Robust Testing for Cyber-Physical Systems using Reinforcement
Learning

Xin Qin
University of Southern California
Los Angeles, USA
xingin@usc.edu

Jyotirmoy Deshmukh
University of Southern California
Los Angeles, USA
jdeshmuk@usc.edu

ABSTRACT

In this paper, we propose a testing framework for cyber-physical
systems (CPS) that operate in uncertain environments. Testing such
CPS applications requires carefully defining the environment to
include all possible realistic operating scenarios that the CPS may
encounter. Simultaneously, the process of testing hopes to identify
operating scenarios in which the system-under-test (SUT) violates
its specifications. We present a novel approach of testing based
on the use of deep reinforcement learning for robust testing of a
given SUT. In a robust testing framework, the test generation tool
can provide meaningful and challenging tests even when there
are small changes to the SUT. Such a method can be quite valu-
able in incremental design methods where small changes to the
design does not necessitate expensive test generation from scratch.
We demonstrate the efficacy of our method on three example sys-
tems in autonomous driving implemented within a photo-realistic
autonomous driving simulator.
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1 INTRODUCTION

Autonomous and semi-autonomous cyber-physical systems (CPSs)
such as vehicles with advanced driver assist systems (ADAS), un-
manned aerial vehicles (UAVs), and medical devices use sophisti-
cated control and planning algorithms to safely accomplish their
mission objectives. However, in order to enable autonomous op-
eration in uncertain and previously unseen environments, such
CPSs increasingly use learning-enabled components (LECs) for per-
ception and decision-making. There have been many approaches
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for open-loop testing of LECs (See [10, 21, 31] for excellent sur-
veys on this topic). Of greater relevance to this paper is work on
closed-loop testing of learning-enabled CPSs. The closed-loop test-
ing problem seeks to identify environment scenarios under which
the CPS behaves in an undesired fashion.

Most techniques for closed-loop testing (including the one pre-
sented in this paper) are search-based methods; they can be divided
into two classes based on the LEC that is being tested: (1) tech-
niques to test perception components [13, 14, 36], and (2) those to
test decision-making/control logic [6, 7, 23, 35]. Irrespective of the
LEC being tested, a key challenge for closed-loop testing is appro-
priately scoping the search problem. If the environment model to
generate test scenarios is allowed to be too liberal, falsifying safety
conditions of the CPS becomes a trivial exercise. For example, con-
sider the ADAS subsystem of adaptive cruise control (ACC); here,
the system-under-test (SUT) or the ego car attempts to maintain
a safe following distance from a lead vehicle. If the lead vehicle is
allowed to travel backwards on a highway, then it is impossible to
design safe ACC logic, and finding SUT violations of safety is trivial.
Furthermore, it is important to have an unambiguous mathematical
description of the desired behavior of the SUT. In this paper, we
address both challenges through the use of the logic-based speci-
fication language of Signal Temporal Logic (STL) [26] to express
both constraints on the environment as well as safety specifications
for the SUT.

At a high level, our approach is similar to input-constrained
falsification of STL properties [2, 17]. Falsification of STL properties
is a well-studied area with many approaches (see [3, 8] for surveys).
More recent work on falsification has focused on the use of deep
reinforcement learning (RL) for falsifying STL formulas [1][37, 38].
Related work on adaptive stress testing [7] also uses deep RL, but
the authors incorporate environment constraints and undesirable
behavior by manually encoding them in the reward function used by
the deep RL algorithm. However, none of the previous approaches
have considered the robust closed-loop testing problem.

In closed-loop testing, the emphasis is on identifying not only the
environment scenarios that cause the SUT to violate its safety spec-
ifications, but also to discover a test policy that can react to changes
in the SUT. For example, we would like a test generation algorithm
to be produce vulnerable scenarios even when there is a change to
the initial conditions of the SUT’s state variables, changes to the
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SUT’s system dynamics, or minor changes to the LECs. Such an ap-
proach is particularly useful in industrial development techniques
that rely on the paradigm of continuous integration and pre-merge
tests. Here, changes to the software of the CPS should be small, and
each should pass a suite of pre-merge tests before they are allowed
to be merged into the main development branch. More complex
tests and analytics may be run nightly or on longer timelines, but
pre-merge tests are meant to be lightweight, and need to be able to
run quickly to avoid hindering developer productivity. Running a
full falsification procedure at pre-merge time is not feasible, and
pre-recorded falsification traces are not robust to changes in the
SUT.

In this paper, we show that our specific use of STL-based en-
vironment constraints and SUT specifications allows us to train
adversarial policies that are robust test generators. In other words,
the policy learned by our deep RL algorithm transfers to the modi-
fied model under certain conditions that characterize the degree
of model change. Thus, our procedure has the potential to be in-
valuable in an incremental design framework where restarting
closed-loop testing from scratch after every modification to the
LEC may be expensive. Furthermore, the value function induced
by the RL policy allows quantifying regions of the state space that
are more sensitive to counterexamples, allowing designers to focus
on those simulation-based scenarios that are likely to transfer to
real-world settings.

In summary, our main contributions are:

(1) We propose a deep reinforcement learning based framework
where various sources of uncertainties in the environments are
modeled as (one or more) agents that behave according to a reactive
policy that we train through simulations.

(2) We restrict the agents to respect dynamic constraints (expressed
in STL) while causing an ego agent to violate its specification (also
expressed in STL).

(3) We formulate an automatic reward shaping mechanism that
guarantees that the joint behavior of the environment agents and
the SUT is such that: the environment constraints are satisfied,
while the SUT violates its specifications.

(4) We identify assumptions under which the learned adversarial
policies are robust. In particular we show that if the learned adver-
sarial policy demonstrates a violation of the SUT specification, then
this policy will transfer to agents that (1) start from nearby initial
configurations, and (2) have different dynamics than the original
ego agent.

(5) We demonstrate the efficacy of our approach on three case-
studies from the autonomous driving domain. We show that aspects
such as other cars, traffic lights, pedestrians, etc. can be modeled
as adversarial agents. We consider (1) an adaptive cruise control
example where the leading car is modeled as an adversarial agent,
(2) a controller that ensures safety during a lane merge scenario, and
(3) a controller that ensures safety during a yellow light scenario.

The rest of the paper is organized as follows. In Section 2 we provide
the background and problem definition. We define rewards to be
used by our RL-based testing procedure in Sec. 3. We show how
the adversarial agents generalize in Section 4, and provide detailed
evaluation of our technique in Sec. 5. Finally, we conclude with a
discussion on related work in Section 6.
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2 PROBLEM STATEMENT AND BACKGROUND

We first introduce the formal description of a multi-agent system
as a collection of deterministic dynamical agents.

Definition 2.1 (Deterministic Dynamical Agents). An agent H is
a tuple (X, A, T, Xinit, ), where X is a set of agent states, A is the
set of agent actions, T is a set of transitions of the form (x, a,x”),
where a € A, Xjnit C X is a set of designated initial states for the
agent, and finally the policy! 7 is a function mapping a state in X
to an action in A.

A multi-agent system S = {ego,adoy,...,ado} is a set of
agents, with a designated ego agent ego, and a non-empty set of ad-
versarial agents adoy, ..., adog. The state-space of the multi-agent
system can be constructed as a product space of the individual
agent state spaces, and the set of transitions of the multi-agent sys-
tem corresponds to the synchronous product of the transitions of
individual agents. The transitions of the multi-agent system when
projected to individual agents are consistent with individual agent
behaviors. A behavior trajectory for an agent is thus a finite or infi-
nite sequence (t,X¢), (1, X;), ..., where x; € X and t; € R20 We
use s to denote a trajectory variable, i.e. a function mapping ¢; to x;,
i.e. s(t;) = x;. In many frameworks used for simulating multi-agent
systems, it is common to consider timed trajectories with a finite
time horizon ty, and a fixed, discrete time step, A = tj41 — t;, Vi.

Signal Temporal Logic. Signal Temporal Logic (STL) [27] is a
formalism to describe properties of real-valued, dense-time trajec-
tories. STL formulas are evaluated over behavior trajectories. An
atomic STL formula is a predicate of the form f(s) ~ ¢, where s is
a trajectory variable, f is a real-valued function from X to R, ~is a
comparison operator, i.e. ~¢€ {<, <,>, >} and ¢ € R. STL formulas
are constructed recursively using the Boolean logical connectives
such as negations (—) and conjunctions (A) and the temporal oper-
ator (U). It is often convenient to define Boolean connectives such
as disjunction (V), implication (=) using the usual equivalences
for Boolean logic. It is also convenient to define temporal operators
Fr¢ as shorthand for TUj¢, and Gr¢ as shorthand for —=F;—¢. Each
temporal operator is indexed by the time interval® I of the form
[a, b], where a,b € R0,

STL has both Boolean semantics that recursively define the truth
value of the satisfaction of an STL formula in terms of the satisfac-
tion of its subformulas and quantitative semantics that are used to
map a trajectory and a formula to a real value known as the robust
satisfaction value or simply, the robustness. Intuitively, the robust-
ness is proportional to the distance between a given signal s and
the set of signals satisfying the formula ¢ [15]. There are numerous
definitions for quantitative semantics of STL, for example [22, 28].
The actual definition to be used is irrelevant to this paper as long as
it is efficiently computable. We will assume that the robustness has

10ur framework can alternatively include stochastic dynamical agents, where T is
defined as a distribution over (X X A x X)), and the control policy 7 is a stochastic
policy representing a distribution over actions conditioned on the current state of the
agent, i.e. 7(a | x). Also, states X and actions A can be finite sets, or can be dense,
continuous sets.

Traditional syntax of STL permits intervals that are open on either or both sides;
for signals over discrete-time steps, this provision is not required. Furthermore, we
exclude intervals that are not bounded above as we intend to evaluate STL formulas
on finite time-length traces.
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(a) Case Study I: Driving in lane with lead ve- (b) Case Study II: Left vehicle merges in front.

hicle.
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(c) Case Study III: Yellow light running.

Figure 1: Simulation environments for case studies in the CARLA simulator[12].

been clamped to be in an interval [ pmin, pmax], Wwhere pmax > 0
and pmin = —Pmax-

When evaluating an STL formula, each time step requires an
application of the functions f that appear in the formula. We denote
a signal s satisfying a formula ¢ at time t by s,¢ = ¢, and s = ¢ is
by convention defined as s, 0 |= ¢. In [11, 15], the authors show that
plp,s) 20 = s E ¢,and p(p,s) <0 = s £ ¢. Following
the notation in [11], we call the signal variables appearing in the
formulas as primary signals, and the intermediate results that arise
from function applications as secondary signals.

Problem Definition: Testing with Dynamically Constrained
Adversaries. Given a behavior of the multi-agent system, let the
projection of the behavior onto agent H be denoted by the signal
variable s¢;. Formally, the problem we wish to solve can be stated
as follows:

(1) Given a spec yego 0on the ego agent,

(2) Given a set of constraints @,g,; on adversarial agent H;,

(3) Find a multi-agent system policy that can generate behaviors
such that: Vi : S0, F ®ado;i A Sego [ Yego-

In other words, we aspire to generate a compact representation

for a possibly infinite number of counterexamples to the correct
operation of the ego agent.

2.1 Adversarial Testing through Policy
Synthesis

In contrast to falsification approaches, we assume a deterministic
(or stochastic) dynamical agent model for the adversarial agents
(as defined in Def. 2.1), i.e. the i*" adversarial agent is specified
as a tuple of the form (Xj, A;, T;, Xinitj, 7i). We assume that ini-
tially all agents have a randomly chosen policy 7;. For adversarial
agent ado;, let IT; = Al).(i denote the set of all possible policies. Let
I1; (@adoi) be the set of policies such that for any 7 € IT; (@aq0i), us-
ing 7 guarantees that the sequence of states of agent ado; satisfies
Pado;- Similarly, let TT; (—/ego) be the set of policies that guarantees
that the sequence of states for the ego agent ego does not satisfy
Yego- The problem we wish to solve is: for each i, find a policy in
0; (—~¥ego) N i (@adoi)-

One approach to solve this problem is to use a reactive synthesis
approach, when specifications are provided in a logic such as LTL

or ATL [4, 9, 25]. There is limited work on reactive synthesis with
STL objectives [18, 32], mainly requiring encoding STL constraints
as Mixed-Integer Linear Programs; this may suffer from scalability
in multi-agent settings. We defer detailed comparison with reactive
synthesis approaches to future work. In this paper, we propose using
the framework of deep reinforcement learning (RL) for controller
synthesis with a procedure for automatically inferring rewards
from specifications and constraints.

2.2 Policy synthesis through Reinforcement
Learning

Reinforcement learning (RL) [34] and related deep reinforcement
learning (DRL) [29] are procedures to train agent policies in deter-
ministic or stochastic environments. In our setting, given a mul-
tiagent system S = {ego, adoy,...,adog}, we wish to synthesize
a policy . for each adversarial agent adog. We can model mul-
tiple adversarial agents as a single agent whose state is an ele-
ment of the Cartesian product of the state spaces of all agents, i.e.,
X = XegoXXado, X* * -XXadoy > and the action of this single agent is a
tuple of actions of all adversarial agents, i.e. A = Aygo, X. .. X Aado, -

In each step, we assume that the agent is in state x € X and
interacts with the environment by taking action a € A. Then, the
environment (i.e., the transition relation of the adversarial and the
ego agents) picks a next state x” s.t. (x,a,x”) € T, and a reward
R(x, a). The reward provides reinforcement for the constrained
adversarial behavior, and will be elaborated in Section 3. The goal
of the RL agent is to learn a deterministic policy 7(x), such that
the long term payoff of the agent from the initial state (i.e. the
discounted sum of all rewards from that state) is maximized. As is
common in RL, we define the notion of a value function V in Eq. (1);
this is the expected reward over all possible actions that may be
taken by the agent. In a deterministic environment, the expectation
disappears.

o)

Vi(x:) =B Z }’kR((XHk)’ arek)
k=0

apk = m(Xpyk) ] (1)

RL algorithms use different strategies to find an optimal policy 7+,
that for all x is defined as 7" (x) = arg max, V;(x). We assume that
the state of the agent at time £y, i.e. X¢ is in Xjpit.
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We now briefly review a classic model-free RL algorithm called Q-
learning and summarize two deep RL algorithms: Deep Q-learning
and Proximal Policy Optimization (PPO). In Q-learning, we learn a
state-action value function q(x, a), which represents the believed
value of taking action a when in state x. Note that V (x) = max, q(x, a).
In Q-learning, the agent maintains a table whose rows correspond
to the states of the system and columns correspond to the actions.
The entry q(x, a), encodes an approximation to the state-action
value function computed by the algorithm. The table is initialized
randomly. At each time step t, the agent uses the table to select
an action a; based on an e-greedy policy, i.e. it chooses a ran-
dom action with probability ¢, and with probability 1 — ¢, chooses
argmax,. 4q(x, a). Next, at time step ¢ + 1, the agent observes the
reward received R;4+1 as well as the new state x;+1, and it uses this
information to update its beliefs about its previous behavior. During
the training process, we sample the initial state of each episode
with a probability distribution p(x) that is nonzero at all states.
After a sufficient number of iterations, all states will eventually be
selected as the initial state. We also fix the policies of the adversar-
ial agents to be e-soft. This means that for each state x and every
action a, 7(a|x) > ¢, where ¢ > 0 is a parameter. Random sampling
of initial states and e-soft policies ensure that the agent explores
and avoids converging prematurely to local optima. We assume
that during the training process the agent policies are stochastic,
epsilon-soft policies, i.e. the policy represents a distribution over a
set of actions conditioned on the current state. However, at the end
of training, we interpret the policy as deterministic by picking the
most probable action for each state.

Deep RL. Deep RL is a family of algorithms that make use of Deep
Neural Networks (DNNs) to represent either the value or the policy
of an agent. Deep Q-learning [29], is an extension of Q-learning
where the table q(s, a) is approximated by a DNN, ¢(s, a, w), where
w are the network parameters. Deep Q-learning observes states
and selects actions similarly to Q-learning, but it additionally uses
experience replay, in which the agent stores previously observed
tuples of states, actions, next states, and rewards. At each time step,
the agent updates its q-function with the currently observed experi-
ence as well as with a batch of experiences sampled randomly from
the experience replay buffer®. The agent then updates its approxi-
mation network by gradient descent on the quadratic loss function
L = (yr — q(x1, a1, w))?, where y; = Rpy1 +y maxg q(xXr41,a,w).
In the case that x; is a terminal state, it is common to assume that
all transitions are such that x;1+1 = x; and R; = 0. Although these
learning algorithms learn the state-action value function ¢(x, a),
in the theoretical exposition that follows, we will use the state
value function V (x) for simplicity. The optimal state value function
can be obtained from the optimal state-action value function by
V*(x) = max, g*(x, a). PPO [33] is a state-of-the-art policy gradi-
ent algorithm that performs gradient-based updates on the policy
space directly while ensuring that the new policy is not too far
from the old policy.

3Tabular Q-learning is guaranteed to converge to the optimal value function [34]. On
the other hand, DQN may not converge, but it will eventually find a counterexample
trace if it exists. In practice, DQN performs well and finds effective value functions,
even if its convergence cannot be theoretically guaranteed.
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3 LEARNING CONSTRAINED ADVERSARIAL
AGENTS

Next, we describe how we construct a reward function that en-
ables training constrained adversarial agents. The reward function
needs to encode two aspects: (1) satisfying adversarial constraints,
(2) violating ego specification. We assume that adversarial con-
straints are hierarchically ordered with priorities, inspired by the
Responsibility-Sensitive Safety rules for traffic scenarios in [5].

Definition 3.1 (Constrained adversarial reward). Suppose from
initial state x¢ the agent has produced a behavior trace s(x¢) of
duration T. We distinguish two cases.

° Case 1: All adversarial constraints are strictly satisfied, i.e.
p(c,s(x¢)) > 0 for each constraint ¢ € @,4,- In this case, the reward
will be the robustness of the adversarial specification.

0
e { p(~egors(%0))

. Case 2: Not all adversarial constraints are strictly satisfied.
Let ¢ be the highest priority rule that is not strictly satisfied, i.e.
the highest priority rule such that p(c,s(x¢)) < 0. Then, every
constraint with priority higher than ¢ will contribute zero, whereas
every constraint with priority less than or equal to ¢ will contribute
Pmin. Let M be the number of constraints with priority less than or

equal to c.
0
7

—Mpmin

ift<T
ift=T @)

ift<T
ifr=T )

The following lemma shows that it is not possible for an adver-
sarial agent to attain a high reward for satisfying lower priority
constraints at the expense of higher priority constraints. The proof
is straightforward (shown in the appendix).

LEMMA 3.2 (SOUNDNESS OF THE REWARD FUNCTION). Consider
two traces, s; and sp. Suppose that the highest priority constraint
violated by s1 is c1 and the highest priority constraint violated by
sp is ca. Suppose c1 has lower priority than ca. Then, the reward
for trajectory 1 will be higher than the reward for trajectory 2, i.e.
R(sl) > R(Sz).

PROOF. Let ny be the number of rules with priority less than or
equal to cq. Similarly, let ny the number of rules with priority less
than or equal to ¢;. Then, R(s1) = —n1pmin and R(sz) = —n2pmin.
Since ny > np by the assumptions of the lemma, the result follows.

O

Pipeline. Our training pipeline is illustrated in Figure 2. Given a
scenario composed of interacting agents,

(E, Re)s (H1>Rl)y (R (Hn,Rn)’

the goal is to learn transition distributions Ti, ..., T, and policies
71, ..., 7y for the adversarial agents such that each adversary sat-
isfies its rules Ry, but the ego is not able to satisfy its rules R,.
The ego agent interacts with several adversarial agents as part of
a simulation. The adversarial agents are able to observe the state
of the ego as well as of the other adversarial agents, and they may
update their policies.
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New Episode.

Simulator §

56— K)o w5 1),25(0)

s

UL(0,7) Adversarial Agent

Figure 2: The ego agent E is embedded in a simulation with
a collection of adversarial agents Hle, which learn (possibly
from a bank of past experience) to stress-test the ego by a
particular reward function as derived from the constraints
for the adversary and the ego specification.

4 RATIONALE FOR ROBUST TESTING

In this section we show how our RL-based testing approach makes
the testing procedure itself robust by learning a closed-loop policy
for testing. We first introduce some definitions that help us state
the lemmas and theorems about robust testing.

Definition 4.1 (Definition 2 of [11]). Let fi : X — R be any
computable function that appears in an STL formula ¢. We call the
vector of variables in s the primary signals of ¢, and their images

by f secondary signals, {yy}.

Next, we formalize the notion of distance between signals, and
Lemma 4.3 then tells us that if two signals have “nearby values”
and also generate nearby secondary signals, then if one of them
robustly satisfies an STL formula, the other will also satisfy that
formula.

Definition 4.2 (Distance between signals). Given two signals s and
s’ with identical value domains S and identical time domains T, and
a metric dg on S, the distance between s and s, denoted as ||s — ||
is defined as: sup,cp ds(s(t), s ().

Now we are ready to present our theorems about robust testing.
First, we show generalizability across initial conditions in two steps:
(1) In Theorem 4.4, we assume that the RL algorithm has converged
to the optimal value function, and that it has used this value func-
tion to find a counterexample trace s(xg). We consider a new state
x;, and want to bound the degradation of the robustness function
of the specification p(—tego, s(x())- (2) In Theorem 4.5, we relax
this strong assumption and identify conditions under which gener-
alization can be guaranteed even with approximate convergence.

LEmMMA 4.3 (THEOREM 11N [11]). Ifp(e,s,t) = &, then for every
signal s’ s.t. every secondary signal satisfies ||y, — yl’C < 6, the
following is true: (s E ¢) = (s’ E ¢).

THEOREM 4.4. Suppose that the adversarial agent has converged to
the optimal value function V*(x), and that it has found a trace s(xg)
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7 > 0 while satisfying all of the adversarial constraints. Given a new
state x{, such that |[V*(xo) — V*(x})| < § with § < YT | pminl, the
adversary will be able to find a new trajectory s(x;) that satisfies
all of the constraints. Furthermore, the robustness of the specification

—ego OVer the new trace will be at least T — 5/yT.

Proor. We can expand the optimal value function at state x¢ as
V*(xp) = ZLO Y'R;, where R; is the reward function defined in
Definition 3.1. Then, the optimal value function at xg is V*(x¢) =
yTz. Suppose for a contradiction that the new trajectory s(xg) vio-
lates some number M of constraints. Then, the following equations
show that the two states must actually differ by a large amount,
much larger than §, leading to a contradiction. From Definition 3.1
we have

V*(X(’)) = _YTMPmiru (4)
[V*(xh) = V*(x0)| = yT v+ My ppin > 6, (5)

which contradicts the assumption of the theorem. As the constraints
will be satisfied by s(x;), their contribution to the value function

at x(’) will be zero. Then, for the ond part of the theorem we can
expand the optimal value function as:

Y7 p(~egor s(x0) =1 p(~egors(xp))|  (6)

By assumption the above terms are < §, which gives us that

[V* (x0)-V*(xp)|=

1)
|p(~Yegos 5(x0)) = p(~Vego, s(xp)))| < i )
and the theorem follows. ]

Note that if § is chosen as a small enough perturbation such
that 7 — §/ yT > 0, then the new trace is also a trace in which the
adversary causes the ego to falsify its specification.

The tabular Q-learning algorithm converges asymptotically to
the optimal value function, meaning that for any e, there exists a k
such that at the k-th iteration, the estimate V} differs from the opti-
mal value function by at most a, i.e. Vx € X, |V*(X) - Vi (x)| <a.
Some RL algorithms have even stronger guarantees. For example,
Theorem 2.3 of [16], states that running the value iteration algo-
a(l-y)

2y
produces a value function that converges within « of the value
function \Vk(xo) - V*(X0)| < a. While useful for theoretical re-
sults, value iteration does not scale to problems with large state
spaces. The following theorem states that if the RL algorithm has
found a value function that is near optimal, the agent will be able
to generalize counterexamples across different initial states.

Finally, in Theorem 4.7, we show generalizability when the ego
agent dynamics change. The main idea is that if the new dynam-
ics have an e-approximate bisimulation relation to the original
dynamics, then we can guarantee generalizability.

rithm until iterates of the value function differ by at most

THEOREM 4.5. Suppose that we have truncated an RL algorithm
at iteration k. Suppose that, from the guarantees of this particular
RL algorithm, we are within a of the optimal value function, i.e. for
everyx, |Vk (x0) = V* (x0)| < a. Further suppose that the adversarial
agent has found a falsifying trace from state xo with robustness

7, i.e. p(—Yego, $(X0)) = 7. Now consider a new state x; such that

that falsifies the target specification /ego With robustness p(—ego, s(x0)) = the degradation of our approximate value function is at most f, i.e.
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|Vk(x0) - Vk(X6)| < p. Then, the adversarial agent will be able to
produce a new trace with robustness at least

(Yoo, 1) 2 7= 2 ®
Proor. Note that by the triangle inequality
a+ B> [Vi(xo) = V*(xo)| + |[V*(xp) - Vi) (9)
> [Vie(xg) = V* (x0)| (10)
Further,
20+ > |Vie(xg) = V¥ (x0)| > [V*(xp) - V*(x0)|  (11)

The result follows from Theorem 4.4 by substituting § = 2a+f. O

Finally, we will show that the agent may cope with limited
changes to the multiagent system. This is useful in a testing and
development situation, because we would like to be able to reuse a
pre-trained adversarial agent to stress-test small modifications of
the ego without expensive retraining. To do this, we will define an
e-bisimulation relation that will allow us to formally characterize
the notion of similarity between different multiagent systems.

Definition 4.6 (e-approximate bisimulation, [19]). Let € > 0, and
81, S be systems with state spaces Xj, X2 and transition rela-
tions T, T, respectively. A relation Re € Xi X X is called an
e-approximate bisimulation relation between T; and T; if for all
X1,X2 € Re,

(1) d(x1,x2) < € where d is a distance metric
(2) VRa € A, Vx| € Ti(x1, a), Ix), € Tz(x2, a) such that (x],%;) €
€
(3) Va € A, Vx) € To(x2,a), 3x] € Ti(x1,a) such that (x],x7) €
Re

THEOREM 4.7. Suppose the adversarial agent has trained to conver-
gence as part of a multiagent system Sy, and it has found a trace that
satisfies the adversarial specification with robustness t. Consider a new
multi-agent system Sy and suppose there exists an e-approximate
bisimulation relation between the two systems, including the sec-
ondary signals of the formula —ego. Further suppose that e <
Then, the trajectory of the new system will also violate the ego speci-
fication while respecting the adversarial constraints.

Proor. If there is an e-approximate simulation between the pri-
mary and secondary signals of the traces of the two systems, then
for a trace s1(x¢) of system S starting from initial state xo, and
a trace s3(x) of system Sy also starting from initial state x¢, the
e-approximate bisimulation relation ensures that both the primary
and secondary signals differ by at most epsilon, i.e. (|s1(x0) — s2(X0)|
€)A(ly1 — y2| < €). From Lemma 4.3, s; also causes the ego to falsify
its specification while satisfying the adversarial specifications. O

5 CASE STUDIES

In this section we first empirically demonstrate the robustness of
our adversarial testing procedure. Then, we demonstrate scalability
of adversarial testing by applying it to three case studies from the
autonomous driving domain.

<
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5.1 Benchmarking Generalizability

We introduce a grid world example environment which consists of
an nXxn grid containing the ego agent and the adversarial agent. The
objective of the ego agent is to escape adversarial agents, assuming
that the game begins with the ego and the adversarial agent at
(Cegos Cado)- The ego agent can move k cells in any time step. The
ego specification and adversarial constraints are as specified in
Section 1.

The ego policy is hand-crafted: it observes the position of the
adversarial agents and selects the direction (up, down, left, or right)
that maximizes its distance from the adversarial agent. If the target
cell lies outside the map, it chooses a fixed direction to move away.
It should not be trivial for the adversarial agent to capture the ego
agent; thus, for every experiment, we provide a baseline comparison
with an adversarial agent that has a randomly chosen policy. A
random policy has some likelihood of succeeding from a given
initial configuration of the ego and adversarial agents. Thus, the
ratio of the number of initial conditions from which the random
adversarial agent succeeds to the total number of initial conditions
being tested quantifies the degree of difficulty for the experiment.
We denote the random adversarial agent as ado[rand].

In all the experiments in this section, we train the adversarial
agent using our RL-based procedure on a training arena charac-
terized by the vector Airain = (Ntrain, C Ktrain), i-€. a fixed grid size
(Ntrain X Ntrain)- a set of initial positions (cego, cado) € C, and (3) a
fixed step size for the ego agent movement (kiy,in ). We use Proximal
Policy Optimization (PPO)-based deep-RL algorithm to train the ad-
versarial agent[33]. We denote this trained agent as ado[A¢yain| for
brevity. We frame the empirical validation of our robust adversarial
testing in terms of the following research questions:

RQ1. How does the performance of ado[Aain] compare against
10 uniformly sampled ado[rand] agents on the same set of initial
positions used to train ado[Airain] when all other arena parameters
remain the same? [To demonstrate degree of difficulty.]

RQ2. How does the performance of ado[Aty,in ] compare against
ado[rand] in an arena of varying map sizes when all other parame-
ters remain the same?

RQ3. How does the performance of ado[Aty,in ] compare against
ado[rand] in an arena with varying ego agent step-sizes where all
other parameters remain the same?

RQ4. Does the adversarial agent generalize across initial condi-
tions, i.e. if we pick a small subset of the initial conditions to train
an adversarial policy, does the policy discover counterexamples on
initial states that were not part of the training set?

RQS5. Does the adversarial agent generalize to arenas with e-bisimilar
dynamics?

For the first three RQs, we use Again = (4, C, 2), where C is the
set of all possible initial conditions for the agents. Table 1 shows
the results for RQ1. Our trained agent easily surpasses the average
performance of both 10 and 20 random adversarial agents across
all initial locations in the training set C. The average number of
violations found by a random adversarial agent is around 10%,
while our trained adversarial agent captures the ego within the
given time limit from 68% of the initial conditions. Thus, finding
an adversarial agent policy that works for a majority of the initial
cells is sufficiently difficult. From the results for RQ2, ado[Atrain]
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Experiment Parameter Success Initial Condition Rate (%)
ado[Atrain] ado[rand]
Num. ado[rand]
RO1 10 67.92 (163/240)  9.83 (237/2400)
20 67.92 (163/240)  10.23 (491/4800)
Map Size
RQ2 2x2 66.67 (8/12) 33.33 (4/12)
4x4 67.92 (163/240) 2.91(7/240)
5%5 70.33 (422/600) 1.0 (6/600)
10x 10 9.26 (917/9900)  0.33 (33/9900)
Ego Step-size
RO3 4 72.50 (174/240) 2.92 (7/240)
3 72.50 (174/240) 2.92 (7/240)
2 67.92 (163/240) 2.92 (7/240)
1 67.92 (163/240)  7.08 (17/240)
1 Avg. Success Initial Condition Rate
RQ4 1 0.9735
0.5 0.9742
0.1 0.9883
0.01 1.0
RQ5 € Avg. Success Initial Condition Rate
3 0.89
5 0.78

Table 1: Empirical demonstration of the robustness of adver-
sarial testing.

successfully causes the ego agent to violate its specification for
varying map sizes, even as large as 10 X 10, though it was trained
on a 4 X 4 map. In contrast a random adversarial agent is rarely
successful. From the results for RQ3, we observe that the trained
adversarial agent succeeds even against an ego that uses different
step sizes than those on which the adversarial agent was trained.

For RQ4, we used Agyqin = (10, C100, 1), where Cyqo is a set of 100
randomly sampled initial positions (note that the total number of
initial configurations is 4950). We found 100 counterexample states
during training, of which we chose 5 at random. For each of these
states x, we obtained the value of the state as maintained by the
PPO algorithm, and found all states x” s.t. [V(x) — V(x')| < §. We
computed the fraction of these states that also led to counterexam-
ples. For four of the identified counterexample states, ¢ satisfied
the conditions outlined in Theorem 4.4, and the results are shown
in Table 1. As expected, smaller the value of §, higher is the number
of failing states with nearby values.

For RQ5, we used Arain = (10, Cag0, 1), where Cypp was a ran-
domly chosen set of 200 initial states. We defined a refinement of
the map, basically an € X € grid was imposed on each grid cell of
the original map. We considered an adversarial policy that basi-
cally used the same action as that of the original coarser grid cell,
while the ego agent used a refined policy. We can establish that the
resulting transition system is actually e-bisimilar to the original
transition system. For different values of €, we picked 3 sets of 300
random initial states and tested if they led to counterexamples. The
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average success rates are shown in Table 1. We see that an abstract
adversarial policy can violate the ego spec surprisingly often.

5.2 Autonomous Driving Case studies

We apply our adversarial testing framework to three case studies
from the autonomous driving domain®*. We used the Carla driving
simulator [12] as a means to stress-test a controller driving a car in
three different scenarios, (1) freeway driving on a straight lane, (2)
freeway driving with a car merging into the ego lane, (3) driving
through a yellow light. The adversarial agent was developed in
python, and the neural networks used in the DQN examples were
developed in pytorch [30]. Figure 7 illustrates the main implemen-
tation steps of our testing framework. Since CARLA cannot make a
car travel directly at a given speed. We let the ego and adversarial
car accelerate until it reaches the target speed according to the
initial condition, then teleport it to the distance specified by the
initial condition, and then start training.

Adaptive Cruise Control. In this experiment, two vehicles are
driving in a single lane on a highway. The lead vehicle is the adver-
sarial agent. The follower vehicle avoids colliding into the leader
using an adaptive cruise controller (ACC). The purpose of adver-
sarial testing is to find robust adversarial policies that cause the
ACC system to collide with the adversarial agent. The ACC con-
troller modulates the throttle (&) by observing the distance (d)
to the lead vehicle and attempting to maintain a minimum safe
following distance dg,f. The ACC controller is a Proportional-
Derivative (PD) controller with saturation. The PD term u is equal
to Kp(d — dsafe) + K4(vado — Vego), and the controller action « is
defined as amax if 4 > @max, Amin if ¥ < Amin, and u otherwise.
The ego specification is given in Eq. (12). Here, T is the maximum
duration of a simulation episode and dg,¢ is the minimum safe
following distance. The adversarial agent should cause the ego to
violate its spec in less than T seconds. The adversarial constraint
specifies that it should not exceed the speed limit v}, and that it
should maintain a minimum speed v, For our experiment, we
choose vy = 0.1, and dg,f = 4.7m. The distance d is computed
between the two front bumpers. This represents a car length of
4.54m, plus a small safety margin. The state of the adversarial agent
is the tuple d, Vego> Vado- At each time step, the adversarial agent
chooses an acceleration from a discretized space which contains 3
possible actions. In this experiment, we explore two different RL
algorithms: Q-learning and a DQN algorithm with replay buffers
[29]. The average runtime using the DON (1.93 hours) is less than
that using a Q-table (4.83 hours) and gives comparable success rates:
54.8% for the DQN agent vs. 55.79% for the agent using Q-tables.
The average time to run a single episode is between 29 and 30 sec-
onds. Fig. 4 shows 3 episodes from the same initial position for the
ego and adversarial vehicles where initially the adversarial agent
is not able to find an adversarial behavior, then in the later two
episodes the adversarial agent is able to cause the ego to collide
with it.

Lane Change Maneuvers. In this experiment, 2 vehicles are driv-
ing on a two-lane highway. The ego vehicle is controlled by a
switching controller that alternates between cruising and avoiding

“We provide one more case study in the appendix.
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Case Study Description STL Formula

ACC Ego: Avoid collision Glor)(d = dage) (12)
Adversarial agent: Velocity bounds G(Umin < Yado < Ulim) (13)

Lane Ego: Avoid collision Gpo,r1(d2 = dgate) (14)

Change Adversarial agent: Init. pos. dlong > dsafe (15)

Yellow Ego: Don’t run red light —Flo1](fR A deego € [-5,0])  (16)

Light Adversarial agent: Speed Limits Glo,7](%ado < Ylim) (17)

(

Adversarial agent: Don’t run red light

—Flo,7](€R A dpado € [-6,0])

Table 2: Ego Specifications and Adversarial Rules for case studies
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Figure 4: Traces in (a) show an early episode in the driving in the lane case study. The adversary is unable to cause a collision,
and the distance between the ego vehicle and the adversarial vehicle remains above the collision threshold for the duration
of the episode. Traces in (b) show a later episode in which the adversary successfully causes a collision. Traces in (c) show a
different behavior that the adversary successfully learned to cause a collision.

a collision by applying a “hard” brake. The ego controller predicts
future adversarial agent positions based on the current state us-
ing a look-ahead distance djx, = djat — Uado lattlka, Where diy; is
the lateral distance between the vehicles, v,qq 14t is the adversarial
agent’s lateral velocity and ty, is a fixed look-ahead time. Based
on dj,, it switches between two control policies: if dji, > dgafe,
then it continues to cruise, but if dji, < dgufe, it applies the brakes.
The adversarial agent is in the left lane and attempts to merge to
the right in a way that causes the ego to collide with it. We add
a constraint to ensure that the adversarial agent should always
be longitudinally in front of the ego car when it tries to merge as
specified in Eq. (15); here dj, is the longitudinal distance between
the cars. Without this constraint, the adversarial agent can always
induce a sideways-crash. The ego spec is given in Eq. (14). Here,

dy = ,dlzong + dlzat is the Euclidean distance between the two cars.
In the course of training, we observe that the behavior of the

adversarial agent improves with time. Training for 106 episodes
requires 2.53 hours and gives us a success rate of 71%, i.e. 71% of
the episodes lead to a collision. With 206 episodes, the success rate
improves to 72.35% but requires 4.71 hours of runtime. After 371
episodes, the success rate improves to 75.76% after 9.44 hours. This
experiment demonstrates that even with a relatively small time
budget, the constrained RL agent can learn a policy that induces
failures with high probability.

Generalizability. In both case studies, we observed generalizability
of the adversarial policy to different initial conditions. In the ACC
case study, we found several initial states within § = 6.5 x 107° that
were also counterexample states. Overall the states have smaller
values as the episode lengths are longer and the y7 term causes
values to be small. We observed that for the failing initial state
(vego F 12,0540 = 12,d +— 15), we found failing initial states
with values of both v,4, and d that were both smaller and larger
than those in the original initial state. However, some failing initial
states did not have states with nearby values that were violating.
This can be attributed to the fact that the RL algorithm may not have
converged to a value close to optimal. For the second case study, we
found that the failing initial condition (vego > 12,0540 = 12,d2 =
16) has several nearby failing initial states with a small value of §
that were not previously encountered during training.

Table 3 demonstrates the generalization statistics for the ACC
case study. The leftmost column, f, is a degradation of the RL
value function that we wish to consider. Given this degradation
of the value function, the bound column is the bound predicted
by Theorem 4.5. The values of the table are computed by first
taking an initial condition xy that produced a counterexample and
then sampling multiple new initial conditions x; so that |V (xp) —
V(x{)| < B. The column labeled num denotes the number of such
initial conditions that are sampled. Then, we run a simulation from
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B bound  p, ap num success init  failure init
0.1 0.03367  0.1287 0.0064 1225 1192(97.3%) 33

0.2 -0.08860 0.09965 0.0074 1633 1565 (95.8%) 68

0.5 -0.45539 0.04782 0.0254 1883 1565 (83.1%) 318

1 -1.0667 -0.2932  0.1973 3159 1565 (49.5%) 1594

2 -2.2893 -0.4013  0.2678 3571 1565 (43.8%) 2006

Table 3: Demonstration of Theorem 4.5. In all cases, the mean robustness degradation is bounded below as predicted by the
theorem. Initial conditions with small value function degradation $ are more likely to yield counterexamples, as predicted by
the theory. The column success init and failure init shows the number of initial conditions that leads to a successful falsifying

case or a non-successful falsifying case.

(a) Adversarial vehicle changes lane (b) Adversarial vehicle shifts left, then
far away from the ego vehicle. changes lane.

(c) Adversarial vehicle shifts left sub- (d) Adversarial vehicle attempts to
stantially, then changes lane with a change lane smoothly while staying
steep angle. close to the ego vehicle.

(e) The adversarial vehicle changes (f) Adversary changes lane and in-
lane aggressively and hits the ego ve- duces a crash without breaking the
hicle, violating traffic rules. traffic rules

Figure 5: Adversarial vehicle behaviors across episodes in the
lane change maneuvers case study.

x(’] with a frozen version of the adversarial agent, i.e. one that is

not learning anymore. The column labeled y, denotes the mean
robustness of the simulation traces, and ap denotes the standard
deviation of such robustnesses. We note that in all cases, the mean
robustness is larger than the lower bound predicted by the theorem,

and that the table demonstrates that there is a high density of
counterexamples where the value function degradation is smaller,
and fewer counterexamples where the value function degradation
is larger. This demonstrates that the adversarial agent has learned
a generalizable policy, which correctly reflects the landscape of
initial conditions that lead to counterexamples. In this table, the
episode length is T = 20 and the discount factor is y = 0.99.

Yellow Light. In this experiment, the ego vehicle is approaching
a yellow traffic light led by an adversarial vehicle. Let the signed
distance of the ego, adversarial vehicle from the light be respectively
df,ego» dp ado- and Boolean variables ¢y and ¢g be true if the light is
respectively yellow and red. We use the convention that dyego >
=0 if the ego vehicle is approaching the light and dpego < -8
if it has passed the light (resp. for adversarial vehicle). By traffic
rules, a vehicle is expected to stop § meters away from the traffic
light (e.g. § could be the width of the intersection being controlled
by the light), Le. the vehicle should stop at 0. Thus, if dgego €
[—6,0] when the light turns red, it has run the red light. This ego
specification is shown in Eq. (16). The traffic light is modeled as a
non-adversarial agent, it merely changes its state based on a pre-
determined schedule. The goal of the adversarial vehicle is to make
the ego vehicle run the red light. The rule-based constraints on
the adversarial vehicle are that it may not drive backwards and it
may not run the red light (shown in Egs. (17),(18) resp.). The state
of the adversarial agent includes the speed of both vehicles, and
relative distance between the vehicles. At the start of an episode,
dpado = 30, and #y is true, and fg becomes true after 7 = 2 seconds.

The ego controller is a switched mode controller that either uses
an ACC controller or applies the maximum available deceleration
Gego,max- At time t < 7, let d(t) denote the distance required for the
ego vehicle to come to a stop before the light turns red by applying
Gego,max- We can calculate d(t) as vego* (T—1)+0.5- Gego,max " (T~ 1)2.
Then, at time ¢, the ego controller chooses to cruise if d(t) + § <
drego, and brakes otherwise.

Figure 6 shows that the ego vehicle maintains an appropriate
distance to the lead car, but that it starts decelerating too late and is
thus caught in the intersection when light turns red. The adversar-
ial vehicle successfully clears the intersection while the light is still
yellow, consistent with its constraints. The adversarial agent we
train uses the DQN RL algorithm. After 162 episodes of training,
approximately 60% of its episodes find a violation of the ego specifi-
cation with a runtime of 1.88 hours. After 247 episodes, the success
rate increases to 64% with a runtime of 2.59 hours. This case study
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demonstrates that our adversarial testing procedure succeeds even
in the presence of multiple adversarial rules and an interesting ego
specification.

N
o

=)

BN
o o

Velocity (m/s)

o u

0 5 10 15 20 25 30 35

—— distance between adv and ego
—— distance between adv and yellow light
—— distance between ego and yellow light

N W
[N

)

Distance (m)

I
o

I
-
[

0 5 10 15 20 25 30 35
ticks (0.05s)

Figure 6: Yellow light case study. The green region represents
the region in which the ego vehicle will run the yellow light.
The adversary learns to drive the ego car into the target re-
gion.
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Figure 7: An illustration of our implementation structure

6 RELATED WORK AND CONCLUSIONS

Adaptive Stress Testing. The work of [6, 23] is closely related to our
work. In this work, the authors also use deep RL (and related Monte
Carlo Tree search) algorithms to seek behaviors of the vehicle under
test that are failure scenarios. There a few key differences in our
approach. In [23], reward functions (that encode failure scenarios)
are hand-crafted and require manual insight to make sure that
the RL algorithms converge to behaviors that are failure scenarios.
Furthermore, the constraints on the adversarial environment are
also explicitly specified. The approach in [6] uses a subset of RSS
(Responsibility-Sensitive Safety) rules that are used to augment
hand-crafted rewards to encode failure scenarios by the ego and
responsible behavior by other agents in a scenario. In specifying
STL constraints, we remove the step of manually crafting rewards.
And the robustness value of STL makes our theorem possible.

Falsification. There is extensive related work in falsification of cyber-
physical system. Most falsification techniques use fixed finitary pa-
rameterization of system input signals to define a finite-dimensional
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search space, and use global optimizers to search for parameter
values that lead to violation of the system specification. A detailed
survey of falsification techniques can be found in [8]. A control-
theoretic view of falsification tools is that they learn open-loop
adversarial policies for falsifying a given ego model while our ap-
proach focuses on closed-loop policies.

Falsification using RL. Also close to our work are recent approaches
to use RL [38] and deep RL [1] for falsification. The key focus in
work [38] is on solving the problem of automatically scaling quan-
titative semantics for predicates and effective handling of Boolean
connectives in an STL formula. The work in [1] focuses on a smooth
approximation of the robustness of STL and thoroughly benchmarks
the use of different deep RL solvers for falsification.

Comparison. Compared to previous approaches, the focus of our pa-
per is on reusability of dynamically constrained adversarial agents
trained using RL techniques. We identify conditions under which
a trained adversarial policy is applicable to a system with a differ-
ent initial condition or different dynamics with no retraining. This
can be of immense value in an incremental design and verifica-
tion approach. The other main contribution is that instead of using
a monolithic falsifier, our technique packs multiple, dynamically
constrained falsification engines as separate agents; dynamic con-
straints allow us to specify hierarchical traffic rules. Also, previous
approaches for falsification do not consider dynamic constraints on
the environment at all, only simple bounds on the parameter space.
Finally, in our approach, both specifications and constraints are
combined into a single reward function which can then utilize off-
the-shelf deep RL algorithms. In comparison to [1, 20, 24, 38], our
encoding of STL formulas into reward functions is simplistic as it is
not the main focus of this paper; we defer extensions that consider
nuanced encoding of STL constraints to future work. The emphasis
in [1] is to use the training process (which includes exploration) to
find a (possibly non-robust) single falsifying behavior. Work [39]
use fuzzing algorithms to find multiple scenarios that cause the ego
to fail with coverage measures, whereas, in our work we focus on
training the RL agent to obtain a robust falsifying policy.

Conclusions. Our work addresses the problem of automatically
performing constrained stress-testing of cyberphysical systems.
We use STL to specify the target against which we are testing and
constraints that specify reasonableness of the testing regime. We
are using STL as a lightweight, high-level programming language
to loosely specify the desired behaviors of a test scenario, and lever-
aging RL algorithms to determine how to execute those behaviors.
The learned adversarial policies are reactive, as opposed to test-
ing schemes that rely on merely replaying pre-recorded behaviors,
and under limited conditions can even provide valuable testing
capability to modified versions of the system.
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