RL, we define the notion of a value function𝑉 in Eq. (1);

this is the expected reward over all possible actions that may be

taken by the agent. In a deterministic environment, the expectation

disappears.

𝑉𝜋 (x𝑡) = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑅((x𝑡+𝑘), 𝑎𝑡+𝑘)
�����𝑎𝑡+𝑘 = 𝜋 (x𝑡+𝑘)

]
(1)

RL algorithms use different strategies to find an optimal policy 𝜋∗,
that for all x is defined as 𝜋∗ (x) = argmax𝜋 𝑉𝜋 (x). We assume that

the state of the agent at time 𝑡0, i.e. x0 is in 𝑋init.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best

Wenow briefly review a classic model-free RL algorithm called Q-

learning and summarize two deep RL algorithms: Deep Q-learning

and Proximal Policy Optimization (PPO). In Q-learning, we learn a

state-action value function 𝑞(x, 𝑎), which represents the believed

value of taking action𝑎when in state x. Note that𝑉 (x) = max𝑎 𝑞(x, 𝑎).
In Q-learning, the agent maintains a table whose rows correspond

to the states of the system and columns correspond to the actions.

The entry 𝑞(x, 𝑎), encodes an approximation to the state-action

value function computed by the algorithm. The table is initialized

randomly. At each time step 𝑡 , the agent uses the table to select

an action 𝑎𝑡 based on an 𝜀-greedy policy, i.e. it chooses a ran-

dom action with probability 𝜀, and with probability 1 − 𝜀, chooses
argmax𝑎∈𝐴𝑞(x, 𝑎). Next, at time step 𝑡 + 1, the agent observes the

reward received 𝑅𝑡+1 as well as the new state x𝑡+1, and it uses this

information to update its beliefs about its previous behavior. During

the training process, we sample the initial state of each episode

with a probability distribution 𝜇 (x) that is nonzero at all states.

After a sufficient number of iterations, all states will eventually be

selected as the initial state. We also fix the policies of the adversar-

ial agents to be 𝜀-soft. This means that for each state x and every

action 𝑎, 𝜋 (𝑎 |𝑥) ≥ 𝜀, where 𝜀 > 0 is a parameter. Random sampling

of initial states and 𝜀-soft policies ensure that the agent explores

and avoids converging prematurely to local optima. We assume

that during the training process the agent policies are stochastic,

epsilon-soft policies, i.e. the policy represents a distribution over a

set of actions conditioned on the current state. However, at the end

of training, we interpret the policy as deterministic by picking the

most probable action for each state.

Deep RL. Deep RL is a family of algorithms that make use of Deep

Neural Networks (DNNs) to represent either the value or the policy

of an agent. Deep Q-learning [29], is an extension of Q-learning

where the table 𝑞(𝑠, 𝑎) is approximated by a DNN, 𝑞(𝑠, 𝑎,𝑤), where
𝑤 are the network parameters. Deep Q-learning observes states

and selects actions similarly to Q-learning, but it additionally uses

experience replay, in which the agent stores previously observed

tuples of states, actions, next states, and rewards. At each time step,

the agent updates its q-function with the currently observed experi-

ence as well as with a batch of experiences sampled randomly from

the experience replay buffer
3
. The agent then updates its approxi-

mation network by gradient descent on the quadratic loss function

L = (𝑦𝑡 − 𝑞(x𝑡 , 𝑎𝑡 ,𝑤))2, where 𝑦𝑡 = 𝑅𝑡+1 + 𝛾 max𝑎′ 𝑞(x𝑡+1, 𝑎,𝑤) .
In the case that x𝑡 is a terminal state, it is common to assume that

all transitions are such that x𝑡+1 = x𝑡 and 𝑅𝑡 = 0. Although these

learning algorithms learn the state-action value function 𝑞(x, 𝑎),
in the theoretical exposition that follows, we will use the state
value function𝑉 (x) for simplicity. The optimal state value function

can be obtained from the optimal state-action value function by

𝑉★(x) = max𝑎 𝑞
★(x, 𝑎). PPO [33] is a state-of-the-art policy gradi-

ent algorithm that performs gradient-based updates on the policy

space directly while ensuring that the new policy is not too far

from the old policy.

3
Tabular Q-learning is guaranteed to converge to the optimal value function [34]. On

the other hand, DQN may not converge, but it will eventually find a counterexample

trace if it exists. In practice, DQN performs well and finds effective value functions,

even if its convergence cannot be theoretically guaranteed.

3 LEARNING CONSTRAINED ADVERSARIAL
AGENTS

Next, we describe how we construct a reward function that en-

ables training constrained adversarial agents. The reward function

needs to encode two aspects: (1) satisfying adversarial constraints,

(2) violating ego specification. We assume that adversarial con-

straints are hierarchically ordered with priorities, inspired by the

Responsibility-Sensitive Safety rules for traffic scenarios in [5].

Definition 3.1 (Constrained adversarial reward). Suppose from
initial state x0 the agent has produced a behavior trace 𝑠 (x0) of
duration 𝑇 . We distinguish two cases.

• Case 1: All adversarial constraints are strictly satisfied, i.e.

𝜌 (𝑐, 𝑠 (x0)) > 0 for each constraint 𝑐 ∈ 𝜑ado. In this case, the reward

will be the robustness of the adversarial specification.

𝑅𝑡 =

{
0 if 𝑡 < 𝑇

𝜌 (¬𝜓ego, 𝑠 (x0)) if 𝑡 = 𝑇
(2)

• Case 2: Not all adversarial constraints are strictly satisfied.

Let 𝑐 be the highest priority rule that is not strictly satisfied, i.e.

the highest priority rule such that 𝜌 (𝑐, 𝑠 (x0)) ≤ 0. Then, every

constraint with priority higher than 𝑐 will contribute zero, whereas

every constraint with priority less than or equal to 𝑐 will contribute

𝜌𝑚𝑖𝑛 . Let𝑀 be the number of constraints with priority less than or

equal to 𝑐 .

𝑅𝑡 =

{
0 if 𝑡 < 𝑇

−𝑀𝜌𝑚𝑖𝑛 if 𝑡 = 𝑇
(3)

The following lemma shows that it is not possible for an adver-

sarial agent to attain a high reward for satisfying lower priority

constraints at the expense of higher priority constraints. The proof

is straightforward (shown in the appendix).

Lemma 3.2 (Soundness of the reward function). Consider
two traces, 𝑠1 and 𝑠2. Suppose that the highest priority constraint
violated by 𝑠1 is 𝑐1 and the highest priority constraint violated by
𝑠2 is 𝑐2. Suppose 𝑐1 has lower priority than 𝑐2. Then, the reward
for trajectory 1 will be higher than the reward for trajectory 2, i.e.
𝑅(𝑠1) > 𝑅(𝑠2).

Proof. Let 𝑛1 be the number of rules with priority less than or

equal to 𝑐1. Similarly, let 𝑛2 the number of rules with priority less

than or equal to 𝑐2. Then, 𝑅(𝑠1) = −𝑛1𝜌𝑚𝑖𝑛 and 𝑅(𝑠2) = −𝑛2𝜌𝑚𝑖𝑛 .

Since 𝑛2 > 𝑛1 by the assumptions of the lemma, the result follows.

□

Pipeline. Our training pipeline is illustrated in Figure 2. Given a

scenario composed of interacting agents,

(𝐸, 𝑅𝑒), (𝐻1, 𝑅1), . . . , (𝐻𝑛, 𝑅𝑛),

the goal is to learn transition distributions 𝑇1, . . . ,𝑇𝑛 and policies

𝜋1, . . . , 𝜋𝑛 for the adversarial agents such that each adversary sat-

isfies its rules 𝑅𝑘 , but the ego is not able to satisfy its rules 𝑅𝑒 .

The ego agent interacts with several adversarial agents as part of

a simulation. The adversarial agents are able to observe the state

of the ego as well as of the other adversarial agents, and they may

update their policies.

Robust Testing for Cyber-Physical Systems using Reinforcement Learning MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

Figure 2: The ego agent 𝐸 is embedded in a simulation with
a collection of adversarial agents 𝐻𝜃

𝑖
, which learn (possibly

from a bank of past experience) to stress-test the ego by a
particular reward function as derived from the constraints
for the adversary and the ego specification.

4 RATIONALE FOR ROBUST TESTING
In this section we show how our RL-based testing approach makes

the testing procedure itself robust by learning a closed-loop policy

for testing. We first introduce some definitions that help us state

the lemmas and theorems about robust testing.

Definition 4.1 (Definition 2 of [11]). Let 𝑓𝑘 : 𝑋 → R be any

computable function that appears in an STL formula 𝜑 . We call the

vector of variables in 𝑠 the primary signals of 𝜑 , and their images

by 𝑓 secondary signals, {𝑦𝑘 }.

Next, we formalize the notion of distance between signals, and

Lemma 4.3 then tells us that if two signals have “nearby values”

and also generate nearby secondary signals, then if one of them

robustly satisfies an STL formula, the other will also satisfy that

formula.

Definition 4.2 (Distance between signals). Given two signals 𝑠 and

𝑠′ with identical value domains 𝑆 and identical time domains T, and
a metric 𝑑𝑆 on 𝑆 , the distance between 𝑠 and 𝑠′, denoted as | |𝑠 − 𝑠′ | |
is defined as: sup𝑡 ∈T 𝑑𝑆 (𝑠 (𝑡), 𝑠′ (𝑡)).

Now we are ready to present our theorems about robust testing.

First, we show generalizability across initial conditions in two steps:

(1) In Theorem 4.4, we assume that the RL algorithm has converged

to the optimal value function, and that it has used this value func-

tion to find a counterexample trace 𝑠 (x0). We consider a new state

x′
0
, and want to bound the degradation of the robustness function

of the specification 𝜌 (¬𝜓ego, 𝑠 (x′
0
)). (2) In Theorem 4.5, we relax

this strong assumption and identify conditions under which gener-

alization can be guaranteed even with approximate convergence.

Lemma 4.3 (Theorem 1 in [11]). If 𝜌 (𝜑, 𝑠, 𝑡) = 𝛿 , then for every
signal 𝑠′ s.t. every secondary signal satisfies

������𝑦𝑘 − 𝑦′
𝑘

������ < 𝛿 , the
following is true: (𝑠 |= 𝜑) =⇒ (𝑠′ |= 𝜑).

Theorem 4.4. Suppose that the adversarial agent has converged to
the optimal value function𝑉★(x), and that it has found a trace 𝑠 (x0)
that falsifies the target specification𝜓ego with robustness 𝜌 (¬𝜓ego, 𝑠 (x0)) =

𝜏 > 0 while satisfying all of the adversarial constraints. Given a new
state x′

0
such that

��𝑉★(x0) −𝑉★(x′
0
)
�� < 𝛿 with 𝛿 < 𝛾𝑇 |𝜌𝑚𝑖𝑛 |, the

adversary will be able to find a new trajectory 𝑠 (x′
0
) that satisfies

all of the constraints. Furthermore, the robustness of the specification
¬𝜓ego over the new trace will be at least 𝜏 − 𝛿/𝛾𝑇 .

Proof. We can expand the optimal value function at state x0 as
𝑉★(x0) =

∑𝑇
𝑡=0 𝛾

𝑡𝑅𝑡 , where 𝑅𝑡 is the reward function defined in

Definition 3.1. Then, the optimal value function at x0 is 𝑉★(x0) =
𝛾𝑇 𝜏 . Suppose for a contradiction that the new trajectory 𝑠 (x′

0
) vio-

lates some number𝑀 of constraints. Then, the following equations

show that the two states must actually differ by a large amount,

much larger than 𝛿 , leading to a contradiction. From Definition 3.1

we have

𝑉★(x′
0
) = −𝛾𝑇𝑀𝜌𝑚𝑖𝑛, (4)��𝑉★(x′

0
) −𝑉★(x0)

�� ≥ 𝛾𝑇 𝜏 +𝑀𝛾𝑇 𝜌𝑚𝑖𝑛 > 𝛿, (5)

which contradicts the assumption of the theorem. As the constraints

will be satisfied by 𝑠 (x′
0
), their contribution to the value function

at x′
0
will be zero. Then, for the 2

𝑛𝑑
part of the theorem we can

expand the optimal value function as:��𝑉★(x0)−𝑉★(x′
0
)
��= ���𝛾𝑇 𝜌 (¬𝜓ego, 𝑠 (x0))−𝛾𝑇 𝜌 (¬𝜓ego, 𝑠 (x′0))��� (6)

By assumption the above terms are ≤ 𝛿 , which gives us that��𝜌 (¬𝜓ego, 𝑠 (x0)) − 𝜌 (¬𝜓ego, 𝑠 (x′0)))�� ≤ 𝛿

𝛾𝑇
(7)

and the theorem follows. □

Note that if 𝛿 is chosen as a small enough perturbation such

that 𝜏 − 𝛿/𝛾𝑇 > 0, then the new trace is also a trace in which the

adversary causes the ego to falsify its specification.

The tabular Q-learning algorithm converges asymptotically to

the optimal value function, meaning that for any 𝜖 , there exists a 𝑘

such that at the 𝑘-th iteration, the estimate𝑉𝑘 differs from the opti-

mal value function by at most 𝛼 , i.e. ∀x ∈ 𝑋 ,
��𝑉★(x) −𝑉𝑘 (x)

�� < 𝛼 .
Some RL algorithms have even stronger guarantees. For example,

Theorem 2.3 of [16], states that running the value iteration algo-

rithm until iterates of the value function differ by at most
𝛼 (1−𝛾)

2𝛾

produces a value function that converges within 𝛼 of the value

function

��𝑉𝑘 (x0) −𝑉★(x0)
�� ≤ 𝛼 . While useful for theoretical re-

sults, value iteration does not scale to problems with large state

spaces. The following theorem states that if the RL algorithm has

found a value function that is near optimal, the agent will be able

to generalize counterexamples across different initial states.

Finally, in Theorem 4.7, we show generalizability when the ego

agent dynamics change. The main idea is that if the new dynam-

ics have an 𝜖-approximate bisimulation relation to the original

dynamics, then we can guarantee generalizability.

Theorem 4.5. Suppose that we have truncated an RL algorithm
at iteration 𝑘 . Suppose that, from the guarantees of this particular
RL algorithm, we are within 𝛼 of the optimal value function, i.e. for
every x,

��𝑉𝑘 (x0) −𝑉★(x0)
�� ≤ 𝛼 . Further suppose that the adversarial

agent has found a falsifying trace from state x0 with robustness
𝜏 , i.e. 𝜌 (¬𝜓ego, 𝑠 (x0)) = 𝜏 . Now consider a new state x′

0
such that

the degradation of our approximate value function is at most 𝛽 , i.e.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best��𝑉𝑘 (x0) −𝑉𝑘 (x′0)�� ≤ 𝛽 . Then, the adversarial agent will be able to
produce a new trace with robustness at least

𝜌 (¬𝜓ego, 𝑠 (x′0),𝑇) ≥ 𝜏 −
2𝛼 + 𝛽
𝛾𝑇

(8)

Proof. Note that by the triangle inequality

𝛼 + 𝛽 >
��𝑉𝑘 (x0) −𝑉★(x0)

�� + ��𝑉★(x′
0
) −𝑉𝑘 (x0)

��
(9)

>
��𝑉𝑘 (x′0) −𝑉★(x0)

��
(10)

Further,

2𝛼 + 𝛽 >
��𝑉𝑘 (x′0) −𝑉★(x0)

�� > ��𝑉★(x′
0
) −𝑉★(x0)

��
(11)

The result follows from Theorem 4.4 by substituting 𝛿 = 2𝛼 + 𝛽 . □

Finally, we will show that the agent may cope with limited

changes to the multiagent system. This is useful in a testing and

development situation, because we would like to be able to reuse a

pre-trained adversarial agent to stress-test small modifications of

the ego without expensive retraining. To do this, we will define an

𝜖-bisimulation relation that will allow us to formally characterize

the notion of similarity between different multiagent systems.

Definition 4.6 (𝜖-approximate bisimulation, [19]). Let 𝜖 > 0, and

S1, S2 be systems with state spaces 𝑋1, 𝑋2 and transition rela-

tions 𝑇1, 𝑇2, respectively. A relation R𝜖 ⊆ 𝑋1 × 𝑋2 is called an

𝜖-approximate bisimulation relation between 𝑇1 and 𝑇2 if for all

x1, x2 ∈ R𝜖 ,

(1) 𝑑 (𝑥1, 𝑥2) ≤ 𝜖 where 𝑑 is a distance metric

(2) ∀𝑎 ∈ 𝐴, ∀x′
1
∈ 𝑇1 (x1, 𝑎), ∃x′

2
∈ 𝑇2 (x2, 𝑎) such that (x′

1
, x′

2
) ∈

R𝜖

(3) ∀𝑎 ∈ 𝐴, ∀x′
2
∈ 𝑇2 (x2, 𝑎), ∃x′

1
∈ 𝑇1 (x1, 𝑎) such that (x′

1
, x′

2
) ∈

R𝜖

Theorem 4.7. Suppose the adversarial agent has trained to conver-
gence as part of a multiagent system S1, and it has found a trace that
satisfies the adversarial specification with robustness 𝜏 . Consider a new
multi-agent system S2 and suppose there exists an 𝜖-approximate
bisimulation relation between the two systems, including the sec-
ondary signals of the formula ¬𝜓ego. Further suppose that 𝜖 < 𝜏

Then, the trajectory of the new system will also violate the ego speci-
fication while respecting the adversarial constraints.

Proof. If there is an 𝜖-approximate simulation between the pri-

mary and secondary signals of the traces of the two systems, then

for a trace 𝑠1 (x0) of system S1 starting from initial state x0, and
a trace 𝑠2 (x) of system S2 also starting from initial state x0, the
𝜖-approximate bisimulation relation ensures that both the primary

and secondary signals differ by atmost epsilon, i.e. (|𝑠1 (x0) − 𝑠2 (x0) | ≤
𝜖)∧(|𝑦1 − 𝑦2 | ≤ 𝜖). From Lemma 4.3, 𝑠2 also causes the ego to falsify

its specification while satisfying the adversarial specifications. □

5 CASE STUDIES
In this section we first empirically demonstrate the robustness of

our adversarial testing procedure. Then, we demonstrate scalability

of adversarial testing by applying it to three case studies from the

autonomous driving domain.

5.1 Benchmarking Generalizability
We introduce a grid world example environment which consists of

an𝑛×𝑛 grid containing the ego agent and the adversarial agent. The
objective of the ego agent is to escape adversarial agents, assuming

that the game begins with the ego and the adversarial agent at

(𝑐ego, 𝑐ado). The ego agent can move 𝑘 cells in any time step. The

ego specification and adversarial constraints are as specified in

Section 1.

The ego policy is hand-crafted: it observes the position of the

adversarial agents and selects the direction (up, down, left, or right)

that maximizes its distance from the adversarial agent. If the target

cell lies outside the map, it chooses a fixed direction to move away.

It should not be trivial for the adversarial agent to capture the ego

agent; thus, for every experiment, we provide a baseline comparison

with an adversarial agent that has a randomly chosen policy. A

random policy has some likelihood of succeeding from a given

initial configuration of the ego and adversarial agents. Thus, the

ratio of the number of initial conditions from which the random

adversarial agent succeeds to the total number of initial conditions

being tested quantifies the degree of difficulty for the experiment.

We denote the random adversarial agent as ado[rand].
In all the experiments in this section, we train the adversarial

agent using our RL-based procedure on a training arena charac-

terized by the vector 𝜆train = (𝑛train,𝐶, 𝑘train), i.e. a fixed grid size

(𝑛train × 𝑛train), a set of initial positions (𝑐ego, 𝑐ado) ∈ 𝐶 , and (3) a

fixed step size for the ego agent movement (𝑘train). We use Proximal

Policy Optimization (PPO)-based deep-RL algorithm to train the ad-

versarial agent[33]. We denote this trained agent as ado[𝜆train] for
brevity. We frame the empirical validation of our robust adversarial

testing in terms of the following research questions:

RQ1. How does the performance of ado[𝜆train] compare against

10 uniformly sampled ado[rand] agents on the same set of initial

positions used to train ado[𝜆train] when all other arena parameters

remain the same? [To demonstrate degree of difficulty.]

RQ2. How does the performance of ado[𝜆train] compare against

ado[rand] in an arena of varying map sizes when all other parame-

ters remain the same?

RQ3. How does the performance of ado[𝜆train] compare against

ado[rand] in an arena with varying ego agent step-sizes where all

other parameters remain the same?

RQ4. Does the adversarial agent generalize across initial condi-
tions, i.e. if we pick a small subset of the initial conditions to train

an adversarial policy, does the policy discover counterexamples on

initial states that were not part of the training set?

RQ5. Does the adversarial agent generalize to arenaswith 𝜖-bisimilar

dynamics?

For the first three RQs, we use 𝜆train = (4,𝐶, 2), where 𝐶 is the

set of all possible initial conditions for the agents. Table 1 shows

the results for RQ1. Our trained agent easily surpasses the average

performance of both 10 and 20 random adversarial agents across

all initial locations in the training set 𝐶 . The average number of

violations found by a random adversarial agent is around 10%,

while our trained adversarial agent captures the ego within the

given time limit from 68% of the initial conditions. Thus, finding

an adversarial agent policy that works for a majority of the initial

cells is sufficiently difficult. From the results for RQ2, ado[𝜆train]

Robust Testing for Cyber-Physical Systems using Reinforcement Learning MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

Experiment Parameter Success Initial Condition Rate (%)

ado[𝜆train] ado[rand]
Num. ado[rand]

RQ1

10 67.92 (163/240) 9.83 (237/2400)

20 67.92 (163/240) 10.23 (491/4800)

RQ2

Map Size

2 × 2 66.67 (8/12) 33.33 (4/12)

4 × 4 67.92 (163/240) 2.91(7/240)

5 × 5 70.33 (422/600) 1.0 (6/600)

10 × 10 9.26 (917/9900) 0.33 (33/9900)

RQ3

Ego Step-size

4 72.50 (174/240) 2.92 (7/240)

3 72.50 (174/240) 2.92 (7/240)

2 67.92 (163/240) 2.92 (7/240)

1 67.92 (163/240) 7.08 (17/240)

RQ4

𝛿 Avg. Success Initial Condition Rate

1 0.9735

0.5 0.9742

0.1 0.9883

0.01 1.0

RQ5

𝜖 Avg. Success Initial Condition Rate

3 0.89

5 0.78

Table 1: Empirical demonstration of the robustness of adver-
sarial testing.

successfully causes the ego agent to violate its specification for

varying map sizes, even as large as 10 × 10, though it was trained

on a 4 × 4 map. In contrast a random adversarial agent is rarely

successful. From the results for RQ3, we observe that the trained

adversarial agent succeeds even against an ego that uses different

step sizes than those on which the adversarial agent was trained.

For RQ4, we used 𝜆train = (10,𝐶100, 1), where𝐶100 is a set of 100
randomly sampled initial positions (note that the total number of

initial configurations is 4950). We found 100 counterexample states

during training, of which we chose 5 at random. For each of these

states x, we obtained the value of the state as maintained by the

PPO algorithm, and found all states x′ s.t. |𝑉 (x) −𝑉 (x′) | < 𝛿 . We

computed the fraction of these states that also led to counterexam-

ples. For four of the identified counterexample states, 𝛿 satisfied

the conditions outlined in Theorem 4.4, and the results are shown

in Table 1. As expected, smaller the value of 𝛿 , higher is the number

of failing states with nearby values.

For RQ5, we used 𝜆train = (10,𝐶200, 1), where 𝐶200 was a ran-
domly chosen set of 200 initial states. We defined a refinement of

the map, basically an 𝜖 × 𝜖 grid was imposed on each grid cell of

the original map. We considered an adversarial policy that basi-

cally used the same action as that of the original coarser grid cell,

while the ego agent used a refined policy. We can establish that the

resulting transition system is actually 𝜖-bisimilar to the original

transition system. For different values of 𝜖 , we picked 3 sets of 300

random initial states and tested if they led to counterexamples. The

average success rates are shown in Table 1. We see that an abstract

adversarial policy can violate the ego spec surprisingly often.

5.2 Autonomous Driving Case studies
We apply our adversarial testing framework to three case studies

from the autonomous driving domain
4
. We used the Carla driving

simulator [12] as a means to stress-test a controller driving a car in

three different scenarios, (1) freeway driving on a straight lane, (2)

freeway driving with a car merging into the ego lane, (3) driving

through a yellow light. The adversarial agent was developed in

python, and the neural networks used in the DQN examples were

developed in pytorch [30]. Figure 7 illustrates the main implemen-

tation steps of our testing framework. Since CARLA cannot make a

car travel directly at a given speed. We let the ego and adversarial

car accelerate until it reaches the target speed according to the

initial condition, then teleport it to the distance specified by the

initial condition, and then start training.

Adaptive Cruise Control. In this experiment, two vehicles are

driving in a single lane on a highway. The lead vehicle is the adver-

sarial agent. The follower vehicle avoids colliding into the leader

using an adaptive cruise controller (ACC). The purpose of adver-

sarial testing is to find robust adversarial policies that cause the

ACC system to collide with the adversarial agent. The ACC con-

troller modulates the throttle (𝛼) by observing the distance (𝑑)

to the lead vehicle and attempting to maintain a minimum safe

following distance 𝑑
safe

. The ACC controller is a Proportional-

Derivative (PD) controller with saturation. The PD term 𝑢 is equal

to 𝐾𝑝 (𝑑 − 𝑑
safe

) + 𝐾𝑑 (𝑣ado − 𝑣ego), and the controller action 𝛼 is

defined as 𝛼max if 𝑢 > 𝛼max, 𝛼min if 𝑢 < 𝛼min, and 𝑢 otherwise.

The ego specification is given in Eq. (12). Here, 𝑇 is the maximum

duration of a simulation episode and 𝑑
safe

is the minimum safe

following distance. The adversarial agent should cause the ego to

violate its spec in less than 𝑇 seconds. The adversarial constraint

specifies that it should not exceed the speed limit 𝑣
lim

and that it

should maintain a minimum speed 𝑣min. For our experiment, we

choose 𝑣min = 0.1, and 𝑑
safe

= 4.7m. The distance 𝑑 is computed

between the two front bumpers. This represents a car length of

4.54𝑚, plus a small safety margin. The state of the adversarial agent

is the tuple 𝑑, 𝑣ego, 𝑣ado. At each time step, the adversarial agent

chooses an acceleration from a discretized space which contains 3

possible actions. In this experiment, we explore two different RL

algorithms: Q-learning and a DQN algorithm with replay buffers

[29]. The average runtime using the DQN (1.93 hours) is less than

that using a Q-table (4.83 hours) and gives comparable success rates:

54.8% for the DQN agent vs. 55.79% for the agent using Q-tables.

The average time to run a single episode is between 29 and 30 sec-

onds. Fig. 4 shows 3 episodes from the same initial position for the

ego and adversarial vehicles where initially the adversarial agent

is not able to find an adversarial behavior, then in the later two

episodes the adversarial agent is able to cause the ego to collide

with it.

Lane Change Maneuvers. In this experiment, 2 vehicles are driv-

ing on a two-lane highway. The ego vehicle is controlled by a

switching controller that alternates between cruising and avoiding

4
We provide one more case study in the appendix.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best

Case Study Description STL Formula

ACC

Ego: Avoid collision G[0,𝑇] (𝑑 ≥ 𝑑
safe

) (12)

Adversarial agent: Velocity bounds G(𝑣min ≤ 𝑣ado ≤ 𝑣
lim

) (13)

Lane Ego: Avoid collision G[0,𝑇] (𝑑2 ≥ 𝑑
safe

) (14)

Change Adversarial agent: Init. pos. 𝑑
long

> 𝑑
safe

(15)

Yellow Ego: Don’t run red light ¬F[0,𝑇] (ℓ𝑅 ∧ 𝑑ℓ,ego ∈ [−𝛿, 0]) (16)

Light Adversarial agent: Speed Limits G[0,𝑇] (𝑣ado < 𝑣
lim

) (17)

Adversarial agent: Don’t run red light ¬F[0,𝑇] (ℓ𝑅 ∧ 𝑑ℓ,ado ∈ [−𝛿, 0]) (18)

Table 2: Ego Specifications and Adversarial Rules for case studies

(a) (b) (c)

Figure 4: Traces in (a) show an early episode in the driving in the lane case study. The adversary is unable to cause a collision,
and the distance between the ego vehicle and the adversarial vehicle remains above the collision threshold for the duration
of the episode. Traces in (b) show a later episode in which the adversary successfully causes a collision. Traces in (c) show a
different behavior that the adversary successfully learned to cause a collision.

a collision by applying a “hard” brake. The ego controller predicts

future adversarial agent positions based on the current state us-

ing a look-ahead distance 𝑑
lka

= 𝑑
lat

− 𝑣ado,lat𝑡lka, where 𝑑lat is
the lateral distance between the vehicles, 𝑣ado,lat is the adversarial

agent’s lateral velocity and 𝑡
lka

is a fixed look-ahead time. Based

on 𝑑
lka

, it switches between two control policies: if 𝑑
lka

> 𝑑
safe

,

then it continues to cruise, but if 𝑑
lka

≤ 𝑑
safe

, it applies the brakes.

The adversarial agent is in the left lane and attempts to merge to

the right in a way that causes the ego to collide with it. We add

a constraint to ensure that the adversarial agent should always

be longitudinally in front of the ego car when it tries to merge as

specified in Eq. (15); here 𝑑
long

is the longitudinal distance between

the cars. Without this constraint, the adversarial agent can always

induce a sideways-crash. The ego spec is given in Eq. (14). Here,

𝑑2 =
√︃
𝑑2
long

+ 𝑑2
lat

is the Euclidean distance between the two cars.

In the course of training, we observe that the behavior of the

adversarial agent improves with time. Training for 106 episodes

requires 2.53 hours and gives us a success rate of 71%, i.e. 71% of

the episodes lead to a collision. With 206 episodes, the success rate

improves to 72.35% but requires 4.71 hours of runtime. After 371

episodes, the success rate improves to 75.76% after 9.44 hours. This

experiment demonstrates that even with a relatively small time

budget, the constrained RL agent can learn a policy that induces

failures with high probability.

Generalizability. In both case studies, we observed generalizability

of the adversarial policy to different initial conditions. In the ACC

case study, we found several initial states within 𝛿 = 6.5×10
−6

that

were also counterexample states. Overall the states have smaller

values as the episode lengths are longer and the 𝛾𝑇 term causes

values to be small. We observed that for the failing initial state

(𝑣ego ↦→ 12, 𝑣ado ↦→ 12, 𝑑 ↦→ 15), we found failing initial states

with values of both 𝑣ado and 𝑑 that were both smaller and larger

than those in the original initial state. However, some failing initial

states did not have states with nearby values that were violating.

This can be attributed to the fact that the RL algorithmmay not have

converged to a value close to optimal. For the second case study, we

found that the failing initial condition (𝑣ego ↦→ 12, 𝑣ado ↦→ 12, 𝑑2 ↦→
16) has several nearby failing initial states with a small value of 𝛿

that were not previously encountered during training.

Table 3 demonstrates the generalization statistics for the ACC

case study. The leftmost column, 𝛽 , is a degradation of the RL

value function that we wish to consider. Given this degradation

of the value function, the bound column is the bound predicted

by Theorem 4.5. The values of the table are computed by first

taking an initial condition 𝑥0 that produced a counterexample and

then sampling multiple new initial conditions 𝑥 ′
0
so that |𝑉 (𝑥0) −

𝑉 (𝑥 ′
0
) | ≤ 𝛽 . The column labeled num denotes the number of such

initial conditions that are sampled. Then, we run a simulation from

Robust Testing for Cyber-Physical Systems using Reinforcement Learning MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

𝛽 bound 𝜇𝜌 𝜎𝜌 num success init failure init

0.1 0.03367 0.1287 0.0064 1225 1192 (97.3%) 33

0.2 -0.08860 0.09965 0.0074 1633 1565 (95.8%) 68

0.5 -0.45539 0.04782 0.0254 1883 1565 (83.1%) 318

1 -1.0667 -0.2932 0.1973 3159 1565 (49.5%) 1594

2 -2.2893 -0.4013 0.2678 3571 1565 (43.8%) 2006

Table 3: Demonstration of Theorem 4.5. In all cases, the mean robustness degradation is bounded below as predicted by the
theorem. Initial conditions with small value function degradation 𝛽 are more likely to yield counterexamples, as predicted by
the theory. The column success init and failure init shows the number of initial conditions that leads to a successful falsifying
case or a non-successful falsifying case.

(a) Adversarial vehicle changes lane
far away from the ego vehicle.

(b) Adversarial vehicle shifts left, then
changes lane.

(c) Adversarial vehicle shifts left sub-
stantially, then changes lane with a
steep angle.

(d) Adversarial vehicle attempts to
change lane smoothly while staying
close to the ego vehicle.

(e) The adversarial vehicle changes
lane aggressively and hits the ego ve-
hicle, violating traffic rules.

(f) Adversary changes lane and in-
duces a crash without breaking the
traffic rules

Figure 5: Adversarial vehicle behaviors across episodes in the
lane change maneuvers case study.

𝑥 ′
0
with a frozen version of the adversarial agent, i.e. one that is

not learning anymore. The column labeled 𝜇𝜌 denotes the mean

robustness of the simulation traces, and 𝜎𝜌 denotes the standard

deviation of such robustnesses. We note that in all cases, the mean

robustness is larger than the lower bound predicted by the theorem,

and that the table demonstrates that there is a high density of

counterexamples where the value function degradation is smaller,

and fewer counterexamples where the value function degradation

is larger. This demonstrates that the adversarial agent has learned

a generalizable policy, which correctly reflects the landscape of

initial conditions that lead to counterexamples. In this table, the

episode length is 𝑇 = 20 and the discount factor is 𝛾 = 0.99.

Yellow Light. In this experiment, the ego vehicle is approaching

a yellow traffic light led by an adversarial vehicle. Let the signed

distance of the ego, adversarial vehicle from the light be respectively

𝑑ℓ,ego, 𝑑ℓ,ado, and Boolean variables ℓ𝑌 and ℓ𝑅 be true if the light is

respectively yellow and red. We use the convention that 𝑑ℓ,ego >

−𝛿 if the ego vehicle is approaching the light and 𝑑ℓ,ego < −𝛿
if it has passed the light (resp. for adversarial vehicle). By traffic

rules, a vehicle is expected to stop 𝛿 meters away from the traffic

light (e.g. 𝛿 could be the width of the intersection being controlled

by the light), I.e. the vehicle should stop at 0. Thus, if 𝑑ℓ,ego ∈
[−𝛿, 0] when the light turns red, it has run the red light. This ego

specification is shown in Eq. (16). The traffic light is modeled as a

non-adversarial agent, it merely changes its state based on a pre-

determined schedule. The goal of the adversarial vehicle is to make

the ego vehicle run the red light. The rule-based constraints on

the adversarial vehicle are that it may not drive backwards and it

may not run the red light (shown in Eqs. (17),(18) resp.). The state

of the adversarial agent includes the speed of both vehicles, and

relative distance between the vehicles. At the start of an episode,

𝑑ℓ,ado = 30, and ℓ𝑌 is true, and ℓ𝑅 becomes true after 𝜏 = 2 seconds.

The ego controller is a switched mode controller that either uses

an ACC controller or applies the maximum available deceleration

𝑎ego,max. At time 𝑡 < 𝜏 , let 𝑑 (𝑡) denote the distance required for the
ego vehicle to come to a stop before the light turns red by applying

𝑎ego,max. We can calculate𝑑 (𝑡) as 𝑣ego · (𝜏−𝑡)+0.5 ·𝑎ego,max · (𝜏−𝑡)2.
Then, at time 𝑡 , the ego controller chooses to cruise if 𝑑 (𝑡) + 𝛿 <

𝑑ℓ,ego, and brakes otherwise.

Figure 6 shows that the ego vehicle maintains an appropriate

distance to the lead car, but that it starts decelerating too late and is

thus caught in the intersection when light turns red. The adversar-

ial vehicle successfully clears the intersection while the light is still

yellow, consistent with its constraints. The adversarial agent we

train uses the DQN RL algorithm. After 162 episodes of training,

approximately 60% of its episodes find a violation of the ego specifi-

cation with a runtime of 1.88 hours. After 247 episodes, the success

rate increases to 64% with a runtime of 2.59 hours. This case study

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Xin Qin, Nikos Aréchiga, Jyotirmoy Deshmukh, and Andrew Best

demonstrates that our adversarial testing procedure succeeds even

in the presence of multiple adversarial rules and an interesting ego

specification.

Figure 6: Yellow light case study. The green region represents
the region in which the ego vehicle will run the yellow light.
The adversary learns to drive the ego car into the target re-
gion.

Figure 7: An illustration of our implementation structure

6 RELATEDWORK AND CONCLUSIONS
Adaptive Stress Testing. The work of [6, 23] is closely related to our

work. In this work, the authors also use deep RL (and related Monte

Carlo Tree search) algorithms to seek behaviors of the vehicle under

test that are failure scenarios. There a few key differences in our

approach. In [23], reward functions (that encode failure scenarios)

are hand-crafted and require manual insight to make sure that

the RL algorithms converge to behaviors that are failure scenarios.

Furthermore, the constraints on the adversarial environment are

also explicitly specified. The approach in [6] uses a subset of RSS

(Responsibility-Sensitive Safety) rules that are used to augment

hand-crafted rewards to encode failure scenarios by the ego and

responsible behavior by other agents in a scenario. In specifying

STL constraints, we remove the step of manually crafting rewards.

And the robustness value of STL makes our theorem possible.

Falsification. There is extensive related work in falsification of cyber-
physical system. Most falsification techniques use fixed finitary pa-

rameterization of system input signals to define a finite-dimensional

search space, and use global optimizers to search for parameter

values that lead to violation of the system specification. A detailed

survey of falsification techniques can be found in [8]. A control-

theoretic view of falsification tools is that they learn open-loop

adversarial policies for falsifying a given ego model while our ap-

proach focuses on closed-loop policies.

Falsification using RL. Also close to our work are recent approaches

to use RL [38] and deep RL [1] for falsification. The key focus in

work [38] is on solving the problem of automatically scaling quan-

titative semantics for predicates and effective handling of Boolean

connectives in an STL formula. The work in [1] focuses on a smooth

approximation of the robustness of STL and thoroughly benchmarks

the use of different deep RL solvers for falsification.

Comparison. Compared to previous approaches, the focus of our pa-

per is on reusability of dynamically constrained adversarial agents

trained using RL techniques. We identify conditions under which

a trained adversarial policy is applicable to a system with a differ-

ent initial condition or different dynamics with no retraining. This
can be of immense value in an incremental design and verifica-

tion approach. The other main contribution is that instead of using

a monolithic falsifier, our technique packs multiple, dynamically
constrained falsification engines as separate agents; dynamic con-

straints allow us to specify hierarchical traffic rules. Also, previous

approaches for falsification do not consider dynamic constraints on

the environment at all, only simple bounds on the parameter space.

Finally, in our approach, both specifications and constraints are

combined into a single reward function which can then utilize off-

the-shelf deep RL algorithms. In comparison to [1, 20, 24, 38], our

encoding of STL formulas into reward functions is simplistic as it is

not the main focus of this paper; we defer extensions that consider

nuanced encoding of STL constraints to future work. The emphasis

in [1] is to use the training process (which includes exploration) to

find a (possibly non-robust) single falsifying behavior. Work [39]

use fuzzing algorithms to find multiple scenarios that cause the ego

to fail with coverage measures, whereas, in our work we focus on

training the RL agent to obtain a robust falsifying policy.

Conclusions. Our work addresses the problem of automatically

performing constrained stress-testing of cyberphysical systems.

We use STL to specify the target against which we are testing and

constraints that specify reasonableness of the testing regime. We

are using STL as a lightweight, high-level programming language

to loosely specify the desired behaviors of a test scenario, and lever-

aging RL algorithms to determine how to execute those behaviors.

The learned adversarial policies are reactive, as opposed to test-

ing schemes that rely on merely replaying pre-recorded behaviors,

and under limited conditions can even provide valuable testing

capability to modified versions of the system.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their feedback. The National Science Foundation supported this

work through the following grants: CAREER award (SHF-2048094),

CNS-1932620, CNS-2039087, FMitF-1837131, CCF-SHF-1932620, the

Airbus Institute for Engineering Research, and funding by Toyota

R&D and Siemens Corporate Research through the USC Center for

Autonomy and AI.

Robust Testing for Cyber-Physical Systems using Reinforcement Learning MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

REFERENCES
[1] Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan, and Jianye Hao.

2018. Falsification of cyber-physical systems using deep reinforcement learning.

In International Symposium on Formal Methods. Springer, 456–465.
[2] Ezio Bartocci, Roderick Bloem, Benedikt Maderbacher, Niveditha Manjunath,

and Dejan Ničković. 2021. Adaptive testing for specification coverage in CPS

models. IFAC-PapersOnLine 54, 5 (2021), 229–234.
[3] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded

Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-based

monitoring of cyber-physical systems: a survey on theory, tools and applications.

Lectures on Runtime Verification: Introductory and Advanced Topics (2018), 135–
175.

[4] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. 2018. Graph

games and reactive synthesis. In Handbook of Model Checking. Springer, 921–962.
[5] Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry Yershov,

Scott Pendleton, James Fu, and Emilio Frazzoli. 2019. Liability, Ethics, and Culture-

Aware Behavior Specification using Rulebooks. In ICRA.
[6] Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J Kochenderfer.

2019. Adaptive stress testing with reward augmentation for autonomous vehicle

validatio. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,
163–168.

[7] Anthony Corso, Robert Moss, Mark Koren, Ritchie Lee, and Mykel Kochenderfer.

2021. A survey of algorithms for black-box safety validation of cyber-physical

systems. Journal of Artificial Intelligence Research 72 (2021), 377–428.

[8] Jyotirmoy V Deshmukh and Sriram Sankaranarayanan. 2019. Formal techniques

for verification and testing of cyber-physical systems. In Design Automation of
Cyber-Physical Systems. Springer, 69–105.

[9] Rayna Dimitrova and Rupak Majumdar. 2014. Deductive control synthesis for

alternating-time logics. In 2014 International Conference on Embedded Software
(EMSOFT). IEEE, 1–10.

[10] Wenhao Ding, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, and Ding Zhao.

2023. A survey on safety-critical driving scenario generation—A methodological

perspective. IEEE Transactions on Intelligent Transportation Systems (2023).
[11] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In Formal Modeling and Analysis of Timed Systems.
Vol. 6246. Springer Berlin Heidelberg, Berlin, Heidelberg, 92–106.

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[13] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. 2019. Compositional fal-

sification of cyber-physical systems with machine learning components. Journal
of Automated Reasoning 63 (2019), 1031–1053.

[14] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-

vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia. 2019. Verifai: A

toolkit for the formal design and analysis of artificial intelligence-based systems.

In Computer Aided Verification: 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer, 432–442.

[15] G. E. Fainekos and G. J. Pappas. 2009. Robustness of Temporal Logic Specifications

for Continuous-time signals. Theoretical Computer Science (2009).
[16] Norm Ferns, Prakash Panangaden, and Doina Precup. 2011. Bisimulation Metrics

for Continuous Markov Decision Processes. SIAM J. Comput. 40, 6 (2011), 1662–
1714.

[17] Thomas Ferrère, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James

Kapinski. 2019. Interface-aware signal temporal logic. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control.
57–66.

[18] Shromona Ghosh, Dorsa Sadigh, Pierluigi Nuzzo, Vasumathi Raman, Alexandre

Donzé, Alberto L Sangiovanni-Vincentelli, S Shankar Sastry, and Sanjit A Seshia.

2016. Diagnosis and repair for synthesis from signal temporal logic specifications.

In Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control. 31–40.

[19] Antoine Girard and George J. Pappas. 2011. Approximate Bisimulation: A Bridge

Between Computer Science and Control Theory. European Journal of Control 17,
5 (Jan. 2011), 568–578. https://doi.org/10.3166/ejc.17.568-578

[20] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. 2020.

Reward Shaping for Reinforcement Learning with Omega-Regular Objectives.

arXiv:2001.05977 [cs.LO]

[21] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,

Emese Thamo, Min Wu, and Xinping Yi. 2020. A survey of safety and trust-

worthiness of deep neural networks: Verification, testing, adversarial attack and

defence, and interpretability. Computer Science Review 37 (2020), 100270.

[22] Stefan Jakšić, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Ničković.

2018. Quantitative Monitoring of STL with Edit Distance. Formal Methods in
System Design 53, 1 (Aug. 2018), 83–112. https://doi.org/10.1007/s10703-018-

0319-x

[23] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J Kochenderfer. 2018. Adaptive

stress testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles Symposium

(IV). IEEE, 1–7.
[24] Karen Leung, Nikos Aréchiga, and Marco Pavone. 2019. Backpropagation for

parametric STL. In 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 185–192.
[25] Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M Murray. 2013. Synthesis

of reactive switching protocols from temporal logic specifications. IEEE Trans.
Automat. Control 58, 7 (2013), 1771–1785.

[26] O. Maler and D. Nickovic. 2004. Monitoring Temporal Properties of Continuous

Signals. Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems 3253 (2004), 152–166.

[27] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In FORMATS. Springer, 152–166.
[28] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of

Continuous Signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with

Deep Reinforcement Learning. In NIPS. http://arxiv.org/abs/1312.5602 arXiv:

1312.5602.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems 32, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Curran

Associates, Inc., 8024–8035.

[31] Nijat Rajabli, Francesco Flammini, Roberto Nardone, and Valeria Vittorini. 2020.

Software verification and validation of safe autonomous cars: A systematic liter-

ature review. IEEE Access 9 (2020), 4797–4819.
[32] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and

Sanjit A Seshia. 2015. Reactive synthesis from signal temporal logic specifications.

In Proceedings of the 18th international conference on hybrid systems: Computation
and control. 239–248.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[34] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning: an intro-
duction (second edition ed.). The MIT Press, Cambridge, MA.

[35] Cumhur Erkan Tuncali and Georgios Fainekos. 2019. Rapidly-exploring ran-

dom trees-based test generation for autonomous vehicles. arXiv preprint
arXiv:1903.10629 (2019).

[36] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.

2018. Simulation-based adversarial test generation for autonomous vehicles with

machine learning components. In 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 1555–1562.

[37] Zhenya Zhang, Paolo Arcaini, and Ichiro Hasuo. 2020. Hybrid System Falsifi-

cation Under (In)Equality Constraints via Search Space Transformation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020).

[38] Zhenya Zhang, Ichiro Hasuo, and Paolo Arcaini. 2019. Multi-Armed Bandits

for Boolean Connectives in Hybrid System Falsification. In Computer Aided
Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing,
Cham, 401–420.

[39] Yuan Zhou, Yang Sun, Yun Tang, Yuqi Chen, Jun Sun, Christopher M Poskitt, Yang

Liu, and Zijiang Yang. 2023. Specification-based Autonomous Driving System

Testing. IEEE Transactions on Software Engineering (2023).

https://doi.org/10.3166/ejc.17.568-578
https://arxiv.org/abs/2001.05977
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1007/s10703-018-0319-x
http://arxiv.org/abs/1312.5602

	Abstract
	1 Introduction
	2 Problem Statement and Background
	2.1 Adversarial Testing through Policy Synthesis
	2.2 Policy synthesis through Reinforcement Learning

	3 Learning Constrained Adversarial Agents
	4 Rationale for Robust Testing
	5 Case Studies
	5.1 Benchmarking Generalizability
	5.2 Autonomous Driving Case studies

	6 Related Work and Conclusions
	References

