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Abstract
We consider a deep matrix factorization model
of covariance matrices trained with the Bures-
Wasserstein distance. While recent works have
made advances in the study of the optimization
problem for overparametrized low-rank matrix
approximation, much emphasis has been placed
on discriminative settings and the square loss. In
contrast, our model considers another type of loss
and connects with the generative setting. We char-
acterize the critical points and minimizers of the
Bures-Wasserstein distance over the space of rank-
bounded matrices. The Hessian of this loss at low-
rank matrices can theoretically blow up, which
creates challenges to analyze convergence of gra-
dient optimization methods. We establish conver-
gence results for gradient flow using a smooth
perturbative version of the loss as well as conver-
gence results for finite step size gradient descent
under certain assumptions on the initial weights.

1. Introduction
We investigate generative deep linear networks and their
optimization using the Bures-Wasserstein distance. More
precisely, we consider the problem of approximating a target
Gaussian distribution with a deep linear neural network gen-
erator of Gaussian distributions by minimizing the Bures-
Wasserstein distance. This problem is of interest in two
ways. First, it pertains to the optimization of deep linear
networks for a type of loss that is qualitatively different
from the well-studied and very particular squared error loss.
Second, it can be regarded as a simplified but instructive in-
stance of the parameter optimization problem in generative
networks, specifically Wasserstein generative adversarial

1Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany 2Department of Mathematics, Duke University, Durham,
NC, USA 3Departments of Mathematics and Statistics, UCLA,
Los Angeles, CA, USA. Correspondence to: Pierre Bréchet
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networks, which are currently not as well understood as
discriminative models.

The optimization landscapes and the properties of parameter
optimization procedures for neural networks are among the
most puzzling and actively studied topics in theoretical deep
learning (see, e.g. Mei et al., 2018; Liu et al., 2022). Deep
linear networks, i.e. neural networks having the identity
as activation function, serve as simplified models for such
investigations (Baldi & Hornik, 1989; Kawaguchi, 2016;
Trager et al., 2020; Kohn et al., 2022; Bah et al., 2021).
The study of linear networks has guided the development
of several useful notions and intuitions in the theoretical
analysis of neural networks, from the absence of bad local
minima to the role of parametrization and overparametriza-
tion in gradient optimization (Arora et al., 2018; 2019a;b).
Many previous works have focused on discriminative or
autoregressive settings and have emphasized the squared
error loss. Although this loss is indeed a popular choice in
regression tasks, it interacts in a very special way with the
particular geometry of linear networks (Trager et al., 2020).
The behavior of linear networks optimized with different
losses has also been considered in several works (Laurent &
Brecht, 2018; Lu & Kawaguchi, 2017; Trager et al., 2020)
but is less well understood.

The Bures-Wasserstein distance was introduced by Bures
(1969) to study Hermitian operators in quantum informa-
tion, particularly density matrices. It induces a metric on the
space of positive semi-definite matrices, and corresponds to
the 2-Wasserstein distance between two centered Gaussian
distributions (Bhatia et al., 2019). Wasserstein distances
have several useful properties, e.g. they remain well defined
between disjointly supported measures and have duality
formulations (Villani, 2003) that allow for practical imple-
mentations. This makes them good candidates and indeed
popular choices for learning generative models, with a well-
known case being the Wasserstein Generative Adversarial
Networks (WGANs) (Arjovsky et al., 2017). While the 1-
Wasserstein distance has been most commonly used in this
context, the Bures-Wasserstein distance has also attracted in-
terest, e.g. in the works of Muzellec & Cuturi (2018); Chewi
et al. (2020); Mallasto et al. (2022), and has also appeared
in the context of linear quadratic Wasserstein generative
adversarial networks (Feizi et al., 2020).
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Notably, De Meulemeester et al. (2021) observed exper-
imentally that the Bures-Wasserstein metric reduces the
infamous problem of mode collapse in GANs. In particu-
lar, the authors reported improvements in mode coverage
and generation quality by adding the Bures metric to the
objective function of a GAN. Our work casts light on the
theoretical properties of Bures-Wasserstein metric as a loss
function to train deep linear generative neural networks, by
studying a specific 2-Wasserstein GAN model.

A 2-Wasserstein GAN is a minimum 2-Wasserstein distance
estimator expressed in Kantorovich duality (see details in
Appendix B). This model can serve as a platform to develop
the theory particularly when the inner problem can be solved
in closed-form. Such a formula is available when comparing
pairs of Gaussian distributions, in particular centered Gaus-
sians, which corresponds precisely to the Bures-Wasserstein
distance between the corresponding covariance matrices.
Strikingly, even in this simple case, the properties of the cor-
responding optimization problem are not well understood;
we aim to address this in the present work.

1.1. Contributions

We establish a series of results on the optimization of deep
linear networks trained with the Bures-Wasserstein loss:

• We obtain an analogue of the Eckart-Young-Mirsky theo-
rem characterizing the critical points and minimizers of
the Bures-Wasserstein distance over matrices of a given
rank (Theorem 4.2).

• To circumvent the non-smooth behaviour of the Bures-
Wasserstein loss when the matrices drop rank, we in-
troduce a smooth perturbative version (Definition 6 and
Lemma 3.3), and characterize its critical points and min-
imizers over rank-constrained matrices (Theorem 4.5).
Under some conditions on the function realization, we
connect them to critical points on the parameter space
(Proposition 4.6).

• For the Bures-Wasserstein loss and its smooth version,
in Theorem 5.5 and Remark 5.6, we show exponential
convergence of the gradient flow assuming balanced initial
weights (Definition 2.1) and a modified margin deficiency
condition (Definition 5.2).

• For the Bures-Wasserstein loss and its smooth version, in
Theorem 5.7, we show convergence of gradient descent
provided the step size is small enough and the initial
weights are balanced.

1.2. Related works

Low rank matrix approximation The function space of
a linear network corresponds to n ⇥ m matrices of rank at

most d, the smallest width of the network. Hence optimiza-
tion in the function space is closely related to the problem
of approximating a given data matrix by a low-rank matrix.
When the approximation error is measured in Frobenius
norm, Eckart & Young (1936) characterized the optimal
bounded-rank approximation of a given matrix in terms of
its singular value decomposition. Mirsky (1960) obtained
the same characterization for the more general case of uni-
tary invariant matrix norms, which include the Euclidean
operator norm and the Schatten-p norms. There are further
generalizations to certain weighted norms (Ruben & Zamir,
1979; Dutta & Li, 2017). However, for general norms the
problem is known to be difficult (Song et al., 2017; Gillis &
Vavasis, 2018; Gillis & Shitov, 2019).

Loss landscape of deep linear networks For the squared
error loss, the optimization landscape of linear networks
has been studied in numerous works. The pioneering work
of Baldi & Hornik (1989) focused on the two-layer case,
and showed that there is a single minimum (up to a trivial
parametrization symmetry) and all other critical points are
saddle points. Kawaguchi (2016) obtained corresponding
results for deep linear networks and showed the existence
of bad saddles (with no negative Hessian eigenvalues) in
parameter space for networks with more than three layers.
Lu & Kawaguchi (2017) showed that if the loss is such that
any local minimizer in parameter space can be perturbed
to an equally good minimizer with full-rank factor matri-
ces, then all local minimizers in parameter space are local
minimizers in function space. Chulhee et al. (2018) found
sets of parameters in which any critical point is a global
minimizer, and any outside critical point is a saddle point.
We also mention other works that study critical points for
different types of neural network architectures, such as deep
linear residual networks (Hardt & Ma, 2017) and deep linear
convolutional networks (Kohn et al., 2022; 2023).

There are also several results for different losses. Laurent
& Brecht (2018) showed that for deep linear nets with no
bottlenecks all local minima are global for arbitrary convex
differentiable losses. Trager et al. (2020) found that for
linear networks with arbitrarily rank-constrained function
space, the squared error loss is special in the sense that
it ensures the non-existence of non-global local minima.
However, for arbitrary convex losses, non-global local mini-
mizers, when they exist, are always pure, meaning that they
correspond to local minimizers in function space.

Optimization dynamics of deep linear networks Saxe
et al. (2014) studied the learning dynamics of deep linear
networks under different types of initial conditions. Arora
et al. (2019b) obtained a closed-form expression for the
parametrization along time in a deep linear network for the
squared error loss. Notably, the authors found that solutions
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with a lower rank are preferred as the depth of the network
increases. Arora et al. (2018) derived several invariances of
the flow and compared the dynamics in parameter and func-
tion spaces. For the squared error loss, Arora et al. (2019a)
proved linear convergence of gradient descent for linear net-
works without bottlenecks, with weights initialized to fulfill
two assumptions — approximate balancedness and so that
the end-to-end matrix is close in some sense to the solution.
We frame our discussion by similar assumptions. Under
the balancedness assumption for the initial weights, Bah
et al. (2021) showed that for deep linear neural networks,
the gradient flow of the squared error loss can be cast as a
Riemannian gradient flow in the function space, and as such
converges to a critical point which is a global minimizer on
the manifold of fixed rank matrices of a given rank. More
recently, Nguegnang et al. (2021) extended this convergence
analysis to the (full-batch) gradient descent algorithm.

As a last note, a detailed analysis of the dynamics in the
case of shallow linear networks with the squared error loss
was conducted by Tarmoun et al. (2021); Min et al. (2021).
The authors use symmetric and asymmetric factorization of
a shallow linear network to study its convergence dynamics.
The role of the “imbalancedness” of the weights was also
remarked in those works.

Bures-Wasserstein distance The Bures-Wasserstein dis-
tance has been of particular interests due to its geometrical
properties. Chewi et al. (2020) studied the convergence
of gradient descent algorithms for the Bures-Wasserstein
barycenter, proving linear rates of convergence. In contrast
to our work, they considered a Polyak-Łojasiewicz inequal-
ity derived from optimal transport theory to circumvent the
non geodesic convexity of the barycenter. In the same vein,
Muzellec & Cuturi (2018) exploited optimal transport theory
to optimize the distance between two elliptical distributions.
To avoid rank deficiency, they perturbed the diagonal ele-
ments of the covariance matrix by a small parameter. We
also mention that Feizi et al. (2020) characterized the opti-
mal solution of a 2-Wasserstein GAN with a rank-k linear
generator as the k-PCA solution. We will obtain an anal-
ogous result in our particular parametrization, along with
detailed descriptions of critical points.

1.3. Notations

We adopt the following notations. For any n 2 N, let [n] :=
{1, 2, . . . , n}. We equip R

n with its usual inner product, and
we denote by O(n) the space of real orthogonal matrices of
size n. Let S(n) be the space of real symmetric matrices of
size n. We denote S+(n) (resp. S++(n)) the space of real
symmetric positive semi-definite (resp. definite) matrices of
size n. We use M(k;n,m) (resp. M(6 k;n,m)) to denote
the set of matrices of size n ⇥ m with rank exactly k (resp.
at most k). If not specified, the size of the matrix is n ⇥ m.

The scalar product between two matrices A,B 2 R
n⇥m

is hA,Bi = trA>B, and the associated Frobenius norm
is k·k

2
F . The identity matrix of size n will be written as

In, or I when n is clear. For a (Fréchet) differentiable
function f : X ! Y , we denote its differential at x 2 X
in the direction v by df(x)[v]. Finally, Crit(f) is the set
of critical points of f , i.e. the set of points at which the
differential of f is 0.

2. Linear networks and their gradient
dynamics

We consider a linear network with d0 inputs and N layers
of widths d1, . . . , dN , which is a model of linear functions
of the form

x 7! WN · · ·W1x,

parametrized by the weight matrices Wj 2 R
dj⇥dj�1 , for

all j 2 [N ]. We will denote the tuple of weight matrices
by

�!
W = (W1, . . . ,WN ) and the space of all such tuples by

⇥. This is the parameter space of our model. To slightly
simplify the notation we will also denote the input and
output dimensions by m ⌘ d0 and n ⌘ dN , respectively,
and write W := WN · · ·W1 for the end-to-end matrix. For
any 1 6 i 6 j 6 N , we will also write Wj:i := Wj · · ·Wi

for the matrix product of layer i up to j. We note that the
represented function is linear in the network input x, but
the parametrization is not linear in the parameters

�!
W . We

denote the network’s parametrization map by

µ : ⇥ ! R
dN⇥d0 ;

�!
W = (W1, . . . ,WN ) 7! WN :1 = WN · · ·W1.

The function space of the network is the set of linear func-
tions it can represent. This corresponds to the set of possible
end-to-end matrices, which are the n ⇥ m matrices of rank
at most d := min{d0, . . . , dN}. When d = min{d0, dN},
the function space is a vector space. Otherwise, when there
is a bottleneck such that d < min{d0, dN}, it is a non-
convex subset of R

m⇥n determined by polynomial con-
straints, namely the vanishing of the (d + 1) ⇥ (d + 1)
minors.

Next, we collect a few results on the gradient dynamics
of linear networks for general differentiable losses, which
have been established in previous works with focus on the
squared error loss (Kawaguchi, 2016; Bah et al., 2021; Chi-
tour et al., 2022; Arora et al., 2018). In the interest of
conciseness, here we only provide the main takeaways and
defer a more detailed discussion to Appendix C. For the
remainder of this section, let L

1 : R
n⇥m

! R be any differ-
entiable loss and L

N be defined through the parametrization
µ as L

N (
�!
W ) := L

1
� µ(

�!
W ). For such a loss, the gradient
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flow t 7!
�!
W (t) is defined by

d
dt

�!
W (t) = �rL

N (
�!
W (t))

()

8j 2 [N ], d
dtWj(t) = �rWjL

N (W1(t), . . . ,WN (t)).
(1)

This governs the evolution of the parameters. Furthermore,
we observe that the partial derivative of L

N with respect to
Wj , for all j 2 [N ], is given by

rWjL
N (W1, . . . ,WN )

= W>

j+1 · · ·W>

N rL
1(W )W>

1 · · ·W>

j�1.
(2)

As it turns out, the gradient flow dynamics preserves the
difference of the Gramians of subsequent layer weight ma-
trices, which are thus invariants of the gradient flow; i.e.

d

dt
(Wj+1(t)

>Wj+1(t)) =
d

dt
(Wj(t)Wj(t)

>).

The notion of balancedness for the weights of linear net-
works was first introduced by Fukumizu (1998) in the shal-
low case and generalized to the deep case by Du et al.
(2018). This is useful as it removes the redundancy of the
parametrization when investigating the dynamics in function
space and has been considered in numerous works.
Definition 2.1 (Balanced weights). The weights
W1, . . . ,WN are said to be balanced if, for
all j 2 [N � 1], WjW>

j = W>

j+1Wj+1.

Assuming balanced initial weights, if the flow of each Wj

is defined and bounded, then the rank of the end-to-end
matrix W remains constant during training (Bah et al.,
2021, Proposition 4.4). Moreover, the products WN :1W>

N :1
and W>

N :1WN :1 can be written in a concise manner;
namely, WN :1W>

N :1 = (WNW>

N )
N and W>

N :1WN :1 =

(W>
1 W1)

N , which simplifies computations.
Remark 2.2. Some attempts to relax the balanced initial
weights assumption include the notion of approximate bal-
ancedness Arora et al. (2019a), which only requires that
there exists � > 0 such that kWjW>

j �W>

j+1Wj+1kF 6 �
for j 2 [N � 1]. Our proofs in this paper use exactly bal-
anced initial weights for simplicity, but they would also
work under the approximate balancedness setting. Further
initializations have been proposed by e.g. Gidel et al. (2019);
Yun et al. (2021). We defer the analysis of such cases for
future work favoring here a focused discussion of the Bures-
Wasserstein loss with balanced initial weights.

3. Wasserstein generative linear networks
3.1. The Bures-Wasserstein loss

The Bures-Wasserstein (BW) distance is defined on the
space of positive semi-definite matrices (or covariance

space) S+(n). We collect definitions and key properties
of the gradient.
Definition 3.1 (Bures-Wasserstein distance). Given two
symmetric positive semidefinite matrices (⌃0, ⌃) 2

(S+(n))
2, the squared Bures-Wasserstein distance between

⌃0 and ⌃ is defined as

B
2(⌃,⌃0) = tr

⇣
⌃+ ⌃0 � 2(⌃1/2

0 ⌃⌃1/2
0 )1/2

⌘
. (3)

Kroshnin et al. (2021, Lemma A.3) shows that the matrix
square root is differentiable on the set of positive definite
matrices. In turn, we can differentiate the BW distance at
⌃ 2 S++(n). However, the mapping ⌃ 7! B

2(⌃,⌃0) is
not differentiable at all n ⇥ n matrices. Indeed, if we let
�Q�> be a spectral decomposition of ⌃1/2

0 ⌃⌃1/2
0 , then (3)

can be written as

B
2(⌃,⌃0) = k⌃1/2

k
2
F + k⌃1/2

0 k
2
F � 2 trQ1/2. (4)

Due to the square root on Q, the map ⌃ 7! B
2(⌃,⌃0) is not

differentiable when the number of positive eigenvalues of
Q, i.e. the rank of ⌃1/2

0 ⌃⌃1/2
0 , changes. More specifically,

while one can compute the gradient over the set of matrices
of rank k for any given k, the norm of the gradient blows up
if the matrix changes rank. We describe the gradient of B

2

restricted to the set of full-rank matrices in Appendix B. We
refer the reader to Bhatia et al. (2019) for further details on
the BW distance.

3.2. Linear Wasserstein GAN

The distance defined in (3) corresponds to the 2-Wasserstein
distance between two zero-centered Gaussians. It can be
used as a loss for training models of Gaussian distributions,
in particular generative linear networks. Recall that a zero-
centered Gaussian distribution is completely specified by
its covariance matrix. Given a bias-free linear network and
a latent Gaussian distribution N (0, Im), a linear network
generator computes a push-forward of the latent distribution,
which is again a Gaussian distribution. If Z ⇠ N (0, Im)
and X = WZ, then

X ⇠ N (0,WW>) =: ⌫.

Given a target distribution ⌫0 = N (0,⌃0) (or simply a co-
variance matrix ⌃0, which may be a sample covariance ma-
trix), one can select W by minimizing B

2(WW>,⌃0) =
W

2
2 (⌫, ⌫0). We will denote the map that takes the end-to-end

matrix W to the covariance matrix WW> by ⇡ : R
n⇥m

!

R
n⇥n; W 7! WW>.

Loss in covariance, function, and parameter spaces We
consider the following losses, which differ only on the
choice of the search variable, taking either a covariance
space, function space, or parameter space viewpoint.
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• First, we denote the loss over covariance matrices ⌃ 2

S+(n) as L : ⌃ 7! B
2(⌃,⌃0).

• Secondly, given ⇡ : W 7! WW>
2 S+(n), we define the

loss in the function space, i.e. over end-to-end matrices
W 2 R

n⇥m, as L1 : W 7! L � ⇡(W ). This is given by,
for W 2 R

n⇥m,

L1(W ) = tr
⇣
WW> + ⌃0 � 2(⌃1/2

0 WW>⌃1/2
0 )1/2

⌘
.

(5)
This loss is not convex in R

n⇥m, which can be seen even
in the scalar case.

• Lastly, for a tuple of weight matrices
�!
W =

(W1, . . . ,WN ), we compose L1 with the parametrization
map µ :

�!
W 7! WN :1 to define the loss in the parameter

space as LN :
�!
W 7! L � ⇡ � µ(

�!
W ), for

�!
W 2 ⇥. Observe

that this is, again, a non-convex loss.

Thus, for
�!
W 2 ⇥, LN (

�!
W ) = L1(µ(

�!
W )) =

L(⇡(µ(
�!
W )) = B

2(⇡ � µ(
�!
W ),⌃0). While the gradient

flow (1) is defined on the parameters
�!
W , viewing the prob-

lem in the covariance space is useful since then the objective
function is convex, even if it may be subject to non-convex
constraints. One of our goals is to translate properties be-
tween L, L1, and LN .

Smooth perturbative loss As mentioned before, the
Bures-Wasserstein loss is non-smooth at covariance ma-
trices with vanishing eigenvalues. As a result, the usual
analysis tools to prove uniqueness and convergence of the
gradient flow do not apply here. To tackle this issue, we in-
troduce a smooth perturbative version of the loss. Consider
the perturbation map '⌧ : ⌃ 7! ⌃+⌧In, where ⌧ > 0 plays
the role of a regularization strength. Then the perturbative
loss in the covariance space is defined as L⌧ = L � '⌧ , and
the perturbative loss in the function space as L1

⌧ = L⌧ � ⇡.
More explicitly, we let

L1
⌧ (W ) = tr

⇣
WW> + ⌧In + ⌃0

� 2(⌃1/2
0 (WW> + ⌧In)⌃

1/2
0 )1/2

⌘
.

(6)

This function is smooth and allows us to apply usual
convergence arguments for the gradient flow. Likewise,
LN
⌧ := L⌧ � ⇡ � µ is well-defined and smooth on ⇥.

Remark 3.2. The perturbative loss (6), as well as the orig-
inal loss on fixed-rank matrices, are differentiable. Many
results of Bah et al. (2021) can be carried over for these
differentiable Bures-Wasserstein losses. For example, the
uniform boundedness at any time t > 0 of the end-to-end
matrix holds, kW (t)k 6

p
2L1(W (0)) + tr⌃0. Similar

observations may apply for the case of L1 in the case that

the matrix WW> remains positive definite throughout train-
ing, in which case the gradient flow remains well-defined
and the loss is monotonically decreasing. We expand on this
in Appendix C.

The next lemma, proved in Appendix B.4, provides a quan-
titative bound for the difference between the original and
the perturbative loss. To compare the two losses, we set the
parameters — and hence, the end-to-end matrices — to a
fixed, common value.
Lemma 3.3. Let W 2 R

n⇥m and ⌧ > 0. Assume that
rank (⌃0) = n. Then, with L1(W ) given by (5) and L1

⌧ (W )
given by (6), we have

|L1
⌧ (W )�L1(W )| 6 n

p
⌧

 
p
⌧ +

2�max(⌃
1/2
0 )

�min(⌃
1/2
0 )

!
, (7)

with (�max(⌃
1/2
0 ),�min(⌃

1/2
0 )) the maximum and mini-

mum eigenvalues of ⌃1/2
0 .

We observe that the upper bound (7) is tight in ⌧ in the sense
that it goes to zero as ⌧ goes to zero.

4. Critical points
In this section, we characterize the critical points of the
Bures-Wasserstein loss restricted to matrices of a given rank.
The proofs of results in this section are given in Appendix D.

For k 2 N, denote M(k) as the manifold of rank-k matrices
of size n ⇥ m:

M(k) ⌘ M(k;n,m) := {W 2 R
n⇥m

| rankW = k}.
(8)

Similarly, we denote by M(6 k) ⌘ M(6 k;n,m) the
set of n ⇥ m matrices of rank at most k. The manifold
M(k) is an embedded submanifold of the linear space
(Rn⇥m, h·, ·iF ), with codimension (n�k)(m�k) (Helmke
& Shayman 1995, Proposition 4.5; Boumal 2022, §2.6).
Given a function f : R

n⇥m
! R, its restriction on M(k) is

denoted by f |M(k) : M(k) 3 W 7! f(W ). A function f
may not differentiable everywhere on R

n⇥m but still have a
restriction on M(k) that is differentiable.
Definition 4.1. Let M be a smooth manifold. Let
f : R

n⇥m
! R be any function such that its restriction

on M is differentiable. A point W 2 M is said to be a
critical point of f |M if the differential of f |M at W is the
zero function, i.e. df |M(W ) = 0.

4.1. Critical points of L1 over M(k)

Given a matrix A 2 R
n⇥n and a set Jk ✓ [n], where the

subscript indicates the cardinality of the set, k = |Jk|, we
denote by AJk 2 R

n⇥k the sub-matrix of A consisting of
the columns with index in Jk. If the matrix A is diagonal,
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we let ĀJk 2 R
k⇥k be the diagonal sub-matrix which ex-

tracts the rows and columns with index in Jk. The following
result characterizes the critical points of the loss in function
space. It can be regarded as a type of Eckart-Young-Mirsky
result for the case of the Bures-Wasserstein loss.
Theorem 4.2 (Critical points of L1). Assume ⌃0 has n
distinct, positive eigenvalues. Let ⌃0 = ⌦⇤⌦> be a spec-
tral decomposition of ⌃0 (so ⌦ 2 O(n)), with eigenval-
ues ordered decreasingly. Let k 2 [min{n,m}]. A ma-
trix W ⇤

2 M(k) is a critical point of L1
|M(k) if and

only if W ⇤ = ⌦Jk ⇤̄
1/2
Jk

V > for some Jk ✓ [n] with
|Jk| = k and V 2 R

m⇥k with V >V = Ik. The mini-
mum over M(6 k) is attained precisely when Jk = [k].
In particular, infM(k) L

1(W ) = minM(k) L
1(W ) and

minM(k) L
1(W ) = minM(6k) L

1(W ).
Remark 4.3. Notice that there are

�n
k

�
critical points up to

right rotation by an arbitrary orthonormal matrix (the trivial
symmetry of W 7! WW>).

The proof relies on evaluating the zeros of the gradient
rL1

|M(k) (see Lemma D.3). Then evaluating the loss at
these critical points allows us to identify which of them
attain the minimum.
Remark 4.4. Interestingly, the critical points and the min-
imizer of L1 characterized in the above result agree with
those of the squared error loss (Eckart & Young, 1936;
Mirsky, 1960). Nonetheless, we observe that (3) is only
defined for positive semi-definite matrices. Hence the no-
tion of unitary invariance considered by Mirsky (1960) only
makes sense for left and right multiplication by the same
matrix. Moreover, while we can establish unitary invariance
for a variational expression of the distance (see Lemma 5.1),
this is still not a norm in the sense that there is no function
B : S+(n) ! R such that B(⌃,⌃0) = B(⌃ � ⌃0), and
hence it does not fall into the framework of Mirsky (1960).
We offer more details about this in Appendix B.

4.2. Critical points of the perturbative loss

For the critical points of the perturbative loss L1
⌧ (W ) we

obtain the following results.
Theorem 4.5 (Critical points of L1

⌧ ). Assume ⌃0 has n
distinct, positive eigenvalues. Let ⌃0 = ⌦⇤⌦> be a
spectral decomposition of ⌃0, with eigenvalues ordered
decreasingly. A point W ⇤

2 M(k) is a critical point
of L1

⌧ |M(k) if and only if W ⇤ = ⌦Jk(⇤̄Jk � ⌧Ik)
1/2

V >

for some Jk ✓ [n] with |Jk| = k and V 2 R
n⇥k with

V >V = Ik. Moreover, the value at such a point is
L1
⌧ (W

⇤) =
P

j 62Jk
(
p
�j �

p
⌧)2. The minimum over

M(6 k) is therefore attained precisely when Jk = [k].
In particular, infM(k) L

1
⌧ (W ) = minM(k) L

1
⌧ (W ) and

minM(k) L
1
⌧ (W ) = minM(6k) L

1
⌧ (W ).

Note that the above characterization of the critical points

imposes an upper bound on ⌧ : for a given W ⇤ to be a critical
point, one must have that ⌧  �j for all j 2 Jk, because
the eigenvalues of ⇤̄Jk � ⌧Ik have to be nonnegative.

In order to link the critical points in the parameter space to
the critical points in the function space, we appeal to the
correspondence drawn by Trager et al. (2020, Propositions
6 and 7). For the Bures-Wasserstein loss, this allows to
conclude the following.

Proposition 4.6 (Critical points in parameter space are crit-
ical points in function space). Assume a full-rank target
⌃0 with spectral decomposition ⌃0 = ⌦⇤⌦> and distinct
eigenvalues �1 > · · · > �n > 0 ordered decreasingly. Let
⌧ 2 (0,�n]. If

�!
W ⇤

2 Crit(LN
⌧ ), then W ⇤ = µ(

�!
W ⇤) is

a critical point of the loss L1
⌧ |M(k), where k = rankW ⇤.

Moreover, when k = d = mini2[N ]{di}, then
�!
W is a local

minimizer of the loss LN
⌧ if and only if W ⇤ = µ(

�!
W ⇤) is

a local minimizer, and therefore the global minimizer, of
L1
⌧ |M(d). In this case, ⌃⇤

⌧ = W ⇤W ⇤> + ⌧In is the ⌧ -best
d-rank approximation of the target in the covariance space,

in the sense that ⌃⇤
⌧ = ⌦

✓
⇤[d]

⌧

◆
⌦>.

Proposition 4.6 ensures that, under the assumption that the
solution of the gradient flow is a (local) minimizer in the
parameter space and has the highest possible rank d for the
given network architecture, the solution in the covariance
space is the best d-rank approximation of the target in the
sense of the ⌧ -smoothed Bures-Wasserstein distance. The
fact that any local minimizer of L1

⌧ |M(d) is indeed a global
minimizer is not immediate (since neither the loss L1

⌧ nor
the set M(d) are convex), but can be shown as we do in
Lemma D.10.
Remark 4.7. Under the balancedness assumption, one can
show that the rank of the end-to-end matrix does not drop
during training (Bah et al., 2021, Proposition 4.4), and that
the trajectory almost surely escapes the strict saddle points
(Bah et al., 2021, Theorem 6.3). If the initialization of the
network has rank d, the matrices W (t), t > 0, maintain
rank d throughout training. There can be issues in the limit,
since M(d) is not closed. Proving whether or not the limit
point also belongs to M(d) is an interesting open problem.

5. Convergence analysis
The Bures-Wasserstein distance can be viewed through the
lens of the Procrustes metric (Dryden et al., 2009; Masarotto
et al., 2019). In fact, it can be obtained by the following
minimization problem.

Lemma 5.1 (Bhatia et al. 2019, Theorem 1). For (⌃,⌃0) 2

(S+(n))
2,

B
2(⌃,⌃0) = min

U2O(n)
k⌃1/2

� ⌃1/2
0 Uk

2
F , (9)
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where O(n) denotes the set of n ⇥ n orthogonal matrices.
Moreover, the minimizer Ū occurs in the polar decomposi-
tion of ⌃1/2⌃1/2

0 .

We emphasize that in the above description of the Bures-
Wasserstein distance, the minimizer Ū depends on W , so
that B

2 fundamentally differs from a squared Frobenius
norm. Moreover, the square root on ⌃ can lead to singulari-
ties when differentiating the loss. Nonetheless, based on (9)
we can formulate the following deficiency margin concept
to avoid such singularities.
Definition 5.2 (Modified deficiency margin). Given a target
matrix ⌃0 2 R

n⇥n and a positive constant c > 0, we say
that ⌃ 2 R

n⇥n has a modified deficiency margin c with
respect to ⌃0 if

min
U2O(n)

k⌃1/2
� ⌃1/2

0 UkF 6 �min(⌃
1/2
0 ) � c. (10)

With a slight abuse of terminology, we will say that W has a
modified deficiency margin if WW> does. The deficiency
margin idea can be traced back to Arora et al. (2019a). Note
that we can write

p

WW> = ⌃1/2, and this square root
can be realized by Cholesky decomposition. If we initialize
the parameters so that ⌃ is close to the target ⌃0, then (10)
holds trivially. In fact, if the initial value W (0) satisfies the
modified deficiency margin condition, then the least singular
value of W (t) remains bounded below by c along gradient
flow or gradient descent trajectories with decreasing LN :
Lemma 5.3. Suppose W (0)W (0)> has a modified defi-
ciency margin c with respect to ⌃0. Then

�min

⇣q
W (t)W (t)>

⌘
> c, for t > 0. (11)

The proof of this and all results in this section are provided
in Appendix E. We note that, while the modified deficiency
margin assumption is sufficient for Lemma 5.3 to hold, it is
by no means necessary. We will assume that the modified
deficiency margin assumption holds for simplicity of expo-
sition, but the gradient flow analysis in the next paragraph
only requires the less restrictive Lemma 5.3 to hold.

5.1. Convergence of gradient flow for the smooth loss

Since we cannot exclude the possibility that the rank of
WW> drops along the gradient flow of the BW loss, we
consider the smooth perturbation introduced in Section 3.2
as a way to avoid singularities. We consider the gradient
flow (1) for the perturbative loss. The gradient of (6) is

rL1
⌧ (W ) =

2
⇣
W � ⌃1/2

0

�
⌃1/2

0 (WW> + ⌧In)⌃
1/2
0

��1/2
⌃1/2

0 W
⌘
.

The perturbation ⌧In ensures that �min(⌃⌧ ) > ⌧ > 0,
which in turn makes L⌧ strongly-convex, as shown next.

Lemma 5.4. The Hessian operator G⌧ of the loss L⌧ at ⌃ 2

S+(n) satisfies �min(G⌧ ) > K⌧ for any ⌃ 2 S+(n), with

K⌧ :=
p

⌧�min(⌃0)

2C2
⌧

, where C⌧ := 2(L⌧ (⌃(0)) + tr⌃0).

This is proven in Lemma E.6.

Let us denote the minimizer of the perturbative loss L(⌃⌧ )
by ⌃⇤

⌧ . Equipped with the strong convexity of the loss
L⌧ given by Lemma 5.4, we are ready to show that the
gradient flow has convergence rate O(e�K̃c,NK⌧ t) to the
global minimizer of L⌧ , where K⌧ is the constant from the
Hessian bound given by Lemma 5.4, and K̃c,N is a con-
stant which depends on the modified margin deficiency
and the depth of the network. Recall that for t > 0,
⌃⌧ (t) = WN :1(t)W>

N :1(t) + ⌧In, so we prove conver-
gence of gradient flow on the loss under the parametrization
⌃⌧ (t) = '⌧ (⇡(µ(

�!
W (t)))).

Theorem 5.5 (Convergence of gradient flow for the smooth
loss). Let �⇤

⌧ := ⌃⌧ (0)�⌃⇤
⌧ be the distance from the initial-

ization to the minimizer ⌃⇤
⌧ := argmin⌃2S++(n) L⌧ (⌃) =

⌃0 � ⌧In. Assume both balancedness (Definition 2.1) and
the modified deficiency margin (Definition 5.2). Then the

gradient flow
�̇!
W (t) = �rLN

⌧ (
�!
W (t)) converges as

L(⌃⌧ (t)) � L(⌃⇤

⌧ ) 6 e�8Nc
2(2N�1)

N K⌧ t�⇤

⌧ , (12)

where K⌧ =
p

⌧�min(⌃0)

2C2
⌧

is the strong convexity parameter
from Lemma 5.4, with C⌧ = 2(L(⌃⌧ (0)) + tr(⌃0)).
Remark 5.6. Under the modified margin assumption (Defi-
nition 5.2), the parametrized covariance matrix ⌃ = WW>

has its eigenvalues lower-bounded by c2 at all times, as per
Lemma 5.3. Therefore, the convergence result obtained
in Theorem 5.5 can be extended to the original loss, with
(⌃⌧ (t),⌃⇤

⌧ ) replaced with (⌃(t),⌃⇤), �⇤
⌧ replaced with

�⇤ := ⌃(0) � ⌃⇤, K⌧ replaced with Kc2 =
p

c2�min(⌃0)

2C2 ,
and C⌧ replaced with C0 = 2(L(⌃(0)) + tr(⌃0)). More
details about this are given in Appendix E.3.

5.2. Convergence of gradient descent for the BW loss

Assuming that the initial end-to-end matrix W has a modi-
fied deficiency margin, we can establish the following con-
vergence result for gradient descent with finite step sizes,
which is valid for both the perturbed loss and the origi-
nal (non-perturbed) loss. Given an initial value

�!
W (0), we

consider the gradient descent iteration
�!
W (k + 1) =

�!
W (k) � ⌘rLN (

�!
W (k)), k = 0, 1, . . . ,

(13)
where ⌘ > 0 is the learning rate or step size and the gradient
is given by (2).
Theorem 5.7 (Convergence of gradient descent). Assume
that the initial values Wi(0), 1 6 i 6 N , are balanced and
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W (0) = WN :1(0) has a modified deficiency margin c. If
the learning rate ⌘ > 0 satisfies

⌘ 6 min

8
<

:
c2

8M
p
L1(W (0))

,
Nc

2(N�1)
N

2�
,

1

4Nc
2(N�1)

N

9
=

; ,

where � = 2N+1

c2N N2M (4N�3)/N�1/2
max(⌃0) +

8N(N � 1)M (3N�4)/N
⇣
M1/N + k⌃1/2

0 kF

⌘
, and

M =
q
2L1(W (0)) + k⌃1/2

0 k2F , then, for any ✏ > 0, one
achieves ✏ loss by the gradient descent (13) at iteration

k > 1

2⌘Nc
2(N�1)

N

log

 
L1(W (0))

✏

!
.

Remark 5.8. Theorems 5.5 and 5.7 show that the depth of
the network can accelerate the convergence of the gradient
algorithms. We verify this experimentally in Section 5.3.

5.3. Experimental evaluation of the convergence rate

We conduct numerical experiments to illustrate our theo-
retical results1. We observe empirically (Figure 1) the lin-
ear dependency of the asymptotic rate of convergence as a
function of the depth of the network N and the minimum
singular value square root of the target �min(⌃

1/2
0 ).

Setup The target covariance matrix is sampled as ⌃0 :=
⌦⇤⌦>, where ⌦ 2 R

n⇥n is a random orthogonal matrix,
and the eigenvalues in ⇤ follow a Zipf distribution, �j /

1/j for j 2 [n]. The input data dimension is set to be
n = 20. We vary the minimum eigenvalue for the target
�min and set �j = n/j · �min for j 2 [n]. We consider
constant width networks with di = n = m = 20, for each
i 2 [N ].

To fulfill the modified deficiency margin assumption (Def-
inition 5.2), we initialize the parameters close to the tar-
get ⌃0. If ⌃0 = ⌦⇤⌦>, then the weights are initial-
ized in a way such that the initial covariance matrix is
⌃(0) = (⌃0 � ⌧In) +A, with A being a random perturba-
tion. More precisely, we choose A = �D�>, where � is a
random orthogonal matrix, and D is a diagonal matrix with
small eigenvalues — so that the overall distance between the
initialization and the target is bounded by �min�c, for some
c > 0. With this initialization and the balancedness protocol
explained by Arora et al. (2019a), the network satisfies both
the balancedness and modified deficiency margin assump-
tions. In this case we expect Theorem 5.5 to hold for small
step sizes. We estimate the asymptotic linear convergence
rate numerically.

1The source code for the experiments can be found at
https://github.com/brechetp/BW-linear-networks.
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depth

1
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�
m
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(�

1/
2

0
)

�4618

�3464

�2309

�1155

�0

(b)

Figure 1. Logarithm of the linear convergence rate as a function
of the depth N and the minimum singular value �min(⌃

1/2
0 ). In

(a), �min(⌃
1/2
0 ) ⇡ 0.7078 is fixed; convergence rate and its linear

regression as a function of the depth N . In (b), both the depth
and �min are varying, and the rate is shown in a contour plot. The
hyperbolas indicate a linear dependency on both the depth N of
the network and the minimum singular value of the target square
root �min(⌃

1/2
0 ), which is coherent with the upper-bound given

by Theorem 5.5.

Result We compute the rate of convergence as follows.
First, the network (initialized as detailed above) is trained
with a small enough learning rate ⌘. Then, we compute
log (L(⌃(t) � L(⌃⇤))). Theorem 5.5 states that this should
be a linear function of the time t. Therefore, a linear re-
gression is performed, and the slope taken as the empirical
rate of convergence. According to Theorem 5.5, this rate
should be linear in the depth N and linear in the strong con-
vexity parameter K⌧ , which suggests that it could be linear
in �min(⌃

1/2
0 ) ⌘ �min. Hence, we compute the empirical

rate of convergence for varying depths and �min, reported
in Figure 1. In Figure 1a the linear dependence in the depth
is clearly visible, and Figure 1b indicates a linear depen-
dence in �min too. Our Theorem 5.5 only provides an upper
bound on the convergence rate and hence we compare with
the empirical rates. The results suggest that this is indeed
the actual behavior in practice.

6. Conclusion
In this work, we studied the training of generative linear
neural networks using the Bures-Wasserstein distance. We
characterized the critical points and minimizers of this loss
in function space, over the set of matrices of fixed rank
k. We introduced a smooth approximation of the BW loss,
obtained by regularizing the covariance matrix, and char-
acterized its critical points in function space as well. Fur-
thermore, under the assumption of balanced initial weights
satisfying a modified deficiency margin condition, we es-
tablished a convergence guarantee to the global minimizer
for the gradient flow of both losses, with exponential rate of
convergence. Finally, we also considered the finite step-size
gradient descent optimization and established a linear con-
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vergence result for both losses too, provided the step size is
small enough depending on the modified deficiency margin
condition. We collect our results in Tables 1 and 2 in Ap-
pendix A. These results contribute to the ongoing efforts to
better characterize the optimization problems that arise in
learning with deep neural networks beyond the commonly
considered discriminative settings with the square loss.

In future work, it would be interesting to refine our charac-
terization of critical points of the Bures-Wasserstein loss in
the parameter space, and to relax the modified deficiency
margin condition that we invoked in order to establish our
convergence results, as this constrains the parametrization
to be of full rank.
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Kohn, K., Montúfar, G., Shahverdi, V., and Trager, M. Func-
tion space and critical points of linear convolutional net-
works, 2023.

Kroshnin, A., Spokoiny, V., and Suvorikova, A. Statistical
Inference for Bures–Wasserstein Barycenters. The Annals
of Applied Probability, 31(3), 2021.

Laurent, T. and Brecht, J. Deep Linear Networks
with Arbitrary Loss: All Local Minima Are Global.
In Proceedings of the 35th International Conference
on Machine Learning, pp. 2902–2907. PMLR, 2018.
URL https://proceedings.mlr.press/v80/
laurent18a.html.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and opti-
mization in over-parameterized non-linear systems and
neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Lu, H. and Kawaguchi, K. Depth Creates No Bad Local
Minima. arXiv.1702.08580, 2017.

Magnus, J. R. and Neudecker, H. Matrix Differential Cal-
culus with Applications in Statistics and Econometrics.
Wiley Series in Probability and Statistics. Wiley, third
edition edition, 2019.

Mallasto, A., Gerolin, A., and Minh, Q. Entropy-regularized
2-Wasserstein distance between Gaussian measures. In-
formation Geometry, 5(1):289–323, 2022.

Masarotto, V., Panaretos, V., and Zemel, Y. Procrustes met-
rics on Covariance operators and optimal transportation
of Gaussian processes. Sankhya A, 81(1):172–213, 2019.

Mei, S., Montanari, A., and Nguyen, P. A mean field view of
the landscape of two-layer neural networks. Proceedings
of the National Academy of Sciences, 115(33):E7665–
E7671, 2018.

Min, H., Tarmoun, S., Vidal, R., and Mallada, E. On the
Explicit Role of Initialization on the Convergence and
Implicit Bias of Overparametrized Linear Networks. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 7760–7768, 2021.

Mirsky, L. Symmetric Gauge Functions and Unitary Invari-
ant Norms. The Quarterly Journal of Mathematics, 11
(1):50–59, 1960.

Muzellec, B. and Cuturi, M. Generalizing Point Embed-
dings using the Wasserstein Space of Elliptical Distri-
butions. In Advances in Neural Information Processing
Systems, 2018.

Nguegnang, G. M., Rauhut, H., and Terstiege, U. Con-
vergence of gradient descent for learning linear neural
networks, 2021. URL https://arxiv.org/abs/
2108.02040.

Pele, O. and Werman, M. Fast and robust earth mover’s
distances. In 2009 IEEE 12th International Conference
on Computer Vision, pp. 460–467, 2009.

10

https://openreview.net/forum?id=ryxB0Rtxx
https://openreview.net/forum?id=ryxB0Rtxx
http://www.jstor.org/stable/2626967
http://www.jstor.org/stable/2626967
https://proceedings.neurips.cc/paper/2016/file/%20f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/%20f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/%20f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/%20f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://doi.org/10.1137/21M1441183
https://proceedings.mlr.press/v80/laurent18a.html
https://proceedings.mlr.press/v80/laurent18a.html
https://arxiv.org/abs/2108.02040
https://arxiv.org/abs/2108.02040


Deep Linear Networks Trained with Bures-Wasserstein Loss

Ruben, G. and Zamir, S. Lower rank approximation of
matrices by least squares with any choice of weights.
Technometrics, 21(4):489–498, 1979. URL http://
www.jstor.org/stable/1268288.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact so-
lutions to the nonlinear dynamics of learning in deep
linear neural networks. In 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceed-
ings, 2014. URL http://arxiv.org/abs/1312.
6120.

Schmitt, B. A. Perturbation bounds for matrix square roots
and pythagorean sums. Linear Algebra and its Applica-
tions, 1992.

Song, Z., Woodruff, D. P., and Zhong, P. Low Rank Approx-
imation with Entrywise L1-Norm Error. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pp. 688–701, New York, NY,
USA, 2017. Association for Computing Machinery.

Tarmoun, S., Franca, G., Haeffele, B. D., and Vidal, R. Un-
derstanding the Dynamics of Gradient Flow in Overpa-
rameterized Linear models. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pp. 10153–
10161. PMLR, 2021. URL https://proceedings.
mlr.press/v139/tarmoun21a.html.

Trager, M., Kohn, K., and Bruna, J. Pure and spurious
critical points: a geometric study of linear networks. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rkgOlCVYvB.

Villani, C. Topics in Optimal Transportation. Graduate
studies in mathematics. American Mathematical Soci-
ety, 2003. URL https://books.google.com/
books?id=idyFAwAAQBAJ.

Villani, C. Optimal Transport: Old and New. Grundlehren
der mathematischen Wissenschaften. Springer Berlin
Heidelberg, 2008. URL https://books.google.
com/books?id=hV8o5R7_5tkC.

Yun, C., Krishnan, S., and Mobahi, H. A unifying view
on implicit bias in training linear neural networks. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=ZsZM-4iMQkH.

11

http://www.jstor.org/stable/1268288
http://www.jstor.org/stable/1268288
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
https://proceedings.mlr.press/v139/tarmoun21a.html
https://proceedings.mlr.press/v139/tarmoun21a.html
https://openreview.net/forum?id=rkgOlCVYvB
https://openreview.net/forum?id=rkgOlCVYvB
https://books.google.com/books?id=idyFAwAAQBAJ
https://books.google.com/books?id=idyFAwAAQBAJ
https://books.google.com/books?id=hV8o5R7_5tkC
https://books.google.com/books?id=hV8o5R7_5tkC
https://openreview.net/forum?id=ZsZM-4iMQkH
https://openreview.net/forum?id=ZsZM-4iMQkH


Deep Linear Networks Trained with Bures-Wasserstein Loss

Appendix
The appendix is organized as follows.

• Appendix A gives a quick summary of the different geometrical and convergence results.

• Appendix B provides background on the Bures-Wasserstein loss and related optimal transport topics.

• Appendix C presents general properties of linear neural networks and classical results on convergence in parameter space.

• Appendix D presents the proofs of results about critical points from Section 4.

• Appendix E presents the proofs of results about convergence from Section 5.

• Appendix F evaluates the Hessian of the loss.

A. Summary of the results
Tables 1 and 2 present a summary of the results obtained in this paper.

Loss Parametrization Critical points Ref

L1 W ⌦Jk ⇤̄
1/2
Jk

V > Theorem 4.2
L1
⌧ W ⌦Jk(⇤̄Jk � ⌧Ik)

1/2
V > Theorem 4.5

Table 1. Summary of critical point results. The target is assumed full rank with distinct eigenvalues and spectral decomposition
⌃0 = ⌦⇤⌦>. Here V 2 R

m⇥k is any semi-orthogonal matrix and Jk ⇢ [n] is an index set of cardinality k.

Loss Parametrization Initialization Convergence rate Ref

LN
⌧

�!
W Balanced, MDM GF: Exponential Theorem 5.5

LN �!
W Balanced, MDM GD: O(log(1/✏)) Theorem 5.7

Table 2. Summary of convergence results. Here “Balanced” stands for balanced weights (Definition 2.1), “MDM” stands for modified
deficiency margin (Definition 5.2), and ✏ is the precision we want to achieve (Theorem 5.7).

B. Properties of the Bures-Wasserstein distance
B.1. BW and the 2-Wasserstein distance

The Bures-Wasserstein distance has a natural connection with the 2-Wasserstein distance on a metric space. In the case
of zero-centered Gaussian measures, the two distances are identical. We briefly describe the general definition of the
2-Wasserstein distance.

Given a metric space (X , k·k), the 2-Wasserstein distance is a well-known metric on the space of quadratically integrable
probability measures P2(X ) := {µ 2 P(X ) |

R
kxk

2 dµ(x) < 1}.

Definition B.1 (2-Wasserstein distance). The 2-Wasserstein distance between two measures (⌫, ⌫0) 2 (P2(X ))2 is defined
as the solution to following minimization problem:

W
2
2 (⌫, ⌫0) = inf

⇡2⇧(⌫,⌫0)

Z
kx � yk2 d⇡(x, y), (14)

where ⇧(⌫, ⌫0) is the set of distributions with fixed marginals ⌫ and ⌫0, ⇧(⌫, ⌫0) = {⇡ 2 P2(X ⇥ X ) | ⇡1 = ⌫, ⇡2 = ⌫0},
with ⇡i denoting the marginal of ⇡ along the ith variable.

It is known that the 2-Wasserstein distance metrizes the weak convergence on the space P2 (see, e.g. Villani, 2008, Theorem
6.9). Therefore, it can used to compare probability distributions in systems such as GANs. On the other hand, the cost of
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computing this loss can quickly become prohibitive (see, e.g. Pele & Werman, 2009). Only in some cases, efficient ways
to compute (14) are known. In a usual WGAN (Arjovsky et al., 2017), an approximation of the 1-Wasserstein distance is
computed based on the dual expression of the (1-)Wasserstein distance using a neural network to approximate the dual
variable, called the discriminator network.

The 2-Wasserstein distance between two Gaussian measures has a closed-form expression (or a closed-form expression for
the discriminator), so that adversarial training is not needed. We will consider two centered Gaussian distributions, which
are described by their covariance matrices. In the case of centered Gaussian distributions, the 2-Wasserstein distance reduces
to the Bures-Wasserstein distance between the covariance matrices ⌃0 and ⌃ (Dowson & Landau, 1982):

Lemma B.2. If ⌫ = N (m,⌃) and ⌫0 = N (m0,⌃0), then

W
2
2 (⌫, ⌫0) = km � m0k

2 + B
2(⌃,⌃0).

It is well known (see Kantorovitch 1958 or Villani 2003, Theorem 1.3 or Villani 2008, Theorem 5.10) that the squared
2-Wasserstein distance has the following dual expression, also known as the Kantorovich duality:

W
2
2 (⌫0, ⌫✓) = sup

(f,g)2L1(⌫✓)⇥L1(⌫0)

nZ
f(x) d⌫✓(x) +

Z
g(x) d⌫0(x) | 8(x, y), f(x) + g(y) 6 kx � yk2

o
, (15)

where L1(⌫) is the set of the integrable functions with respect to a measure ⌫. Therefore, the dual variables f and g are
required to be integrable with respect to the source and target measures, and to fulfill the cost inequality.
Remark B.3. In the context of WGANs it is common to consider the 1-Wasserstein distance with cost given by the distance
kx � yk. This has a dual expression, referred to as the Kantorovich-Rubinstein formula (Villani, 2008, §6.2), that allows
for a more tractable computation in practice, with for instance only one dual variable. Nonetheless, in general there is no
closed-form solution known when c(x, y) = kx � yk.

B.2. BW and the Eckart-Young-Mirsky theorem

In this section, we provide further background on the Bures-Wasserstein distance. First, we show that, except in some
particular cases (Lemma B.4), the Bures-Wasserstein distance between two covariance matrices is not translation invariant
(Lemma B.5), which implies that it cannot be expressed as the norm (let alone unitary) of a difference between two matrices.
Then, an explanation as to why the critical points found in Theorem 4.2 are the same as the one found when using the
squared Frobenius norm between ⌃ and ⌃0 is given.

Lemma B.4. In the case that ⌃0 and ⌃ commute, the Bures-Wasserstein distance reduces to the Hellinger distance:

⌃0⌃ = ⌃⌃0 =) B
2(⌃,⌃0) = k⌃1/2

� ⌃1/2
0 k

2
F .

Proof. This follows from the fact that, if ⌃ and ⌃0 commute, so do ⌃1/2 and ⌃1/2
0 , so that ⌃1/2

0 ⌃⌃1/2
0 = (⌃1/2

0 ⌃1/2)
2

and

tr ((⌃1/2)2 + (⌃1/2
0 )2 � 2(⌃1/2

0 ⌃1/2)) = tr ((⌃1/2
� ⌃1/2

0 )(⌃1/2
� ⌃1/2

0 )>)

= k⌃1/2
� ⌃1/2

0 k
2
F ,

as claimed.

From this, one remarks that the problem of minimizing the BW distance between covariance matrices that commute falls
under the framework of the Eckart-Young-Mirsky theorem. In this case if the optimization variable is ⌃1/2 = (WW>)

1/2,
we obtain a formulation in terms of the squared error loss. Nonetheless, in the case where ⌃ and ⌃0 do not commute, we do
not have such a correspondence, as in general, the BW distance is not translation invariant, neither when considered as a
function of (⌃,⌃0) nor when considered as a function of (⌃1/2,⌃1/2

0 ).

Lemma B.5 (BW is not translation invariant). There exist positive semidefinite matrices (⌃,⌃0) 2 S+(n) ⇥ S+(n) and a
translation T 2 S+(n), such that B

2(⌃+ T,⌃0 + T ) 6= B
2(⌃,⌃0). The same statement also holds for the loss E defined

on the matrix square roots, E(⌃1/2,⌃1/2
0 ) := B

2(⌃,⌃0).
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Proof. For the first part of the statement, taking

⌃ =

✓
1 0
0 1

◆
, ⌃0 =

✓
1 0
0 2

◆
, T =

✓
t 0
0 t

◆
, t > 0,

then B
2(⌃+ T,⌃0 + T ) � B

2(⌃,⌃0) = (
p
2 + t �

p
1 + t)

2
� (

p
2 � 1)

2
, which is non-zero.

For the second part of the statement, if

⌃1/2
0 =

✓
1 0
0 2

◆
, ⌃1/2 =

✓
1 1
1 2

◆
, T =

✓
1 0
0 1

◆
,

one computes

E(⌃1/2,⌃1/2
0 ) =k⌃1/2

k
2
F + k⌃1/2

0 k
2
F � 2 tr (⌃1/2

0 ⌃⌃1/2
0 )

1/2

=12 � 2 tr

✓
2 6
6 20

◆1/2

and

E(⌃1/2 + T,⌃1/2
0 + T ) =k⌃1/2 + Tk

2
F + k⌃1/2

0 + Tk
2
F

� 2 tr ((⌃1/2
0 + T )(⌃1/2 + T )(⌃1/2 + T )(⌃1/2

0 + T ))
1/2

=28 � 2 tr

✓
20 30
30 90

◆1/2

,

which gives the difference E(⌃1/2 + T,⌃1/2
0 + T ) � E(⌃1/2,⌃1/2

0 ) ⇡ 0.121229 6= 0.

Lemma B.5 implies that in general one cannot express the Bures-Wasserstein distance (either on the covariance or on their
square roots) as a norm of a difference (otherwise, the loss would be translation invariant). This hinders a direct application
of the Eckart-Young-Mirsky theorem, where the problem is cast as minXkA�Xk⇤ with a fixed A for some unitary invariant
norm k · k⇤.

Nonetheless, there is a close link between the Bures-Wasserstein distance and the (squared) Euclidean distance. This is
best seen through the definition of the 2-Wasserstein distance between two zero-centered Gaussian distributions, as we will
present next. We follow here an approach inspired by Feizi et al. (2020, Theorem 1), for which we provide details in order
to show a link between the minimization of the Bures-Wasserstein distance over rank-constrained covariance matrices and
the Eckart-Young-Mirsky theorem (or k-PCA).

Given k 2 [n], the set of rank-k positive semi-definite matrices is denoted by S+(k;n). With n 2 N \ {0} and k 2 [n], we
are interested in the minimization problem

inf
A2S+(k;n)

B
2(A,B). (16)

For any measure ↵, denote supp(↵) its support, i.e. ↵(X) = 0 for X ✓ R
n

\ supp(↵). The following is a well known
connection between covariance matrices and the support of the corresponding Gaussian probability distributions.
Lemma B.6. Let A 2 S+(k;n) and ↵ = N (0, A). Then the support of ↵ is equal to the column space of A,

supp(↵) = span(A).

For k 2 [n], denote the set of linear subspaces of R
n of dimension k by L(Rn, k), and, for C 2 L(Rn, k), denote by

N (C) := {N (0,M) | M 2 S+(k;n), span(M) = C} the set of all Gaussian distributions with mean 0 and support C.

Lemma B.6 allows to translate the problem (16) to a problem on linear subspaces of fixed dimension. Indeed, with
↵ = N (0, A) and � = N (0, B), we know that B

2(A,B) = W
2
2 (↵,�). Therefore, we can split the optimization problem as

inf
A2S+(k;n)

B
2(A,B) () inf

⇢
inf
n

W
2
2 (↵,�) | ↵ 2 N (C)

o
| C 2 L(Rn, k)

�
. (17)

Solving (16) is therefore equivalent to solving the right-hand side of (17), which is split in two parts:
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• For a given linear subset C of dimension k, find the Gaussian distribution that minimizes the 2-Wasserstein distance to
�. Lemma B.7 below states that this ↵⇤ is the projection of � onto C.

• Then, find the subset C of required dimension that minimizes the variance of the projection of � onto the orthogonal
complement of C; or, equivalently, find C that maximizes the variance of the projection of � onto C. The solution to
this problem is the k-PCA decomposition of �, as stated in Lemma B.8.

Recall, given any � 2 P2(Rn), that we are interested in solving inf{W
2
2 (↵,�) | ↵ 2 N (C)}. The next lemma gives the

solution this problem in ↵. For any given linear subspace C ✓ R
n, denote pC the orthogonal projection onto C.

Lemma B.7. Let � 2 P2(Rn). One has inf {W
2
2 (↵,�) | ↵ 2 N (C)} = min {W

2
2 (↵,�) | ↵ 2 N (C)}, and the distribution

↵⇤ that achieves the minimum for a given C is the orthogonal projection of � onto C: ↵⇤ = pC#� = �C .

Proof. Denote the admissible set of couplings with given marginals by �(↵,�) = {⇡ 2 P2(Rn
⇥ R

n) | ⇡1 = ↵, ⇡2 = �},
with ⇡i the marginal along the ith variable, so that

W
2
2 (↵,�) = inf{

Z
kx � yk2 d⇡(x, y) | ⇡ 2 ⇧(↵,�)}.

Then, for any given linear subspace C ✓ R
n, denote pC the orthogonal projection onto C. Define µC := pC#µ for any

µ 2 P2(Rn), and likewise ⇡C⇥C := pC⇥C#⇡, for ⇡ 2 P2(Rn
⇥ R

n), where, for (X ,Y) two (measurable) spaces, the
push-forward T#µ 2 P2(Y) of a measure µ 2 P2(X ) by an operator T : X ! Y is such that, for any measurable set
S ✓ Y , T#µ(S) = µ(T�1(S)).

If supp(↵) = C (i.e. ↵ = ↵C), one obtains

W
2
2 (↵,�) = inf

⇡2⇧(↵,�)

Z
kx � yk2 d⇡(x, y)

= inf
⇡2⇧(↵,�)

⇢Z
kx � yk2 d⇡C⇥C(x, y)

�
+

Z
kyk2 d�C?(y). (18)

Thus, for a given C 2 L(Rn, k) one has

inf
n

W
2
2 (↵,�) | ↵ 2 N (C)

o

= inf

(
inf

⇢Z
kx � yk2 d⇡C⇥C(x, y) | ⇡ 2 ⇧(↵,�)

�
| ↵ 2 N (C)

)
+

Z
kyk2 d�C?(y).

We are interested in the term that is dependent on ⇡ (and therefore ↵), which is equivalent to

inf

(
inf

⇢Z
kx � yk2 d⇡(x, y) | ⇡ 2 ⇧(↵,�C)

�
| ↵ 2 N (C)

)
= inf

n
W

2
2 (↵,�C) | ↵ 2 N (C)

o
.

Since �C 2 N (C), the solution is attained for ↵⇤ = �C .

Then, the problem (16) is equivalent to

inf

⇢
inf
n

W
2
2 (↵,�) | ↵ 2 N (C)

o
| C 2 L(Rn, k)

�
() inf

⇢Z
kyk2 d�C?(y) | C 2 L(Rn, k)

�

() sup

⇢Z
kyk2 d�C(y) | C 2 L(Rn, k)

�
.

Therefore, the problem boils down to finding the linear subspace C which maximizes the variance of the target when
projected onto C. The solution to this problem, also known as k-PCA, is given in the next lemma, of which we provide a
proof for convenience.
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Lemma B.8. Let ⌦⇤⌦> = B be a spectral decomposition of B 2 S++(n), with the eigenvalues in ⇤ ranked in decreasing
order. Let k 2 [n], and let ⌦ =:

�
⌦[k] ⌦?

�
be such that ⌦[k] 2 R

n⇥k corresponds to the k highest eigenvalues of B.
Denote � = N (0, B) and for a linear subspace C, denote by �C the orthogonal projection of � onto C. Then

sup{

Z
kyk2 d�C(y) | C 2 L(Rn, k)} = max{

Z
kyk2 d�C(y) | C 2 L(Rn, k)} =

Z
kyk2 d�C⇤(y),

where C
⇤ = span⌦[k].

Proof. Recall that �C = (pC)#�, where pC is the orthogonal projection onto any C 2 L(Rn, k). Then,
Z

kyk2 d�C(y) =

Z
kpC(y)k

2 d�(y) =

Z
y>
C
yC d�(y) =

Z
tr(y>

C
yC) d�(y) =

Z
tr(yCy

>

C
) d�(y)

= tr
⇣Z

yCy
>

C
d�(y)

⌘
, (19)

where the usual notation for yC = pC(y) is used.

For C ✓ R
n, there is equivalence between the two statements

(i) C 2 L(Rn, k); and

(ii) 9C 2 R
n⇥k : C>C = Ik, C = spanC.

With such a C spanning C, the projection onto C can be written pC = CC>, and
Z

yCy
>

C
d�(y) =

Z
CC>yy>CC> d�(y) = CC>

⇣Z
yy> d�(y)

⌘
CC> = CC>BCC>,

so that (19) becomes

tr
⇣Z

yCy
>

C
d�(y)

⌘
= tr(CC>BCC>) = tr(C>BC)

Therefore, with � = N (0, B) and �C = (pC)#� for any C 2 L(Rn, k), the following equivalence holds

sup

⇢Z
kyk2 d�C(y) | C 2 L(Rn, k)

�
() sup

n
tr(C>BC) | C 2 R

n⇥k, C>C = Ik
o
. (20)

Let ⌦⇤⌦> =
Pn

i=1 �i!i!>

i be a spectral decomposition of B with decreasing eigenvalues �1 > · · · > �n.

For any C 2 R
n⇥k such that C>C = Ik, we compute

trC>BC =
nX

i=1

�i tr(C
>!i!

>

i C) =
nX

i=1

�i tr (!
>

i CC>!i) =
nX

i=1

�ih!i, CC>!ii. (21)

For each i 2 [n], by orthogonal decomposition !i = CC>!i + (In � CC>)!i, one has that h!i, CC>!ii 6 1, with
equality if and only if CC>!i = !i, i.e., if and only if !i 2 spanC. The sum (21) is therefore maximized for C = ⌦[k].

Therefore, the supremum in (20) is attained for C = ⌦[k] () C = span⌦[k], concluding the proof.

Thus, the solution to (17) can be given as follows.

Proposition B.9. Let k 2 [n], and let
�
⌦[k] ⌦?

�✓⇤[k]

⇤?

◆ 
⌦>

[k]

⌦>

?

!
= B be a spectral decomposition of B 2 S++(n),

with the k largest eigenvalues in ⇤[k]. Using the same notations as before, the problem (17) is solved for C = span(⌦[k]).
In this case, ↵⇤ = N (0, B|k), where B|k = ⌦[k]⇤[k]⌦

>

[k].
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Proof. Lemma B.8 already shows that the supremum is obtained for C = span⌦[k]. In this case, the optimal ↵⇤, the
projection of � onto C = span⌦[k], has covariance matrix

A⇤ =

Z
xx> d↵⇤(x) =

Z
xx> d(pC)#�(x)

=

Z
xCx

>

C
d�(x)

= ⌦[k]⌦
>

[k]⌃⌦[k]⌦
>

[k]

= ⌦[k]⇤[k]⌦
>

[k]

= B|k.

B.3. Gradient of the Bures-Wasserstein loss

We give here the gradient of the squared-Bures-Wasserstein distance between two full-rank covariance matrices.
Notation (Differential). We denote the differential of f at X in the direction H by df(X)[H]. Sometimes, with Y = f(X),
the shorthand notation dY is preferred, and it is assumed that the direction H is a small perturbation dX around X . For
instance, if Y = f(X) = XX>, then dY = dXX> +X dX> is one way to write df(X)[H] = HX> +XH>.
Lemma B.10 (Differential of L). The differential of L on S++(n) is

8⌃ 2 S++(n), X 2 S++(n), dL(⌃)[X] = tr (X � ⌃1/2
0 [⌃1/2

0 ⌃⌃1/2
0 ]

�1/2
⌃1/2

0 X).

Proof. We will use the fact that, for A 2 S++(n), d tr(A1/2) = 1
2 tr(A

�1/2 dA). By the differential calculus rules,
for ⌃ 2 S++(n),

dL(⌃) = d tr(⌃+ ⌃0 � 2(⌃1/2
0 ⌃⌃1/2

0 )1/2)

= tr d⌃ � 2 tr d[(⌃1/2
0 ⌃⌃1/2

0 )1/2]

= tr(d⌃ � (⌃1/2
0 ⌃⌃1/2

0 )�1/2 d(⌃1/2
0 ⌃⌃1/2

0 ))

= tr(d⌃ � ⌃1/2
0 (⌃1/2

0 ⌃⌃1/2
0 )�1/2⌃1/2

0 d⌃).

Corollary B.11 (Gradient of L). The gradient of L on S++(n) is

8 ⌃ 2 S++(n), rL(⌃) = I � ⌃1/2
0 [⌃1/2

0 ⌃⌃1/2
0 ]

�1/2
⌃1/2

0 .

B.4. Difference between BW and its smooth version

In this section, we provide the proof of Lemma 3.3 stated in Section 3.

Proof of Lemma 3.3. Let ⌃ = WW> and ⌃⌧ = WW> + ⌧In. In view of (3.1), the difference between the perturbative
and the original loss is given by

|L1
⌧ (W ) � L1(W )| = |L(⌃⌧ ) � L1(W )| =

����⌧n � 2 tr

✓⇣
⌃1/2

0 ⌃⌧⌃
1/2
0

⌘1/2
�

⇣
⌃1/2

0 WW>⌃1/2
0

⌘1/2◆����

6 ⌧n+ 2

�����tr
✓⇣

⌃1/2
0 ⌃⌧⌃

1/2
0

⌘1/2
�

⇣
⌃1/2

0 WW>⌃1/2
0

⌘1/2◆
����� . (22)

Let A := ⌃1/2
0 ⌃⌃1/2

0 and A⌧ := ⌃1/2
0 ⌃⌧⌃

1/2
0 . Note that A⌧ = A+ ⌧⌃0. We aim to bound

����tr
⇣
A1/2

⌧ � A1/2
⌘���� =

����tr
⇣
(A+ ⌧⌃0)

1/2
� A1/2

⌘���� .
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We can bound the absolute value of the trace of a matrix by its spectral norm (defined as kXk⇤ :=
p
�max(XX>) for any

matrix X) as
��tr (X)

�� 6 nkXk⇤ for any matrix X 2 R
n⇥m. Then, a bound on kXk⇤ can be found.

First assume that ⌃ (hence A) is full rank, so that A < �min(A)I � 0. We can then use the perturbation inequality
from Schmitt (1992, Lemma 2.2) and find that

k(A+ ⌧⌃0)
1/2

� A1/2
k⇤ 6 1p

�min(A+ ⌧⌃0) +
p
�min(A)

k⌧⌃1/2
0 k⇤.

Since

�min(A+ ⌧⌃0) > �min(A) + �min(⌧⌃0),

�min(A) > �min(⌃)�min(⌃0),

and 8(a, b) 2 (R>0)
2,

p
a+

p

b >
p
a+ b,

one gets

k(A+ ⌧⌃0)
1/2

� A1/2
k⇤ 6 ⌧k⌃1/2

0 k⇤

�min(⌃
1/2
0 )

p
⌧ + 2�min(⌃)

6
p
⌧
�max(⌃

1/2
0 )

�min(⌃
1/2
0 )

,

so that
����tr
⇣
(A+ ⌧⌃0)

1/2
� A1/2

⌘���� 6 n
p
⌧
�max(⌃

1/2
0 )

�min(⌃
1/2
0 )

.

Plugging it into (22) yields the following bound

��L(⌃⌧ ) � L(⌃)
�� 6 n

p
⌧

 
p
⌧ +

2�max(⌃
1/2
0 )

�min(⌃
1/2
0 )

!
. (23)

Now, in the case where ⌃ has a rank deficiency, by continuity of the function X 7! tr (X1/2), the bound found in (23) still
holds, since it does not depend on ⌃. This completes the proof.

C. General results for linear networks
This section deals with general properties of linear networks and their first- and second-order differential in parameter space.
We first recall results that hold for any differentiable loss L

1 on R
n⇥m and its parametrization L

N = L
1

� µ on ⇥. These
results have a long history in the linear neural networks literature (Baldi & Hornik, 1989; Kawaguchi, 2016; Arora et al.,
2018; 2019a; Chitour et al., 2022; Bah et al., 2021); we report them here borrowing the presentation from Bah et al., 2021.
By convention, the product of matrices Wq:p := WqWq�1 · · ·Wp is equal to Idq when q < p.
Lemma C.1 (Gradient flow, Bah et al. 2021, Lemma 2.1). For any differentiable loss L

1, and parametrization L
N = L

1
�µ,

such that µ(W1, . . . ,WN ) = WN · · ·W1, one has:

1. For all j 2 [N ],
rWjL

N (W1, . . . ,WN ) = W>

N :j+1rL
1(W )W>

j�1:1. (24)

2. If each of the Wi(t) satisfies the flow (1), then the product WN :1 = WN · · ·W1 satisfies

dW (t)

dt
= �

NX

j=1

WN :j+1W
>

N :j+1rL
1(W )W>

j�1:1Wj�1:1 (25)

3. For all j 2 [N � 1] and all t > 0,

d

dt
(W>

j+1(t)Wj+1(t)) =
d

dt
(Wj(t)W

>

j (t)). (26)
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4. If W1(0), . . . ,WN (0) are balanced, then, for all j 2 [N � 1] and all t > 0, W>

j+1(t)Wj+1(t) = Wj(t)W>

j (t) and

R(t) :=
dW (t)

dt
+

NX

j=1

(W (t)W>(t))
N�j
N

rL
1(W )(W>(t)W (t))

j�1
N = 0. (27)

In the case of a twice-differentiable loss L
1 and the parametrization L

N = L
1

� µ, one can express the second-order
differential as follows.
Lemma C.2 (Second-order differential). Let (

�!
U ,

�!
V ) 2 ⇥⇥⇥ be two parameters,

�!
U = (U1, . . . , UN ),

�!
V = (V1, . . . , VN ).

The second-order differential of the loss L
N at

�!
W = (W1, . . . ,WN ) 2 ⇥ is

d2LN (
�!
W )[

�!
U ,

�!
V ] =

NX

i=1

X

j 6=i

hUi,W
>

i+1 · · ·V >

j · · ·W>

N rL
1(W )W>

1 · · ·W>

i�1i

+
NX

i=1

NX

j=1

vec(Ui)
>
⇣
Wi�1:1 ⌦ (WN :i+1)

>
· r

2
L
1(W ) · (Wj�1:1)

>
⌦ (WN :j+1)

⌘
vec(Vj),

(28)

where hA,Bi = trAB> for two matrices of compatible sizes and r
2
L
1(W ) 2 R

n2
⇥n2

is the matrix such that, 8(U, V ) 2

(Rn⇥n)
2
, d2L1(W )[U, V ] = vec(U)>r

2
L
1(W ) vec(V ).

Proof. The second-order differential for the parametrization � is, for two parameters (
�!
U ,

�!
V ) 2 ⇥ ⇥ ⇥,

d2�(
�!
W )[

�!
U ,

�!
V ] = d(

�!
W 7! d�(

�!
W )[

�!
U ])[

�!
V ] = {d�(

�!
W +

�!
V )[

�!
U ] � d�(

�!
W )[

�!
U ]}

��
lin

=
n NX

i=1

(WN + VN ) · · ·Ui · · · (W1 + V1) �

NX

i=1

WN · · ·Ui · · ·W1

o���
lin

=
NX

i=1

NX

j 6=i

WN · · ·Vj · · ·Ui · · ·W1.

Here, f(
�!
U ,

�!
V )|lin refers to the linear part of f with respect to each Ui, Vj . From the chain rule for second-order differentials,

d2LN (
�!
W )[

�!
U ,

�!
V ]

= d2(L1
� �)(

�!
W )[

�!
U ,

�!
V ]

= d2L1(W )
h
d�(

�!
W )[

�!
U ], d�(

�!
W )[

�!
V ]
i
+ dL

1(W )
h
d2�(

�!
W )[

�!
U ,

�!
V ]
i

=
NX

i=1

NX

j=1

d2L1(W )[WN · · ·Ui · · ·W1, WN · · ·Vj · · ·W1] +
NX

i=1

X

j 6=i

dL
1(W )[WN · · ·Vj · · ·Ui · · ·W1]

=
NX

i=1

NX

j=1

vec(WN · · ·Ui · · ·W1)
>

r
2
L
1(W ) vec(WN · · ·Vj · · ·W1) +

NX

i=1

X

j 6=i

hrL
1(W ),WN · · ·Vj · · ·Ui · · ·W1i

=
NX

i=1

NX

j=1

⇣
(Wj�1 · · ·W1)

>
⌦ (WN · · ·Wi+1) vec(Ui)

⌘>
r

2
L
1(W )

⇣
(Wj�1 · · ·W1)

>
⌦ (WN · · ·Wi+1)

⌘
vec(Vj)

+
NX

i=1

X

j 6=i

hW>

i+1 · · ·V >

j · · ·W>

N rL
1(W )W>

1 · · ·W>

i�1, Uii

=
NX

i=1

NX

j=1

vec(Ui)
>
⇣
(Wj�1 · · ·W1) ⌦ (WN · · ·Wi+1)

>
⌘
r

2
L
1(W )

⇣
(Wj�1 · · ·W1)

>
⌦ (WN · · ·Wi+1)

⌘
vec(Vj)

+
NX

i=1

X

j 6=i

hW>

i+1 · · ·V >

j · · ·W>

N rL
1(W )W>

1 · · ·W>

i�1, Uii.
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Corollary C.3 (Hessian of the Loss). The Hessian of L
N , r

2
L
N (✓), can be represented as a d✓ ⇥ d✓ matrix. It is a block

matrix with blocks corresponding to different layers. Each block r
2
Wi,Wj

L
N (

�!
W ) has dimension didi�1 ⇥ djdj�1, and

corresponds to the differential d2LN (
�!
W )[

�!
U i,

�!
U j ], where

�!
U i = (0, . . . , 0, Ui, 0, . . . , 0). The diagonal block elements are

r
2
Wi

L
N (

�!
W ) = (Wi�1:1 ⌦ (WN :i+1)

>) · r
2
L
1(W ) · (Wi�1:1)

>
⌦ (WN :i+1), (29)

and the off-diagonal blocks are

r
2
Wi,Wj

L
N (

�!
W ) = (Wi�1:1 ⌦ (WN :i+1)

>) · r
2
L
1(W ) · ((Wj�1:1)

>
⌦ WN :j+1)

+
h
(Wi�1 · · ·W1rL

1(W )
>

WN · · ·Wj+1) ⌦ (W>

i+1 . . .W
>

j�1)
i
Kdjdj�1 ,

(30)

where Kpq is the pq-commutation matrix (for X 2 R
p⇥q, Kpq vecX = vecX>).

Proof. The evaluation of the second-order differential d2LN (
�!
W )[

�!
U ,

�!
V ] given in (28) at [

�!
U i,

�!
U i] readily provides the

diagonal blocks of the Hessian. For the off-diagonal blocks, the expression

hUi,W
>

i+1 · · ·U>

j · · ·W>

N rL
1(W )W>

1 · · ·Wi�1i

can be transformed into

vec (Ui)
> vec (W>

i+1 · · ·U>

j · · ·W>

N rL
1(W )W>

1 · · ·Wi�1)

= vec (Ui)
>
h
(Wi�1 · · ·W1rL

1(W )WN · · ·Wj+1) ⌦ (W>

i+1 · · ·W>

j�1)
i
vec(U>

j )

= vec (Ui)
>
h
(Wi�1 · · ·W1rL

1(W )WN · · ·Wj+1) ⌦ (W>

i+1 · · ·W>

j�1)
i
Kdjdj�1 vec(Uj),

proving (30).

Now, for the smooth BW loss, we would like to show convergence to a critical point of LN
⌧ under the gradient flow update of

the parameters. We first show that the BW loss L1 restricted to the matrices W of full row-rank M⇤ satisfies the so-called
Łojasiewicz inequality (meaning there exist constants c > 0, µ > 0 such that, for all W 2 M⇤ in a neighbourhood of a
critical point W ⇤

2 M⇤, krL1(W )k > ckL1(W ) � L1(W ⇤)kµ).
Lemma C.4. For any W 2 M⇤ (such that WW>

2 S++(n)), and for the loss L1 defined in (5), we have

krWL1(W )k2F = 4L1(W ).

Proof. This equality can be obtained by direct computation. Since

rL1(W ) = 2W � 2⌃1/2
0 (⌃1/2

0 WW>⌃1/2
0 )�1/2⌃1/2

0 W,

we have

krWL1(W )k2F

= 4 tr
⇣�

W � ⌃1/2
0 (⌃1/2

0 WW>⌃1/2
0 )�1/2⌃1/2

0 W
��
W>

� W>⌃1/2
0 (⌃1/2

0 WW>⌃1/2
0 )�1/2⌃1/2

0

�⌘

= 4 tr(WW>) � 4 tr
⇣
WW>⌃1/2

0 (⌃1/2
0 WW>⌃1/2

0 )�1/2⌃1/2
0

⌘

� 4 tr
⇣
⌃1/2

0 (⌃1/2
0 WW>⌃1/2

0 )�1/2⌃1/2
0 WW>

⌘
+ 4 tr(⌃0).

Note that the mid two terms above are the same, and they can be simplified as

tr
⇣
WW>⌃1/2

0 (⌃1/2
0 WW>⌃1/2

0 )�1/2⌃1/2
0

⌘
= tr

⇣
⌃1/2

0 (⌃1/2
0 WW>⌃1/2

0 )�1/2⌃1/2
0 WW>

⌘

= tr
⇣
(⌃1/2

0 WW>⌃1/2
0 )1/2

⌘
.

Combining all the terms together, we get the equality (C.4).
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The conservation quantity described in Lemma C.1 item 3 for the gradient flow (1) is key in numerous analyses. Another
useful property is the following, which ensures that the gradient flow (1) converges to a critical point of L

N . Namely, if the
trajectory t 7!

�!
W (t) remains bounded for all t > 0, and if L

1 is an analytic function (i.e. locally given by a power series),
then (1) converges to a critical point of L

N , i.e. a point ✓⇤ so that rL
N (✓⇤) = 0. This is stated in the next theorem.

Theorem C.5 (Gradient flow converges to a critical point of L
N ). Let L

1 be analytic and suppose the trajectory t 7! µ(✓(t))
remains bounded under the gradient flow evolution ✓̇ = �r

⇥
L
1

� µ
⇤
(✓). Then, the flows of Wi(t) and W (t) given by (1)

and (25) are defined and bounded for all t > 0 and (W1, . . . ,WN ) converges to a critical point of L
N = L

1
� µ as t ! 1.

Proof. This result is proven by Bah et al. (2021, Thereoem 3.2) for the squared error loss, but it can be stated for an arbitrary
analytic loss. It relies on the Łojasiewicz argument for the convergence of gradient flows (Absil et al., 2005, Theorem 2.2),
and the fact that each of the weights Wi is bounded in norm as long as the end-to-end product µ(✓) = WN :1 is. This last
claim is proven by Bah et al. (2021, Theorem 3.2) and does not depend on the particular loss, as long as it is differentiable
(so that the gradient flow is well defined).

The boundedness of kWk can be shown depending on the loss that is considered. For example, it holds for the regularized
loss L1

⌧ as we discuss next. For the loss L1
⌧ introduced in (6), one can indeed bound the norm of W throughout training as

stated in Lemma C.8 below. Since the loss L1
⌧ is analytic, one immediately gets the following result. We give a simple test

to show the boundedness of a trajectory under (1), using the decrease of the loss along training.
Lemma C.6. Let L

1 : R
n⇥m

! R be a given loss, let µ : ⇥ ! R
n⇥m be the linear network parametrization, and denote

W (t) = µ(✓(t)) for ✓ : R ! ⇥ a path on the parameter space. Assume that there exists an increasing function f : R ! R

such that, for any t > 0, one has kW (t)k 6 f(L1(W (t))). Then, the trajectory t 7! W (t) under the gradient flow (1) is
bounded.

Proof. Under gradient flow, for any t > 0, L
1(W (t)) 6 L

1(W (0)). Indeed, writing the chain rule and the gradient
flow (25),

d
dtL

1(W (t)) =
X

j

DWjL
N (W1(t), . . . ,WN (t))dWj(t)

dt

= �

X

j

krWjL
N (W1, . . . ,WN )k2F 6 0.

Therefore, for any t > 0, L
1(W (t)) 6 L

1(W (0)). Now, let f : R ! R be an increasing function, so that f(L1(W (t))) 6
f(L1(W (0))). Therefore, if for any t > 0, kW (t)k 6 f(L1(W (t))), then kW (t)k 6 f(L1(W (t))) 6 f(L1(W (0))) is
bounded.

The assumption in Lemma C.6 is satisfied for a couple of losses, including the squared error loss (Bah et al., 2021) and the
L1
⌧ loss, as shown in Lemma C.8 below. This allows us to consider losses that “grow with the weights”, so that the end-to-end

matrix is bounded when the loss converges to zero. We now show the boundedness of the weights when considering the
Bures-Wasserstein loss (5).
Lemma C.7 (Boundedness for the BW loss L). Given a target ⌃0, the loss L(⌃) is lower-bounded by 1

2 tr⌃ � tr⌃0.

Proof. By the dual expression of the Wasserstein distance (15),

L(⌃) = W
2
2 (⌫0, ⌫✓) = sup

f2L1(⌫✓)

Z
f(x) d⌫✓ +

Z
fk·k

2

(y) d⌫0(y),

with ⌫✓ = N (0,⌃), ⌫0 = N (0,⌃0) and fk·k
2

the k·k
2-transform of f defined as 8y 2 R

d, fk·k
2

(y) = infx2Rdkx� yk2 �

f(x).

With f̃ : x 7!
1
2kxk

2, the k·k
2-transform of f̃ is f̃k·k

2
: y 7! �kyk2, and we get

L(⌃) = W
2
2 (⌫0, ⌫✓) >

Z
1

2
kxk

2 d⌫✓(x) �

Z
kyk2 d⌫0(y) =

1

2
tr⌃ � tr⌃0, (31)

as claimed.
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Lemma C.8 (Boundedness for the loss L1
⌧ ). The norm of the end-to-end matrix W is upper-bounded when using the loss

L1
⌧ defined in (6).

Proof. With '⌧ (⌃) = ⌃+ ⌧In =: ⌃⌧ , the loss L1
⌧ satisfies

L1
⌧ (W ) = L('⌧ (⇡(W ))) > 1

2
tr⌃⌧ � tr⌃0 =

1

2
trWW>

� tr⌃0 +
n

2
⌧

=)

p
2L1

⌧ (W ) + 2 tr⌃0 � n⌧ > kWk.

Therefore, there exists an increasing function f such that kWk 6 f(L1
⌧ (W )). Since the loss decreases under gradient flow,

one has
kW (t)k 6

p
2L1

⌧ (W (0)) + 2 tr⌃0 � n⌧ , (32)

and the boundedness of t 7! W (t) is shown.

Corollary C.9. For the Bures-Wasserstein loss L, if WW> is positive definite, so that the loss is differentiable, then, the
norm of the end-to-end matrix W (t) = µ(✓(t)) is uniformly bounded throughout the flow:

8t > 0, kW (t)k 6
p
2L1(W (0)) + 2 tr⌃0, (33)

by using similar arguments as in the proof of Lemma C.8.

Corollary C.9 will be useful in the proof of Theorem 5.7.

Lemma C.10. The gradient flow (1) on the perturbative loss (6) converges to a critical point ✓⇤ of LN
⌧ .

This property of the gradient flow is necessary in order to prove the convergence of the training to a minimizer of L1
⌧ . At

first glance, there is no immediate reason to expect that the critical points of LN
⌧ correspond to critical points of L1

⌧ , since
the parametrization µ could introduce critical points. This last aspect led Trager et al. (2020) to distinguish between the pure
and spurious critical points of a linear network; i.e. points that are critical for both LN and L1, and those that are critical
only for LN , and study conditions under which spurious local minima can be excluded.

D. Proofs of Section 4
In this section, we provide the proofs of the statements about the critical points of the loss functions in function space,
L1

|M(k) and L1
⌧ |M(k). We characterize the critical points and show that all saddles are strict.

D.1. Critical points of L1
|M(k)

First, the loss L1 is expressed on the manifolds M(k) (Lemma D.2), where it is differentiable (Lemma D.3). Then, necessary
conditions (Lemma D.5) on the critical points can be expressed, leading to the first part of Theorem 4.2. The second part of
Theorem 4.2 is then proven by evaluating the loss at the critical points found, and ranking them.

Recall Definition 4.1 of the critical points of a function restricted to a manifold. Computing the differential of the restriction
L1

|M(k) will allow to characterize the different critical points.

Definition D.1 (Gradient). Given an embedded manifold M and a function f with a differentiable restriction f |M, the
gradient of f |M at x 2 M is the (unique) element of the tangent space TxM such that, for all v 2 TxM, df |M(x)[v] =
hrf |M(x), vi.

We begin by expressing the loss L1
|M(k) with the Singular Value Decomposition (SVD) of ⌃1/2

0 W .

Lemma D.2. Let USV > = ⌃1/2
0 W be a thin SVD of ⌃1/2

0 W , so that U 2 R
n⇥k, V 2 R

m⇥k, U>U = V >V = Ik, S =

Diag(s1, . . . , sk) 2 R
k⇥k, where k = rank⌃1/2

0 W = rankW . The loss L1 from (5) on M(k) can be expressed as

L1
|M(k)(W ) = kWk

2
F + k⌃1/2

0 k
2
F � 2 trS. (34)
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Proof. If USV > = ⌃1/2
0 W is a thin SVD of ⌃1/2

0 W , then (⌃1/2
0 W (⌃1/2

0 W )
>

)
1/2

= USU>. Therefore, the expression
of the loss L1 given by (5) can be written as

L1
|M(k)(W ) = trWW> + tr⌃0 � 2 trUSU> = kWk

2
F + k⌃1/2

0 k
2
F � 2 trS,

as claimed.

With this description at hand, we now give the gradient of L1
|M(k).

Lemma D.3 (Gradient of L1
|M(k)). Let (n,m) 2 (N \ {0})2, and let k 6 min {n,m}. The loss L1

|M(k) (as given
by (34)) is twice continuously differentiable on M(k). With W 2 M(k) and USV > = ⌃1/2

0 W a thin SVD of ⌃1/2
0 W , its

gradient is
rL1

|M(k)(W ) = 2W � 2⌃1/2
0 UV >. (35)

In order to prove Lemma D.3, we need the differential expression for the singular values appearing in the SVD of a matrix.
Recall the notation given in Appendix B.3 for the differential.

Lemma D.4 (Differential of the SVD). Let k 6 min{n,m} and let X 2 M(k) be a matrix with rankX = k. Let
USV > = X be a thin SVD of X , with U 2 R

n⇥k, S 2 R
k⇥k, V 2 R

m⇥k, S diagonal and U>U = V >V = Ik. Then, the
differential dS is

dS = Ik � (U> dXV ),

where A � B denotes the Hadamard product between A and B.

Proof. Let USV > = X be the decomposition as given in the lemma statement. The differential rules ensure that

dX = dUSV > + U dSV > + US dV >.

This implies that

U> dXV = U> dUSV >V + U>U dSV >V + U>US dV >V

= U> dUS + dS + S dV >V

=) dS = U> dXV � U> dUS � S dV >V.

Since U>U = Ik, dU>U + U> dU = 0, and A := U> dU = � dU>U = �A>. Likewise, B := V > dV is also
antisymmetric. The matrices A and B being antisymmetric, their diagonals are null; hence so are the diagonals of AS and
SB, i.e. Ik � (AS) = Ik � (SB) = 0. Since S is constrained to be diagonal, dS must also be diagonal, i.e. Ik � dS = dS.
Therefore,

dS = Ik � (U> dXV ),

as was claimed.

Now that the differential of the singular values is available, we are ready to prove Lemma D.3.

Proof of Lemma D.3. For W 2 M(k), let USV > = ⌃1/2
0 W be a thin SVD of ⌃1/2

0 W =: X . Lemma D.2 ensures that

L1
|M(k)(W ) = kWk

2
F + k⌃1/2

0 k
2
F � 2 trS. (36)

According to Lemma D.4, the matrix S is differentiable and has differential dS = Ik � (U> dXV ). Therefore, the loss
L1

|M(k) is differentiable. With the fact that d trS = tr dS (see, e.g. Magnus & Neudecker, 2019, Chap. 8, Eq. 18), we can
compute

d trS = tr dS = tr (Ik � (U> dXV )) = tr (U> dXV )

= hUV >, dXi = hUV >,⌃1/2
0 dW i = h⌃1/2

0 UV >, dW i.
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Moreover, dkWk
2
F = 2hW, dW i, and so

dL1
|M(k)(W ) = dkWk

2
F � 2 dtrS = 2hW � ⌃1/2

0 UV >, dW i,

and
rL1

|M(k)(W ) = 2(W � ⌃1/2
0 UV >).

Since matrices U and V are continuously differentiable on M(k), rL1
|M(k)(W ) = 2(W � ⌃1/2

0 UV >) is again continu-
ously differentiable, and L1

|M(k) is twice continuously differentiable.

We are now ready to give the proof of Theorem 4.2. We divide the proof into necessary and sufficient conditions for a point
to be a critical point of L1

|M(k).

Lemma D.5 (Necessary condition on the critical points of L1
|M(k)). Assume ⌃0 has n distinct eigenvalues. Let W ⇤

2 M(k)

be a critical point of L1
|M(k). Then, with U⇤S⇤V ⇤> = ⌃1/2

0 W ⇤ a thin SVD of ⌃1/2
0 W ⇤, and ⌦⇤⌦> = ⌃0 a spectral

decomposition of ⌃0 (i.e. with ⌦ 2 O(n)), there exists Jk ✓ [n], such that S⇤ = ⇤̄Jk and U⇤ = ⌦Jk .

Proof. Since W ⇤
2 M(k), and U⇤S⇤V ⇤> = ⌃1/2

0 W ⇤ is a thin SVD of ⌃1/2
0 W ⇤, this means that S⇤

2 R
k⇥k. Then,

rL1(W ⇤) = 0 =) W ⇤ = ⌃1/2
0 U⇤V ⇤>, by (35)

=) ⌃1/2
0 W ⇤ = ⌃0U

⇤V ⇤>

=) U⇤S⇤V ⇤> = ⌃0U
⇤V ⇤>

=) S⇤ = U⇤>⌃0U
⇤, U⇤>U⇤ = Ik, V

⇤>V ⇤ = Ik.

Therefore, U⇤>⌃0U⇤ must be diagonal; and since U⇤ is semi-orthogonal, this is the case if and only if the vectors in U⇤ are
eigenvectors for ⌃0, by uniqueness of the spectral decomposition of ⌃0. Therefore, there exist j1, . . . , jk indices between 1
and n such that U⇤ =

�
!j1 · · · !jk

�
= ⌦Jk , in which case

S⇤ = ⌦Jk

>⌃0⌦Jk =

0

BB@

�j1
. . .

�jk

1

CCA = ⇤̄Jk .

Now we are ready to prove the first part of Theorem 4.2.

Proof of Theorem 4.2, first part. Consider the expression for the gradient of L1
|M(k) given in (35). The necessary condition

follows from Lemma D.5, since

rL1
|M(k)(W

⇤) = 0 =) ⌃1/2
0 W ⇤ = ⌦Jk ⇤̄JkV

>

=) W ⇤ = ⌃�1/2
0 ⌦Jk ⇤̄JkV

>

= ⌦⇤�1/2⌦>⌦Jk ⇤̄JkV
>

= ⌦⇤�1/2⇤JkV
>

= ⌦⇤1/2PJkV
>

= ⌦PJk ⇤̄
1/2
Jk

V >

= ⌦Jk ⇤̄
1/2
Jk

V >,

which corresponds to the necessary condition in Theorem 4.2.
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The sufficient condition can be verified as follows. With W ⇤ = ⌦Jk ⇤̄
1/2
Jk

V >, one has ⌃1/2
0 W ⇤ = ⌦⇤1/2⌦>⌦Jk ⇤̄

1/2
Jk

V > =

⌦Jk ⇤̄JkV
>, and, as this is a correct thin SVD of ⌃1/2

0 W ⇤, Lemma D.3 gives

rL1
|M(k)(W

⇤) = 2(W ⇤
� ⌃1/2

0 ⌦JkV
>).

Further,

⌃1/2
0 ⌦Jk = ⌦⇤1/2⌦>⌦Jk

= ⌦⇤1/2PJk

= ⌦PJk ⇤̄
1/2
Jk

= ⌦Jk ⇤̄
1/2
Jk

.

Hence

rL1
|M(k)(W

⇤) = 2(W ⇤
� ⌃1/2

0 ⌦JkV
>) = 2(⌦Jk ⇤̄

1/2
Jk

V >
� ⌦Jk ⇤̄

1/2
Jk

V >) = 0,

and the sufficient condition is verified.

Now, the loss can be evaluated at the critical points in order to identify its minimizers.

Corollary D.6 (Value of L1 at the critical points). The value of the loss L1 at a critical point W ⇤ = ⌦Jk ⇤̄
1/2
Jk

V > is
L1(W ⇤) = tr⇤ � tr ⇤̄Jk =

P
i/2Jk

�i.

Proof. For k > 0, let W ⇤ be a critical point of L1
|M(k). From Theorem 4.2, with ⌃0 = ⌦⇤⌦> a spectral decomposition of

⌃0, there exists a set Jk and a semi-orthogonal matrix V 2 R
n⇥k such that W ⇤ = ⌦Jk ⇤̄

1/2
Jk

V >. One can then compute the
value of the loss at W ⇤:

L1(W ⇤) = trW ⇤W ⇤> + tr⌃0 � 2 tr
⇣
(⌃1/2

0 W ⇤)(⌃1/2
0 W ⇤)

>
⌘1/2

= tr⌦Jk ⇤̄Jk⌦Jk + tr⇤ � 2 tr
⇣
⌦Jk ⇤̄

2
Jk

⌦>

Jk

⌘1/2

= tr ⇤̄Jk + tr⇤ � 2 tr ⇤̄Jk

= tr⇤ � tr ⇤̄Jk .

We now have all ingredients needed to prove the second part of Theorem 4.2.

Proof of Theorem 4.2, second part. The first part of the statement is readily implied by Corollary D.6, as the eigenvalues are
in decreasing order. The second part is implied by the fact that the minimum L1

|M(k) is indeed achieved for any k 6 n (by
selecting the k largest eigenvalues of ⌃0) and the optimal value of the loss L⇤

k is smaller when considering more eigenvalues,
i.e. minM(k) L

1 6 minM(<k) L
1.

Next we show that only one point per set M(k) is a minimizer of the loss L1
|M(k) and all other points are (strict) saddle

points. We recall the definition of a strict saddle point: a point where there exists a descent direction.

Definition D.7 (Strict saddle point). A critical point x of a function f is said to be a strict saddle point if the Hessian of f at
x has a strict negative eigenvalue. If all critical points of f are either a strict saddle point or a global minimizer, the we say
that f satisfies the strict saddle point property.

If the gradient flow can be expressed on a manifold, with a Riemannian gradient corresponding to a given metric, there is an
equivalent definition of those saddle points, which will be handy to use. We refer to Bah et al. (2021, §6.1) for the details.

Proposition D.8. The loss L1
|M(k) satisfies the strict saddle point property.
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Proof. Let ⌃0 = ⌦⇤⌦> be the spectral decomposition of ⌃0 with decreasing eigenvalues. For k 2 N, according to
Theorem 4.2, W ⇤ is a critical point of L1

|M(k) if and only if there exists Jk ⇢ [n], such that W ⇤ = ⌦Jk⇤
1/2
Jk

V >, with
any V 2 R

m⇥k so that V >V = Ik. If Jk = [k], W ⇤ is a global minimum of L1
|M(k), as shown in Corollary D.6, and the

proposition holds.

Assume Jk 6= [k], then there exists j0 2 Jk such that �j0 < �k, and there exists j1 /2 Jk but j1 2 [k] such that �j1 > �j0 .
We will show that W ⇤ is a strict saddle point of L1

|M(k).

The critical point W ⇤ can equivalently be expressed as

W ⇤ = ⌃�1/2
0

X

i2Jk

�i!iv
>

i , (37)

where !i, vi are corresponding orthonormal vectors in ⌦ and V , and �i are eigenvalues in ⇤.

For t 2 (�1, 1), we define
!j0(t) = t!j1 +

p
1 � t2!j0

and the curve � : (�1, 1) 7! M(k). We look at the perturbed matrix

�(t) = ⌃�1/2
0

⇣
�j0!j0(t)v

>

j0 +
X

i2J\{j0}

�i!iv
>

i

⌘
.

Note that �(0) = W . Recall L1(W ) = tr
�
WW> + ⌃0 � 2(⌃1/2

0 WW>⌃1/2
0 )1/2

�
. It is enough to show that (Bah et al.,

2021, §6.1):
d2

dt2
L1(�(t))

���
t=0

< 0.

We check it term by term,

tr
⇣
�(t)�(t)>

⌘
= tr

⇣
⌃�1/2

0

�
�j0!j0(t)v

>

j0 +
X

i2J\{j0}

�i!iv
>

i

��
�j0!j0(t)v

>

j0 +
X

i2J\{j0}

�i!iv
>

i

�>
⌃�1/2

0

⌘

= tr
⇣
⌃�1

0

�
�2
j0!j0(t)!j0(t)

> +
X

i2J\{j0}

�2
i!i!

>

i

�⌘

= tr
⇣� X

16i6n

��1
i !i!

>

i

��
�2
j0!j0(t)!j0(t)

> +
X

i2J\{j0}

�2
i!i!

>

i

�⌘

=
�2
j0

�j1

t2 + �j0(1 � t2) +
X

i2J\{j0}

�2
i ,

and
tr
⇣�

⌃1/2
0 �(t)�(t)>⌃1/2

0

�1/2⌘

= tr
⇣��

�j0!j0(t)v
>

j0 +
X

i2J\{j0}

�i!iv
>

i

��
�j0!j0(t)v

>

j0 +
X

i2J\{j0}

�i!iv
>

i

�>�1/2⌘

= tr
⇣�

�2
j0!j0(t)!j0(t)

> +
X

i2J\{j0}

�2
i!i!

>

i

�1/2⌘

= tr
⇣�

t2�2
j0!j1!

>

j1 + (1 � t2)�2
j0uj0!

>

j0 +
X

i2J\{j0}

�2
i!i!

>

i

�1/2⌘

= t|�j0 | +
p
1 � t2|�j0 | +

X

i2J\{j0}

|�i|.

Thus, since �j1 > �j0 ,
d2

dt2
L1(�(t))

���
t=0

= 2(�2
j0�

�1
j1

� �j0) � |�j0 | < 0.

This completes the proof.
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D.2. Critical points of the perturbative loss L1
⌧ |k

In this section, we provide the derivations for Section 4.2. The structure of reasoning is similar to the one found in the proof
of Theorem 4.2: first the gradient of L1

⌧ is computed, then the critical points are characterized and ordered.

Lemma D.9 (Gradient of L1
⌧ ). The loss L1

⌧ has the following gradient

8 W 2 R
n⇥m, rL1

⌧ (W ) = 2
�
W � ⌃1/2

0

⇥
⌃1/2

0 (WW> + ⌧In)⌃
1/2
0

⇤�1/2
⌃1/2

0 W
�
. (38)

Proof. This results comes from the chain rule for the loss L1
⌧ (W ) = L � '⌧ � ⇡(W ). With ⌃ = ⇡(W ) = WW> and

⌃⌧ = '⌧ (⌃) = ⌃+ ⌧In, and since d⇡(W )[Z] = WZ> + ZW> and d'⌧ (⌃) = id, one has

dL1
⌧ (W )[Z] = d(L � '⌧ � ⇡)(W )[Z]

= dL(⌃⌧ )


d'⌧ (⌃)

h
d⇡(W )[Z]

i�

= dL(⌃⌧ )[WZ> + ZW>]

hrL1
⌧ (W ), Zi = hrL(⌃⌧ ),WZ> + ZW>

i

() rL1
⌧ (W ) = (rL(⌃⌧ ) + rL(⌃⌧ )

>)W

= 2(W � ⌃1/2
0 [⌃1/2

0 ⌃⌧⌃
1/2
0 ]

�1/2
⌃1/2

0 W ).

With the expression of the gradient of L1
⌧ available, Theorem 4.5 can be proven.

Proof of Theorem 4.5. The eigenvectors of WW> + ⌧ are the same as WW ⌧ , and the eigenvalues are shifted by ⌧ .
Therefore, the expression of the critical points in the original loss can be adapted, so that the modified critical points
have the same left singular vectors and shifted singular values. This leads to having W ⇤ = ⌦Jk(⇤̄Jk � ⌧Ik)

1/2
V >

k
=

�
⌦Jk 0n⇥n�k

�
 
(⇤̄Jk � ⌧Ik)

1/2

0n�k⇥m�k

!
�
Vk V?

�>, with V =
�
Vk V?

�
2 R

m⇥m, such such that V >V =

V V > = Im.In the following, we will make sure that rL1
⌧ (W

⇤) = 0.

Indeed, assume without loss of generality that ⌦ =
⇣
⌦Jk ⌦J c

k

⌘
(and ⇤ =

 
⇤̄Jk

⇤̄J c
k

!
), where J

c
k := [n] \ Jk for

Jk ✓ [n]. Then,

W ⇤W ⇤> = ⌦Jk(⇤̄Jk � ⌧Ik)⌦
>

Jk
= ⌦

✓
⇤̄Jk � ⌧Ik

0n�k⇥n�k

◆
⌦>,

⌃⇤

⌧ := W ⇤W ⇤> + ⌧In = W ⇤W ⇤> + ⌧⌦⌦> = ⌦

✓
⇤̄Jk

⌧In�k

◆
⌦>,

⌃1/2
0 ⌃⇤

⌧⌃
1/2
0 = ⌦⇤1/2⌦>⌦

✓
⇤̄Jk

⌧In�k

◆
⌦>⌦⇤1/2⌦> = ⌦

 
⇤̄2
Jk

⌧ ⇤̄J c
k

!
⌦>,

⌃1/2
0 (⌃1/2

0 ⌃⇤

⌧⌃
1/2
0 )

�1/2
⌃1/2

0 = ⌦⇤1/2⌦>⌦

 
⇤̄�1
Jk

(⌧ ⇤̄J c
k
)
�1/2

!
⌦>⌦⇤1/2⌦> = ⌦

 
Ik

⌧�1/2⇤̄1/2
J c

k

!
⌦>,

and

In � ⌃1/2
0 (⌃1/2

0 ⌃⇤

⌧⌃
1/2
0 )

�1/2
⌃1/2

0 = ⌦

 
0k⇥k

In�k � ⌧�1/2⇤̄1/2
J c

k

!
⌦>.
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Since ⌦>⌦Jk = IJk =

✓
A

0n�k⇥k

◆
, with A 2 R

k⇥k, the gradient evaluates to

rL1
⌧ (W

⇤) = 2(In � ⌃1/2
0 (⌃1/2

0 ⌃⇤

⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )⌦Jk(⇤̄Jk � ⌧Ik)
1/2

V >

k

= 2⌦

 
0k⇥k

In�k � ⌧�1/2⇤̄1/2
J c

k

!✓
A

0n�k⇥k

◆
(⇤̄Jk � ⌧Ik)

1/2
V >

k

= 0.

For such a critical point W ⇤ = ⌦Jk(⇤̄Jk � ⌧Ik)
1/2

V >, with regularized covariance ⌃⇤
⌧ = W ⇤W ⇤> + ⌧In, the value of

the loss is

L1
⌧ (W

⇤) = tr⌃⇤

⌧ + tr⌃0 � 2 tr (⌃1/2
0 ⌃⇤

⌧⌃
1/2
0 )

1/2

=
X

j2Jk

�j + ⌧(n � k) +
X

j2Jk

�j +
X

j2J c
k

�j � 2(
X

j2Jk

�j +
X

j2J c
k

p
⌧�j)

=
X

j2J c
k

�j + ⌧ � 2
p
⌧�j

=
X

j2J c
k

(
p
�j �

p
⌧)

2
,

which is uniquely minimized of Jk for Jk = [k] when the eigenvalues of ⌃0 are distinct and in descending order.

Moreover, as in the unregularized case, we have the increasing sequence of minimizers minM(k) L
1
⌧ 6 minM(<k) L

1
⌧

which, together with the identity M(6 k) = M(k) [ M(< k), implies that minM(6k) L
1
⌧ = minM(k) L

1
⌧ .

The loss L1
⌧ satisfies the strict-saddle point property in a similar fashion as Proposition D.8 for L1.

Lemma D.10. The loss L1
⌧ |M(k) satisfies the strict saddle point property.

Proof of Lemma D.10. The proof of Proposition D.8 can be adapted, with the expression of the critical points as, if
⌃0 = ⌦⇤⌦>, and with V 2 R

n⇥k any semi-orthogonal matrix, W ⇤ = (⌃0 � ⌧In)
�1/2Pn

j=1(�i � ⌧)!iv>i .

We are now ready to prove Proposition 4.6.

Proof of Proposition 4.6. The fact that W ⇤ = µ(
�!
W ⇤) is a critical point of L1

⌧ |M(k) (with k = rankW ⇤) if and only if
�!
W ⇤

is a critical point for LN
⌧ , as well as the fact that, when k = d = mini(di), W ⇤ is a local minimizer of L1

⌧ |M(d) if and only
if

�!
W ⇤ is a local minimizer of LN

⌧ are straightforwardly deduced from Trager et al. (2020, Proposition 6), since L1
⌧ is smooth.

The additional fact that any local minimizer of rank d of L1
⌧ |M(d) is a global minimizer of L1

⌧ |M(d) comes from Lemma D.10:
L1
⌧ |M(d) satisfies the strict saddle point property, therefore, the only critical points of L1

⌧ |M(d) are strict saddle points and
the global minimizer.

Now, the expression of such a global minimizer is given by Theorem 4.5: with ⌃0 = ⌦⇤⌦> a spectral decomposition of ⌃0

in descending order of the eigenvalues, there exists V 2 O(m) orthogonal, such that W ⇤ = ⌦[d](⇤̄[d] � ⌧Id)
1/2

V >

[d], and

⌃⇤
⌧ = W ⇤W ⇤> + ⌧In = ⌦

✓
⇤[d]

⌧

◆
⌦>.

E. Proofs of Section 5
In this section, we provide the proofs of the convergence statements in Theorems 5.5 and 5.7.
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E.1. Bounds on the Hessian of L1
⌧

In this section, we provide bounds on the Hessian of the perturbative loss L1
⌧ . We first compute the Hessian the loss L

as a function of the covariance matrix, as given by Kroshnin et al. (2021, Lemma A.2). Then, a simple chain rule for the
differential allows to express the Hessian in the case the loss is a function of the end-to-end matrix W .

Denoting ⌃⌧ := WW> + ⌧In the regularized covariance matrix, the loss L can be expressed in terms of the optimal
transport plan between ⌃⌧ and ⌃0 (Kroshnin et al., 2021, Proposition 2.1). We have

L(⌃⌧ ) = tr
�
⌃⌧ + ⌃0 � 2(⌃1/2

0 ⌃⌧⌃
1/2
0 )1/2

�

=k
�
T⌃0
⌃⌧

� I
�
⌃1/2

⌧ k
2
F

=tr
�
T⌃0
⌃⌧

� I
�
⌃⌧

�
T⌃0
⌃⌧

� I
�
,

(39)

where T⌃0
⌃⌧

= ⌃1/2
0

�
⌃1/2

0 ⌃⌧⌃
1/2
0

��1/2
⌃1/2

0 = ⌃�1/2
⌧

�
⌃1/2

⌧ ⌃0⌃
1/2
⌧
�1/2

⌃�1/2
⌧ .

This expression of the loss allows to compute its second order differential.
Lemma E.1 (Second-order differential of L⌧ , Kroshnin et al. 2021, Lemma A.6). Let W 2 R

n⇥m and let ⌧ > 0. Define
⌃⌧ = WW>+⌧In to be the regularized covariance matrix. Given that ⌃⌧ � 0, the loss L given by (39) is twice continuously
differentiable at ⌃⌧ . Let �Q�> = ⌃1/2

0 ⌃⌧⌃
1/2
0 be a spectral decomposition of ⌃1/2

0 ⌃⌧⌃
1/2
0 , with Q = Diag (q1, . . . , qn).

For Y 2 S++(n), define �(Y ) 2 S(n) to be the matrix with element �(Y )ij = (
p
qi +

p
qj)

�1(�>⌃1/2
0 Y ⌃1/2

0 �)ij . Let
G⌧ be the linear operator defined as

G⌧ : S++(n) �! S(n)

Y 7�! G⌧ (Y ) = ⌃1/2
0 �Q�1/2�(Y )Q�1/2�>⌃1/2

0 .
(40)

Then, the second order differential of L⌧ is given by

8(X,Y ) 2 S++(n)
2, d2L⌧ (⌃⌧ )[X,Y ] = hX,G⌧ (Y )i. (41)

Proof. For completeness, we provide a proof of the statement different from the one by Kroshnin et al. (2021). We begin by
stating the first-order differential for the loss L evaluated on the PD matrix ⌃⌧ . This is given in Lemma B.10

dL(⌃⌧ )[X] = tr(X � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 X)

= hI � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 , Xi.

Let GL(n) = {A 2 R
n⇥n

| detA 6= 0}, and let f : GL(n) 3 F 7! F�1; then f is differentiable with differential
df(F )[X] = �F�1XF�1 (Magnus & Neudecker, 2019, Theorem 8.3). Let g : S

n
++ 3 A 7! A1/2 be the matrix square

root. The function g is differentiable on S++(n), and its differential can be computed as follows (Kroshnin et al., 2021,
Lemma A.1). Let A 2 S++(n), and let �Q�> be its spectral decomposition, with Q = Diag(q1, . . . , qn). For X 2 S(n),
define �(X) 2 R

n⇥n to be the matrix with elements �(X)ij := (
p
qi +

p
qj)

�1(�>X�)ij . Then, the differential of g at A
in the direction X is dg(A)[X] = ��(X)�>.

Therefore, the chain rule on the differentials gives

d(f � g)(A)[X] = df(g(A))[dg(A)[X]] = �A�1/2 dg(A)[X]A�1/2 = �A�1/2��(X)�>A�1/2,

and, with A = ⌃1/2
0 ⌃⌧⌃

1/2
0 ,

d2L(⌃⌧ )[X,Y ] = d(⌃⌧ 7! dL(⌃⌧ )[X])[Y ]

= d(tr(X � (⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 X)))[Y ]

= � tr(⌃1/2
0 (d(⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
[Y ])⌃1/2

0 X)

= � tr(⌃1/2
0 (�A�1/2��(d(⌃1/2

0 ⌃⌧⌃
1/2
0 )[Y ])�>A�1/2)⌃1/2

0 X)

= tr(⌃1/2
0 �Q�1/2�(⌃1/2

0 Y ⌃1/2
0 )Q�1/2�>⌃1/2

0 X)

= hX,G⌧ (Y )i
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with
G⌧ (Y ) = ⌃1/2

0 �Q�1/2�(Y )Q�1/2�>⌃1/2
0

and
�(Y )ij = �(⌃1/2

0 Y ⌃1/2
0 )ij = (

p
qi +

p
qj)

�1(�>⌃1/2
0 Y ⌃1/2

0 �)ij .

In order to express the Hessian of the loss as a function of the end-to-end matrix W , we need the chain rule for the
second-order differential. We first recall the chain rule for the second-order differential.

Lemma E.2 (Chain rule for second-order differential, Magnus & Neudecker 2019, Theorem 6.9). Let f : R ! S and
g : S ! T be two differentiable functions on open sets, such that h = g � f : R ! T is always well defined. Then, given
two directions u, v, the second-order differential of h at c is

d2h(c)[u, v] = d2g(f(c))
⇥
df(c)[u], df(c)[v]

⇤
+ dg(f(c))[d2f(c)[u, v]]. (42)

With this computation rule, we are able to give the second-order differential of L1
⌧ = L⌧ � ⇡.

Lemma E.3 (Second-order differential of L1
⌧ ). Let W 2 R

n⇥m. For any U, V 2 R
n⇥m, the second order differential of L1

⌧

at W in the directions U, V is
d2L1

⌧ (W )[U, V ] = hU,H⌧ (V )i,

where

H⌧ (V ) = 2(G⌧ (VW> +WV >)W + (I � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )V ), (43)

and G⌧ is defined as in (40).

Proof. Applying the formula (42) to L1
⌧ = L⌧ � ⇡ gives, with ⌃ = ⇡(W ) and d2⇡(W )[U, V ] = UV > + V U>,

d2L1
⌧ (W )[U, V ] = d2L⌧ (⌃)[d⇡(W )[U ], d⇡(W )[V ]] + dL⌧ (⌃)[d

2⇡(W )[U, V ]]

= hUW> +WU>,G⌧ (VW> +WV >)i + tr (UV > + V U>)

� tr⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1
⌃1/2

0 (UV > + V U>)

= 2hU,G⌧ (VW> +WV >)W + V � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1
⌃1/2

0 V i

= hU,H⌧ (V )i,

where we used the symmetry of ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃0 to simplify the expression.

The maximal eigenvalue of H⌧ will be computed in Lemma E.9. But first, we study the eigenvalues of G⌧ .

E.2. Lipschitz-smoothness of L1
⌧

The aim of this section is to study the Lipschitz-smoothness of the loss L1
⌧ . For that, we will study the spectrum of its

Hessian operator, and the closely related Hessian operator of L⌧ . We first recall the definition we take for the eigenvalues of
those matrix operators.

Definition E.4 (Eigenvalues of matrix operators). Let F : R
p⇥q

! R
r⇥s be a linear operator. Then, its extremal eigenvalues

�max(F), �min(F) are defined as

�max(F) := sup
U2Rp⇥q : kUkF=1

hU,F(U)i, �min(F) := inf
U2Rp⇥q : kUkF=1

hU,F(U)i.

One can use the bounds of Kroshnin et al. (2021, Lemma A.3) to bound the Hessian of the loss.
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Lemma E.5 (Bounds on the second-order differential, Kroshnin et al. 2021, Lemma A.3). Let G⌧ (X) be defined as in (40).
The second-order differential of L⌧ respects the following bounds

hX,G⌧ (X)i 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X⌃�1/2
⌧ k

2
F , (44a)

hX,G⌧ (X)i > �1/2
min(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X⌃�1/2
⌧ k

2
F . (44b)

Those in turn bound the extremal eigenvalues of the Hessian, as defined in Definition E.4.
Lemma E.6 (Bounds on the Hessian G⌧ ). Let G⌧ be defined as in (40). Then, the extremal eigenvalues of G⌧ are bounded
as

�max(G⌧ ) 6
p
C⌧�max(⌃0)

2⌧2
, �min(G⌧ ) >

p
⌧�min(⌃0)

2C2
⌧

, (45)

where C⌧ = 2(L(⌃⌧ (0)) + tr(⌃0)) is initialization-dependent. In particular, the loss L⌧ is strongly convex, with parameter

K⌧ =

p
⌧�min(⌃0)

2C2
⌧

.

Proof. We first provide the proof for the maximal eigenvalue.

The maximal eigenvalue of the Hessian is defined as

�max(G⌧ ) = sup
X:kXkF=1

hX,G⌧ (X)i.

From the upper-bound of hX,G⌧ (X)i in (44a), one has

sup
X:kXkF=1

hX,G⌧ (X)i 6 sup
X:kXkF=1

�1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X⌃�1/2
⌧ k

2
F

=
�1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
sup

X:kXkF=1
k⌃�1/2

⌧ X⌃�1/2
⌧ k

2
F

=
�1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
sup

X:kXkF=1
k⌃�1

⌧ Xk
2
F

=
�1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
�2
max(⌃

�1
⌧ )

6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2⌧2
.

The last inequality comes from the definition of ⌃⌧ ; if �1 > �2 > · · · > �k > 0 are the positive eigenvalues of WW>,
then ⌃�1

⌧ = (WW> + ⌧In)
�1 has eigenvalues ⌧�1 = · · · = ⌧�1

| {z }
n�k times

> (�k + ⌧)�1 > · · · > (�1 + ⌧)�1.

For any positive definite matrices A,B 2 S++(n) with increasing eigenvalues, and for any k 2 [n], we know that

�k(A)�1(B) 6 �k(AB) = �k(A
1/2BA1/2) 6 �k(A)�n(B).

Therefore, we have the bound �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 ) 6 �1/2

max(⌃0)�
1/2
max(⌃⌧ ). Moreover, �max(⌃⌧ ) 6 tr⌃⌧ , and from

Lemma C.7, we know that tr⌃⌧ 6 2(L(⌃⌧ ) � L(⌃0)) =: C⌧ . Therefore, we obtain

�max(G⌧ ) 6
p

C⌧�max(⌃0)

2⌧2
.

The proof for the minimal eigenvalue is similar and follows from the bound (44b). In this case, the term �1/2
min(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

can be lower bounded by
p
⌧�min(⌃0).
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Remark E.7. In a more generic situation, if Qn," = S++(n) \ {A 2 S(n) | �min(A) > "}, then, the original loss L is
differentiable on Qn,". The bounds found in Lemma E.5 are valid if ⌧ is replaced with ". Specifically, since Qn," is convex,

the loss L is strongly convex on Qn,", with strong-convexity constant K" =
p

"�min(⌃0)

2C2 , where C := 2(L(⌃(0)) + tr⌃0).

The above Remark E.7 leads to stating the following lemma.

Lemma E.8. For n 2 N \ {0} and " 2 R+, let Qn," := S++(n)\ {A 2 S(n) | �min(A) > "}. Then, (Qn," is convex and)

the loss L is strongly convex on Qn,", with constant K" =
p

"�min(⌃0)

2C2 , where C := 2(L(⌃(0)) + tr(⌃0)).

Proof. Qn," is convex as the intersection of convex sets. On Qn,", the Hessian of the loss L has its spectrum lower-bounded
as stated in Remark E.7. The proof of Lemma E.5 can therefore be adapted with " in place of ⌧ .

The Lemma E.8 will be useful to state the gradient flow convergence result for the original loss L in Theorem E.15.

We now turn to the Hessian of L1
⌧ , H⌧ .

Lemma E.9 (Spectral bound of H⌧ ). Let H⌧ be defined as in (43). The maximal eigenvalue for the Hessian of L1
⌧ respects

the following bound

�max(H⌧ ) 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2C2

⌧2
+ 2(1 � �min(⌃

1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )) (46)

Proof. From (44a), one has for any X 2 S++(n),

hX,G⌧ (X)i 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X⌃�1/2
⌧ k

2
F .

Let U 2 R
n⇥m. With X(U) = UW> +WU>, the bound becomes

hUW> +WU>,G⌧ (X(U))i 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X(U)⌃�1/2
⌧ k

2
F

() 2hUW>,G⌧ (X(U))i 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X(U)⌃�1/2
⌧ k

2
F

() 2hU,G⌧ (X(U))W i 6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X(U)⌃�1/2
⌧ k

2
F .

Therefore,

hU,H⌧ (U)i = 2hU,G⌧ (X(U))W + (I � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )Ui

6 �1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X(U)⌃�1/2
⌧ k

2
F + 2hU, (I � ⌃1/2

0 (⌃1/2
0 ⌃⌧⌃

1/2
0 )

�1/2
⌃1/2

0 )Ui. (47)

We proceed by bounding each of the summands.

First consider the term k⌃�1/2
⌧ X(U)⌃�1/2

⌧ k
2
F = k⌃�1

⌧ X(U)k2F . If U is such that kUkF = 1, then kX(U)k2F = kUW> +
WU>

k
2 6 4kWk

2
F . We know that kWkF 6 C for some constant C, c.f. (32). Therefore, kUkF = 1 =) kX(U)k 6 2C

and

sup
U : kUkF=1

k⌃�1
⌧ X(U)k2F 6 sup

X : kXkF62C
k⌃�1

⌧ X(U)k2F

= sup
X : kXk=1

4C2
k⌃�1

⌧ Xk
2
F

= 4C2�2
max(⌃

�1
⌧ ) =

4C2

⌧2
.
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Therefore,

sup
U : kUkF=1

�1/2
max(⌃

1/2
0 ⌃⌧⌃

1/2
0 )

2
k⌃�1/2

⌧ X(U)⌃�1/2
⌧ k

2
F 6 �1/2

max(⌃
1/2
0 ⌃⌧⌃

1/2
0 )

2C2

⌧2
.

The second summation in (47) can be bounded as

sup
U : kUkF=1

2hU, (I�⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )Ui

= 2�max(I � ⌃1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )

= 2(1 � �min(⌃
1/2
0 (⌃1/2

0 ⌃⌧⌃
1/2
0 )

�1/2
⌃1/2

0 )).

Lemma E.10 (Lipschitz-smoothness of L1
⌧ ). For ⌧ > 0, the loss W 7! L1

⌧ (W ) is Lipschitz smooth.

Proof. This directly follows from the boundedness of the Hessian showed previously and the convexity of L1
⌧ using Taylor

approximation.

Once the Lipschitz-smoothness of the loss has been proven, one can turn to showing that the rank is preserved under
balanced initial conditions.
Proposition E.11 (Bah et al. 2021, Proposition 4.4). Let L1 : R

n⇥m
! R be a Lipschitz smooth function (i.e., a differentiable

function with Lipschitz gradient). Suppose that W1(t), . . . ,WN (t) are solutions of the gradient flow (1) of LN with balanced
initial values Wj(0) and define the product W (t) = �(✓(t)) = WN (t) · · ·W1(t). If W (0) is contained in M(k) for some
k 2 N, then W (t) is contained in M(k) for all t > 0.

Proof. Let P (t) = W1(t)
>W1(t) = (W (t)>W (t))

1/N
and Q(t) = WN (t)WN (t)> = (W (t)W (t)>)

1/N
. The proof

follows if the gradient flow is locally Lipschitz continuous in P,Q,W , so that the curves P,Q,W are uniquely determined
by an initial datum P (0), Q(0),W (0). From Equations (1) and (24),

Ṗ = �W>
rL

1(W ) � rL
1(W )

>

W,

Q̇ = �rL
1(W )W>

� WrL
1(W )

>

,

Ẇ = �

NX

j=1

QN�j
rL

1(W )P j�1.

Now, with the assumption of Lipschitz continuity of the flow, a given solution is uniquely determined by the initial data, and
the proof tools of Bah et al. (2021, Proposition 4.4) can be used here as well.

Remark E.12. The loss L1
⌧ satisfies the conditions of Proposition E.11; therefore, the flow on L1

⌧ remains in the manifold
M(k) if W (t0) 2 M(k) for some t0.

E.3. Proofs of gradient flow convergence

We first prove here the convergence of the gradient flow of LN to a parameter corresponding to a covariance matrix that
is a global minimizer of L⌧ , under the assumptions of balanced weights (Definition 2.1) and modified deficiency margin
(Definition 5.2). Then, in Theorem E.15, we state the theorem for the original loss, under the same assumptions on the
weights.

Proof of Theorem 5.5. The idea of the proof is to transfer the strong convexity property from L⌧ to the evolution of the
parameters. Let us start by the inequality which holds due to strong convexity

L(⌃⌧ ) � L(⌃⇤

⌧ ) 6
1

2K⌧
krL(⌃⌧ )k

2,
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where K⌧ is the constant from Lemma (E.6). Rearranging the terms in the above equation, we have

�krL(⌃⌧ )k
2 6 �2K⌧

�
L(⌃⌧ ) � L(⌃⇤

⌧ )
�
. (48)

On the covariance space, for the regularized loss, the gradient flow is written

dL⌧ (⌃)
dt = hrL⌧ (⌃),

d
dt⌃(t)i

= hr⌃L⌧ (⌃),W
dW
dt

>

+ dW
dt W>

i

= 2hr⌃L⌧ (⌃)W, dW
dt i.

The expression of dW
dt is given in Lemma C.1.2:

dW

dt
= �

NX

`=1

WN :j+1W
>

N :j+1rL1(W )W>

`�1:1W`�1:1.

Since rL1(W ) = 2rL(⌃)W , and from the balancedness assumption we have WN :j+1W>

N :j+1 = (WW>)
N�`
N and

W>

`�1:1W`�1:1 = (W>W )
`�1
N , we get

dL⌧ (⌃(t))

dt
= �4

NX

`=1

hrL⌧ (⌃)W, (WW>)
N�`
N

rL⌧ (⌃)W (W>W )
`�1
N

i.

Now, let USV > = W be a (thin) SVD of W , so that WW> = US2U> and W>W = V S2V >. For one layer ` 2 [N ], we
then have

hrL⌧ (⌃)W, (WW>)
N�`
N

rL⌧ (⌃)W (W>W )
`�1
N

i = tr (rL⌧ (⌃)W (W>W )
`�1
N W>

rL⌧ (⌃)(WW>)
N�`
N )

= tr (rL⌧ (⌃)USV >V S
2(`�1)

N V >V SU>
rL⌧ (⌃)US

2(N�`)
N U>)

= tr (U>
rL⌧ (⌃)US

2(N+`�1)
N U>

rL⌧ (⌃)US
2(N�`)

N )

= hU>
rL⌧ (⌃)US

2(N+`�1)
N , S

2(N�`)
N U>

rL⌧ (⌃)Ui.

Let X := U>
rL⌧ (⌃)U, D := S

2(N+`�1)
N , and E := S

2(N�`)
N . We evaluate hXD,EXi for the diagonal D,E as

hXD,EXi =
X

i,j

Xi,jDjXi,jEi =
X

i,j

EiDjX
2
i,`.

Since Ei = s
2(N�`)

N
i and Dj = s

2(N+`�1)
N

j , and due to the modified margin deficiency assumption, for all (i, j) 2 [k]2, we

have Ei > c
2(N�`)

N and Dj > c
2(N+`�1)

N , so that

hXD,EXi > c
2(2N�1)

N

X

i,j

X2
i,j = c

2(2N�1)
N kXk

2
F . (49)

Since X = U>
rL⌧ (⌃)U>, we have that kXk

2
F = krL⌧ (⌃)k2F , so that in total

d

dt
L⌧ (⌃(t)) 6 �4

NX

`=1

c
2(2N�1)

N krL⌧ (⌃)k
2
F = �4Nc

2(2N�1)
N krL⌧ (⌃)k

2
F .

From the strong convexity of L⌧ (48), we get the bound

d
dtL⌧ (⌃(t)) 6 �8Nc

2(2N�1)
N K⌧ (L⌧ (⌃) � L⌧ (⌃

⇤))

=)
1

L⌧ (⌃(t)) � L⌧ (⌃⇤)
d
dt (L⌧ (⌃(t)) � L⌧ (⌃

⇤)) 6 �8Nc
2(2N�1)

N K⌧ .
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Now, by integrating both sides from 0 to t,

ln

✓
L(⌃⌧ (t)) � L(⌃⇤

⌧ )

L(⌃⌧ (0)) � L(⌃⇤
⌧ )

◆
6 �8Nc

2(2N�1)
N K⌧ t.

Let �⇤
⌧ = ⌃⌧ (0) � ⌃⇤

⌧ be the distance from the initialization to optimality. Finally we get the desired exponential rate

L(⌃⌧ (t)) � L(⌃⇤

⌧ ) 6 e�8Nc
2(2N�1)

N K⌧ t�⇤

⌧ ,

which concludes the proof.

Remark E.13. The modified deficiency margin assumption Definition 5.2 is used only in order to lower-bound the singular
values of the parametrized covariance matrix WW> in (49). Furthermore, under the MDM assumption, the parametrized
matrix is always full-rank and, therefore, we do not need to regularize the loss in order to define the gradient flow and to
prove convergence of the same.

Remark E.13 suggests that we can adapt the statement of Theorem 5.5 in two ways. Namely, we could substitute the MDM
assumption with the weaker condition (11), or we could keep the MDM assumption and substitute the regularized loss by
the unregularized loss. In the following we briefly discuss the arguments for the latter of these two options.

For " > 0, let Q(n, ") := S++(n) \ {A 2 S(n) | �min(A) > "}.

From Lemma E.8, we know that the loss L is strongly-convex on the set Qn", for " > 0, and the convergence of the gradient
flow will therefore be linear on this set. Under the modified margin deficiency assumption, we know that the parametrized
covariance matrix remains in the set Qn,c2 , as stated in the next lemma.

Corollary E.14 (from Lemma 5.3). If W satisfies the modified deficiency margin assumption at some time t, then,
WW>

2 Qn,c2 for all time.

Therefore, the modified deficiency margin assumption allows to conclude on the linear convergence of the gradient flow for
the original loss L.

Theorem E.15. Assume both balancedness (Definition 2.1) and the modified deficiency margin (Definition 5.2) conditions

hold. Then the gradient flow
�̇!
W (t) = �rLN (

�!
W (t)) converges as

L(⌃(t)) � L(⌃⇤) 6 e�8Nc
2(2N�1)

N Kt�⇤

0, (50)

where K =
p

c2�min(⌃0)

2C2 is the strong convexity parameter from Lemma 5.4, with C = 2(L(⌃(0)) + tr(⌃0)), and
�⇤

0 = ⌃(0) � ⌃⇤ is the distance from the optimum as initialization.

Proof. Under the modified margin deficiency assumption, by Corollary E.14, the model covariance ⌃(t) = W (t)W (t)>

has its eigenvalues lower-bounded by c2 at all time t > 0. Therefore, the proof of Theorem 5.5 can be adapted, with c2 in
place of ⌧ .

E.4. Proof of gradient descent convergence

We start by proving Lemma 5.3 so that with the modified margin deficiency assumption on the initial weights, WW> does
not degenerate along the gradient descent training algorithms.

Proof of Lemma 5.3. Let Ū(k) := argminU2O(n)k
p
W (k)W (k)> � ⌃1/2

0 Uk
2
F for each k, then as L1(W (k)) 6
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L1(W (0)) for all k > 0, we have

�min

⇣q
W (k)W (k)>

⌘
= �min

⇣q
W (k)W (k)> � ⌃1/2

0 Ū(k) + ⌃1/2
0 Ū(k)

⌘

> �min

⇣
⌃1/2

0 Ū(k)
⌘

� �max

⇣q
W (k)W (k)> � ⌃1/2

0 Ū(k)
⌘

> �min

⇣
⌃1/2

0 Ū(k)
⌘

� k

q
W (k)W (k)> � ⌃1/2

0 Ū(k)kF

= �min

⇣
⌃1/2

0 Ū(k)
⌘

�

p
L1(W (k))

> �min

⇣
⌃1/2

0 Ū(k)
⌘

�

p
L1(W (0))

= �min

⇣
⌃1/2

0 Ū(k)
⌘

� k

q
W (0)W (0)> � ⌃1/2

0 Ū(0)kF

> �min

⇣
⌃1/2

0 Ū(k)
⌘

� �min

⇣
⌃1/2

0

⌘
+ c = c.

(51)

The cancellation in the last equality works due to the fact that the multiplication with an arbitrary unitary matrix does not
change singular values.

Now we are ready to prove the finite step size gradient descent convergence of the BW loss. We consider the perfect
balancedness of initial values Wi(0), 1 6 i 6 N in the remaining proof. The approximation balancedness case can also be
carried out but require more complicated auxiliary estimates. We leave the approximate balancedness assumption as a future
direction.

Proof of Theorem 5.7. Let us start from the gradient descent of the loss with respect to each layer

Wj(k + 1) = Wj(k) � ⌘rWjL
N (W1(k), · · ·Wn(k))

= Wj(k) � ⌘Wj+1:N (k)>rWL1(W (k))W1:j�1(k)
>, 1 6 j 6 N,

(52)

with the boundary conditions W1:0(k) = Id0 and WN+1:N (k) = IdN for all k > 0.

With the notations
�!
W = (W1,W2, · · · ,WN ) and

rLN (
�!
W ) =

0

BB@

rW1L
N (

�!
W )

...
rWNLN (

�!
W )

1

CCA ,

we consider to write the Taylor expansion in the form

LN (
�!
W (k + 1)) = LN (

�!
W (k)) +

D
rLN (

�!
W (k)),

�!
W (k + 1) �

�!
W (k)

E

+
1

2

D
(
�!
W (k + 1) �

�!
W (k))>r

2LN (
�!
A⇠(k)),

�!
W (k + 1) �

�!
W (k)

E
,

(53)

with
�!
A⇠(k) =

�!
W (k) + ⇠(

�!
W (k + 1) �

�!
W (k)), for some ⇠ 2 [0, 1].

Recall the relation (24), for 1 6 j 6 N ,

rWjL
N (W1, . . . ,WN ) = W>

j+1 · · ·W>

N rWL1(W )W>

1 · · ·W>

j�1,
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then the first order term in (53), under (52), can be written as

D
rLN (

�!
W (k)),

�!
W (k + 1) �

�!
W (k)

E
=

NX

j=1

rWjL
N (

�!
W (k))>(Wj(k + 1) � Wj(k))

= �⌘
NX

j=1

Wj�1 · · ·W1rWL1(W (k))>WN · · ·Wj+1W
>

j+1 · · ·W>

N rWL1(W (k))W>

1 · · ·W>

j�1

= �⌘
NX

j=1

Wj�1 · · ·W1rWL1(W (k))>(WNW>

N )N�j
rWL1(W (k))W>

1 · · ·W>

j�1

6 �⌘
NX

j=1

�min

⇣
(WNW>

N )N�j
⌘
�min

⇣
(W>

1 W1)
j�1
⌘
krWL1(W (k))k2F .

(54)

Throughout the computation above, Wi = Wi(k) for all 1 6 i 6 N . Moreover, we use the balancedness WjW>

j =

W>

j+1Wj+1 for all 1 6 i 6 N � 1 so that, in the symmetric structure above,

WN · · ·Wj+1W
>

j+1 · · ·W>

N = (WNW>

N )N�j

W>

1 · · ·W>

j�1Wj�1 · · ·W1 = (W>

1 W1)
j�1.

Therefore, thanks to Lemma 5.3,

�min

⇣
(WN (k)WN (k)>)N

⌘
= �min

⇣
(W1(k)

>W1(k))
N
⌘
= �min

⇣
W (k)W (k)>

⌘
> c2,

from which we get D
rLN (

�!
W (k)),

�!
W (k + 1) �

�!
W (k)

E
6 �⌘Nc

2(N�1)
N krWL1(W (k))k2F . (55)

Let us mention that Arora et al. (2018, Theorem 1 and Claim 1) provide rigorous derivations about the equalities above. The
second order term in (53) is more complicated to handle, as we have

r
2LN (

�!
W )[

�!
X,

�!
X ] =

NX

j=1

D
Xj ,

d2LN (
�!
W )

dW 2
j

Xj

E
+

NX

j=1

NX

i=1,i 6=j

D
Xj ,

d2LN (
�!
W )

dWi dWj
Xi

E
. (56)

Thanks to Corollary C.3, we have expressions of d2LN (
�!
W )

dW 2
j

and d2LN (
�!
W )

dWi dWj
ready.

Note that we have the boundedness (Corollary C.9)

kWkF 6
q
2(L1(W ) + k⌃1/2

0 k2F ) 6
q
2(L1(W (0)) + k⌃1/2

0 k2F ) =: M, (57)

and it is straightforward to see that

kWik
2
F 6 kWk

2/N
F , for all 1 6 i 6 N. (58)

Moreover, for all 1 6 i 6 N , since ⇠ 2 [0, 1],

A⇠,i(k) = Wi(k) + ⇠(Wi(k + 1) � Wi(k)) = (1 � ⇠)Wi(k) + ⇠Wi(k + 1),

we then have the uniform upper bound for all k > 0,

kA⇠,i(k)kF 6 (1 � ⇠)kWi(k)kF + ⇠kWi(k + 1)kF 6 M1/N . (59)

Using A⇠,i(k) = Wi(k) � ⇠⌘Wj+1:N (k)>rWL1(W (k))W1:j�1(k)>, we can obtain a lower bound in terms of the
minimum singular value,

�min

⇣
A⇠,i(k)A⇠,i(k)

>

⌘

> �min

⇣
Wi(k)Wi(k)

>

⌘
� 2⇠⌘kWi(k)kF kWj+1:N (k)kF kW1:j�1(k)kF krWL1(W (k))kF

> c2 � 4⌘M
p
L1(W (k)) > c2 � 4⌘M

p
L1(W (0)),

(60)
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where we utilize (C.4), (58) and (57), as well as non-increment of L1(W ) throughout the training. We denote Xj =
�⌘Wj+1:N (k)>rWL1(W (k))W1:j�1(k)>. We may choose

⌘ 6 c2

8M
p
L1(W (0))

,

so that for all k > 0,

�min

⇣
A⇠,i(k)A⇠,i(k)

>

⌘
> c2

2
, and �min

⇣
A⇠(k)A⇠(k)

>

⌘
> c2N

2N
. (61)

Then combining all estimates above, we have
���
D
(
�!
W (k + 1) �

�!
W (k))>r

2LN (
�!
A⇠(k)),

�!
W (k + 1) �

�!
W (k)

E���

6
NX

j=1

���
D
Xj ,

d2LN (
�!
A⇠(k))

dW 2
j

Xj

E���+
NX

j=1

NX

i=1,i 6=j

���
D
Xj ,

d2LN (
�!
A⇠(k))

dWi dWj
Xi

E���

6
NX

j=1

�1/2
max(⌃

1/2
0 A⇠(k)A⇠(k)>⌃

1/2
0 )

2
kXj

�
A⇠(k)A⇠(k)

>
��1

k
2
FM

2(N�1)/N

+
NX

j=1

NX

i=1,i 6=j

M (N�2)/N
kXikF kXjkF krWL1(A⇠(k))kF

+
NX

j=1

NX

i=1,i 6=j

⇣�1/2
max(⌃

1/2
0 A⇠(k)A⇠(k)>⌃

1/2
0 )

2
kXj

�
A⇠(k)A⇠(k)

>
��1

kF

⇥ kXi

�
A⇠(k)A⇠(k)

>
��1

kFM
2(N�1)/N

⌘
,

by using (59), (E.5) and applying the Cauchy-Schwarz inequality for the last term. Notice that kXikF 6
2⌘M (N�1)/N

krWL1(W (k))kF . Now combining all the bounds we obtained previously, in addition to (61), we get
that ���

D
(
�!
W (k + 1) �

�!
W (k))>r

2LN (
�!
A⇠(k)),

�!
W (k + 1) �

�!
W (k)

E���

6 2⌘2N2
kA⇠(k)kF�

1/2
max(⌃0)

M4(N�1)/N

�min

�
A⇠(k)A⇠(k)>

�krWL1(W (k))k2F

+ 4⌘2N(N � 1)M (3N�4)/N
krWL1(A⇠(k))kF krWL1(W (k))k2F .

(62)

Moreover, we can use (9), (C.4) again to get

krWL1(A⇠(k))kF = 2
q
L1(A⇠(k)) 6 2k

�
A⇠(k)A⇠(k)

>
�1/2

� ⌃1/2
0 UkF

6 2k
�
A⇠(k)A⇠(k)

>
�1/2

kF + 2k⌃1/2
0 kF 6 2M1/N + 2k⌃1/2

0 kF .

Thus, we conclude the estimate for the second order term by
���
D
(
�!
W (k + 1) �

�!
W (k))>r

2LN (
�!
A⇠(k)),

�!
W (k + 1) �

�!
W (k)

E���

6 ⌘2krWL1(W (k))k2F

 
2N+1

c2N
N2M (4N�3)/N�1/2

max(⌃0)

+ 8N(N � 1)M (3N�4)/N
⇣
M1/N + k⌃1/2

0 kF

⌘!
.

Let us denote the constant

� :=
2N+1

c2N
N2M (4N�3)/N�1/2

max(⌃0) + 8N(N � 1)M (3N�4)/N
⇣
M1/N + k⌃1/2

0 kF

⌘
,
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then, we can write the iteration as

LN (
�!
W (k + 1)) =

⇣
1 � 4Nc

2(N�1)
N ⌘ + 4�⌘2

⌘
LN (

�!
W (k)).

If we choose

⌘ 6 Nc
2(N�1)

N

2�
,

then we have
LN (

�!
W (k)) 6

⇣
1 � 2⌘Nc

2(N�1)
N

⌘k
LN (

�!
W (0)).

For ⌘ being sufficiently small, we have 1 � 2⌘Nc
2(N�1)

N 6 exp
⇣
�2⌘Nc

2(N�1)
N

⌘
. Thus, to achieve ✏-error for the loss,

k > 1

2⌘Nc
2(N�1)

N

log

 
L1(W (0))

✏

!
.

F. Empirical evaluation of the Hessian
In order to compare the smooth Bures-Wasserstein loss and the Frobenius loss, here we conduct experiments evaluating the
Hessian of both. We first discuss the Burer-Monteiro parametrization and relate the differential of a given loss in function
and covariance space.

F.1. General computations for losses under the Burer-Monteiro parametrization

Let ⇡ : R
n⇥m

! S+(n), W 7! ⇡(W ) := WW> be the so-called Burer-Monteiro parametrization of a positive semi-
definite matrix. We will consider computing second-order derivatives of a differentiable function f : S+(n) ! R under the
parametrization f � ⇡.

Proposition F.1 (Second-order differential chain rule for the Burer-Monteiro parametrization). Let ⇡ : R
n⇥m

!

S+(n), W 7! ⇡(W ) := WW> be the Burer-Monteiro parametrization of a positive semi-definite matrix. Then, for
any twice-differentiable function f : S+(n) ! R, the second-order differential of f � ⇡ can be expressed as , with
W 2 R

n⇥m, Z 2 R
n⇥m, and ⌃ = ⇡(W ):

d2(f � ⇡)(W )[Z] = d2f(⌃)[ZW>] + d2f(⌃)[WZ>] + 2 d2f(⌃)[WZ>, ZW>] + 2 df(⌃)[ZZ>]. (63)

Proof. The chain rule for the second order differential in Lemma E.2 states that

d2(f � ⇡)(W )[Z] = d2f(⇡(W ))[d⇡(W )[Z]] + df(⇡(W ))[d2⇡(W )[Z]].

Since d⇡(W )[Z] = ZW> +WZ> and d2⇡(W )[Z] = 2ZZ>, and with ⌃ = ⇡(W ), one further has

d2(f � ⇡)(W )[Z] = d2f(⌃)[ZW> +WZ>] + df(⌃)[2ZZ>]

= d2f(⌃)[ZW>] + d2f(⌃)[WZ>] + 2 d2f(⌃)[ZW> +WZ>] + 2 df(⌃)[ZZ>],

where the last inequality comes from the bilinearity of d2f(⌃) and the linearity of df(⌃).

Now, we turn to the expression of the Hessian matrix for the function f � ⇡ at some point W 2 R
n⇥m. Recall that, by

definition, this is the only symmetric matrix of size nm ⇥ nm, denoted by r
2(f � ⇡)(W ), such that, for all Z 2 R

n⇥m,
d2(f � ⇡)(W )[Z] = (vecZ)>[r2(f � ⇡)(W )] vecZ.

Corollary F.2. With the same notations as in Proposition F.1, the Hessian of the loss can then be identified as

r
2(f � ⇡)(W ) = ((W>

⌦ In)Kn +W>
⌦ In)r

2f(⌃)(Kn(W ⌦ In) +W ⌦ In) + 2Im ⌦ rf(⌃). (64)
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Proof. In order to prove the relation (64), we will rely on the identity vecABC = (C>
⌦ A) vec(B) which holds for any

matrices of compatible shapes. For more details about the matrix computations, we refer to Magnus & Neudecker (2019).
Using the expression of the second-order differential (63), it implies that, for W,Z 2 R

n⇥m, one has

d2f(⌃)[ZW>] = (vecZW>)
>

r
2f(⌃) vecZW> = (W ⌦ In vecZ)>r

2f(⌃)(W ⌦ In) vecZ

= (vecZ)>(W>
⌦ In)r

2f(⌃)(W ⌦ In) vecZ,

d2f(⌃)[WZ>] = (vec (ZW>)
>

)
>

r
2f(⌃) vec((ZW>)

>

) = (Kn vecZW>)
>

r
2f(⌃)(Kn vecZW>)

= (vecZ)>(W>
⌦ In)Knr

2f(⌃)Kn(W ⌦ In) vecZ,

where Kn 2 R
n2

⇥n2

is such that Kn vecX> = vecX for X 2 R
n⇥n, and

d2f(⌃)[WZ>, ZW>] = (vecZ)>(W>
⌦ In)Knr

2f(⌃)(W ⌦ In) vecZ

= (vecZ)>(W>
⌦ In)r

2f(⌃)Kn(W ⌦ In) vecZ.

Moreover,

df(⌃)[ZZ>] = hrf(⌃), ZZ>
i = trrf(⌃)ZZ> = (vecZ)>(Im ⌦ rf(⌃)) vecZ,

where we have used the identity trABCD = (vecD>)
>
(C>

⌦ A) vecB for the last equality. Adding the different terms
according to (63), and factorizing, we get the desired expression

r
2(f � ⇡)(W )[Z] = (W>

⌦ In + (W>
⌦ In)Kn)r

2f(⌃)(W ⌦ In +Kn(W ⌦ In)) + 2(Im ⌦ rf(⌃)).

In order to compute r
2(f � ⇡)(⌃), one therefore only needs to know r

2f(⌃) and rf(⌃).

F.2. Frobenius loss

Define
LF (⌃) =

1

2
k⌃ � ⌃0k

2
F ,

and denote L1
F the Frobenius loss defined on W 2 R

n⇥m, and LN
F the Frobenius norm defined on the parameters ✓ 2 ⇥.

Since L1
F admits a Burer-Monteiro factorization, we only need to recall the gradient and Hessian matrix of LF in order to

compute their counterparts on the function space.

Lemma F.3. The first-order differential of LF at ⌃ 2 S(n)+ is dLF (⌃)[X] = h⌃ � ⌃0, Xi, and its gradient is
rLF (⌃) = ⌃ � ⌃0.

Lemma F.4. The second-order differential of LF at ⌃ in the direction X is

d2LF (⌃)[X] = trXX>,

and its Hessian matrix is r
2LF (⌃) = In ⌦ In.

We can then give the Hessian matrix of the loss L1
F .

Corollary F.5. The Hessian matrix of L1
F at W is given by

r
2L1

F (W ) = 2
⇣
W>W ⌦ In +K(n)(W ⌦ W>) + Im ⌦ (⌃ � ⌃0)

⌘

Proof. This is a direct consequence of the previous lemma and Corollary F.2.
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F.3. Bures-Wasserstein loss

We now turn to the expression of the Hessian matrix for the Bures-Wasserstein loss. Denote

L⌧BW (⌃) = L⌧ (⌃) = B(⌃⌧ ,⌃)
2 (65)

the ⌧ -regularized Bures-Wasserstein loss, and L1
⌧BW (W ) = L⌧BW (WW>). Again, we only need to derive the expressions

of rL⌧BW (⌃) and r
2L⌧BW .

Recall the expression of the second-order differential for the loss L⌧BW given in Lemma E.1. Given the definition of the
operator G⌧ in (40), and � in (E.1), we first need to express the Hadamard product of two matrices as a linear operation.
This is done in the next lemma.

Lemma F.6 (Hadamard product as matrix multiplications). For any A, M of same order, with U Diag(�1, . . . ,�n)V > = A
a SVD of A, and letting Ek = Diag(uk) and Fk = Diag(vk), one has

A � M = (
X

k

�kuk ⌦ vk) � M =
X

k

�kEkMFk.

Then, the Hessian of the loss L⌧BW can be computed as follows.

Proposition F.7. Let �Diag(q1, . . . , qn)�> = ⌃1/2
0 ⌃⌃1/2

0 be a spectral decomposition, and let U Diag(�1, . . . ,�n)U> =⇣
(
p
qi +

p
qj)�1

⌘

i,j
=: P be a spectral decomposition of the (symmetric) P . Furthermore, let Ek = Diag(uk) and let

Bk = ⌃1/2
0 �Q�1/2Ek�>⌃1/2

0 = B>

k . The Hessian matrix for the Bures-Wasserstein loss L⌧BW at ⌃ 2 S+(n) is

r
2L⌧BW (⌃) =

nX

k=1

�kB
>

k ⌦ Bk.

Proof. This follows from the expression of the second-order differential given in Lemma E.1 and Lemma F.6.

The loss L1
⌧BW admits the parametrization L1

⌧BW = L⌧BW � ⇡, its Hessian matrix can therefore be computed using Corol-
lary F.2 and Corollary B.11. The Hessian matrix of the loss LN

⌧BW can then be computed using Corollary C.3.

F.4. Condition number of the Hessian

We evaluate the Hessian for both losses in the setting n = m = d = 20, and N = 3. We evaluate the Hessians of LN
BW and

LN
F (on the parameter space) according to the discussion in Appendices F.2 and F.3, together with Corollary C.3. Let H be

any symmetric matrix. We define the relative condition number for H as

rel(H) :=
�max(H)

�min(H)
, (66)

and the absolute condition number for H as
abs(H) :=

�max(H)

�abs
min(H)

, (67)

where �abs
min(H) is the minimal eigenvalue in absolute value of H that is non-zero. Both rel(H) and abs(H) should

characterize the condition of the matrix H: if the negative eigenvalues of the Hessian are large in absolute value (rel

negative, small in absolute value), we expect the gradient descent iterations to escape the saddle points quicker, since the
negative eigenvalues corresponds to those escaping, descent directions. Note that this rel number is always negative for the
Hessian matrices we will consider, but due to the log domain used for plotting, its absolute value is rather reported.

If �abs
min(H) is large, the Hessian is generally less degenerate and the iterates can converge quicker to a critical point. We plot

the different quantities in Figure 2 (for ⌧ = 0.1) and in Figure 3 (for ⌧ = 0.001), at the five first local minimizers of the losses
with decreasing rank (starting with the full-rank one). Those are the saddle points for the optimization, and the behavior
of the Hessian at these locations is therefore relevant. Specifically, on the function space, they are given by the spectral
decomposition of the target: if ⌃0 = ⌦⇤⌦> and the eigenvalues are in decreasing order, then W ⇤

i,F = ⌦[n�i]⇤̄
1/2
[n�i]V

>

[n�i]
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is the critical point of L1
F of index i , and W ⇤

i,⌧BW = ⌦[n�i](⇤̄[n�i] � ⌧In�i)
1/2

V >

[n�i] is a critical point of L1
⌧BW of

index i according to Theorem 4.5. The corresponding points in the covariance spaces are simply the images through ⇡ of
W ⇤

i,F , W
⇤

i,⌧BW . For the corresponding points on the parameter spaces, there are infinitely many of them, but only one that
satisfies the balancedness property. This is the one we choose.

We observe that the Hessian of the Bures-Wasserstein loss r
2LN

⌧BW is better conditioned than the one of the Frobenius
norm r

2LN
F , both for the relative and absolute condition number.
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(a) Upper-bounds of the spectrum of r2LN .
There is an order of magnitude between the
two losses.
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(b) rel(r2LN ), in absolute value. Lower
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trices.
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(c) abs(r2LN ). Lower values are linked
with better conditioned matrices.

Figure 2. Different spectral values for the Hessian matrices in the case ⌧ = 0.1. The abscissa i refers to the index of the critical point W ⇤
i .

Mean and standard deviations are reported for seven different targets ⌃0.
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(a) Upper-bounds of the spectrum of r2LN .
There is an order of magnitude between the
two losses.
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(b) rel(r2LN ), in absolute value. Lower
values are linked with better conditioned ma-
trices.
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(c) abs(r2LN ). Lower values are linked
with better conditioned matrices.

Figure 3. Different spectral values for the Hessian matrices in the case ⌧ = 0.001. The abscissa i refers to the index of the critical point
W ⇤

i . Mean and standard deviations are reported for seven different targets ⌃0.
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