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Abstract—As modern vehicular communication systems ad-
vance, the demand for robust security measures becomes in-
creasingly critical. A misbehavior detection systems (MDS) is a
tool developed to detect if a vehicular network is being attacked
so that the system can take steps to mitigate harm from the
attacker. Vehicular communication systems face significant risks
from distributed denial of service (DDoS) attacks. During a
DDoS attack, multiple nodes are used to flood the target with
an overwhelming amount of communication packets. In this
paper, we first survey the current MDS literature and how it
is used to detect and mitigate DDoS attacks. We then propose
a new distributed multilayer perceptron classifier (MLPC) for
DDoS detection and evaluate the performance of the proposed
detection scheme in vehicular communication systems. For the
evaluations using simulations, two specific implementations of the
attacks are conducted. Apache Spark is then used to create the
distributed MLPC. The median F1-score for this MLPC method
was 95%. The proposed method outperformed linear regression
and support vector machines, which achieved 89% and 88%
respectively, but is unable to perform better than random forests
and gradient boosted trees which both achieved a 97% F1-score.
Using Amazon Web Services (AWS), it is determined that model
training and detection time are not significantly increased with
the inclusion of additional nodes after three nodes including the
master.

Index Terms—Artificial neural networks, distributed comput-
ing, machine learning, vehicular communication networks, ve-
hicular network security, vehicle safety, wireless sensor networks

I. INTRODUCTION

Despite the acceleration in the deployment of cellular-based
vehicular communication networks by automobile manufactur-
ers, there remain significant challenges to be addressed before
their widespread implementation can be realized. Vehicular
networks are vulnerable to various attacks because of the
wireless nature of vehicular communications. In this paper,
we explore misbehavior detection systems (MDS) to detect and
mitigate these attacks. A MDS utilizes an algorithm to identify
whether incoming data packets may be indicative of a security
breach. These algorithms are difficult to create due to the large
number of attacks a malicious user could produce including
man-in-the-middle (MITM), grey hole, black hole, distributed
denial of service (DDoS), and Sybil attacks. Statistical and
machine learning techniques hold potential in MDS for both
traditional networks and vehicular communication networks,

but further research is necessary to advance the field. In this
paper, we specifically focus on a distributed neural network-
based DDoS detection scheme in vehicular communication
systems.

A DDoS attack involves a malicious party utilizing multiple
vehicles to produce large amount of network traffic in an
attempt to prevent the regular vehicular communications. The
vehicles used in a DDoS attack may not be aware that they
are being utilized by a malicious attacker. For this reason,
the devices used in DDoS attacks are often referred to as
”zombies”. Blocking the vehicular communication system
could cause a vehicular accident and in a worse case scenario,
the loss of human life. This kind of attack can be difficult to
detect and recover due to the use of zombie vehicles.

In this paper, we propose a distributed neural network-based
scheme - a new distributed multilayer perception classifier for
DDoS detection in vehicular communication systems. We im-
plement the proposed scheme in Objective Modular Network
Testbed in C++ and OMNeT++, and evaluate the performance
of the scheme. We use OMNeT+ as the simulation tool for
network communications.

Our MDS model draws on insights from [1] which ex-
amined distributed MDS performance on real-world vehic-
ular communication datasets. Although their findings were
encouraging regarding the use of distributed random forest
models, these were not tested on contemporary vehicular
communication simulators like Network Simulator 2 (NS2) or
OMNeT++. Furthermore, both [2] and [3] achieved impressive
outcomes through the application of neural networks in NS2-
based vehicular communication simulations. Hence, the study
in this paper aimed to test the hypothesis that a distributed
neural network could serve as an effective MDS approach,
while also evaluating the potential benefits of employing
distributed algorithms in contemporary network simulations.

II. BACKGROUND AND RELATED WORK

Statistical detecting approaches show great promising in
MDS. Both [4] and [5] demonstrate the effectiveness of
diverse machine learning models for detecting Sybil, DoS, and
false alert attacks in vehicular communication networks. The
authors studied the using of k-Nearest Neighbors, Logistic
Regression, Decision Tree Classifier, Bagging, and Random



Forest in both the publications. The methods tested in [4]
and [5] utilized the VeReMi datasets and Veins for network
simulations. These papers use precision, recall, and F1-score
as the performance metrics. Precision is the ratio of correctly
predicted attacks vs. the amount of total predicted attacks.
Recall refers to the predicted attacks vs. the number of actual
attacking vehicles. The Fl-score is the weighted average of
the precision and the recall of the model.

Precision and Recall are common metrics used to mea-
sure the efficiency of a statistical algorithm. Fl-score is the
weighted average of the precision and recall values. A key
difference between the papers is using the Dempster-Sharfer
(DS) in [4]. By adding DS to the existing methods proposed
in [5], the authors were able to produce higher Fl-scores for
the bagging and random forest models which were the top
performers in both papers.

Other classification methods such as support vector ma-
chines (SVM) have also been utilized in misbehavior detection.
The collection, exchange, analysis, and propagation (CEAP)
algorithm written by [6] utilized SVM in the analysis step of
their design. In that model, various watchdog vehicles monitor
communications and use the SVM model to analyze the data
collected. The collection and exchange elements of the system
are based on the vehicular ad hoc network quality of service
link state routing (VANET QoS-OLSR) protocol. Various
kernel designs such as linear, polynomial, and Gaussian Radial
Basis Function kernels were compared prior to the final design
of the SVM algorithm. Though the performance difference was
not extreme, the Gaussian Radial Basis function outperformed
the others. After using the SVM model for detection, the
system then sends out the necessary information to other
watchdog vehicles. This MDS was compared to systems using
only SVM, DS and averaging on a dataset generated using
VanetMobiSim and MATLAB. CEAP outperformed all models
to which it was compared in terms of accuracy, attack detection
rate, false positive rate, and packet delivery ratio. The less
complex SVM model was not far behind CEAP, but this was
not the case for the other two models. The simulation revealed
a significant variation in performance between CEAP, DS, and
Averaging methods.

Neural Networks have also been considered in MDS design.
The authors in [7] developed a convolutional neural network
(CNN)-based scheme to detect traffic anomalies. The proposed
CNN included 8 hidden layers, half of the hidden layers being
convolutional and half being sub-sampling layers. The authors
compared this model to a system designed using principle
component analysis (PCA). The authors of this paper did not
use an open source dataset, instead utilizing their own network
testbed for the analysis. When comparing the CNN and PCA
based models, the authors found that the CNN model produced
higher true positive values. The paper also indicated that the
CNN model produced less bias than the PCA equivalent.

In [8] the authors also used neural network-based detec-
tion model. This paper described an artificial neural network
(ANN) scheme designed to detect Black Hole attacks in
VANETs. A Black Hole attack is a specific form of DOS

attack in which important packet information is discarded by
the attacker. Fuzzification was applied to the dataset prior to
the training of the ANN. The fuzzification process helped to
create a more distinct boarder between each feature. SUMO
and Mobility VEhicles (MOVE) were used to generate the
NS2 simulations ultimately used. In the end, the ANN based
MDS had a classification rate of 99% for both the normal and
abnormal classes.

In [2] the authors studied the detection of grey hole attacks
using similar strategies. A grey hole attack differs from the
previously mentioned black hole attack in the frequency that
it attempts to drop packets. The black hole attack will drop
all information where the grey hole will only discard some of
the information. In [2], both SVM and feed forward neural
network (FFNN) are utilized in an effort to detect these grey
hole attacks. Much like in [8], fuzzification was used prior to
the model training process. Both models proved effective at
detecting the grey hole attacks produced. In fact, both models
produced an accuracy score of over 99.7%. Precision, recall,
and Fl-scores were calculated so this research can be more
easily compared to [8] and [5], etc.

In [3] the authors continue with the theme of artificial
neural networks. The authors of this study designed an ANN
model based MDS to detect simulated hidden vehicles and
illusion attacks. The proposed method consists of 4 stages
including Information Acquisition, Information Sharing, Data
Analysis and Features Driving, and Misbehavior Detection.
In the end, the model contained 7 features and 1 hidden
layer with 15 neurons. Next Generation Simulation (NGSIM)
was used for the testing and validation of this model. This
set was generated using synchronized digital video cameras
on real world highways [9]. An 80/20 ratio of normal vs.
misbehaving vehicles was used. The F1-score results for this
model remained above .97 for each of the 4 vehicles analyzed.
These results are comparable to the results found by [8] and
[4]. Unfortunately, because the studies used different datasets,
it is hard to make accurate comparisons.

Deep learning methods have also been utilized by MDS.
The authors in [10] engineered a deep neural network (DNN)
scheme to detect suspicious activities in a vehicular controller
area network (CAN). The DNN model focused on detecting
false information targeting the vehicles tire pressure light.
Open Car Testbed and Network Experiments (OCTANE) was
used to generate the dataset used to train and test the DNN
model. The model was analyzed with 3 layers, 5 layers and
7 layers. All three models succeeded in predicting both the
attacking packets and normal packets. At 7 layers, the ability
to detect did not improve, however, normal packet detection
increased by 4%. The expected training time and testing time
increased as the layers increased.

An analysis was performed by [11] to determine how
effective various machine learning algorithms were in mis-
behavior detection. The network simulation was developed
using NCTUns-5.0. This simulation included 4528 samples
with 1427 of the samples being malicious. The authors used
multiple attacks such as packet detention, suppression, and



identity forging in the testing sample. Variants of Decision
trees, random forest, K-means, and naive bayes were all used
to detect these attacks via a data mining software called Weka.
Random forest and a variant of decision trees were shown to
be the most successful at detecting attacks. The authors did not
split the results to show how effective each statistical method
was for each attack. Instead the reader is only given the results
against all attacks.

The application of big data techniques has proven to be
valuable in contemporary misbehavior detection systems. For
instance, in 2019, [1] published a study on the efficacy of
combining distributed schemes with machine learning for
detecting DDoS attacks in vehicular communication systems.
The system described in the study transformed a communi-
cation dataset into resilient distributed datasets (RDD) using
Spark. Once the data is in the RDD, each of the databases will
be used to train a decision tree. After the individual trees are
trained, they are merged using the boostrap sampling method
commonly used in random forests. The proposed method was
trained on both the NSL-KDD [12] and UNSW-NB15 [13]
datasets. Although NSL-KDD is derived from KDDCUP99,
it is considered outdated by contemporary standards. Thus
UNSW-BNI15, a dataset developed from the Australian Centre
for Cyber Security, was also used. The resulting random
forest algorithm was compared to SVM, gradient boosting
decision trees (GBDT), XGBoost and Naive Bayes. Though
both XGBoost and GBDT performed well, the authors version
of boosted random forest out performed all other algorithms.

III. DISTRIBUTED SYSTEMS AND COMPUTATION

While previous research has successfully developed ma-
chine learning-based detection methods for DoS attacks, the
issue of computation cost has received limited attention. A
potential solution could be to incorporate distributed system
techniques into misbehavior detection systems to reduce the
cost of detection on individual vehicles. This implementa-
tion is designed to enable parallel operations on a cluster,
consisting of nearby vehicles in a vehicular communication
system. The proposed scheme uses a neural network to analyze
communication data and identify DoS attacks.

For the vehicular communication system, distributed com-
putation is achieved by considering each vehicle as a machine
in the system. Each of these vehicles coordinates with each
other to develop and use the neural network model. This
system should reduce the total resource allocation for each
vehicle and increase the speed of misbehavior detection.

Fig. 1 shows an example of how this scheme works in high
level. One vehicle monitors the safety of the specified location.
This vehicle then makes contact with the neighboring vehicles
to collaborate in misbehavior detection. The worker vehicles
are only to be used as additional computational resources.
Each role should be rotated between neighboring vehicles for
added security.

Apache Spark is used in the proposed system for distributed
computation. Spark functions by splitting the data into a type
of dataset referred to as a resilient distributed dataset. The
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Fig. 1: Vehicular Distributed System Example
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RDD structure allows adjustments to the data to be processed
in parallel. The parallel computation gives the monitoring car
the ability to use the workers to speed up the misbehavior
detection process. The monitoring car runs the driver program
used to utilize the resources on the other vehicles. Inside of
the driver program, an object called ’SparkContext” connects
to the cluster managers. A resource manager is a tool that
determines the resource allocation for each node in the cluster.
In this solution, Spark’s own cluster managers were used.

IV. INTRODUCTION TO NEURAL NETWORKS

A neural network is an algorithm that is heavily influenced
by the operation of neurons in the brain. The goal for the initial
model development is to create a classifier that could work as
effectively as the human brain. The single layer perceptron
is developed to simulate a neurons operation in the brain.
Researchers found that chaining these perceptrons together
can create a neural network that simulates the operation of
the human brain. The rest of this section gives an overview
on how these models work using both single and multiple
perceptron layers.

A. Single Layer Perceptron Classifier

A single layer perceptron is a binary classification algorithm
designed to mimic a single human neuron. The algorithm
begins by multiplying each input by the weight associated
with the input value. A visual representation of this process is
shown in Fig. 2. In this example, the input value is denoted
as X and the weight value is represented by W.

All of the multiplicative values determined in the last
step must then be added together, resulting in the following
equation:

z= f(z Wi * X;) (1)
=1
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Fig. 2: Single Layer Perceptron

Once the output z is determined, a comparison against the
threshold value 6 can be conducted. This function, known as
the activation function, can be shown mathematically as:

1, ifz>4
T) = ’ 2
/(@) {O, otherwise @
At this step the algorithm has now made its predictions on
the dataset given.

B. Multilayer Perceptron Classifier

By grouping together multiple single layer perceptrons,
researchers determined that they could create a model with
a higher predictive output. This new model is often refered to
as a MLPC or a feed forward neural network. This scheme
contains a series of layers. Each of these layers are effectively
a column of single layer perceptrons. The first of these layers
is an input layer that must be the same size as the number of
features used in the given dataset. The layer often called the
output layer contains just enough perceptrons to achieve the
required classification. The middle layers, often referred to as
“hidden layers” are much more nebulous in nature. Unlike the
input and output layers, there is no strict formula for design.
These layers are often determined by trail and error or by a
brute force algorithm. Fig. 3 contains a simple visual example
of the MLPC scheme.

Mathematically speaking, the MLPC is just a more complex
version of the single layer perceptron. Recall equations (1) and
(2), this formula is to be applied at each layer of the MLPC
with X; being the previous output. For example to calculate
H;, the following equation can be used:

Hj = f(Q_ Wi X)) 3)
i=1
To find Oy, the weight values need to be updated and H,
is used instead of X;. With these adjustment, the following
equation is derived:

0; = f_ Wi = Hj) (4)
j=1
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Fig. 3: Multilayer Perceptron

V. L-BFGS OPTIMIZATION ROUTINE

The Limited-memory Broyden—Fletcher—Goldfarb—Shanno
algorithm (L-BFGS) is selected as the optimization routine
for the proposed model. This algorithm is a variant of the
Broyden-Fletcher-Goldfarb-Shanno algorithm that is specifi-
cally designed for optimizing larger datasets. Two different
algorithms are used to explain the operation of this method.
Algorithm 1 is a recursive algorithm that is used to determine
HV fi., where Hy, represents the inverse Hessian approxima-
tion value and V fj is the gradient [14]. It is important to
know that the use of an approximate Hessian instead of a true
Hessian is the reason that L-BFGS is a Quasi-Newton method,
not a true Newton Method. The determined HyV f; value is
used to determine the search direction pj in Algorithm 2.

Before diving into the nuance of L-BFGS, please understand
that s, refers to the displacement and y;, refers to the change in
gradients. In Algorithm 1 there are two for loops that are used
to update the final Hessian matrix. The first loop calculates the
current gradient ¢ and the step length a;. One of the variables
used to determine «; is pj, which came from the Davidon-
Fletcher-Powell formula. pj, is calculated using the following
formula:

1
Pk = o)

y,{sk

Prior to starting the second loop, the new ¢ is multiplied by
an initial inverse Hessian matrix. Normally the initial inverse
Hessian is found using the following formula, where I is an
initial Hessian approximation:

T
HY = (ZEYELyg ©)

Yl yr—1

The matrix found by multiplying ¢ and H} is referred to as
r. r is then repeatedly updated using the derived 5 value on
line 8 and the «a; value derived on line 3. Once the r value



is equivalent to H;V f, there is no need to continue and the
algorithm stops.

Algorithm 1: L-BFGS Two-Loop Recursion to Com-
pute H kak

1q=Vf
2fori=k-1,k-2..,k-mdo

3 | ai=pislq

4 q=4q— Y

5 end

6 7= H)q
7fori=k-mk-m+1,..k-1do
8 | B=puylr

9
10 end
11 stop when H,V f, =r

r=r+s;(a; — B)

The full computation of L-BFGS is shown in Algorithm 2.
To start the algorithm must have a starting estimated optimal
value xp, memory m greater than zero, and an initial inverse
Hessian HY. The same method for determining the initial
inverse Hessian matrix for Algorithm 1 is applied here. At
this point, the algorithm can calculate the search direction py
and update xj4;. Notice that to update x 1, the step length
a; must satisfy Wolfe conditions. The Wolfe condition is used
to verify that aj gives a reasonable decrease to the objective
function f. The Wolfe condition can written as:

f(@p +apr) < flag) +a1aV il pe 7

Please note that c is a constant between zero and one. At this
point the algorithm will remove the vector pair {sg—m,, Yk—m }
if k is large than the memory m. Recall that sj refers to
the displacement and y; refers to the change in gradients.
Otherwise, the new values for s; are calculated. This process
repeats until the algorithm converges.

Algorithm 2: L-BFGS

1 Choose starting point xg
2 Set integer m > 0
3 Choose H

4 repeat
5 pr = —HpV fi, from Algorithm 1
6 Tk+1 = Tk + agpr Where oy is used to satisfy

Wolfe Conditions
7 if &k > m then

8 Discard vector pair {Sk—m, Yk—m }
9 end
10 Compute vector pair

Sk = Tht1 — Thy Yk = Vi1 — Vi
11 k=k+1

12 until algorithm converges
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Fig. 4: Attack Simulation View in OMNeT++

VI. SIMULATION SETTINGS AND DATASETS

In the related work section, NSL-KDD, UNSW-NB15, NS2,
and OMNeT++ were all introduced as viable options for
vehicular communication systems performance evaluations.
Though all of these datasets and tools can be used to evaluated
MDS, OMNeT++ was used as the tool for the simulation
evaluations in this paper. To enable these simulations to
include mobile vehicles, Veins and SUMO are used. SUMO
is a traffic simulation software that generates vehicular traffic
and vehicular mobility. Veins is then used as glue to allow
OMNeT++ and SUMO to communicate in order to generate
vehicular communication systems. The OMNeT++ simulations
developed for this study utilize 1-hop broadcasting between
the vehicles and the roadside units. Therefore, each message
will be distributed to all nodes in the range of the sender.

Our vehicular network simulations were developed on an
Ubuntu Virtual Machine. Upon installation, Veins is equipped
with a built in map and mobile vehicular communication
system simulation. We show a scenario that 194 vehicles are
all driving in the same direction when an accident suddenly
occurs 73 seconds into the simulation. This accident lasts 50
seconds in total. This causes the vehicles to react and alert the
other vehicles of the upcoming traffic jam. The total simulation
lasts 200 seconds and contains a single road side unit. This
simulation was used as a starting point for the DDoS attack
detection.

A series of modifications were made to the default simula-
tion to fit the requirements of this study. The simulation time
was increased to 380 seconds. The simulation was repeated
for each of the following five vehicle numbers: 15, 20, 25,
30, and 35. In addition to the number of vehicles previously
described, four parked vehicles were included to preform the
DDoS attacks on the remaining vehicles and road side unit.
Though these vehicles were utilized in the attack, they would
otherwise be considered the same as the mobile vehicles.
These vehicles were used as zombies by the attacker, which
means that they communicated normally outside of the attack.
There was no change to the accident that was included in the
default program at 73 seconds. Fig. 4 is a screen capture of
a simulation taking place in OMNeT++. In this image, the
attackers are labeled as “hacker” and the normal vehicles are
labeled as “node”.



To evaluate the performance of the MDS under varying at-
tack densities, seven distinct versions of each attack simulation
were created. The first simulation started at an attack density
of 10%. This means that an attack occurred for 10% of the
total simulation time. Attack density was then increase by 10%
for each of the following simulations. Table I shows the time
that each attack occurs during each simulation. For example,
those that occurred at the 10% attack density, ran from 50
seconds to 74 seconds and 210 seconds to 224 seconds. The
first attack started at 50 seconds for each attack density. The
second attack started at 210 seconds for each density, except
for 70%, where it started at 174 seconds. During this time
period, 25,000 WAVE short messages (WSM) were sent to
every vehicle. The code used to generate the WSM is based
on the communication code found in traCIDemollp.cc of
the Veins demo previously described. The malicious changes
were made in the handlePositionUpdate() method. Algorithm
3 describes how the attack operates. This algorithm repeatedly
creates WSM that contains the vehicles’ current road id that
are then distributed to all nearby vehicles.

Attack % | 1st Attack (s) | 2nd Attack (s)
10 50 - 74 210 - 224
20 50 - 74 210 - 262
30 50 - 112 210 - 262
40 50 - 150 210 - 262
50 50 - 150 210 - 300
60 50 - 150 210 - 337
70 50 - 150 174 - 340

TABLE I: Attack times used in simulations

Algorithm 3: 10% Attack Density Simulation
Result: Perform DDoS Attack

1 if (simulation time between 50 & 74) & & (simulation
time between 210 & 224) then
for i:Range 1 to 25,000 do
sentMessage = true
wsm = new TraCI Demo Message
populate wsm
set wsm data to road id
send(wsm)
end

else
10 ‘ time last drove = simulation time;

VII. DATA PREPARATION AND SCHEME DESIGN

By default, the Veins simulation in OMNeT++ collected
each vehicles x coordinate, y coordinate, speed, acceleration,
and CO2 emissions. A new data point for each of the previ-
ously mentioned factors was collected during each second of
the simulation. This data was exported to an excel file so it
could be cleaned and analyzed in a Jupyter Notebook. Before

the data could be used to train models, all periods and number
signs were removed from the column names. The time column
generated by OMNeT++ was changed from ”t” to "Time in
Seconds” for readability. A ”if then” command was used in
excel to create a column labeling the attack times. If an attack
occurred during this time, the excel formula would output
a 1. Otherwise, the result would be a 0. This column was
named “Attack Bool” for all simulations. Each simulation was
380 rows. The column size differed based on the number of
vehicles used. The total columns for each simulation can be
found by multiplying the number of vehicles by five and then
adding two columns for the time and attack label.

The cleaned csv was then loaded into a Jupyter Notebook
using Spark’s read method. Before the data could be used in
PySpark. ML models, all of the columns were converted to
floats. Additionally, the ”Attack Bool” column was changed
“Label” to match PySpark coding norms. The last step prior
to breaking the data into testing and training datasets was
to create a features vector. All of the models built in PyS-
park. ML used a vector representation of the data instead of
multiple columns like other common libraries. This conversion
was done using the vectorAssembler class and the transform
function in PySpark.ML.

The MLPC scheme was developed to handle all previously
mentioned attack percentages. All available features were
used in model development. For example, the simulation that
contained 15 vehicles gave 76 features that were fed into the
machine learning model. The first layer of the MLPC must
be the same size as the features being fed. Since the model
is attempting to determine if a DDoS attack is occurring, the
result is boolean. Hence, two is used as the value of the final
layer. Through trial and error, it was determined that five
layers seemed to outperform models with less layers. This
testing also determined that ranges just above the feature
number worked well in the second layer. Further testing also
indicated that smaller values performed best for the third
and fourth layers. To narrow in on possible high-performing
models, Algorithm 4 was ran on all simulations.

The high performing results were then collected and moved
into an excel report. If a layer combination appeared multiple
times, it was then ran on all simulations. This was done to
produce a model that would be universally valuable instead of
being only effective for a single attack density. The mean and
median Fl-scores were used to determine the best fit model.
The MLPC scheme that had the highest mean and median F1-
scores was [V, 87,9, 4, 2], where NN is the number of features
given. In this scheme, 76 is referring to the input layer and 2
is the output layer. All columns of the dataset were used as
features with the exception of the labels. The middle values
of 87, 9, and 4 are the hidden layers of the neural network.
The F1-score average for this layer design was 91.5% and the
median was 95.9%.

As mentioned in the methods section, L-BFGS was used for
the optimization routine. L-BFGS was chosen over minibatch
gradient descent due to the latter’s frequent underperformance



Algorithm 4: Determine candidate layers via brute
force methods
Result: Print F1-score of all tested layer combinations

1 for i in Range 80 to 100 do

2 for j in Range 5 to 10 do

3 for k in Range 2 to 10 do

4 layers = [76,1,j,k,2]

5 Design model using layers

6 Fit model using train_data

7 Get predictions for test_data
8 Determine F1-score using correct testing

labels

9 if F1-score > .95 then

10 print layers & F1-score
11 end
12 end
13 end

on the training data. PySpark.ML’s MLPC is trained using
backpropagation, which is a fairly standard training algorithm
for neural networks. PySpark.ML uses logistic loss function
for optimization.

VIII. SIMULATION RESULTS AND DISCUSSIONS

A. Model Comparison During Various Attack Densities

To test how this method compares to other common machine
learning models, the proposed MDS design was implemented
in a Jupyter Notebook on an Asus Zenbook. This machine
contained a Intel core i7-8565U CPU and 16 GB of RAM.
The MLPC model was compared against logistic regression,
RF, GBT, and SVM. A 70/30 train test split was used for all
models. Additionally, 100 training iterations were used for all
models with the exception of RF. PySpark.ML’s RF does not
give the option to adjust the iteration value. RF was set to a
max tree depth of 3. All of the models used were built into
the PySpark.ML module. PySaprk.ML is a machine learning
library produced by Apache Spark. This library was developed
specifically for use on Spark clusters. Accuracy, precision,
recall, and F1-score are used to compare these models. The
following formulas show how these statistics are calculated.

To find the accuracy of a model, the sum of the true positive
(TP) and true negative (TN) values must be divided by all
possible outcomes. In the following formulas, FP stands for
false positive and FN stands for false negative.

Accuracy = ITP+TN )
Y“TPY{TN+FP+FN

For precision, the TP is divided by the summation of the
TP and the FP.

TP
Precision = —————
recision TP+ FP 9)

To determine the recall of a model, the TP must be divided

by the summation of the models TP and FN.
TP

TP+ FN

The Fl-score is a weighted average of the precision and
recall. This is calculated by multiplying the precision by the
recall, then dividing by the summation of the same values. The
previously derived value is then multiplied by 2 to calculate
the F1-score.

Recall = (10)

Fl— score — 2 Precision * Recall

Precision + Recall (i

The implementation of these functions in PySpark.ML
was used for consistency. Additionally, these statistics were
collected for each of the five simulation designs in respect
to the number of vehicles. The average of each metric was
used. Fig. 5 shows the accuracy of each model at different
attack densities. By selecting the median F1l-score across all
attack densities, the overall scheme was not as effective at
each density. It can be seen that RF and GBT both produced
higher accuracy scores on all attack densities. The MLPC
outperformed the logistic regression and SVM models with
the exception of the 40% attack density.

The precision of each model followed a similar trend to
the accuracy. GBT and RF outperformed the other models
in all attack densities with the exception of 60% and 70%
attack densities for GBT. The MLPC performed comparably
to the trained regression model. This was partially due to the
MLPC producing low scores at 40% regardless of the number
of vehicles used in the simulation. SVM generally did not
perform at the same level as the other algorithms. Fig. 6 shows
the precision value for each model at various attack densities.

Recall was consistent across all models except for the
MLPC. RF, GBT, and MLPC all performed well until the
MLPC dropped at the 40% attack density simulation. Interest-
ingly, all of the models had much higher recall at 60% attack
density than the 50% attack density. The only exception to this
was GBT, which dropped slightly before increasing at 70%.
LR performed fairly well, often better than the MLPC. SVM
followed a similar trend to LR, but producing weaker results.
Fig. 7 shows the recall value for each model at various attack
densities.

RF and GBT both produced very high Fl-scores across
all simulations. MLPC produced equivalent or lower metrics
than RF and GBT. The MLPC had a lower score at a 40%
attack density than the other models analyzed. Both the LR
and SVM Fl-scores were greater than the proposed MLPC
at 40% attack density, but otherwise had lower scores. These
results are shown in detail in Fig. 8.

B. Training and Detection Time Using Multiple Clusters

Since PySpark is based on a distributed model, it is im-
portant to see if any value is gained from spreading the
computation onto multiple vehicles. To simulate this process,
the 50% attack percentage simulation was stored on an Ama-
zon S3 Bucket in Amazon Web Services (AWS). Amazon
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elastic map reduce (EMR) is a tool used to set up servers
with multiple nodes that already contain all the schemes
needed to run a PySpark cluster. AWS also contains additional
support for Jupyter Notebooks to run on an EMR spark cluster.
These clusters are designed to have a single master node and
additional core nodes to spread the computational overhead.
Each EMR instance used release emr-6.1.0 and contained
Hadoop 3.2.1, JupyterHub 1.1.0, Livy 0.7.0, Pig 0.17.0, Hive
3.1.2, Hue 4.7.1, and Spark 3.0.0. For this analysis, each EMR
node (including the master node) was set up using the mS5.large
type in AWS EMR. This server contained a 4vCore, 16 Gib
memory, and 64 Gib of storage. All logging was stored in an
additional AWS S3 bucket.

To assess the performance variation across instance config-
urations, we conducted timed training and prediction on six
distinct AWS instances, varying from a solitary master node
to a total of six nodes. The simulation including 35 vehicles
was used for this analysis. The Jupyter Notebook containing
the algorithm was restarted and ran 10 different times for each
instance. Fig. 9 shows the time required to run training and
utilize the algorithm at each node count. The inclusion of
extra nodes did not appear to significantly affect the overall
computation time, although there was a slight reduction in
median time with each additional node.



IX. CONCLUSION

The implementation of MDS systems is a crucial security
measure for deploying vehicular communication networks.
Without an MDS in place, all vehicles connected to the net-
work would be susceptible to a range of attacks, including the
likes of DDoS attacks. Such attacks can block communication
channels by flooding the network with junk communication
packets, causing confusion and potentially accidents. Machine
learning methods have proved to be effective in MDS, with
recent efforts focused on methods such as neural networks and
distributed computing. In particular, publications such as [3],
[2], and [10] showed promising results for the use of neural
networks in MDS. Both [1] and [15] showed that distributed
computing can greatly reduce the time required in a MDS.
In time critical systems such as a MDS, a tenth of a second
in detection time could be all that is needed to prevent an
accident.

The primary objective of this study was to develop a
MDS based on multilayer perceptron classifier, which is a
type of feed forward neural network, for analyzing vehicular
communications via simulations built in OMNeT++, Veins,
and SUMO. Specifically, the study investigated the effects of
DDoS attacks, which were carried out using parked zombie
vehicles, on the simulated network. The proposed MDS was
built to utilize the Apache Spark distributed computing frame-
work for data processing and attack detection. By using this
framework, we were able to analyze the benefit of spreading
the resource demand of model training and prediction against
multiple nodes. Amazon Web Services was used to run the
Spark clusters, each Elastic MapReduce node was meant to
simulate a nearby vehicle.

Although multilayer perceptron classifier is a powerful
predictive algorithm, it may not be the optimal choice for
misbehavior detection in vehicular communication systems.
Our OMNeT++ simulation involved only a limited number of
vehicles and ran for a relatively short duration of 380 seconds.
Despite this, both RF and GBT demonstrated reasonable
accuracy, recall, precision, and F1-scores. In future research, it
may be worthwhile to explore statistical learning methods that
are less computationally demanding than RF and GBT. Doing
so could improve the efficiency of misbehavior detection and
reduce time delays in distributed computing applications.
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