
Journal of Machine Learning Research 24 (2023) 1-97 Submitted 7/21; Revised 4/23; Published 4/23

Implicit Bias of Gradient Descent for Mean Squared Error
Regression with Two-Layer Wide Neural Networks

Hui Jin huijin@ucla.edu
Department of Mathematics
University of California, Los Angeles
Los Angeles, CA 90095, USA

Guido Montúfar montufar@math.ucla.edu
Department of Mathematics and Department of Statistics
University of California, Los Angeles
Los Angeles, CA 90095, USA; and
Max Planck Institute for Mathematics in the Sciences
04103 Leipzig, Germany

Editor: Christoph Lampert

Abstract
We investigate gradient descent training of wide neural networks and the corresponding
implicit bias in function space. For univariate regression, we show that the solution of
training a width-n shallow ReLU network is within n�1/2 of the function which fits the
training data and whose difference from the initial function has the smallest 2-norm of
the second derivative weighted by a curvature penalty that depends on the probability
distribution that is used to initialize the network parameters. We compute the curvature
penalty function explicitly for various common initialization procedures. For instance,
asymmetric initialization with a uniform distribution yields a constant curvature penalty,
and thence the solution function is the natural cubic spline interpolation of the training
data. For stochastic gradient descent we obtain the same implicit bias result. We obtain
a similar result for different activation functions. For multivariate regression we show an
analogous result, whereby the second derivative is replaced by the Radon transform of a
fractional Laplacian. For initialization schemes that yield a constant penalty function, the
solutions are polyharmonic splines. Moreover, we show that the training trajectories are
captured by trajectories of smoothing splines with decreasing regularization strength.
Keywords: implicit bias, overparametrized neural network, cubic spline interpolation,
smoothing spline, effective capacity.

1. Introduction

Understanding why artificial neural networks trained in the overparametrized regime and
without explicit regularization generalize well in practice is one of the key challenges in
contemporary deep learning (Zhang et al., 2017). A series of works have observed that this
phenomenon must involve some form of capacity control beyond the network size (Neyshabur
et al., 2015) and, specifically, an implicit bias resulting from the parameter optimization
procedures (Neyshabur et al., 2017). By implicit bias we mean that among the many
candidate hypotheses that fit the training data, the optimization procedure selects one which

©2023 Hui Jin and Guido Montúfar.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided

at http://jmlr.org/papers/v24/21-0832.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0832.html

Jin and Montúfar

satisfies additional properties benefitting its performance on new data. In this work we
investigate the implicit bias of gradient descent parameter optimization for mean squared
error regression with wide shallow ReLU networks. Our theory shows that gradient descent
is biased towards smooth functions. More precisely, the trained functions are well captured
by interpolating splines depending on the initial function and the probability distribution
that is used to initialize the network parameters.

Under appropriate conditions, we intuitively expect that gradient descent will be biased
towards solutions close to the initial parameter. Indeed, considering overparametrized
neural networks, Oymak and Soltanolkotabi (2019) showed that gradient descent finds a
global minimizer of the training objective which is close to the initialization. This intuition
is spot-on for least squares regression with linearized models. In this case, Zhang et al.
(2020) showed that gradient flow optimization converges to the global minimum which is
closest to the initialization in parameter space. Although neural networks have a non-linear
parametrization, Jacot et al. (2018), Lee et al. (2019) and Lai et al. (2023) showed that
the training dynamics of wide neural networks is well approximated by the dynamics of the
linearization at a suitable initialization. This is referred to as the kernel regime, in contrast to
the adaptive regime where the models are not well approximated by their linearization. Also,
Chizat et al. (2019) showed that, under appropriate scaling of the output weights, a model
can converge to zero training loss while hardly varying its parameters. This phenomenon
is referred to as “lazy training”. On the other hand, it is also possible to relate properties
of the parameters to properties of the represented functions. Savarese et al. (2019) studied
infinite-width univariate (single input) neural networks and showed that, under a standard
parametrization, the complexity of the represented functions, as measured by the 1-norm
of the second derivative, can be controlled by the 2-norm of the parameters. Ongie et al.
(2020) extended these results to the multivariate setting. Using these results, one can show
that gradient descent with `2 weight penalty leads to simple functions. We will pursue an
approach following these ideas, where we first approximate the gradient dynamics of a wide
network in terms of a linear model and then establish a function space description of the
implicit bias in parameter space.

The implicit bias of parameter optimization has also been investigated in terms of
the properties of the loss function at the points reached by different optimization proce-
dures (Keskar et al., 2017; Wu et al., 2017; Dinh et al., 2017). Gunasekar et al. (2018a)
analyze the implicit bias of different optimization methods (natural gradient, steepest and
mirror descent) for linear regression and separable linear classification problems, and obtain
characterizations in terms of minimum norm or max-margin solutions. Several works have
studied the implicit bias of optimization for classification tasks in terms of margins. Soudry
et al. (2018) showed that in classification problems with separable data, gradient descent
with linear networks converges to a max-margin solution. Gunasekar et al. (2018b) presented
a result on implicit bias for deep linear convolutional networks, and Ji and Telgarsky (2019)
studied non-separable data. Chizat and Bach (2020) showed that gradient flow for logistic
regression with infinitely wide two-layer networks yields a max-margin classifier in a certain
space. In the adaptive regime, Maennel et al. (2018) showed that gradient flow for shallow
ReLU networks initialized close to zero quantizes features depending on the training data but
not on the network size. Baratin et al. (2021) showed the evolution of the tangent features
during training which can be interpreted as feature selection and compression. Williams

2

Implicit bias of gradient descent for regression

et al. (2019) obtained results for univariate regression contrasting the kernel regime and the
adaptive regime. We will obtain a related result for univariate regression in the kernel regime
and a corresponding result for the multivariate case.

This article is organized as follows. In Section 2 we provide settings and notation. We
present our main results in Section 3, along with a discussion. The main techniques pertaining
wide networks and the infinite width limit are presented in Sections 4 and 5. In Sections 6
and 7, we present the main derivations for the implicit bias in function space for univariate
and multivariate regression. In the interest of a concise presentation, technical proofs and
extended discussions are deferred to appendices.

2. Notation and Problem Setup

Consider a fully connected network with d inputs, one hidden layer of width n, and a single
output. For any given input x 2 Rd, the output of the network is

f(x, ✓) =
nX

i=1

W (2)
i �(hW(1)

i ,xi+ b(1)i) + b(2), (1)

where � is an entry-wise activation function, W(1) = (W(1)
1 , . . . ,W(1)

n)T 2 Rn⇥d, W(1)
i =

(W (1)
i,1 , . . . ,W

(1)
i,d)

T
2 Rd, W(2) = (W (2)

1 , . . . ,W (2)
n)T 2 Rn, b(1) = (b(1)1 , . . . , b(1)n)T 2 Rn

and b(2) 2 R are the weights and biases of the first and second layer. We write ✓ =
vec(W(1),b(1),W(2), b(2)) for the vector of all network parameters. These parameters are
initialized by independent samples of pre-specified random variables W and B as follows:

W (1)
i,j

d
=
p

1/d W, b(1)i
d
=
p
1/d B,

W (2)
i

d
=
p
1/n W, b(2)

d
=
p
1/n B.

(2)

In the analysis of Jacot et al. (2018); Lee et al. (2019), W and B are Gaussian N (0,�2). In
the default initialization of PyTorch (Paszke et al., 2019), W and B have uniform distribution
Unif(��,�). More generally, we will also allow weight-bias pairs (W(1)

i , b(1)i) of units in the
hidden layer to be sampled from the joint distribution of a sub-Gaussian (W ,B), where W
is a d-dimensional random vector and B is a random variable. The parameters of the second
layer are still sampled from random variables W

(2) and B
(2). Then the parameters of the

network are initialized as follows:

(W(1)
i , b(1)i)

d
= (W ,B)

W (2)
i

d
=
p
1/n W

(2), b(2)
d
=
p
1/n B

(2).
(3)

The setting (1) is known as the standard parametrization. Some works (Jacot et al.,
2018; Lee et al., 2019) use the so-called NTK parametrization, where the factor

p
1/n is

carried outside of the trainable parameter (for details see Appendix B.3). If we fix the
learning rate for all parameters, gradient descent leads to different trajectories under these
two parametrizations (for details see Appendix B.3). Our results are presented for the
standard parametrization.

3

Jin and Montúfar

We consider a regression problem for data {(xj , yj)}Mj=1 with inputs X = {xj}
M
j=1 and

outputs Y = {yj}Mj=1. For a loss function ` : R ⇥ R ! R, the empirical risk (also called
training error) is L(✓) = 1

M

PM
j=1 `(f(xj , ✓), yj). We will mainly focus on the square loss

`(y, ŷ) = 1
2ky � ŷk2, in which case L is the mean squared error. We use full batch gradient

descent with a fixed learning rate ⌘ to minimize L(✓). Writing ✓t for the parameter at time
t, and ✓0 for the initialization, this defines an iteration

✓t+1 = ✓t � ⌘rL(✓) = ✓t � ⌘r✓f(X , ✓t)
T
rf(X ,✓t)L, (4)

where f(X , ✓t) = [f(x1, ✓t), . . . , f(xM , ✓t)]T is the vector of network outputs for all training
inputs, and rf(X ,✓t)L is the gradient of L as a function of the network outputs f(X , ✓t).
We will use subscript i to index neurons and subscript t to index time. Furthermore, we
denote by ⇥̂n the empirical neural tangent kernel (NTK) of the standard parametrization (1)
at time 0, which is the matrix ⇥̂n = 1

nr✓f(X , ✓0)r✓f(X , ✓0)T . We write Ck for the space
of real valued functions with continuous kth derivatives and Lip for the space of Lipschitz
continuous functions. We use the notations Op to denote the standard mathematical orders
in probability.1

3. Main Results

In this section we describe our main results for univariate and multivariate regression, followed
by an interpretation and overview of the proof steps developed in the next sections.

3.1 Univariate Regression

We have the following description of the implicit bias in function space when applying
gradient descent to univariate least squares regression with wide ReLU neural networks.

Theorem 1 (Implicit bias of gradient descent for univariate regression) Consider
a feedforward network with a single input unit, a hidden layer of n rectified linear units,
and a single linear output unit. Assume standard parametrization (1) and parameter ini-
tialization (3), which means for each hidden unit the input weight and bias are initialized
from a sub-Gaussian (W,B) with continuous joint density pW,B. Then, for any finite
data set {(xj , yj)}Mj=1 and sufficiently large n there exist constants u, v 2 R so that opti-
mization of the mean squared error on the adjusted training data {(xj , yj � uxj � v)}Mj=1
by full-batch gradient descent with sufficiently small step size converges to a parameter
✓⇤ for which the output function f(x, ✓⇤) attains zero training error. Furthermore, let-
ting ⇣(x) =

R
R |W |

3pW,B(W,�Wx) dW and S = supp(⇣) \ [minj xj ,maxj xj], we have
supx2S kf(x, ✓⇤) � g⇤(x)k2 = Op(n

�
1
2)over the random initialization ✓0, where g⇤ solves

1. Xn = Op(an) as n!1 means that for any ✏ > 0, there exists a finite M✏ > 0 and a finite N✏ > 0 such

that P(|Xn/an| > M✏) < ✏, 8n > N✏.

4

Implicit bias of gradient descent for regression

following variational problem:2

min
g2C2(S)

Z

S

1

⇣(x)
(g00(x)� f 00(x, ✓0))

2 dx

subject to g(xj) = yj � uxj � v, j = 1, . . . ,M.

(5)

The proof is provided in Appendix C. Our main theorem also holds when the network
parameters are trained by stochastic gradient descent. We provide details in Theorem 24
and Remark 25 in Appendix D. In Appendix L we also present a corresponding result for
networks with skip connections, which does not need a linear adjustment of the data. We
will give an interpretation of the result in Section 3.3. We first give the explicit form of ⇣ for
several common parameter initialization procedures.

Theorem 2 (Explicit form of the curvature penalty for common initializations)

(a) Gaussian initialization. Assume that W and B are independent, W ⇠ N (0,�2w) and
B ⇠ N (0,�2b). Then ⇣(x) =

2�3
w�

3
b

⇡(�2
b+x2�2

w)2
.

(b) Binary-uniform initialization. Assume that W and B are independent, W 2 {�1, 1}
and B ⇠ Unif(�ab, ab) with ab � I. Then ⇣ is constant on [�I, I].

(c) Uniform initialization. Assume that W and B are independent, W ⇠ Unif(�aw, aw)
and B ⇠ Unif(�ab, ab) with ab

aw
� I. Then ⇣ is constant on [�I, I].

The proof is provided in Appendix H.3.

Remark 3 Theorem 2 (b) and (c) show that for certain parameter initialization distributions,
the function ⇣ is constant on an interval. In this case, the solution (g(x)� f(x, ✓0)) to the
variational problem (5) in Theorem 1 corresponds to cubic spline interpolation with natural
boundary conditions (see, e.g., Ahlberg et al., 1967). For general ⇣, the solution corresponds
to a spatially adaptive natural cubic spline, which can be computed numerically by solving a
linear system and theoretically in an RKHS formalism (see Appendix O for details).

For different activation functions, we have the following corollary, proved in Appendix J.

Corollary 4 (Different activation functions) Use the same settings as in Theorem 1
except with activation function � instead of ReLU. Suppose that � is a Green’s function of a
linear operator L, i.e., L� = �, where � denotes the Dirac delta function. Assume that � is
homogeneous of degree k, i.e., �(ax) = ak�(x) for all a > 0. Then we can find a function p
satisfying Lp ⌘ 0 and adjust the training data {(xj , yj)}Mj=1 to {(xj , yj � p(xj)}Mj=1. After
that, the statement in Theorem 1 holds with the variational problem (5) changed to

min
g2C2(S)

Z

S

1

⇣(x)
[L(g(x)� f(x, ✓0))]

2 dx

subject to g(xj) = yj � p(xj), j = 1, . . . ,M,

(6)

where ⇣(x) = pC(x)E(W2k
|C = x) and S = supp(⇣) \ [minj xj ,maxj xj].

2. The existence of the minimum of the variational problem is not obvious. We prove that the minimum

exists and the solution of the variational problem is g
⇤
.

5

Jin and Montúfar

n = 10 n = 640 Solution g⇤ to the variational problem

Reciprocal curvature penalty ⇣

Figure 1: Illustration of Theorem 1. Left: Uniform error between the solution g⇤ to the
variational problem and the functions f(·, ✓⇤) obtained by gradient descent training
with uniform initialization W ⇠ Unif(�1, 1), B ⇠ Unif(�2, 2), against the number
of neurons n. The inset shows the training data (dots), g⇤ (orange), and f(·, ✓⇤)
(blue) for two values of n. Right: Effect of the curvature penalty function on the
shape of the solution function. The bottom shows g⇤ for various ⇣ shown at the
top. The green curve is for ⇣ constant on [�2, 2], derived from W ⇠ Unif(�1, 1),
B ⇠ Unif(�2, 2); blue is for ⇣(x) = 1/(1 + x2)2, derived from W ⇠ N (0, 1),
B ⇠ N (0, 1); and orange for ⇣(x) = 1/(0.1 + x2)2, derived from W ⇠ N (0, 1),
B ⇠ N (0, 0.1). Theorem 2 shows how to compute ⇣ for these distributions.

Based on Theorem 1, we can also give an approximate description of the optimization
trajectory in function space. If we substitute the constraints g(xj) = yj in (5) by a quadratic
penalty 1

�
1
M

PM
j=1(g(xj) � yj)2, then we obtain the variational problem for a so-called

spatially adaptive smoothing spline (see Abramovich and Steinberg, 1996; Pintore et al.,
2006). This problem can be solved explicitly and can be shown to approximate early stopping.
In Appendix N we provide details for the following observation.

Remark 5 (Training trajectory) The output function of the network after gradient de-
scent training for t steps with learning rate ⌘̄/n is approximated by the solution to following
optimization problem:

min
g2C2(S)

MX

j=1

[g(xj)� yj]
2 +

1

⌘̄t

Z

S

1

⇣(x)
(g00(x)� f 00(x, ✓0))

2 dx. (7)

3.2 Multivariate Regression

For multivariate regression, we have the following generalization of Theorem 1.

6

Implicit bias of gradient descent for regression

Theorem 6 (Implicit bias of gradient descent for multivariate regression) Consider
the same network settings as in Theorem 1 except with d input units instead of a single input
unit. Assume that W is a random vector with P(kWk = 0) = 0 and B is a random variable;
the distribution of (W ,B) is symmetric, i.e., (W ,B) and (�W ,�B) have the same distribu-
tion; and kWk2 and B are both sub-Gaussian. Then, for any finite data set {(xj , yj)}Mi=1 and
sufficiently large n there exist a constant vector u and a constant v so that optimization of
the mean squared error on the adjusted training data {(xj , yj � hu,xji � v)}Mj=1 by full-batch
gradient descent with sufficiently small step size converges to a parameter ✓⇤ for which f(x, ✓⇤)
attains zero training error. Furthermore, let U = kWk2, V = W/kWk2, C = �B/kWk2

and ⇣(V , c) = pV,C(V , c)E(U2
|V = V , C = c), where pV,C is the continuous joint density of

(V , C). Then, for any compact set D ⇢ Rd, we have supx2D kf(x, ✓⇤)� g⇤(x)k2 = Op(n
�

1
2)

over the random initialization ✓0, where g⇤ solves following variational problem:

min
g2Lip(Rd)

Z

supp(⇣)

�
R{(��)(d+1)/2(g � f(·, ✓0))}(V , c)

�2

⇣(V , c)
dV dc

subject to g(xj) = yj � hu,xji � v, j = 1, . . . ,M

R{(��)(d+1)/2(g � f(·, ✓0))}(V , c) = 0, (V , c) 62 supp(⇣)

(��)(d+1)/2(g � f(·, ✓0)) 2 Lp(Rd), 1  p < d/(d� 1).

(8)

Here R is the Radon transform defined by R{f}(!, b) :=
R
h!,xi=b f(x)ds(x), the fractional

power of the negative Laplacian (��)(d+1)/2 is defined in Fourier domain by \(��)(d+1)/2f(⇠) =
k⇠kd+1 bf(⇠), and Lip(Rd) is the space of Lipschitz continuous functions on Rd.

The proof is given in Appendix C. In Appendix L we also present a corresponding result for
networks with skip connections, which does not need a linear adjustment of the data. In
Proposition 17 we will show that for specific distributions of (W ,B), the function ⇣(V , c)
is constant on supp(⇣), which greatly simplifies the variational problem (8). We prove the
following theorem in Appendix I.2.

Theorem 7 (Variational problem for constant ⇣) Suppose W is uniformly distributed
on Sd�1 and B is uniformly distributed on [�ab, ab]. Assume that ab � maxi kxik2. Then the
variational problem (8) is equivalent to

min
h2Lip(Rd)\C(Rd)

Z

Rd

⇣
(��)(d+3)/4(h(x)� f(x, ✓0))

⌘2
dx

subject to h(xj) = yj , j = 1, . . . ,M

(��)(d+1)/2(h(·)� f(·, ✓0)) 2 Lp(Rd), 1  p < d/(d� 1).

(9)

We can solve the simplified variational problem (9) explicitly. We prove the following theorem
in Appendix I.3.

Theorem 8 (Closed form solution) Suppose h(x) solves the variational problem (9).
Then h(x) is given by

h(x)� f(x, ✓0) =
MX

j=1

�jkx� xjk
3 + hu,xii+ v, (10)

7

Jin and Montúfar

where the coefficients �j, u and v are determined by
8
><

>:

PM
j=1 �jkxi � xjk

3 + hu,xii+ v = yi � f(xi, ✓0), i = 1, . . . ,M
PM

j=1 �j = 0
PM

j=1 �jxj = 0 .

(11)

Remark 9 A function of the form (10)–(11) is referred to as a polyharmonic spline (see
Potter, 1981), which is a special type of radial basis function interpolation (Du Toit, 2008).
When d = 1 (i.e., the univariate case), this corresponds to the natural cubic spline interpolation
described in Remark 3. Finally, we observe that the training trajectory of gradient descent for
multivariate regression can be approximately described by a sequence of so-called polyharmonic
smoothing splines (Segeth, 2019) with decreasing regularization parameter, similar to the
description (7) for the univariate case.

3.3 Discussion of the Main Results

Interpretation An intuitive interpretation of Theorem 1 is that gradient descent opti-
mization is biased towards smooth functions. At those regions of the input space where
⇣ is smaller, we can expect the difference between the functions after and before training
to have a small curvature. We call ⇢ = 1/⇣ a curvature penalty function. The theorem
gives an explicit description of the bias in function space depending on the initialization.
In Theorem 2 we obtain the explicit form of ⇣ for various common parameter initialization
procedures. In particular, when the parameters are initialized independently from a uniform
distribution on a finite interval, ⇣ is constant and the problem is solved by the natural cubic
spline interpolation of the data.

We illustrate Theorem 1 numerically in Figure 1 and more extensively in Appendix A.3
In close agreement with the theory, the solution to the variational problem captures the
solution of gradient descent training uniformly with error of order n�1/2. To illustrate the
effect of the curvature penalty function, Figure 1 also shows the solutions to the variational
problem for different values of ⇣ corresponding to different initialization distributions. We
see that indeed at input points where ⇣ is small resp. peaks strongly, the solution function
tends to have a lower curvature resp. use a higher curvature in order to fit the training data.
This description could be used to formulate heuristics for parameter initialization either to
ease optimization or to induce specific smoothness priors on the solutions. In particular,
in Proposition 15 we will show that any curvature penalty 1/⇣ can be implemented by an
appropriate choice of the parameter initialization distribution.

Similar to the univariate case, in the multivariate case gradient descent implicitly controls
the complexity of the solution functions obtained upon training. In this case the complexity
is measured by the weighted 2-norm of the Radon transform of the (d+ 1)/2 power of the
negative Laplacian. The weight function ⇣ is again determined by the distribution used to
initialize the parameters. Although the precise interpretation of these expressions is no longer
as straightforward, intuitively the implicit bias corresponds to penalizing a global notion of
overall curvature across hyperplanes in the input space. For certain parameter initialization

3. The code of our experiments and the plots can be found in our GitHub repository:

https://github.com/huijin12/Implicit_Bias_Wide_Neural_Networks

8

https://github.com/huijin12/Implicit_Bias_Wide_Neural_Networks

Implicit bias of gradient descent for regression

distributions, Theorem 8 shows that the network output after training is a polyharmonic
spline. We illustrate Theorem 6 numerically in Figure 2 and more extensively in Appendix A.
Again in close agreement with the theory, the solution to the variational problem captures
the solution returned by gradient descent training with a uniform error of order n�1/2.

These results show that the effective capacity of the network, understood as the set
of possible output functions after training, is well captured by a space of cubic splines
(polyharmonic splines for multivariate regression) relative to the initial function. This is a
space with dimension of order M (the number of training examples) independently of the
number of parameters of the network.

We note that under suitable asymmetric parameter initialization (see Appendix B.2), it
is possible to achieve f(·, ✓0) ⌘ 0. Then in Theorem 1 and Theorem 6, the regularization
is on the curvature of the output function itself (rather than its difference to the initial
function). Further, we note that although Theorem 1 and Theorem 6 describe gradient
descent training with linearly adjusted data, they also approximately describe training with
the original training data (see Appendix K for more details). The adjustment of the training
data simply accounts for the fact that the second derivative and the Laplace operator are
invariant to addition of linear terms. In practice we can use the coefficients u and v of linear
regression yj = hu,xji + v + ✏j , j = 1, . . . ,M , and set the adjusted data as {(xj , ✏j)}Mj=1.
Furthermore, if we consider a network architecture with skip connections from the inputs to
the outputs, our result holds for the original training data without any adjustments. We
present the details to this result in Appendix L.

Generalization results Theorem 1 allows us to show how gradient descent on wide
neural networks learns a target function. In the following paragraphs, we show how the
solution to the variational problems (5), (7) and (8) converges to a target function as the
amount of data increases.

In the so-called univariate noiseless model, the training outputs are given by yj = g0(xj),
where g0 : [a, b] 7! R is the target function. Let a = x0 < x1 < · · · < xM < xM+1 = b
and h = maxi xi+1 � xi. If ⇣ is constant on [a, b], the solution g⇤ of (5) is the cubic spline
interpolation of the training data. Hall and Meyer (1976) showed in the context of splines
that for a target function g0 2 C4([a, b]) one has kg⇤ � g0k1  Ckg(4)0 k1h4, where g(4)0 is
the fourth derivative of g0.

For univariate noisy models, the training outputs are given by yj = g0(xj) + ✏j , where ✏j
are zero-mean independent random variables with a common variance �2. In this case we use
early stopping to smooth out the noise and the training result is characterized by the solution
of (7). If ⇣ is constant on [a, b], the solution g⇤ of (7) is the cubic smoothing spline of the
training data. Ragozin (1983, Theorem 5.8) showed that if g0 2 C2([a, b]) and {xj}Mj=1 are the
uniform partition of [a, b], then Ekg⇤ � g0k22  C

�
(1/t+ (1/M)4)kg000k

2 + t1/4/M
�
, where t

is the number of training steps. If we choose t to be ⇥(M4/5), then Ekg⇤� g0k22 = O(M�4/5).
This gives us some hints about how to choose the stopping time depending on the number of
training samples. Similar observations can be obtained for more general settings. Ragozin
(1983) also gives an error bound for g⇤ in the case of non-uniform training inputs. Eggermont
and LaRiccia (2006) shows a similar result if {xj}Mj=1 are sampled independently from a
distribution.

9

Jin and Montúfar

If ⇣ is non-constant on [a, b], the solution g⇤ of (7) is called a spatially adaptive smoothing
spline of the training data. Wang et al. (2013, Corollary 1) showed that if g0 2 C4([a, b]),
⇣ 2 C3([a, b]), t = ⇥(M4/9) and {xj}Mj=1 are sampled from a distribution on [a, b] with
bounded positive density function q 2 C3([a, b]), then |g⇤(x)� g0(x)| = Op(M�4/9). If the
curvature of the target function changes a lot on its domain, spatially adaptive smoothing
splines with properly chosen ⇣ perform better than cubic smoothing splines. Wang et al.
(2013, Corollary 1) showed that the optimal ⇣ is the solution of a variational problem if
the target function is known. They approximate the optimal ⇣ by a piecewise constant
function and estimate the target function from training data by interpolating splines. Then
they numerically solve the variational problem and get a suitable ⇣ for the training data.
Abramovich and Steinberg (1996) and Storlie et al. (2010) proposed to choose ⇣ based on
an estimation of the second derivative of g0. Liu and Guo (2010) used a piecewise constant
⇣ and proposed a search algorithm to find such ⇣. Proposition 15 shows a way to choose
the joint distribution of weight and bias parameters in order to have that ⇣ is proportional
to a given function. Once we find an appropriate ⇣ according to the training data using
the methods in the above literature, we can initialize the weight and bias parameters by
the corresponding joint distribution and train the wide neural network by gradient descent.
According to the theory, this parameter initialization should perform better than uniform or
Gaussian initialization.

For multivariate noiseless models, if ⇣ is constant over its support, then the solution g⇤ of
variational problem (8) is the polyharmonic spline. For this setting, Potter (1981, Theorem
3.2) gave an error bound between g⇤ and the target function g0.

Strategy of the proof In Section 4 we observe that for a linearized model, gradient
descent with sufficiently small step size finds the minimizer of the training objective which is
closest to the initial parameter (similar to a result by Zhang et al., 2020). Then Theorem 10
shows that the training dynamics of a linearized wide network is well approximated in
parameter and in function space by that of a lower dimensional linear model which trains
only the output weights. This property is sometimes taken for granted in the literature. We
show that it holds for the standard parametrization, although it does not hold for the NTK
parametrization, which leads to the adaptive regime. A similar result has been previously
obtained by Daniely (2017). Under these settings, the implicit bias of gradient descent
amounts to minimizing the distance from the initial parameter, subject to fitting the training
data. In Section 5 we relate this description of the implicit bias in parameter space to
an alternative optimization problem. In Theorem 12 we show that the solution to this
alternative problem has a well defined limit as the width of the network tends to infinity,
which allows us to obtain a variational description. In Section 6, we focus on the case of
univariate regression. In Theorem 13 we translate the description of the bias from parameter
space to function space. In Section 7, we turn to the case of multivariate regression and use
the inversion formula of the dual Radon transform to analyze the optimization objective.
Finally, we exploit recent results (Lai et al., 2023, Proposition 3.2) bounding the difference
in function space of the solutions obtained from training a wide network and its linearization
to conclude the proof.

Related works Zhang et al. (2020) described the implicit bias of gradient descent in
the kernel regime as minimizing a kernel norm from initialization, subject to fitting the
training data. Our result can be regarded as making the kernel norm explicit, thus providing

10

Implicit bias of gradient descent for regression

an interpretable description of the bias in function space and further illuminating the role
of the parameter initialization procedure. We prove the equivalence in Appendix M. Cao
and Gu (2019) derived generalization bounds for overparametrized deep neural networks
under stochastic gradient descent training. They also approximated the neural network by a
linearized model, which is called a neural tangent random feature (NTRF) model in their
work.

Savarese et al. (2019) showed that infinitely wide networks with 2-norm weight regulariza-
tion represent functions with smallest 1-norm of the second derivative, an example of which
are linear splines (see Appendix B.4 for more details). A recent work by Parhi and Nowak
(2019) further develops this direction for two-layer networks with certain activation functions
that interpolate data while minimizing a weight norm. In contrast, our result characterizes
the solutions of training from a given initialization without explicit regularization, which turn
out to minimize a weighted 2-norm of the second derivative and hence correspond to cubic
splines. Another recent work (Heiss et al., 2019) discusses ridge weight penalty, adaptive
splines, and early stopping for one-input ReLU networks training only the output layer. The
spline perspective for univariate shallow ReLU networks has recently been also discussed by
Sahs et al. (2020b). Schmidt-Hieber (2020) showed that a shallow ReLU network with one
input and one output node approximately converges to the natural cubic spline interpolant
under SGD training. Williams et al. (2019) showed a similar result in the kernel regime for
shallow ReLU networks training only the output layer from zero initialization. In contrast,
we consider the initialization of the second layer and show that the difference from the initial
output function is implicitly regularized by gradient descent. We show that the result of
training both layers can be approximated by training only the second layer in Theorem 10.
In addition, we give the explicit form of ⇣ in Theorem 2, while the description given by
Williams et al. (2019) has a minor error because of a typo in their computation. Significantly,
our results also cover multivariate regression, different activation functions, and training
trajectories.

In the multivariate case, Ongie et al. (2020) studied infinite-width neural networks
with parameters having bounded norm. They showed that the complexity of the functions
represented by the network, as measured by the 1-norm of the Radon transform of the
(d+ 1)/2-power of the negative Laplacian of the function, can be controlled by the 2-norm of
the parameters. Rather than bounding the 2-norm of the parameters, our result describes the
implicit bias of gradient descent and in turn we obtain a weighted 2-norm. A recent work by
Parhi and Nowak (2021) considers adding an explicit regularization of 1-norm of the Radon
tranform in function space for multivariate regression, and uses the representer theorem to
obtain the solution to the variational problem. In contrast, we consider gradient descent
without explicit regularization and the implicit bias turns out to be a weighted 2-norm.

4. Wide Networks and Parameter Space

In this section, we characterize the implicit bias in parameter space and show that, under
our initialization and parametrization scheme, training only the output layer approximates
training all parameters.

11

Jin and Montúfar

Figure 2: Illustration of Theorem 6. Left: Uniform error between the solution g⇤ to the vari-
ational problem and the functions f(·, ✓⇤) obtained by gradient descent training of
a neural network (in this case with initialization W ⇠ Unif(S1), B ⇠ Unif(�2, 2)),
against the number of neurons. Right: The input training data (dots), the contour
plots of trained network functions with 10, 160, 2560 neurons, and the exact
solution to the variational problem.

4.1 Implicit Bias in Parameter Space for a Linearized Model

In this section we describe how training a linearized network or a wide network by gradient
descent leads to solutions having parameter values close to the initial parameter values. First,
we consider the following linearized model:

f lin(x,!) = f(x, ✓0) +r✓f(x, ✓0)(! � ✓0). (12)

We write ! for the parameter of the linearized model, in order to distinguish it from the
parameter ✓ of the nonlinearized model. The empirical loss of the linearized model is defined
by

Llin(!) =
1

M

MX

j=1

`(f lin(xj ,!), yj). (13)

The gradient descent iteration for the linearized model is given by

!0 = ✓0, !t+1 = !t � ⌘r✓f(X , ✓0)
T
rf lin(X ,!t)L

lin. (14)

Next, we consider wide neural networks. According to Lee et al. (2019, Theorem H.1)
and (Lai et al., 2023, Proposition 3.2),

sup
t

kf lin(x,!t)� f(x, ✓t)k2 = Op(n
�

1
2).

This means that gradient descent training of a wide network or of the linearization of the
network results in similar trajectories and solutions in function space. Both solution functions
fit the training data perfectly, meaning f lin(X ,!1) = f(X , ✓1) = Y, and they are also
approximately equal outside of the training data.

12

Implicit bias of gradient descent for regression

Under the assumption that rank(r✓f(X , ✓0)) = M , the gradient descent iterations (14) of
the linearized network converge to the unique global minimum that is closest to initialization
(Gunasekar et al., 2018a; Zhang et al., 2020). More precisely, !1 is the solution to following
constrained optimization problem (further details are provided in Appendix D):

min
!

k! � ✓0k2 s.t. f lin(X ,!) = Y. (15)

4.2 Training Only the Output Layer Approximates Training All Parameters

In the following we consider networks with a single hidden layer of n ReLUs and a linear
output, f(x, ✓) =

Pn
i=1W

(2)
i [hW(1)

i ,xi + b(1)i]+ + b(2). We show that the functions and
parameter vectors obtained by training the linearized model are close to those obtained by
training only the output layer. In view of the previous subsection, this implies that training
all parameters of a wide network or training only the output layer results in similar functions.

Let ✓0 = vec(W
(1)

,b
(1)

,W
(2)

, b
(2)

) be the parameter at initialization so that f lin(·, ✓0) =

f(·, ✓0). Denote the trained parameter of the linearized network by !1 = vec(cW(1), bb(1),cW(2),bb(2)).
Using initialization (3), given 1  i  n, we have that kW

(1)
i k, b

(1)
i = Op(1) and W

(2)
i , b

(2)
=

Op(n
�

1
2).4 Therefore, writing H for the Heaviside function, we have

r
W

(1)
i ,b

(1)
i
f(x, ✓0) =

h
W

(2)
i H(hW

(1)
i ,xi+ b

(1)
i) · x , W

(2)
i H(hW

(1)
i ,xi+ b

(1)
i)
i
= Op(n

�
1
2),

r
W

(2)
i ,b(2)

f(x, ✓0) =
h
[hW

(1)
i ,xi+ b

(1)
i]+ , 1

i
= Op(1).

(16)

This implies that when n is large, if we use gradient descent with a constant learning rate for
all parameters, then the changes of W(1), b(1), b(2) are negligible compared with the changes
of W(2). In turn, approximately we can train just the output weights, W (2)

i , i = 1, . . . , n,
and fix all other parameters, which corresponds to training a smaller linear model. Let
e!t = vec(W

(1)
,b

(1)
,fW(2)

t , b
(2)

) be the parameter at time t under the update rule where
W

(1)
,b

(1), b(2) are kept fixed at their initial values, and

fW(2)
0 = W

(2)
, fW(2)

t+1 =
fW(2)

t � ⌘rW(2)Llin(e!t). (17)

Let e!1 = limt!1 e!t. By the above discussion, we expect that f lin(x, e!1) will be close to
f lin(x,!1). We have the following formal result for mean squared error regression.

Theorem 10 (Training only output weights vs linearized network) Consider a fi-
nite data set {(xi, yi)}Mi=1. Assume that we use the square loss `(by, y) = 1

2kby � yk22 and
infn �min(⇥̂n) > 0. Let !t denote the parameters of the linearized model at time t when we
train all parameters using (14), and let e!t denote the parameters at time t when we only
train weights of the output layer using (17). If we use the same learning rate ⌘ in these two

4. More precisely, given 1  i  n, 9C, for any � > 0, s.t. with prob. 1� �, |W (2)
i |, |b(2)|  Cn

�1/2
q

log 1
�

and kW(1)
i k, |b

(1)
i |  C

q
log 1

� since the random variables are sub-Gaussian.

13

Jin and Montúfar

training processes and ⌘ < 2
n�max(⇥̂n)

, then for any compact set D ⇢ Rd, we have

sup
x2D

sup
t

|f lin(x, e!t)� f lin(x,!t)| = Op(n
�1), as n ! 1.

Moreover, in terms of the parameter trajectories we have supt kW
(1)

� cW(1)
t k2 = Op(n�1),

supt kb
(1)

� bb(1)
t k2 = Op(n�1), supt kfW

(2)
t � cW(2)

t k2 = Op(n�3/2), supt kb
(2)

� bb(2)t k =
Op(n�1).

The proof is provided in Appendix E. By combining Theorem 10 and the fact that training a
linearized model approximates training a wide network (Lai et al., 2023, Proposition 3.2), we
obtain the following.

Corollary 11 (Training only output weights vs training all weights) Consider the
settings of Theorem 10, and assume that the joint distribution of (W,B) is sub-Gaussian.
Given any compact set D ⇢ Rd, supx2D supt kf

lin(x, !̃t)� f(x, ✓t)k2 = Op(n
�

1
2).

The proof is given in Appendix F. In view of the arguments in this section, in the next
sections we will focus on training only the output weights and understanding the corresponding
solution functions.

5. Infinite Width Limit of Shallow Networks

According to (15), gradient descent training of the output weights (17) achieves zero loss,
f lin(xj , e!1) � f lin(xj , ✓0) =

Pn
i=1(

fW (2)
i � W

(2)
i)[hW

(1)
i ,xji + b

(1)
i]+ = yj � f(xj , ✓0), j =

1, . . . ,M , with minimum kfW(2)
�W

(2)
k
2
2. Hence gradient descent is actually solving

min
W(2)

kW(2)
�W

(2)
k
2
2 s.t.

nX

i=1

(W (2)
i �W

(2)
i)[hW

(1)
i ,xji+b

(1)
i]+ = yj�f(xj , ✓0), j = 1, . . . ,M.

(18)
To simplify the presentation, in the following we let f lin(x, ✓0) ⌘ 0 by using the Anti-
Symmetrical Initialization (ASI) trick (see Appendix B.2). The analysis still goes through
without this simplification (see Appendix H).

We reformulate problem (18) in a way that allows us to consider the limit of infinitely wide
networks, with n ! 1, and obtain a deterministic counterpart, analogous to the convergence
of the NTK. Let µn denote the empirical distribution of the samples (W

(1)
i , b

(1)
i)ni=1, i.e.,

µn(A) = 1
n

Pn
i=1 A

⇣
(W

(1)
i , b

(1)
i)
⌘
, where A denotes the indicator function for measurable

subsets A in Rd+1. We further consider a function ↵n : Rd+1
! R whose value encodes the

difference of the output weight from its initialization for a hidden unit with input weight
and bias given by the argument, i.e., ↵n(W

(1)
i , b

(1)
i) = n(W (2)

i �W
(2)
i). Then (18) with ASI

can be rewritten as

min
↵n2C(Rd+1)

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b) s.t.

Z

Rd+1
↵n(W

(1), b)[hW(1),xji+ b]+ dµn(W
(1), b) = yj ,

(19)

14

Implicit bias of gradient descent for regression

where j ranges from 1 to M . Here we minimize over functions ↵n in C(Rd+1), but since only
the values on (W

(1)
i , b

(1)
i)ni=1 are taken into account, we can take any continuous interpolation

of ↵n(W
(1)
i , b

(1)
i), i = 1, . . . , n.

Now we can consider the infinite width limit. Let µ be the probability measure of (W ,B).
By substituting µ for µn, we obtain a continuous version of problem (19) as follows:

min
↵2C(Rd+1)

Z

Rd+1
↵2(W(1), b) dµ(W(1), b)

subject to
Z

Rd+1
↵(W(1), b)[hW(1),xji+ b]+ dµ(W(1), b) = yj , j = 1, . . . ,M.

(20)

Using that µn weakly converges to µ, the following theorem shows that in fact the solution
of problem (19) converges to the solution of (20). The proof is given in Appendix G.

Theorem 12 (Infinite width limit) Let (W(1)
i , b

(1)
i)ni=1 be i.i.d. samples from a pair (W ,B)

with finite fourth moment. Suppose µn is the empirical distribution of (W(1)
i , b

(1)
i)ni=1 and

↵n(W(1), b) is the solution of (19). Let ↵(W(1), b) be the solution of (20). Then, for any
compact set D ⇢ Rd, we have supx2D |gn(x,↵n)� g(x,↵)| = Op(n�1/2) , where gn(x,↵n) =R
Rd+1 ↵n(W(1), b)[hW(1),xi+ b]+ dµn(W(1), b) is the function represented by a network with
n hidden neurons after training, and g(x,↵) =

R
Rd+1 ↵(W(1), b)[hW(1),xi+ b]+ dµ(W(1), b)

is the function represented by the infinite-width network.

6. Implicit Bias for Univariate Regression

In this section we solve the optimization problem (20) in the univariate case, which provides
a function space characterization of the implicit bias previously described in parameter space.
First we rewrite the problem in terms of breakpoints. Consider the breakpoint c = �b/W (1) of
a ReLU with weight W (1) and bias b. We define a corresponding random variable C = �B/W
and let ⌫ denote the distribution of (W, C).5 Then, writing �(W (1), c) = ↵(W (1),�cW (1)),
the optimization problem (20) is equivalently given as

min
�2C(R2)

Z

R2
�2(W (1), c) d⌫(W (1), c) s.t.

Z

R2
�(W (1), c)[W (1)(xj � c)]+ d⌫(W (1), c) = yj ,

(21)
where j ranges from 1 to M . Let ⌫C denote the distribution of C = �B/W, and ⌫W|C=c

the conditional distribution of W given C = c. Suppose ⌫C has support supp(⌫C) and a
density function pC(c). Let g(x, �) =

R
R2 �(W (1), c)[W (1)(x� c)]+ d⌫(W (1), c), which again

corresponds to the output function of the network. Then, the second derivative g00 with
respect to x satisfies g00(x, �) = pC(x)

R
R �(W

(1), x)
��W (1)

�� d⌫W|C=x(W
(1)) (for details on this

see Appendix H.1). This shows that �(W (1), c) is closely related to g00(x, �). In the following
we seek to express (21) in terms of g00(x, �). Since g00(x, �) determines g(x, �) only up to

5. Here we assume that P(W = 0) = 0 so that the random variable C is well defined. This is not an

important restriction, since neurons with weight W
(1) = 0 have a constant output value that can be

absorbed in the bias of the output layer.

15

Jin and Montúfar

linear functions, we consider the following problem:

min
�2C(R2),u2R,v2R

Z

R2
�2(W (1), c) d⌫(W (1), c)

subject to uxj + v +

Z

R2
�(W (1), c)[W (1)(xj � c)]+ d⌫(W (1), c) = yj , j = 1, . . . ,M.

(22)
Here u, v are not included in the cost. They add a linear function to the output of the neural
network. If u and v in the solution of (22) are small, then the solution is close to the solution
of (21). Ongie et al. (2020) also use this trick to simplify the characterization of neural
networks in function space. Next we study the solution of (22) in function space. This is our
main technical result for univariate regression.

Theorem 13 (Implicit bias in function space for univariate regression) Assume W
and B are random variables with P(W = 0) = 0, and let C = �B/W. Let ⌫ denote the
probability distribution of (W, C). Suppose (�, u, v) is the solution of (22), and consider the
corresponding output function

g(x, (�, u, v)) = ux+ v +

Z

R2
�(W (1), c)[W (1)(x� c)]+ d⌫(W (1), c). (23)

Let ⌫C denote the marginal distribution of C and assume it has a density function pC. Assume
that W has finite second moment. Let E(W2

|C) denote the conditional expectation of W2

given C. Consider the function ⇣(x) = pC(x)E(W2
|C = x), assume its support contains the

input samples, xi 2 supp(⇣), i = 1, . . . ,m, and let S = supp(⇣) \ [mini xi,maxi xi]. Then
g(x, (�, u, v)) satisfies g00(x, (�, u, v)) = 0 for x 62 S and for x 2 S it is the solution to the
following problem:

min
h2C2(S)

Z

S

(h00(x))2

⇣(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m. (24)

The proof is provided in Appendix H.1, where we also present the corresponding statement
without ASI.

Finally, we discuss the curvature penalty function. We provide the proof of following
propositions in Appendix H.2.

Proposition 14 (Curvature penalty function) Let pW,B denote the joint density func-
tion of (W,B) and let C = �B/W so that pC is the breakpoint density. Then ⇣(x) =
E(W 2

|C = x)pC(x) =
R
R |W |

3pW,B(W,�Wx) dW .

We note that if we sample the initial weight and biases from a suitable joint distribution, we
can make the curvature penalty ⇢ = 1/⇣ arbitrary:

Proposition 15 (Constructing any curvature penalty) Given any function % : R !

R>0, satisfying Z =
R
R

1
% < 1, if we set the density of C as pC(x) = 1

Z
1

%(x) and make
W independent of C with non-vanishing second moment, then (E(W 2

|C = x)pC(x))�1 =
(E(W 2)pC(x))�1

/ %(x), x 2 R.

16

Implicit bias of gradient descent for regression

7. Implicit Bias for Multivariate Regression

In this section we solve the optimization problem (20) in the multivariate case. Similar to
Section 6, we can relax the optimization problem to

min
↵2C(Rd

⇥R),
u2Rd,v2R

Z

Rd⇥R
↵2(W(1), b) dµ(W(1), b)

subject to
Z

Rd⇥R
↵(W(1), b)[hW(1),xji+ b]+ dµ(W(1), b) + hu,xji+ v = yj , j = 1, . . . ,M.

(25)
Let U = kWk2, V = W/kWk2 and C = �B/kWk2. Let ⌫ denote the distribution of
(U ,V , C) and �(u,V , c) = ↵(uV ,�cu). Then, after the change of variables, the optimization
problem (25) is equivalently expressed as

min
↵2C(R+

⇥Sd�1
⇥R),

u2Rd,v2R

Z

R+⇥Sd�1⇥R
�2(u,V , c) d⌫(u,V , c)

subject to
Z

R+⇥Sd�1⇥R
�(u,V , c) · u · [hV ,xji � c]+ d⌫(u,V , c) + hu,xji+ v = yj , j = 1, . . . ,M.

(26)
Define the output of the infinite-width network by

g(x, (�,u, v)) =

Z

R+⇥Sd�1⇥R
�(u,V , c) · u · [hV ,xi � c]+ d⌫(u,V , c) + hu,xi+ v.

Then the Laplacian �g(x, (�,u, v)) =
Pd

i=1 @
2
xi
g(x, (�,u, v)) is given by

�g(x, (�,u, v)) =

Z

R+⇥Sd�1⇥R
�(u,V , c) · u · �(hV ,xi � c) d⌫(u,V , c)

=

Z

Sd�1⇥R

✓Z

R+
�(u,V , c) · u d⌫U|V=V ,C=c(u)

◆
�(hV ,xi � c) d⌫V,C(V , c),

(27)
where ⌫V,C denotes the joint distribution of (V , C), and ⌫U|V=V ,C=c the conditional distri-
bution of U given V = V and C = c. Let ⌫C|V=V denote the conditional distribution of C
given V = V . Suppose ⌫C|V=V has a density function pC|V=V (c). Define

(V , c) =

Z

R+
�(u,V , c) · u d⌫U|V=V ,C=c(u). (28)

Then (27) becomes

�g(x, (↵,u, v)) =

Z

Sd�1⇥R
(V , c) �(hV ,xi � c) d⌫V,C(V , c)

=

Z

Sd�1

✓Z

R
(V , c) �(hV ,xi � c)pC|V=V (c)dc

◆
d⌫V(V)

=

Z

Sd�1
(V , hV ,xi) pC|V=V (hV ,xi) d⌫V(V),

(29)

17

Jin and Montúfar

where ⌫V denotes the distribution of V . Assume that ⌫V has a density function pV(V) with
respect to the spherical measure �d�1. Then (29) becomes

�g(x, (↵,u, v)) =

Z

Sd�1
(V , hV ,xi) pC|V=V (hV ,xi)pV(V) d�d�1(V). (30)

Now, defining
�(V , c) = (V , c) pC|V=V (c) pV(V), (31)

we observe that
�g(x, (↵,u, v)) =

Z

Sd�1
�(V , hV ,xi) dV

= R
⇤
{�}(x).

(32)

The right-hand side of (32) is precisely the dual Radon transform of �. Let � = �++�� be the
even–odd decomposition of �, where �+ is even and �� is odd, i.e., �+(V , c) = �+(�V ,�c)
and ��(V , c) = ���(�V ,�c) for all (V , c) 2 Sd�1

⇥ R. Since the dual Radon transform
annihilates odd functions, we have �g(x, (↵,u, v)) =

R
Sd�1 �+(V , hV ,xi) dV . Ongie et al.

(2020) observed that �+ can be recovered from �g by using the inversion formula of the dual
Radon transform. According to Ongie et al. (2020, Lemma 3),

�+ = �
1

2(2⇡)d�1
R{(��)(d+1)/2g(·,↵)}, (33)

where R is the Radon transform which is defined by

R{f}(!, b) :=

Z

h!,xi=b
f(x)ds(x), (!, b) 2 Sd�1

⇥ R,

where ds(x) represents integration with respect to the (d� 1)-dimensional surface measure
on the hyperplane h!,xi = b. The fractional power of the negative Laplacian (��)(d+1)/2 in
(33) is the operator defined in Fourier domain by

\(��)(d+1)/2f(⇠) = k⇠kd+1 bf(⇠).

When d+ 1 is a even number, (��)(d+1)/2 is the same as applying the negative Laplacian
(d+ 1)/2 times. When d+ 1 is odd, it is a pseudo-differential operator given by convolution
with a singular kernel (see Kwaśnicki, 2017). Then according to (33) and the definition of �,
we have

R{(��)(d+1)/2g(·,↵)}(V , c)� 2(2⇡)d�1��

=� 2(2⇡)d�1(V , c)pC|V=V (c)pV(V)

=� 2(2⇡)d�1pC|V=V (c)pV(V)

Z

R+
�(u,V , c) · u d⌫U|V=V ,C=c(u).

(34)

From the above equation, we show how �(u,V , c) is characterized by the network output
function, which allows us to study the solution of (26) in function space. The following
theorem generalizes Theorem 13 to the multivariate case.

18

Implicit bias of gradient descent for regression

Theorem 16 (Implicit bias in function space for multivariate regression) Assume
that (1) W is a random vector with P(kWk = 0) = 0 and B is a random variable; (2) the
distribution of (W ,B) is symmetric, i.e., (W ,B) and (�W ,�B) have the same distribution;
(3) kWk2 and B both have finite second moments. Let U = kWk2, V = W/kWk2 and
C = �B/kWk2. Let ⌫ denote the distribution of (U ,V , C). Suppose (�,u, v) is the solution
of (26), and assume that (26) is feasible, which means

Z

R+⇥Sd�1⇥R
�2(u,V , c) d⌫(u,V , c) < +1.

Consider the corresponding output function

g(x, (�,u, v)) =

Z

R+⇥Sd�1⇥R
�(u,V , c) · u · [hV ,xi � c]+ d⌫(u,V , c) + hu,xi+ v. (35)

Let ⌫V denote the marginal distribution of C and assume it has a density function pV(V).
Let ⌫C|V=V denote the conditional distribution of C given V = V and assume it has a density
function pC|V=V (c). Let E(U2

|V = V , C = c) denote the conditional expectation of U2 given
V and C. Consider the following function ⇣ : Sd�1

⇥ R ! R,

⇣(V , c) = pC|V=V (c) pV(V)E(U2
|V = V , C = c). (36)

Then g(x, (�,u, v)) is the solution of the following problem:

min
h2Lip(Rd)\C(Rd)

Z

supp(⇣)

�
R{(��)(d+1)/2h}(V , c)

�2

⇣(V , c)
d�d�1(V)dc

subject to h(xj) = yj , j = 1, . . . ,M,

R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 supp(⇣),

(��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1),

(37)

where Lip(Rd) is the space of Lipschitz continuous function on Rd and �d�1 is the spherical
measure.

The proof of Theorem 16 is provided in Appendix I.1. The optimization problem (37)
characterizes the implicit bias of the gradient descent in function space for the multivariate
setting. Zhang et al. (2020) obtained a characterization in terms of the minimization
of a kernel norm in function space, which is also valid for multi-dimensional inputs. In
Appendix M we prove the equivalence between the kernel norm minimization and our result
in the one-dimensional setting. In future work it will be interesting to show that in the
multivariate setting, the kernel norm is equivalent to the objective in (37) under appropriate
conditions.

To conclude this section, we discuss the function ⇣ in the variational problem (37). The
proofs of the following statements are presented in Appendix I.4. First we propose an
initialization scheme such that ⇣ is constant over a bounded region.

Proposition 17 (Constant ⇣ over a bounded region) If W is sampled uniformly from
the unit sphere and B from a symmetric interval, i.e., W ⇠ Unif(Sd�1) and B ⇠ Unif(�a, a),
then ⇣(V , c) is constant over {(V , c) : |c|  a} and ⇣(V , c) = 0 for |c| > a.

19

Jin and Montúfar

Now we discuss the form of ⇣ under certain conditions.

Proposition 18 (Penalty function ⇣) Let pW,B denote the joint density function of (W ,B)
and let U = kWk2, V = W/kWk2 and C = �B/kWk2. Then ⇣(V , c) = pC|V=V (c) pV(V)E(U2

|V =

V , C = c) =
R
R ud+2pW,B(uV ,�uc) du.

Using the above result we compute the explicit form of ⇣ for Gaussian initialization.

Theorem 19 (Explicit form of ⇣ for Gaussian initialization) Assume that W and
B are independent, W ⇠ N (0,�2wId) and B ⇠ N (0,�2b). Then ⇣ is given by

⇣(V , c) =
�3w�

d+2
b

⇡(d+1)/2
�
�2b + c2�2w

�(d+3)/2
�(

d+ 3

2
).

8. Conclusion

We obtained explicit descriptions in function space for the implicit bias of gradient descent in
mean squared error regression with wide shallow ReLU networks covering the univariate and
multivariate cases. We also presented a generalization to networks with different activation
functions and discussed a relaxation related to early stopping and training trajectories in
function space.

In the case of univariate regression, our main result shows that the trained network
function interpolates the training data while minimizing a weighted 2-norm of the second
derivative with respect to the input. Such functions correspond to spatially adaptive
interpolating splines. In the case of multivariate regression, our results also characterize the
trained network functions. Under specific parameter initialization schemes, these functions
correspond to polyharmonic interpolating splines. The spaces of interpolating splines are
linear of dimension in the order of the number of data points. Hence, our results imply
that, even if the network has many parameters, the complexity of the trained functions
will be adjusted to the number of training data points. This can be used to explain why
overparametrized networks do not overfit in practice, as the generalization error can be
regarded as the precision of the spline interpolation (see, e.g., Wendland, 2004).

Zhang et al. (2020) described the implicit bias of gradient descent as minimizing a RKHS
norm from initialization. Our result can be regarded as making the RKHS norm explicit,
providing an interpretable description of the bias in function space. Compared with Zhang
et al. (2020), our results describe the role of the parameter initialization scheme, which
determines the curvature penalty function 1/⇣. This gives us a clearer picture of how the
initialization affects the implicit bias of gradient descent. This could be used in order to select
a good initialization scheme. For instance, one could conduct a pre-assessment of the data
to estimate the locations of the input space where the solution should have a high curvature,
and choose the parameter initialization accordingly. This is an interesting possibility to
experiment with based on our theoretical results.

Our results can also be interpreted in combination with early stopping. The training
trajectory is approximated by a smoothing spline, meaning that the network will filter out
high frequencies which are usually associated to noise in the training data. This behaviour is
sometimes referred to as a spectral bias (Rahaman et al., 2019). Cao et al. (2021) studied

20

Implicit bias of gradient descent for regression

spectral bias theoretically and showed that spherical harmonics of low frequency are easier to
be learned by over-parameterized neural networks if the input data is uniformly distributed
over the unit hypersphere.

Acknowledgments

This project has been supported by ERC Starting Grant 757983, NSF CAREER Grant
2145630, DFG SPP 2298 Grant 464109215.

21

Jin and Montúfar

Appendix

The appendix is organized as follows.

• In Appendix A we illustrate our theoretical results numerically, and provide details on the
numerical implementation.

• In Appendix B we briefly discuss definitions and settings around the parametrization and
initialization of neural networks, as well as on the limiting NTK and the linearization of a
neural network.

• In Appendices C, D, E, F, G, we provide proofs and supporting results for the results
presented in Sections 3, 4.1, 4.2, and 5.

• In Appendices H and I, we provide the proofs of the results in Sections 6 and 7 for
univariate and multivariate regression respectively.

• In Appendix J, we prove a corresponding result for activation functions other than ReLU.

• In Appendix K we discuss the linear adjustment of the training data and why our result still
gives a good description of training with the original data for non-linear target functions.

• In Appendix L, we introduce the network with skip connections and obtain the same
implicit bias result without adjusting the training data.

• In Appendix M we show the equivalence between our variational characterization of the
implicit bias of gradient descent in function space and the description in terms of a kernel
norm minimization problem.

• In Appendix N we discuss the relation between the gradient descent optimization trajectory
and a trajectory of spatially adaptive smoothing splines with decreasing smoothness
regularization coefficient which converges to the spatially adaptive interpolating spline.

• In Appendix O we give the explicit form of the solution to our variational problem, i.e.,
the spatially adaptive interpolating spline, which corresponds to the output function after
gradient descent training in the infinite width limit.

• In Appendix P we comment on possible extensions and generalizations of the analysis.

Appendix A. Numerical Illustration of the Theoretical Results

Implementation of gradient descent Training is implemented as full-batch gradient
descent. In practice we choose the learning rate as follows. We start with a large learning
rate and keep decreasing it by half until we observe that the loss function decreases. After
that, we start training with the fixed learning rate we found. We observe that the learning
rate we found is inversely proportional to the width n of the neural network. This observation
is in accord with Theorem 20 with respect to the upper bound of the learning rate in order
to converge.

We note that the implicit bias in parameter space shown in Theorem 20 is independent
of the specific step size that is used in the optimization, so long as it is small enough

22

Implicit bias of gradient descent for regression

(see Appendix D). The stopping criterion for training of the neural network is that the
change in the training loss in consecutive iterations is less than a pre-specified threshold:
|L(✓t)� L(✓t�1)|  10�8.

We use ASI (see Appendix B.2) at initialization. Then the initial output function of the
network is f(·, ✓0) ⌘ 0. Hence in the figures the network output function is actually equal to
the difference from initialization.

For the comparison of the functions f(·, ✓⇤) and g⇤, the infinity norm kf(·, ✓⇤)� g⇤k1 is
computed over a discretization of [�maxi kxik2,maxi kxik2]d.

Implementation of numerical solutions to the variational problem For univariate
regression, the variational problem for cubic splines can be solved explicitly as described in
Appendix O. For a general non-constant curvature penalty function 1/⇣, we can obtain a
numerical solution to problem (24) as follows. First we discretize the interval [�I, I] evenly
with points xj = �I + 2jI/N , j = 0, . . . , N . For simplicity we suppose that the M input
training data points are among these grid points, and we denote them by xj1 , . . . , xjM . Then
we initialize f(xj) = 0 for xj not in the training data (to be optimized) and f(xji) = yi
(fixed values during optimization). We use the central difference to approximate the second
derivative, f 00(xj) =

f(xj+1)�2f(xj)+f(xj�1)
h2 , where h = |xj+1�xj |. Then the objective function

in (24) is approximated by
PN�1

j=1
1

⇣(xj)

⇣
f(xj+1)�2f(xj)+f(xj�1)

h2

⌘2
. This is a quadratic problem

in f(xj), j 2 {1, . . . , N} \ {j1, . . . , jM}. If we equate the gradient to zero, we obtain a linear
system. The solution can be written in closed form in terms of the inverse of a design matrix.
As with any linear regression problem, in practice we may still prefer to use an iterative
approach to obtain a numerical solution. In our experiment, we discretize the interval [�2, 2]
into 200 pieces and use conjugate gradient descent for solving the linear system.

For multivariate regression, it is not straightforward to numerically solve (8). Hence we
numerically solve (25) instead. We discretize the interval [�Iw, Iw] evenly with points wj =
�Iw+2jIw/nw, j = 0, . . . , nw and the interval [�Ib, Ib] evenly with points bj = �Ib+2jIb/nb,
j = 0, . . . , nb. Let ↵(i1,...,id,j) = ↵((wi1 , . . . , wid), bj), ik = 0, . . . , nw, j = 0, . . . , nb. We use
numerical integration to approximate the objective and constraints of (25) and then get an
optimization problem with search variables ↵(i1,...,id,j). This is a quadratic programming
problem which can be solved using an internal point method.

Gradient descent training and variational problem To illustrate Theorem 1 across
different initialization procedures, in Figures 3 and 4 we show analogous experiments to
those in the left panel of Figure 1, but using two types of Gaussian initialization instead of
the uniform initialization. As we already observed in the right panel of Figure 1, here the
effect of the curvature penalty function is also visible. In portions of the input space where ⇣
is peaked, the solution function can have a high curvature, and, conversely, in portions of the
input space where ⇣ takes small values, the solution function has a small second derivative
and is more linear.

To verify that the results are stable over different data sets, in Figure 5 we show an
experiment similar to that of Figure 1, but for a larger data set.

Training all layers versus training only the output layer To illustrate Theorem 10,
we conduct the following experiment. We use the same training set as in Figure 1 and use
uniform initialization. Starting from the same initial weights, we train the network in two

23

Jin and Montúfar

Gaussian initialization �2
B = 1

n = 20 n = 80

n = 320 n = 1280

Figure 3: Illustration of Theorem 1. Shown is the error between the output function f(·, ✓⇤)
of the trained neural network and the solution g⇤ to the variational problem (24)
against the number of neurons, n. Shown is the average over 5 repetitions, with
error bars indicating the standard deviation. Here the training data is fixed, and
the parameters were initialized with W ⇠ N (0, 1) and B ⇠ N (0, 1). The right
panel shows the data (dots), trained network functions (blue) with 20, 80, 320,
1280 neurons, and the solution (orange) to the variational problem.

Gaussian initialization �2
B = 0.1

n = 20 n = 80

n = 320 n = 1280

Figure 4: Illustration of Theorem 1. Similar to Figure 3, but with a different initialization
W ⇠ N (0, 1) and B ⇠ N (0, 0.1), which gives rise to a curvature penalty function ⇣
that is more strongly peaked around x = 0 (see Figure 1). We observe in particular
that the solutions are more curvy around x = 0.

24

Implicit bias of gradient descent for regression

Uniform initialization

n = 160 n = 640

n = 2560 n = 10240

Figure 5: Illustration of Theorem 1. Similar to Figure 1, with uniform initialization, but
with a larger data set and larger networks.

Only output layer vs all parameters

n = 20 n = 80

n = 320 n = 1280

Figure 6: Illustration of Theorem 10. Training only output layer vs training all parameters of
the network. We use uniform initialization and the same training set as in Figure 1.
The left panel plots the error between two trained network functions against the
number of neurons n. For one network, we only train the output layer while for
the another one, we train all layers. The right panel shows the data (dots) and
two trained network functions with 20, 80, 320, 1280 neurons.

ways. One way is only training the output layer and another way is training all layers of the
network. The result is shown in Figure 6. The left panel plots the error between two trained
network functions against the number of neurons n. In this experiment the error is of order
n�3/2, which is even smaller than the upper bound n�1 given in Theorem 10. Potentially
the bound can be improved. The right panel plots two trained network functions with 20,
80, 320, 1280 neurons.

Effect of linear function on implicit bias In Theorem 1, since the variational problem
defines functions only up to addition of linear functions, we need to adjust training data

25

Jin and Montúfar

Severely unadjusted data

n = 80 n = 320

n = 1280 n = 5120

Figure 7: Effect of not adjusting the data. We use uniform initialization and add a linear
function 10x+ 10 to the training data of Figure 1. In order to clearly show the
difference between trained network function and the solution to the variational
problem, we subtract 10x+ 10 from these two functions in the right panel. In the
right panel we see that if we ignore u and v in the variational problem (22), the
solution is slightly different from (24).

by subtracting a specific linear function ux+ v. However, in our previous experiments, we
observed that even if we do not adjust the training data, the statement of Theorem 1 still
approximately holds. We attribute this to the fact that the linear function can be easily fit by
the neural network. We provide details about this in Appendix K. In order evaluate the effect
of this linear function on the implicit bias, we conduct the following experiment. Similar to
Figure 1, we use uniform initialization. We add a linear function 10x+10 to the training data
in Figure 1. So the training data we use are {(�2,�8.5), (�1, 0.5), (0, 11.5), (1, 20.5), (2, 31.5)}.
In Figure 7 we show analogous experiments to those in the left panel of Figure 1. In order
to clearly show the difference between the trained network function and the solution to the
variational problem, we subtract 10x + 10 from these two functions in the right panel of
Figure 7. From the right panel of Figure 7, we see that the difference between plotted two
functions is relatively larger than that in Figure 1. From the left panel of Figure 7, we see
that the error between these two functions stops to decrease when number of neurons n is
larger than 1280. It means that the limit of trained network function as n ! 1 is slightly
different from the solution to the variational problem. If we choose bigger u and v, we expect
that the difference will become larger.

Experiments for two-dimensional regression problems We illustrate Theorem 6
numerically in Figure 2. We conduct experiments similar to Figure 1 and Figure 3 for the
bivariate case. The initialization used in Figure 2 is W ⇠ U(S1) and B ⇠ U(�2, 2), thus we
can use Theorem 8 to exactly compute the solution to the variational problem (8). In close
agreement with the theory, the solution to the variational problem captures the solution of
gradient descent training uniformly with error of order n�1/2.

To verify that the results are stable over different data sets, in Figure 8 we show an
experiment similar to that of Figure 2, but for a larger data set.

26

Implicit bias of gradient descent for regression

Figure 8: Illustration of Theorem 6. Similar to Figure 2, with the same initialization, but
with a larger data set.

Figure 9: Illustration of Theorem 6. Similar to Figure 2, but with the Gaussian initialization
W ⇠ N (0, Id) and B ⇠ N (0, 1).

To illustrate Theorem 6 across different initialization procedures, in Figures 9 and 10
we show analogous experiments to Figure 2, but using Gaussian initialization instead. The
initialization used in Figure 9 is W ⇠ N (0, Id) and B ⇠ N (0, 1), and the initialization used
in Figure 10 is W ⇠ N (0, Id) and B ⇠ N (0, 0.1). So we can use Theorem 19 to exactly
compute the curvature penalty function and solve the variational problem (8) numerically.

Appendix B. Additional Background on the NTK, Initialization, and
Parametrization

In this appendix we provide a few additional details on the NTK, ASI initialization, standard
vs NTK parametrization, and discuss the difference between our results and weight norm
minimization.

27

Jin and Montúfar

Figure 10: Illustration of Theorem 6. Similar to Figure 2, but with the Gaussian initialization
W ⇠ N(0, Id) and B ⇠ N(0, 0.1). Because of the linear adjustment, the exact
solution of the variational problem (8) is slightly different from the network output
with a large number of hidden neurons.

B.1 NTK Convergence and Positive-definiteness

The convergence of the empirical NTK to a deterministic limiting NTK as the width of
the network tends to infinity and the positive-definiteness of this limiting kernel can be
ensured whenever the neural network converges to a Gaussian process. The arguments
from Jacot et al. (2018) to prove convergence and positive definiteness hold in this case.
As they mention, the limiting NTK only depends on the choice of the network activation
function, the depth of the network, and the variance of the parameters at initialization. They
prove positive definiteness when the input data is supported on a sphere. More generally,
positive definiteness can be proved based on the structure of the NTK as a covariance
matrix. Let kfk2p = Ex⇠p[f(x)T f(x)], where p denotes the distribution of inputs. The
NTK is positive definite when the span of the partial derivatives @✓if(·, ✓), i = 1, . . . , d,
becomes dense in function space with respect to k · kp as the width of the network tends
to infinity (Jacot et al., 2018). For a finite data set x1, . . . ,xM , positive definiteness of
the corresponding Gram matrix is equivalent to @✓if(xj , ·) being linearly independent (Du
et al., 2019, Theorem 3.1). This condition for positive definiteness does not depend on the
specific distribution of the parameters, but if anything it only depends on the support of the
distribution of parameters and on the input data. The precise value of the least eigenvalue
may be affected by changes in the distribution however. The convergence of the network
function to a Gaussian process in the limit of infinite width and independent parameter
initialization is a classic result (Neal, 1996). To verify this Gaussian process assumption it
is sufficient that

P
iW

(2)
i �(hW(1)

i ,xi+ bi) is a sum of independent random variables with
finite variance.

28

Implicit bias of gradient descent for regression

B.2 Anti-Symmetrical Initialization (ASI)

The AntiSymmetrical Initialization (ASI) trick as proposed by Zhang et al. (2020) creates
duplicate hidden units with opposite output weights, ensuring that f(·, ✓0) ⌘ 0. More
precisely, ASI defines fASI(x,#) =

p
2
2 f(x,#0)�

p
2
2 f(x,#00). Here # = (#0,#00) is initialized

with #00 = #000, so that

fASI(x,#0) =
nX

i=1

p
2

2
V

(2)
i [hV

(1)
i ,xi+ a(1)i]+ +

nX

i=1

�

p
2

2
V

(2)
i [hV

(1)
i ,xi+ a(1)i]+ ⌘ 0.

The parameter vector at initialization is thus #0 = vec(V
(1)

,V
(1)

,a(1),a(1),
p
2
2 V

(2)
,�

p
2
2 V

(2)
,

p
2
2 a(2),�

p
2
2 a(2)).

The basic statistics on the size of the parameters remains like (3), even if now there are
perfectly correlated pairs of parameters. Hence the analysis and results on limits when the
number of hidden units tends to infinity remain valid under ASI. The ASI is not needed for
our analysis, which can be used to compare different types of initialization procedures, but it
simplifies some of the presentation. One motivation for using ASI in practical applications
is that it provides a simple way to implement a simple output function at initialization.
Since the output function at initialization directly influences the bias of the gradient descent
solution, this is a particular way to control the bias. Manipulating the bias from initialization
is also the motivation presented by Zhang et al. (2020). A related discussion also appears in
Sahs et al. (2020a).

B.3 Standard vs NTK Parametrization

We have focused on the standard parametrization of the neural network. Jacot et al. (2018)
use a non-standard parametrization which is now known as the NTK parametrization. We
briefly discuss the difference. A network with NTK parametrization is described as

(
h(l+1) =

q
1
nl
W(l+1)xl + b(l+1)

x(l+1) = �(h(l+1))
and

(
W (l)

i,j ⇠ N (0, 1)

b(l)j ⇠ N (0, 1)
.

In contrast to the standard parametrization, in the NTK parametrization the factor
p

1/nl

is carried outside of the trainable parameter. In this case, the scaling of the derivatives is
r

W
(1)
i,j

f(x, ✓0) = O(n�
1
2) and r

W
(2)
i

f(x, ✓0) = O(n�
1
2). In turn, during training the changes

of W (1)
i,j and W (2)

i are comparable in magnitude. This implies that we can not ignore the
changes of W (1)

i,j and approximate the dynamics by that of the linearized model that trains
only the output weights as we did in the case of the standard parametrization. In particular,
we can not use problem (20) to describe the result of gradient descent as n ! 1.

B.4 Weight Norm Minimization

Savarese et al. (2019) studied networks of the form f(x, ✓) =
Pn

i=1W
(2)
i [W (1)

i x+ b(1)i]+ + b(2)

allowing the width to tend to infinity. They showed that the minimum weight norm
for approximating a given function g is related to a measure of the smoothness of g by

29

Jin and Montúfar

lim✏!0(inf✓ C(✓) s.t. kf(·, ✓)� gk1  ✏) = max{
R
1

�1
|g00(x)| dx, |g0(�1) + g0(1)|}, where

C(✓) = 1
2

Pn
i=1((W

(2)
i)2 + (W (1)

i)2). Here the derivatives are understood in the weak sense.
This implies that infinite width shallow networks trained with weight norm regularization
(sparing biases) represent functions with smallest 1-norm of the second derivative, an example
of which are linear splines. (Note that C(✓) is not strictly convex in the space of all parameters
and also the 1-norm of the second derivative is not strictly convex, hence the solution is not
unique).

The result of Savarese et al. (2019) is illuminating in that it connects properties of
the parameters and properties of the represented functions. However, the result does not
necessarily inform us about the functions represented by the network upon gradient descent
training without explicit weight norm regularization. Indeed, if we initialize the parameters
by (3) with sub-Gaussian distribution, the neural network can be approximated by the
linearized model. Then by Theorem 20, k! � ✓0k2 is minimized rather than k!k2. But
in this case k✓0k2 is bounded away from zero with high probability and the 2-norm of all
parameters (or also of the weights only) is not minimized. On the other hand, if we initialize
the parameters with k✓0k2 close to 0, then the neural network might not be well approximated
by the linearized model. This has been observed experimentally by Chizat et al. (2019) and
we further illustrate it in Appendix B.5.

Even if we assume that the linearization of a network at the origin is valid, in order for
the network to approximate certain complex functions, the weights necessarily have to be
bounded away from zero. This means that reaching zero training error requires to move
far from the basis point, where the difference between linearized and non-linearized model
could become significant. In turn, the implicit bias description derived from a linearization
at the origin may not accurately reflect the implicit bias of gradient descent in the original
non-linearized model.

The above paragraphs discuss why the result of Savarese et al. (2019) does not apply
to gradient descent training without weight norm regularization. It is also interesting to
discuss the difference between our result and the result of Savarese et al. (2019). In our result,
the implicit bias of gradient descent without weight norm regularization is characterized by
2-norm of the second derivative weighted by 1/⇣, which is a RKHS-norm. In the result of
Savarese et al. (2019), they showed that training with weight norm regularization (sparing
biases) leads to functions with smallest 1-norm of the second derivative, which is not a RKHS
norm. The reason why training without weight decay gives RKHS norm is because the
training trajectory can be approximated by that of a linear model, which corresponds to a
certain RKHS. And for training with weight norm regularization, the weight in the first layer
is regularized, so it changes the feature space and we can no longer regard that as a linear
model. Some works give empirical evidence that minimizing a non-RKHS norm can have
better generalization than minimizing an RKHS norm because of the limitation of linear
models and the kernel regime. However, as far as we know, there is no theory which shows
that a non-RKHS-norm could result in better generalization than a RKHS norm.

The paper by Parhi and Nowak (2019) follows the approach of Savarese et al. (2019)
and generalizes the result of Savarese et al. (2019) to different types of activation functions
�. Then they show that minimizing the weight “norm” of two-layer neural networks with
activation function � is actually minimizing 1-norm of Lf in place of the second derivative,
where f is the output function of the neural network. Here L and � satisfy L� = �, i.e., �

30

Implicit bias of gradient descent for regression

is a Green’s function of L. Such activation functions can be used in combination with our
analysis. We comment further on such generalizations in Appendix J.

B.5 Basis Parameter for Linearization of the Model

We discuss how the quality of the approximation of a neural network by a linearized model
depends on the basis point. For a feedforward ReLU network and a list X = (xi)mi=1 of input
data points, the mapping ✓ 7! f(X , ✓) = [f(x1, ✓), . . . , f(xm, ✓)] is piecewise multilinear.
Each of the pieces is smooth and we can assume that it is approximated reasonably well by
its Taylor expansion. However, the quality of the approximation can drop when we cross the
boundary between smooth pieces. Consider a single-input network with a layer of n ReLUs and
a single output unit. At an input x the prediction is f(x; ✓) =

Pn
j=1W

(2)
j [W (1)

j x+b(1)j]++b(2),
where ✓ = vec(W(1),b(1),W(2), b(2)). The Jacobian is non-smooth whenever ✓ 2 Hxj =

{W (1)
j x+b(1)j = 0} for some j = 1, . . . , n. Hence for m input data points xi, i = 1, . . . ,m, the

locus of non-smoothness is given by m central hyperplanes Hij , i = 1, . . . ,m in the parameter
space of each hidden unit j = 1, . . . , n. For an individual ReLU, if the parameter ✓0 is
drawn from a centrally symmetric probability distribution, the probability p that an ✏ ball
around c✓0 intersects one of the non-linearity hyperplanes Hi, i = 1, . . . ,m, behaves roughly
as p = O(mc�1) as c goes to infinity. Hence we can expect that the prediction function
will be better approximated by its linearization f lin(x, ✓) = f(x, c✓0) +r✓f(x, c✓0)(✓ � c✓0)
at a point c✓0 if c is larger. This is well reflected numerically in Figure 11. As we see, for
larger initialization the model looks more linear. We observed that this qualitative behavior
remains same if we try to adjust the size of the window around the initial value.

Appendix C. Proof of Theorem 1 and Theorem 6

The proof of Theorem 1 and Theorem 6 is the compilation of results from Sections 4, 5, 6
and 7. Next we give the proof of Theorem 6. Theorem 1 can be similarly proved.
Proof [Proof of Theorem 6] The convergence to zero training error for ReLU networks is
by now a well known result (Du et al., 2019; Allen-Zhu et al., 2019). We proceed with the
implicit bias result.

For simplicity, we give the proof under ASI (see Appendix B.2). In Section 7, we relax
the optimization problem (20) to (25). Suppose (↵,u, v) is the solution of (25). The we can
adjust the training samples {(xi, yi)}Mi=1 to {(xi, yi � hu,xii � v)}Mi=1. It’s easy to see that
on the adjusted training samples, (↵,0, 0) is the solution of (25). Then ↵ is the solution
of (20) on the adjusted data. Furthermore, the solution of (20) in function space, g(x,↵),
equals to the solution of (25) in function space, g(x, (↵, 0, 0)), i.e.,

g(x,↵) = g(x, (↵,0, 0)). (38)

It we change the variable ↵ to � as in Section 7, we get

g(x, (↵,0, 0)) = g(x, (�,0, 0)), (39)

On any compact set D ⇢ Rd, according to Theorem 12,

sup
x2D

|gn(x,↵n)� g(x,↵)| = Op(n
�1/2), (40)

31

Jin and Montúfar

H1

H2

Rd c1

c2

✓0

Parameter space of a ReLU

-1

b

w

1

0.5

0

-1
10.50-0.5

-0.5

Prediction f(x;w,b) on data point x=1

f(-1;w,b)

f(0;w,b)

0
0.2
0.4f(1

;w
,b

)

0.6
0.8

1
1.2

1

Predictions of a ReLU on three data points in R

0.80.61

0 0.2

0.5

0

0.4

Predictions of a ReLU on 3 data points -0.1
0
0.1
0.2
0.3
0.4
0.5

0
0.5
1

0
-0.5

-1
-0.5
0

0.5

960
965
970
975

1

0.5 1
-0.05
0

-0.2
-0.15
-0.1
-0.05
0

1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1
-0.5
0

-0.8
-0.6
-0.4
-0.2
0

0.5
1

0.05

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

0.1

-0.8
-0.6
-0.4
-0.2
0
0.2

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1-0.5 0 0.5 1

-614-612-610-608-606-604-602-600

-1-0.5 0 0.5 1
1.8
2
2.2
2.4
2.6
2.8

-1
-0.5
0

0.5
1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5

-1

-1
-0.5
0

0.5
1

0.50

-2
-1.8
-1.6
-1.4
-1.2

-0.5-1

-1-0.5 0 0.5 1

0.40.6
0.81
1.21.4
1.6 1

-1-0.5 0 0.5 1
-1

-0.5

2224
2628
3032
3436

220
230
240

-1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-0.5 0

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

1
0.5

-0.1
0
0.1
0.2
0.3
0.4
0.5

0
0.5
1

0
-0.5

-1
-0.5
0

0.5

960
965
970
975

1

0.5 1
-0.05
0

-0.2
-0.15
-0.1
-0.05
0

1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1
-0.5
0

-0.8
-0.6
-0.4
-0.2
0

0.5
1

0.05

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

0.1

-0.8
-0.6
-0.4
-0.2
0
0.2

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1-0.5 0 0.5 1

-614-612-610-608-606-604-602-600

-1-0.5 0 0.5 1
1.8
2
2.2
2.4
2.6
2.8

-1
-0.5
0

0.5
1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5

-1

-1
-0.5
0

0.5
1

0.50

-2
-1.8
-1.6
-1.4
-1.2

-0.5-1

-1-0.5 0 0.5 1

0.40.6
0.81
1.21.4
1.6 1

-1-0.5 0 0.5 1
-1

-0.5

2224
2628
3032
3436

220
230
240

-1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-0.5 0

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

1
0.5

-0.1
0
0.1
0.2
0.3
0.4
0.5

0
0.5
1

0
-0.5

-1
-0.5
0

0.5

960
965
970
975

1

0.5 1
-0.05
0

-0.2
-0.15
-0.1
-0.05
0

1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1
-0.5
0

-0.8
-0.6
-0.4
-0.2
0

0.5
1

0.05

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

0.1

-0.8
-0.6
-0.4
-0.2
0
0.2

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-1-0.5 0 0.5 1

-614-612-610-608-606-604-602-600

-1-0.5 0 0.5 1
1.8
2
2.2
2.4
2.6
2.8

-1
-0.5
0

0.5
1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5

-1

-1
-0.5
0

0.5
1

0.50

-2
-1.8
-1.6
-1.4
-1.2

-0.5-1

-1-0.5 0 0.5 1

0.40.6
0.81
1.21.4
1.6 1

-1-0.5 0 0.5 1
-1

-0.5

2224
2628
3032
3436

220
230
240

-1

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

-0.5 0

-1-0.5 0 0.5 1
-1

-0.5
0

0.5
1

1
0.5

Network predictions over 2D parameter slices

m

or
e

ne
ur

on
s

larger initialization !

Figure 11: Left: For a single ReLU, the map ✓ 7! f(X , ✓) from parameters to prediction
vectors over a set X = {x1, . . . , xm} of m input data points is piecewise linear,
with pieces separated by m central hyperplanes. Right: Shown is the prediction
f(x, ✓) of a shallow ReLU network on a fixed input point x, over a 2D slice of
parameters ✓ = c✓0 + v1⇠1 + v2⇠2 spanned by two random orthogonal unit norm
vectors v1, v2 and parametrized by (⇠1, ⇠2) 2 [�1, 1]2. From top to bottom, the
number of hidden units is n = 1, 5, 25, 125 and in each row the initial parameter
✓0 is drawn i.i.d. from a standard Gaussian. In each column we use a different
scaling constant c = 0, 0.5, 10. As we see, for larger scaling c of the initialization
the model looks more linear.

32

Implicit bias of gradient descent for regression

where gn(x,↵n) is the solution of problem (19) in function space. Since problem (19) is
equivalent to problem (18), gn(x,↵n) is also the solution of (18) in function space. According
to discussion in Section 5, f lin(x, e!1) is the solution of (18). Then we have

gn(x,↵n) = f lin(x, e!1). (41)

According to Corollary 11, we get

sup
x2D

|f lin(x, !̃1)� f(x, ✓⇤)| = Op(n
�

1
2). (42)

Finally, according to Theorem 16 (to prove Theorem 1, apply Theorem 13 and Proposition
14), g(x, (�,0, 0)) is the solution of (8), which is g⇤(x). It means that

g(x, (�, 0, 0)) = g⇤(x). (43)

Combining (38), (39), (40), (41), (42), (43), we prove the theorem.

Appendix D. Implicit Bias in Parameter Space for a Linearized Model

Zhang et al. (2020) show that gradient flow converges to the solution with zero empirical
loss which is closest to the initial weights. We show a similar result for the case of gradient
descent with small enough learning rate.

Theorem 20 (Bias of the linearized model in parameter space) Consider a convex
loss function ` with a unique finite minimum and its derivative is K-Lipschitz continuous, i.e.,
|
d
dy `(y1, ŷ)�

d
dy `(y2, ŷ)|  K|y1 � y2|. If rank(r✓f(X , ✓0)) = M , then the gradient descent

iteration (14) with learning rate ⌘ 
M

Kn�max(⇥̂n)
converges to the unique solution of following

constrained optimization problem:

min
!

k! � ✓0k2 s.t. f lin(X ,!) = Y. (44)

The derivative d
dy is with respect to the first argument of ` and the gradient r✓ is with

respect to the second argument of f (see notation in Section 2).

Remark 21 (Remark on Theorem 20, step size) Note that this statement is valid for
the linearization of any set of functions, not only neural networks. The proof remains valid
for a changing step size as long as this satisfies the required inequality.

Remark 22 (Remark on Theorem 20, rank assumption) The assumption r✓f(X , ✓0) =
M is satisfied in most cases when n � M (here n refers to the number of parameters in ✓
since we use the linearized model). This is because r✓f(X , ✓0) is a M ⇥ n matrix. The M
rows corresponds to M training samples and they are almost always linearly independent.

33

Jin and Montúfar

Here we give the proof of Theorem 20. We note that Zhang et al. (2020) prove a similar
result for gradient flow. Our proof is for finite step size and different from theirs.
Proof [Proof of Theorem 20] We use gradient descent to minimize Llin(!) = 1

M

PM
i=1 `(f

lin(xi,!), yi).
First we prove that r!Llin(!) is Lipschitz continuous as follows:

kr!L
lin(!1)�r!L

lin(!2)k2

=
1

M
kr✓f(X , ✓0)

>
rf lin(X ,!1)L�r✓f(X , ✓0)

>
rf lin(X ,!2)Lk2


1

M
kr✓f(X , ✓0)

>
k2krf lin(X ,!1)L�rf lin(X ,!2)Lk2

=
1

M
kr✓f(X , ✓0)

>
k2

vuut
MX

i=1

✓
d

dy
l(f lin(xi,!1), yi)�

d

dy
l(f lin(xi,!2), yi)

◆2


K

M
kr✓f(X , ✓0)

>
k2kf

lin(X ,!1)� f lin(X ,!2)k2 (K-Lipschitz continuity of `)

=
K

M
kr✓f(X , ✓0)

>
k2kr✓f(X , ✓0)(!1 � !2)k2


K

M
kr✓f(X , ✓0)

>
k2kr✓f(X , ✓0)k2k(!1 � !2)k2


Kn

M
�max(⇥̂n)k!1 � !2k2.

So Llin(!) is Lipschitz continuous with Lipschitz constant Kn
M �max(⇥̂n). Since Llin is convex

over !, gradient descent with learning rate ⌘ = M
Kn�max(⇥̂n)

converges to a global minimium
of Llin(!). By assumption that rank(r✓f(X , ✓0)) = M , the model can perfectly fit all data.
Then the minimium of Llin(!) is zero and gradient descent converges to zero loss.

Let !1 = limt!1 !t. Then f lin(X ,!1) = Y. According to gradient descent iteration,

!1 = ✓0 �
1X

t=0

⌘r✓f(X , ✓0)
T
rf lin(X ,!t)L

lin

= ✓0 � ⌘r✓f(X , ✓0)
T

1X

t=0

rf lin(X ,!t)L
lin.

Since f lin is linear over weights ! and k! � ✓0k2 is strongly convex, the constrained
optimization problem (44) is a strongly convex optimization problem. The first order
optimality condition of the problem is

(
! � ✓0 +r✓f lin(X , ✓0)T� = 0,

f lin(X ,!) = Y.
(45)

Let � =
P

1

t=0rf lin(X ,✓t)L, we can easily check that !1 satisfies condition (45). So !1 is
the solution of problem (44).

34

Implicit bias of gradient descent for regression

Remark 23 (Remark on Theorem 20) Making an analogous statement to Theorem 20
to describe the bias in parameter space when training wide networks rather than the linearized
model is interesting, but harder, because the gradient direction is no longer constant. Oymak
and Soltanolkotabi (2019) obtain bounds on the trajectory length in parameter space, putting
the final solution within a factor 4�/↵ of min✓ k✓0 � ✓k, where � and ↵ are upper and lower
bounds on the singular values of the Jacobian over the relevant region. However, currently it
is unclear whether the solution upon gradient optimization is indeed the distance minimizer
from initialization.

Next we discuss the implicit bias of SGD (stochastic gradient descent) in parameter space.
Consider the following stochastic gradient descent iteration for the linearized model:

!0 = ✓0, !t+1 = !t � ⌘t
d

dy
`(f lin(xr(t),!t), yr(t))r✓f(xr(t), ✓0), (46)

where r(t) is evenly chosen from the set {1, 2, ...,M} and ⌘t is the learning rate at the step t.
Typically, ⌘t needs to decay in order for SGD to converge. However, for overparametrized
linearized model, we can show that SGD converges for constant learning rate and the implicit
bias of SGD is the same as gradient descent under certain conditions. This is shown in the
following theorem.

Theorem 24 (Bias of the linearized model in parameter space, SGD) Consider a
convex loss function ` with a unique finite minimum and its derivative is K-Lipschitz contin-
uous, i.e., | d

dy `(y1, ŷ) �
d
dy `(y2, ŷ)|  K|y1 � y2|. If rank(r✓f(X , ✓0)) = M , the stochastic

gradient descent iteration (46) with constant learning rate ⌘t = ⌘ 
1

Kmaxj kr✓f(xj ,✓0)k22
con-

verges to the unique solution of following constrained optimization problem with probability 1:

min
!

k! � ✓0k2 s.t. f lin(X ,!) = Y. (47)

Proof [Proof of Theorem 24] Let !⇤ be the solution to the optimization problem (47). Let
zj = r✓f(xj , ✓0). It is easy to see that !t � h!t � !⇤, zj

kzjk2
i

zj
kzjk2

is the projection of !t onto
the hyperplane {h!, zji} = {h!⇤, zji}. So for any ⌘̂  1, we have

����!t � ⌘̂h!t � !⇤,
zj

kzjk2
i

zj
kzjk2

� !⇤

����
2

2

= k!t � !⇤
k
2
2 � (1� (1� ⌘̂)2)

����h!t � !⇤,
zj

kzjk22
i

����
2

(48)
 k!t � !⇤

k
2
2. (49)

35

Jin and Montúfar

The length of the stochastic gradient in (46) can be bounded as follows:

⌘t
d

dy
`(f lin(xr(t),!t), yr(t))kzr(t)k2

 ⌘tK|f lin(xr(t),!t)� yr(t)|kzr(t)k2

 K
1

Kmaxj kr✓f(xj , ✓0)k22
|f lin(xr(t),!t)� yr(t)|kzr(t)k2

=
1

maxj kzjk22
h!t � !⇤, zr(t)ikzr(t)k2


1

maxj kzjk22
kzr(t)k

2
2h!t � !⇤,

zr(t)
kzr(t)k2

i

 h!t � !⇤,
zr(t)

kzr(t)k2
i.

Then according to (49), we have
����!t � ⌘t

d

dy
`(f lin(xr(t),!t), yr(t))kzr(t)k2

zr(t)
kzr(t)k2

� !⇤

����
2

 k!t � !⇤
k2.

The above equation means that

k!t+1 � !⇤
k2  k!t � !⇤

k2. (50)

Then k!tk2 is bounded and limt!1 k!t � !⇤
k2 � k!t+1 � !⇤

k2 = 0. Next we show that for
any convergent subsequence {!tk}k�1 of {!t}t�1, we have limk!1 !tk = !⇤.

Let limk!1 !tk = !̄. Asuume that !̄ 6= !⇤. According to the first order optimality (45),
we have that !⇤ = ✓0 +

PM
j=1 �jzj . From the stochastic gradient descent iterations, we

have !t = ✓0 � ⌘
Pt�1

s=1
d
dy `(f

lin(xr(s),!s), yr(s))zr(s). Then !t � !⇤ is a linear combination
of {!j}

M
j=1. It means that !̄ � !⇤ is a linear combination of {zj}Mj=1. Since !̄ � !⇤ is not

zero, the set A =
n
j :
���h!̄ � !⇤, zj

kzjk2
i

��� > 0
o

is not empty. With probability 1, we have that
r(t) 2 A infinitely many times. So for any given k, we can find t0k � tk such that r(t0k) 2 A
and r(t) 62 A for tk  t < t0k.

When we prove (50), we only use the property that f lin(xr(t),!
⇤) = yr(t). When

tk  t < t0k, we have r(t) 62 A, so h!̄, zj
kzjk2

i = h!⇤,
zr(t)

kzr(t)k2
i. It means that f lin(xr(t), !̄) =

f lin(xr(t),!
⇤) = yr(t). Using the same argument as (50), we have k!t+1 � !̄k2  k!t � !̄k2

when tk  t < t0k. Then k!t0k
� !̄k2  k!tk � !̄k2. Then limk!1 !t0k

= limk!1 !tk = !̄.
According to (48), we have

k!t+1 � !⇤
k
2
2 = k!t � !⇤

k
2
2 � (1� (1� ⌘̃t)

2)

����h!t � !⇤,
zr(t)

kzr(t)k2
i

����
2

and ⌘̃t =
⌘ d
dy `(f

lin(xr(t),!t), yr(t))kzr(t)k2���h!t � !⇤,
zr(t)

kzr(t)k2
i

���
.

36

Implicit bias of gradient descent for regression

Since limk!1 !t0k
= !̄, for sufficiently large k we have

�����h!t0k
� !⇤,

zr(t0k)

kzr(t0k)k2
i

�����

2

�
1

2
min
j2A

����h!̄ � !⇤,
zr(j)

kzr(j)k2
i

����
2

= ⌦(1), (51)

and

⌘̃t �
1

2

⌘minj2A
d
dy `(f

lin(xj , !̄), yj)minj2A kzjk2

k!̄ � !⇤k2

= ⌦(1)min
j2A

d

dy
`(f lin(xj , !̄), yj)

= ⌦(1), (52)

where (52) holds because f lin(xj , !̄)� yj = h!̄ � !⇤, zji 6= 0 for all j 2 A and d
dy `(y, ŷ) = 0

if and only if y = ŷ according to the fact that loss function ` has a unique finite minimum.
From (51) and (52) we have k!t0k

� !⇤
k
2
2 � k!t0k+1 � !⇤

k
2
2 = ⌦(1). This contradicts the fact

that limt!1 k!t � !⇤
k2 � k!t+1 � !⇤

k2 = 0. Then the assumption !̄ 6= !⇤ is not true. So
for any convergent subsequence {!tk}k�1 of {!t}t�1, we have limk!1 !tk = !⇤. Combining
the above statement with the fact that k!tk2 is bounded, we have limt!1 !t = !⇤

Remark 25 (Remark on Theorem 24) Theorem 24 shows that SGD and gradient de-
scent has the same implicit bias in parameter space. Then our main theorem also holds for
SGD training.

Appendix E. Proof of Theorem 10

We note that assumption liminfn!1 �min(⇥̂n) > 0 is satisfied if the empirical NTK converges
and the limit NTK is positive definite. For details see Appendix B.1.
Proof [Proof of Theorem 10] Since set D is compact and x 2 D, we have kxk2  C for a
fixed constant C. According to (14),

!t+1 = !t � ⌘r✓f(X , ✓0)
T
rf lin(X ,!t)L

lin.

Since we use the MSE loss, we have

!t+1 = !t � ⌘r✓f(X , ✓0)
T (f lin(X ,!t)� Y).

Using (12), we get

f lin(X ,!t+1) = f lin(X ,!t)� ⌘r✓f(X , ✓0)r✓f(X , ✓0)
T (f lin(X ,!t)� Y)

= f lin(X ,!t)� n⌘⇥̂n(f
lin(X ,!t)� Y).

Then we have
f lin(X ,!t+1)� Y = (I � n⌘⇥̂n)(f

lin(X ,!t)� Y),

37

Jin and Montúfar

and
f lin(X ,!t)� Y = (I � n⌘⇥̂n)

t(f lin(X , ✓0)� Y)

= (I � n⌘⇥̂n)
t(f(X , ✓0)� Y).

According to the update rule of !t, we know that !t = r✓f(X , ✓0)T ⇠ + ✓0, where ⇠ is a
column vector. Then we have

f lin(X ,!t)� Y = f lin(X ,!t)� f(X , ✓0) + f(X , ✓0)� Y

= r✓f(X , ✓0)(!t � ✓0) + f(X , ✓0)� Y

= r✓f(X , ✓0)r✓f(X , ✓0)
T ⇠ + f(X , ✓0)� Y

= n⇥̂n⇠ + f(X , ✓0)� Y

= (I � n⌘⇥̂n)
t(f(X , ✓0)� Y).

From above equation we can solve for ⇠:

⇠ = �n�1⇥̂�1
n [I � (I � n⌘⇥̂n)

t](f(X , ✓0)� Y).

Therefore

!t = �n�1
r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t](f(X , ✓0)� Y) + ✓0. (53)

For any x 2 Rd,

f lin(x,!t) = f(x, ✓0) +r✓f(x, ✓0)(!t � ✓0)

= f(x, ✓0)� n�1
r✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t](f(X , ✓0)� Y).
(54)

For the training process (17), we can define the corresponding empirical neural tangent kernel
in the following way:

⇥̃n =
1

n
rW(2)f(X , ✓0)rW(2)f(X , ✓0)

T .

Using the same argument, we have

fW(2)
t = �n�1

rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t](f(X , ✓0)� Y) +W

(2)
0 (55)

and

f lin(x, e!t) = f(x, ✓0)�n�1
rW(2)f(x, ✓0)rW(2)f(X , ✓0)

T ⇥̃�1
n [I�(I�n⌘⇥̃n)

t](f(X , ✓0)�Y).
(56)

According to (54) and (56), we have

|f lin(x, e!t)� f lin(x,!t)|

=n�1
���r✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t](f(X , ✓0)� Y)

�rW(2)f(x, ✓0)rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t](f(X , ✓0)� Y)

��� .

(57)

38

Implicit bias of gradient descent for regression

The next step is to compute the difference between ⇥̃n and ⇥̂n. Let �⇥ = ⇥̂n � ⇥̃n, then
the ij-th entry of the matrix �⇥ is

(�⇥)ij =
1

n

"
nX

k=1

⇣D
r

W
(1)
k
f(xi, ✓0),rW

(1)
k
f(xj , ✓0)

E
+r

b
(1)
k
f(xi, ✓0)rb

(1)
k
f(xj , ✓0)

⌘

+ rb(2)f(xi, ✓0)rb(2)f(xj , ✓0)

#
.

(58)

Given x 2 Rd, we have

kr
W

(1)
k
f(x, ✓0)k =kW (2)

k H(hW(1)
k ,xi+ b(1)k) · xk  C|W (2)

k | (59)

|r
b
(1)
k
f(x, ✓0)| =|W (2)

k H(hW(1)
k ,xi+ b(1)k)|  |W (2)

k | (60)

|r
W

(2)
k

f(x, ✓0)| =[hW(1)
k ,xi+ b(1)k]+  CkW(1)

k kk+ b(1)k (61)

|rb(2)f(x, ✓0)| =1. (62)

Therefore,

|(�⇥)ij | 
1

n

"
nX

k=1

⇣
|W (2)

k |
2
kxikkxjk+ |W (2)

k |
2
⌘
+ 1

#

=
C2 + 1

n

nX

k=1

|W (2)
k |

2 +
1

n
.

(63)

According to initialization (3), W (2)
k

d
=
p
1/n W

(2). Then according to the law of large
numbers, limn!1

Pn
k=1 |W

(2)
k |

2 = E|W(2)
|
2 almost surely as n ! 1. Then

Pn
k=1 |W

(2)
k |

2 =
Op(1) and |(�⇥)ij | = Op(n�1).

Since the size of �⇥ is M⇥M , which does not change as n goes up. So k�⇥k2 = Op(n�1),
which means k⇥̂n � ⇥̃nk2 = Op(n�1).

Now we measure the difference of each part in (57). According to assumption infn �min(⇥̂n) >
0, we have

�min(⇥̂
�1
n) �

1

infn �min(⇥̂n)
= Op(1) (64)

�min(⇥̃
�1
n) �

1

infn �min(⇥̂n)�Op(n�1)
= Op(1). (65)

Therefore
k⇥̂�1

n � ⇥̃�1
n k2 = k⇥̂�1

n (⇥̃n � ⇥̂n)⇥̃
�1
n k2

 k⇥̂�1
n k2k�⇥k2k⇥̃

�1
n k2

= Op(n
�1).

(66)

The assumption ⌘ < 2
n�max(⇥̂n)

implies

kI � n⌘⇥̂nk2 < 1, (67)

39

Jin and Montúfar

and
kI � n⌘⇥̃nk2  kI � n⌘⇥̂nk2 + n⌘k⇥̂n �⇥k2

 max{n⌘
�max(⇥)

2
, 1� n⌘�min(⇥̂n)}+Op(n

�1).

For any � > 0, as n is large enough, we also have kI � n⌘⇥̃nk2 < 1 with probability at least
1� �. Then as n is large enough,

k[I � (I � n⌘⇥̂n)
t]� [I � (I � n⌘⇥̃n)

t]k2

= k(I � n⌘⇥̂n)
t
� (I � n⌘⇥̃n)

t
k2

 k[(I � n⌘⇥̂n)� (I � n⌘⇥̃n)](I � n⌘⇥̂n)
t�1

k2

+ k(I � n⌘⇥̃n)[(I � n⌘⇥̂n)� (I � n⌘⇥̃n)](I � n⌘⇥̂n)
t�2

k2

+ · · ·

+ k(I � n⌘⇥̃n)
t�1[(I � n⌘⇥̂n)� (I � n⌘⇥̃n)]k2

 ⌘k⇥̂n � ⇥̃nk2kI � n⌘⇥̂nk
t�1
2

+ ⌘kI � n⌘⇥̃nk2k⇥̂n � ⇥̃nk2kI � n⌘⇥̂nk
t�2
2

+ · · ·

+ ⌘kI � n⌘⇥̃nk
t�1
2 k⇥̂n � ⇥̃nk2

 ⌘k⇥̂n � ⇥̃nk2 · t · (max{kI � n⌘⇥̂nk2, kI � n⌘⇥̃nk2})
t�1.

Since max{kI �n⌘⇥̂nk2, kI �n⌘⇥̃nk2} < 1, supt>0 t · (max{kI �n⌘⇥̂nk2, kI �n⌘⇥̃nk2})t�1

is a finite number. Then we have

k[I � (I � n⌘⇥̂n)
t]� [I � (I � n⌘⇥̃n)

t]k2  O(⌘k⇥̂n � ⇥̃nk2)

= Op(n
�1).

(68)

Let �⇥(x,X) = n�1(r✓f(x, ✓0)r✓f(X , ✓0)T �rW(2)f(x, ✓0)rW(2)f(X , ✓0)T), then the i-th
entry of the vector �⇥(x,X) is

(�⇥(x,X))i =
1

n

"
nX

k=1

⇣
r

W
(1)
k
f(x, ✓0)rW

(1)
k
f(xi, ✓0) +r

b
(1)
k
f(x, ✓0)rb

(1)
k
f(xi, ✓0)

⌘

+ rb(2)f(x, ✓0)rb(2)f(xi, ✓0)

#
.

Similar to (63), we have
(�⇥(x,X))i| = Op(n

�1). (69)

Since the size of �⇥(x,X) is M , which does not change as n goes up. So

k�⇥(x,X)k2 = Op(n
�1). (70)

40

Implicit bias of gradient descent for regression

Let ⇥̃n(x,X) = n�1(rW(2)f(x, ✓0)rW(2)f(X , ✓0)T)), then the i-th entry of the vector
⇥̃n(x,X) is

|(⇥̃n(x,X))i| 
1

n

nX

k=1

|r
W

(2)
k

f(x, ✓0)rW
(2)
k

f(xi, ✓0)|


1

n

nX

k=1

|(kW(1)
k kkxk2 + b(1)k)(kW(1)

k kkxik2 + b(1)k)|.


1

n

nX

k=1

|(CkW(1)
k k+ b(1)k)(CkW(1)

k k+ b(1)k)|.

(71)

According to initialization (3), (W(1)
k , b(1)k)

d
= (W ,B). Then according to the law of large

numbers,
|(⇥̃n(x,X))i| = Op(1). (72)

Since the size of ⇥̃n(x,X) is M , which does not change as n goes up. So

k⇥̃n(x,X)k2 = Op(1).

Neal (1996), Lee et al. (2018) show that as n goes to infinity, the output function at
initialization f(·, ✓0) converges to a Gaussian process in distribution, which means that
f(X , ✓0) ⇠ N (0,K(X ,X)). Here K(X ,X) can be computed recursively. Then f(X , ✓0) is
bounded in probability and we get

kf(X , ✓0)� Yk2 = Op(1). (73)

Then following (57) and (73), we get

|f lin(x, e!t)� f(x, ✓t)|

=n�1
|r✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t](f(X , ✓0)� Y)

�rW(2)f(x, ✓0)rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t](f(X , ✓0)� Y)|

=n�1
kr✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t]

�rW(2)f(x, ✓0)rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t]k2kf(X , ✓0)� Yk2

=n�1
kr✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t]

�rW(2)f(x, ✓0)rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t]k2 ·Op(1).

According to (66), (67), (68), (70) and (72), we have that

n�1
kr✓f(x, ✓0)r✓f(X , ✓0)

T ⇥̂�1
n [I � (I � n⌘⇥̂n)

t]

�rW(2)f(x, ✓0)rW(2)f(X , ✓0)
T ⇥̃�1

n [I � (I � n⌘⇥̃n)
t]k2

n�1
kr✓f(x, ✓0)r✓f(X , ✓0)

T
�rW(2)f(x, ✓0)rW(2)f(X , ✓0)

T
kk⇥̂�1

n k2kI � (I � n⌘⇥̂n)
t
k2

+ n�1
krW(2)f(x, ✓0)rW(2)f(X , ✓0)

T
k2k⇥̂

�1
n � ⇥̃�1

n k2kI � (I � n⌘⇥̂n)
t
k2

+ n�1
krW(2)f(x, ✓0)rW(2)f(X , ✓0)

T
k2k⇥̃

�1
n k2k[I � (I � n⌘⇥̂n)

t]� [I � (I � n⌘⇥̃n)
t]k2

Op(n
�1)Op(1)Op(1) +Op(1)Op(n

�1)Op(1) +Op(1)Op(1)Op(n
�1)

=Op(n
�1).

41

Jin and Montúfar

So we have |f lin(x, e!t)� f(x, ✓t)| = Op(n�1), and the constants in Op(n�1) do not depend
on t and x. Then we get

sup
x2D

sup
t

|f lin(x, e!t)� f lin(x,!t)| = Op(n
�1), as n ! 1.

For the difference of parameters, we have

e!t � !t = vec(W
(1)

� cW(1)
t ,b

(1)
� bb(1)

t ,fW(2)
t � cW(2)

t , b
(2)

�bb(2)t).

According to (53) and (55),

kW
(1)

� cW(1)
t k2 = kn�1

rW(1)f(X , ✓0)
T ⇥̂�1

n [I � (I � n⌘⇥̂n)
t](f(X , ✓0)� Y)k2

 kn�1
rW(1)f(X , ✓0)

T
k2k⇥̂

�1
n k2kI � (I � n⌘⇥̂n)

t
k2kf(X , ✓0)� Yk2

 n�1
krW(1)f(X , ✓0)

T
k2 ·Op(1).

Here rW(1)f(X , ✓0)T is a n ⇥ M matrix, the ij-th entry of the matrix is r
W

(1)
i
f(xj , ✓0).

According to (59), we have r
W

(1)
i
f(xj , ✓0) = Op(n�1/2). Then we get krW(1)f(X , ✓0)T k2 =

Op(1) by the law of large numbers. So we have kW
(1)

� cW(1)
t k2 = Op(n�1), and Op(n�1)

does not contain any constant factor which is related to t. Then we get

sup
t

kW
1
� cW1

t k2 = Op(n
�1), as n ! 1.

Similarly we can prove

sup
t

kb
1
� bb1

t k2 = Op(n
�1), as n ! 1, (74)

sup
t

kb
2
�bb2t k = Op(n

�1), as n ! 1. (75)

For fW(2)
t � cW(2)

t , we have

kW
(2)

� cW(2)
t k2 = kn�1

rW(2)f(X , ✓0)
T
⇣
⇥̂�1

n [I � (I � n⌘⇥̂n)
t]�

⇥̃�1
n [I � (I � n⌘⇥̃n)

t]
⌘
(f(X , ✓0)� Y)k2

 kn�1
rW(2)f(X , ✓0)

T
k2

⇣
k⇥̂�1

n � ⇥̃�1
n k2kI � (I � n⌘⇥̂n)

t
k2+

k⇥̃�1
n k2k[I � (I � n⌘⇥̂)t]� [I � (I � n⌘⇥̃)t]k2

⌘
kf(X , ✓0)� Yk2

 n�1
krW(2)f(X , ✓0)

T
k2(Op(n

�1)Op(1) +Op(1)Op(n
�1)) ·Op(1)

= Op(n
�2)krW(2)f(X , ✓0)

T
k2.

Here rW(2)f(X , ✓0)T is a n ⇥ M matrix, the ij-th entry of the matrix is r
W

(2)
i

f(xj , ✓0).

According to (61), we have r
W

(2)
i

f(xj , ✓0) = Op(1). Then krW(2)f(X , ✓0)T k2 = Op(n1/2)

42

Implicit bias of gradient descent for regression

by the law of large numbers. So we have kfW(2)
t � cW(2)

t k2 = Op(n�3/2), and Op(n�3/2) does
not contain any constant factor which is related to t. Then we get

sup
t

kfW2
t �

cW2
t k2 = Op(n

�3/2), as n ! 1.

Appendix F. Training Only the Output Layer Approximates Training a
Wide Shallow Network

Corollary 11 is obtained by combining Theorem 10 and the fact that training a linearized
model approximates training a wide network (Lai et al., 2023, Proposition 3.2). Although
Lai et al. (2023, Proposition 3.2) consider Gaussian initialization, the arguments extend
to sub-Gaussian initialization if the initialization distribution has a continuous probability
density.
Proof [Proof of Corollary 11] Using Theorem 10, we have that

sup
t

|f lin(x, e!t)� f lin(x,!t)| = Op(n
�1), as n ! 1. (76)

According to Lai et al. (2023, Proposition 3.2), in the case of Gaussian initialization, we have

sup
t

|f lin(x,!t)� f(x, ✓)| = Op(n
�

1
2), as n ! 1.

Under our neural network setting, which is a one-input network with a single hidden layer of n
ReLUs and a linear output, we can generalize the above result to sub-Gaussian initialization.
Combining the above equation with (76) concludes the proof.

Appendix G. Proof of Theorem 12

Proof [Proof of Theorem 12] The Lagrangian of problem (19) is

L(↵n,�
(n)) =

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b) +

MX

j=1

�(n)j (gn(xj ,↵n)� yj).

The optimal condition is r↵nL = 0, which means

r↵nL = 2↵n(W
(1), b)+

MX

j=1

�(n)j [hW(1),xji+b]+ = 0 when (W(1), b) = (W(1)
i , bi), i = 1, . . . , k.

Then we get

↵n(W
(1), b) = �

1

2

MX

j=1

�(n)j [hW(1),xji+ b]+ when (W(1), b) = (W(1)
i , bi), i = 1, . . . , k.

43

Jin and Montúfar

Since only function values on (W(1)
i , bi)Mi=1 are taken into account in problem (19), we can

let

↵n(W
(1), b) = �

1

2

MX

j=1

�(n)j [hW(1),xji+ b]+ 8(W(1), b) 2 Rd+1 (77)

without changing
R
R2 ↵2

n(W
(1), b) dµn(W(1), b) and gn(x,↵n).

Here �(n)j , j = 1, . . . ,M are chosen to make gn(xi,↵n) = yi, i = 1, . . . ,M . This means
that

�
1

2

MX

j=1

�(n)j

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµn(W
(1), b) = yi, i = 1, . . . ,M. (78)

Similarly, the Lagrangian of problem (20) is

eL(↵,�) =
Z

R2
↵2(W(1), b) dµ(W(1), b) +

MX

j=1

�j(g(xj ,↵)� yj).

The optimality condition is r↵
eL = 0, which means

r↵
eL = 2↵(W(1), b) +

MX

j=1

�j [hW
(1),xji+ b]+ = 0 8(W(1), b) 2 Rd+1.

Then we get

↵(W(1), b) = �
1

2

MX

j=1

�j [hW
(1),xji+ b]+ 8(W(1), b) 2 Rd+1. (79)

Here �j , j = 1, . . . ,M are chosen to make g(x,↵) = yi, i = 1, . . . ,M . This means that

�
1

2

MX

j=1

�j

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµ(W(1), b) = yi, i = 1, . . . ,M. (80)

Compare (78) and (80). Since the number of samples is finite, xi is also bounded. Then
by the assumption that W and B have finite fourth moments, we have that [hW(1),xji +
b]+[hW(1),xii + b]+ has finite variance. According to central limit theorem, as n ! 1,R
R2 [hW(1),xji + b]+[hW(1),xii + b]+ dµn(W(1), b) tends to a Gaussian distribution with

variance O(n�1). This implies that 8i = 1, . . . ,M, 8j = 1, . . . ,M ,

|

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµn(W
(1), b)

�

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµ(W(1), b)|

= Op(n
�1/2)

44

Implicit bias of gradient descent for regression

Since (78) and (80) are systems of linear equations and coefficients of (78) converge to
coefficients of (80) at the rate of Op(n�1/2), then we get

|�nj � �j | = Op(n
�1/2), j = 1, . . . ,M. (81)

Compare (77) and (79). Given (W(1), b), we have

|↵n(W
(1), b)� ↵(W(1), b)| = Op(n

�1/2). (82)

Next we want to prove that supx2D |gn(x,↵n)� g(x,↵)| = Op(n�1/2). Firstly, we prove that
supx2D |gn(x,↵)� g(x,↵)| = Op(n�1/2). Note that

gn(x,↵) =

Z

R2
↵(W(1), b)[hW(1),xi+ b]+ dµn(W

(1), b)

g(x,↵) =

Z

R2
↵(W(1), b)[hW(1),xi+ b]+ dµ(W(1), b).

Therefore,

E(gn(x,↵)) = g(x,↵)

Var(gn(x,↵)) =
1

n

Z

R2
[↵(W(1), b)[hW(1),xi+ b]+ � g(x,↵)]2 dµ(W(1), b).

(83)

Here the expectation and the variance are with respect to (W(1)
i , bi)ni=1. According to

(79) and the assumption that W and B have finite fourth moments, the integral in (83)
is bounded on D. So supx2D Var gn(x,↵) = O(n�1). According to central limit theorem,
as n ! 1, gn(x,↵) tends to Gaussian distribution of variance O(n�1) for any x 2 D.
Then |gn(x,↵)� g(x,↵)| = Op(n�1/2) pointwise on D.Then we only need to prove that the
sequence of functions {gn(x,↵)}1n=1 is uniformly equicontinuous. Actually, 8x1,x2 2 D

|gn(x1,↵)� gn(x2,↵)|



Z

R2

���↵(W(1), b)[hW(1),x1i+ b]+ � ↵(W(1), b)[hW(1),x2i+ b]+
��� dµn(W

(1), b)



Z

R2

���↵(W(1), b)
���
���W(1)

i

��� |x1 � x2| dµn(W
(1), b)



Z

R2

���↵(W(1), b)
���
���W(1)

i

��� dµn(W
(1), b) |x1 � x2| .

Notice that
R
R2

��↵(W(1), b)
��
���W(1)

i

��� dµn(W(1), b) !
R
R2

��↵(W(1), b)
��
���W(1)

i

��� dµ(W(1), b)

with probability 1 according to the law of large numbers. Hence
R
R2

��↵(W(1), b)
��
���W(1)

i

��� dµn(W(1), b)

is bounded and the bound is independent of n. So {gn(x,↵)}1n=1 is uniformly equicontinuous.
Then by similar arguments to the Arzela-Ascoli theorem,

sup
x2D

|gn(x,↵)� g(x,↵)| = Op(n
�1/2). (84)

45

Jin and Montúfar

Finally, we prove that supx2D |gn(x,↵n)� gn(x,↵)| = Op(n�1/2). Since 8x 2 D

|gn(x,↵n)� gn(x,↵)|



Z

R2

���↵n(W
(1), b)[hW(1),xi+ b]+ � ↵(W(1), b)[hW(1),xi+ b]+

��� dµn(W
(1), b)



Z

R2

���↵n(W
(1), b)� ↵(W(1), b)

��� [hW(1),xi+ b]+ dµn(W
(1), b)



Z

R2

������
�
1

2

MX

j=1

(�nj � �j)[hW
(1),xji+ b]+

������
[hW(1),xi+ b]+ dµn(W

(1), b)


1

2

MX

j=1

|�nj � �j |

Z

R2
[hW(1),xji+ b]+[hW

(1),xi+ b]+ dµn(W
(1), b)


1

2

✓
max
x2D

Z

R2
[hW(1),xji+ b]+[hW

(1),xi+ b]+ dµn(W
(1), b)

◆ MX

j=1

|�nj � �j |.

Because D is compact and
R
R2 [hW(1),xji + b]+[hW(1),xi + b]+ dµn(W(1), b) converges

according to the law of large numbers, we have that maxx2D
R
R2 [hW(1),xji+ b]+[hW(1),xi+

b]+ dµn(W(1), b) is bounded by a finite number independent of n. Then according to (81),

sup
x2D

|gn(x,↵n)� gn(x,↵)| = Op(n
�1/2).

Combined with (84), we have

sup
x2D

|gn(x,↵n)� g(x,↵)| = Op(n
�1/2).

This concludes the proof.

Appendix H. Proofs of Results for Univariate Regression

H.1 Proof of Theorem 13

The second derivative g00 is given by

g00(x, �) = pC(x)

Z

R
�(W (1), x)

��W (1)
�� d⌫W|C=x(W

(1)). (85)

The detailed calculation of (85) is as follows:

g00(x, �) =

Z

R2
�(W (1), c)

���W (1)
��� �(x� c) d⌫(W (1), c)

=

Z

supp(⌫C)

✓Z

R
�(W (1), c)

���W (1)
��� d⌫W|C=c(W

(1))

◆
�(x� c) d⌫C(c)

=

Z

supp(⌫C)

✓Z

R
�(W (1), c)

���W (1)
��� d⌫W|C=c(W

(1))

◆
�(x� c)pC(c)dc

= pC(x)

Z

R
�(W (1), x)

���W (1)
��� d⌫W|C=x(W

(1)).

(86)

46

Implicit bias of gradient descent for regression

Proof [Proof of Theorem 13] First, if x 62 supp(⇣), similar to (85), we have

g(x, (�, u, v)) = pC(x)

Z

R
�(W (1), x)

���W (1)
��� d⌫W|C=x(W

(1))

= 0.

Next, we prove that g(x, (�, u, v)) restricted on supp(⇣) is the solution of the following
problem:

min
h2C2(supp(⇣))

Z

supp(⇣)

(h00(x))2

⇣(x)
dx

subject to h(xj) = yj , j = 1, . . . ,m.

(87)

Let L(f) =
R
supp(⇣)

(f 00(x))2

p(x)E(W2|C=x)dx. Then the functional L(f) is strictly convex on space
{f 2 C2(R2)|f(xi) = yi, i = 1, . . . ,m} when m � 2. This means that the minimizer of
problem (87) is unique.

Suppose h(x) is the minimizer of problem (87) and h(x) is different from g(x, (�, u, v))
restricted on supp(⇣). Then by uniqueness of the solution,

L(h) < L(g(·, (�, u, v))). (88)

Now our goal is to find a different (�, u, v) with smaller cost in problem (22). Then (�, u, v)
is not the solution of (22), which is a contradiction. We set

�(W (1), c) =
h00(c)|W (1)

|

pC(c)E(W2|C = c)
, c 2 supp(⇣).

Then according to (85),

g00(x, �) = p(x)

Z

R
�(W (1), x)

���W (1)
��� d⌫W|C=x(W

(1))

= p(x)

Z

R

h00(x)|W (1)
|

p(x)E(W2|C = x)

���W (1)
��� d⌫W|C=x(W

(1))

=
h00(x)

E(W2|C = x)

Z

R

���W (1)
���
2
d⌫W|C=x(W

(1))

=
h00(x)

E(W2|C = x)
E(W2

|C = x)

= h00(x), x 2 supp(⇣).

This means that we can find u, v 2 R such that ux+v+g(x, �) ⌘ h(x). Then we find (�, u, v)
such that g(x, (�, u, v)) = ux+v+g(x, �) = h(x) on supp(⇣). So g(xj , (�, u, v)) = h(xj) = yj .
It means that (�, u, v) satisfies the condition in problem (22). Next we compute the cost of

47

Jin and Montúfar

(�, u, v):
Z

R2
�2(W (1), c) d⌫(W (1), c)

=

Z

R2

h00(c)|W (1)

|

pC(c)E(W2|C = c)

!2

d⌫(W (1), c)

=

Z

supp(⇣)

0

@
Z

R

h00(c)|W (1)

|

pC(c)E(W2|C = c)

!2

d⌫W|C=c(W
(1))

1

A d⌫C(c)

=

Z

supp(⇣)

✓
h00(c)

pC(c)E(W2|C = c)

◆2✓Z

R
|W (1)

|
2 d⌫W|C=c(W

(1))

◆
pC(c)dc

=

Z

supp(⇣)

✓
h00(c)

pC(c)E(W2|C = c)

◆2✓Z

R
|W (1)

|
2 d⌫W|C=c(W

(1))

◆
pC(c)dc

=

Z

supp(⇣)

(h00(c))2

pC(c)E(W2|C = c)
dx

=L(h).

(89)

On the other hand, the cost of (�, u, v) is
Z

R2
�2(W (1), c) d⌫(W (1), c)

=

Z

supp(⇣)

✓Z

R
�2(W (1), c) d⌫W|C=c(W

(1))

◆
pC(c)dc

�

Z

supp(⇣)

�R
R �(W

(1), c)|W (1)
| d⌫W|C=c

�2
R
R |W (1)|2 d⌫W|C=c

pC(c)dc (Cauchy-Schwarz inequality)

=

Z

supp(⇣)

(g00(c, �)/pC(c)))
2

R
R |W (1)|2 d⌫W|C=c

pC(c)dc (according to (85))

=

Z

supp(⇣)

(g00(c, �))2

pC(c)E(W2|C = c)
dc

=L(g(·, �))

=L(g(·, (�, u, v))) (g(·, (�, u, v)) has the same second derivative as g(·, �)).

(90)

From this we have
Z

R2
�2(W (1), c) d⌫(W (1), c) = L(h) (according to (89))

< L(g(·, (�, u, v))) (according to (88))



Z

R2
�2(W (1), c) d⌫(W (1), c) (according to (90)).

It means that the cost of (�, u, v) is smaller than the cost of (�, u, v). So (�, u, v) is not
the solution of (87), which is a contradiction. So our assumption is wrong. So h(x) ⌘

48

Implicit bias of gradient descent for regression

g(x, (�, u, v)) on supp(⇣), and g(x, (�, u, v)) is the solution of problem (87). In the last step
we prove that g00(x, (�, u, v)) = 0 when x 62 [mini xi,maxi xi] and g(x, (�, u, v)) restricted on
supp(⇣) \ [mini xi,maxi xi] is the solution of (87). We only need to prove these statements
for h(x), which is the solution of (87).

Since |xi| 2 [mini xi,maxi xi], the function values on (�1,mini xi) and (maxi xi,1) are
not related to constraints of problem (87), so h(x) can be replaced by following h̃(x) which
also satisfies the constraints of problem (87):

h̃(x) =

8
><

>:

h(x) x 2 [mini xi,maxi xi]

h0(mini xi)(x�mini xi) + h(mini xi) x 2 (�1,mini xi)

h0(maxi xi)(x�maxi xi) + h(maxi xi) x 2 (maxi xi,1).

Then we get

h̃00(x) =

8
><

>:

h00(x) x 2 [mini xi,maxi xi]

0 x 2 (�1,mini xi)

0 x 2 (maxi xi,1).

So the cost of h̃(x) is less than that of h(x). Then the fact h(x) is the minimizer of (87)
tell us that h(x) ⌘ h̃(x). So h(x) should be linear on (�1,mini xi) and (maxi xi,1). Then
h00(x) = 0 when x 62 [mini xi,maxi xi]. Let h(x)|S denote the function h(x) restricted on
S = supp(⇣) \ [mini xi,maxi xi]. Since h(x) is the solution to problem (87), we get h(x)|S is
the solution to problem (87). This concludes the proof.

In the case of not using ASI, problem (22) becomes

min
�2C(R2),u2R,v2R

Z

R2
�2(W (1), c) d⌫(W (1), c)

subject to uxj + v +

Z

R2
�(W (1), c)[W (1)(xj � c)]+ d⌫(W (1), c) = yj � f(xj , ✓0), j = 1, . . . ,M.

(91)
Then Theorem 13 without ASI is stated as follows.

Theorem 26 (Theorem 13 without ASI) Suppose (�, u, v) is the solution of (91), and
consider the corresponding output function

g(x, (�, u, v)) = ux+ v +

Z

R2
�(W (1), c)[W (1)(x� c)]+ d⌫(W (1), c) + f(x, ✓0). (92)

Then g(x, (�, u, v)) satisfies g00(x, (�, u, v)) = f 00(x, ✓0) for x 62 S and for x 2 S it is the
solution of the following problem:

min
h2C2(S)

Z

S

(h00(x)� f 00(x, ✓0))2

⇣(x)
dx

subject to h(xj) = yj , j = 1, . . . ,M.

(93)

49

Jin and Montúfar

H.2 Proof of Proposition 14 and Remarks to Proposition 15

Proof [Proof of Proposition 14] Let pW,C and pW,B denote the joint density functions of
(W, C) and (W,B), respectively. We have

pW,C(W, c) =

����
@(W,�Wc)

@(W, c)

���� pW,B(W,�Wc) = |W |pW,B(W,�Wc),

and

E(W 2
|C = x)pC(x) =

Z

R
W 2pW|C=x(W) dW · pC(x)

=

Z

R
W 2pW,C(W,x) dW

=

Z

R
|W |

3pW,B(W,�Wx) dW.

(94)

Proof [Proof of Proposition 15] The construction is given in the statement of the proposition.

Remark 27 (Remark to Proposition 15, sampling the initial parameters) The vari-
ables (W,B) can be sampled by first sampling C from pC(x) =

1
Z

1
%(x) , then independently

sampling W from a standard Gaussian distribution and setting B = �WC. In this construc-
tion, in general W and B are not independent.

Intuitively, if we want the output function to be smooth at a certain point x0, we can let
the conditional distribution of W given C be concentrated around zero for C = x0, or we can
let the probability density function of C to be small at C = x0. Note that pC is the breakpoint
density at initialization. The form of this has been studied for uniform initialization by Sahs
et al. (2020a). We provide the explicit form of the smoothness penalty function for several
types of initialization in Appendix H.3.

Remark 28 (Remark to Proposition 15, independent initialization) Note that con-
structing an arbitrary curvature penalty function will necessitate in general a non-independent
joint distribution of W and B. If W and B are required to be independent random variables,
(94) gives

⇣(x) = E(W 2
|C = x)pC(x) =

Z

R
|W |

3pW(W)pB(�Wx) dW.

Given a desired function for the left hand side, we can still try to solve for the parameter
densities. This type of integral equation problem has been studied (Nasim, 1973) and one can
write a formal solution, although it is not always clear whether it will be a density.

50

Implicit bias of gradient descent for regression

H.3 Proof of Theorem 2

We prove the statement for the three considered types of initialization distributions in turn.
Proof [Proof of Theorem 2 for Gaussian initialization] Using (94), we have

E(W 2
|C = x)pC(x) =

Z

R
|W |

3pW(W)pB(�Wx)dW

=

Z

R
|W |

3 1
p
2⇡�w

e
�

W2

2�2
w

1
p
2⇡�b

e
�

W2x2

2�2
b dW

=
1

2⇡�w�b

Z

R
|W |

3e
�(1

2�2
w
+ x2

2�2
b
)W 2

dW.

Let �2 = 1/
⇣

1
�2
w
+ x2

�2
b

⌘
, then we get

E(W 2
|C = x)pC(x) =

�
p
2⇡�w�b

Z

R
|W |

3 1
p
2⇡�

e�
W2

2�2 dW

=
�

p
2⇡�w�b

�3 · 2 ·

r
2

⇡

=
2�4

⇡�w�b

=
2�3w�

3
b

⇡(�2b + x2�2w)
2
.

Then we have
⇣(x) = E(W 2

|C = x)pC(x)

=
2�3w�

3
b

⇡(�2b + x2�2w)
2
.

Proof [Proof of Theorem 2 for binary-uniform initialization] Since W is either �1 or 1,
E(W2

|C = x) = 1 for any x 2 supp(⌫C). Since B ⇠ Unif(�ab, ab), it is easy to check
�B/W ⇠ Unif(�ab, ab). So ⇣(x) = 1/2ab, x 2 [�ab, ab].

Proof [Proof of Theorem 2 for uniform initialization] According to Theorem 1 in Sahs et al.
(2020a), the density function pC(c) of ⌫C is

pC(c) =
1

4awab

✓
min

⇢
ab
|c|

, aw

�◆2

, c 2 supp(⌫C).

When |c|  ab
aw

, then pC(c) =
1

4awab
(aw)

2. It means that pC(c) is constant when |c|  ab
aw

.
Let pW,B(W (1), b) denote the density function of µ, pW,C(W (1), c) denote the density

function of ⌫, so

pW,C(W
(1), c) = pW,B(W

(1),�cW (1))
@b

@c

=
1

4awab
W (1)2[�aw,aw] · �cW (1)2[�ab,ab]

· (�W (1)).

51

Jin and Montúfar

Here a is the indicator function which equals to 1 when condition a is true, and 0 otherwise.
Then density function pW|C(W

(1)
|c) of the conditional distribution ⌫W|C=c is

pW|C(W
(1)

|c) =
pW,C(W (1), c)

pC(c)

=
1

4awab W (1)2[�aw,aw] · �cW (1)2[�ab,ab]
· (�W (1))

pC(c)
.

When |c|  ab
aw

, |�cW (1)
| 

ab
aw

aw = ab. So �cW (1)
2 [�ab, ab] is true and

�cW (1)2[�ab,ab]
=

1. Combined with the fact that pC(c) is constant when |c|  ab
aw

, we have pW|C(W
(1)

|c) is
independent of c when |c|  ab

aw
. So E(W2

|C = c) is constant when |c|  ab
aw

. Since ab
aw

� I,
E(W2

|C = c) and pC(c) are constant when c 2 [�I, I]. Then ⇣(x) = E(W 2
|C = x)pC(x) is

constant when c 2 [�I, I].

Appendix I. Proofs of Results for Multivariate Regression

I.1 Proof of Theorem 16

In this section, we prove Theorem 16. We will need the following lemmas:

Lemma 29 Let f 2 Lip(Rd) be considered as a tempered distribution and (��)sf ⌘ 0,
s > 0. Then f is linear, i.e., f(x) = hu,xi+ v.

Proof [Proof of Lemma 29] In the following proof we regard f as a tempered distribution,
thus the fractional Laplacian and Fourier transform of f can be defined. We first give a brief
introduction of tempered distribution.

The space of tempered distributions S0(Rd) is the space of continuous linear functionals
on the space of Schwartz test functions S(Rd). The space of Schwartz test functions on Rd is
the rapidly decreasing function space

S(Rd) :=

(
 2 C1(Rd) | 8↵,� 2 Nd, sup

x2Rd

|x�D↵ (x)| < 1

)
. (95)

The details of defining norms and the topology on S(Rd) is shown in (Melrose and Uhlmann,
2008, Chapter 1).

For any f 2 Lip(Rd), we can define a corresponding tempered distribution Tf by

Tf : S(Rd) 7! R, Tf () =

Z

Rd
f dx. (96)

So any f 2 Lip(Rd) can be naturally regarded as a tempered distribution Tf .
Let F be the Fourier transform. Since F and its adjoint maps a Schwartz function to a

Schwartz function, we can define the Fourier transform of a tempered distribution by

F : S0(Rd) 7! S0(Rd), (FTf)() =

Z

Rd
f · G dx, (97)

52

Implicit bias of gradient descent for regression

where G is the adjoint of F . Details of Fourier transform on tempered distributions can be
found in (Melrose and Uhlmann, 2008, Chapter 1.7).

Similarly the fractional Laplacian of a tempered distribution is defined by

(��)s : S0(Rd) 7! S0(Rd), ((��)sTf)() =

Z

Rd
f · (��)s dx, (98)

Since (��)sf ⌘ 0, in Fourier domain we have k⇠k2sFf ⌘ 0. It means that the support of
Ff is {0}. According to Folland (1999, Chapter 9), Ff is a linear combination of � (Dirac’s
Delta) and derivatives of �.6 Then f is a polynomial. Since f is Lipschitz continuous, we
conclude that f is linear.

Lemma 30 Let ↵ 2 L2(Sd�1
⇥ R). Suppose that ↵ = ↵+ + ↵� where ↵+ is even and ↵� is

odd. Then k↵k2 � k↵+
k2 and k↵k2 � k↵�

k2.

Proof [Proof of Lemma 30] Since

k↵k22 = k↵+ + ↵�
k
2
2

= k↵+
k
2
2 + k↵�

k
2
2 + 2h↵+,↵+

i

= k↵+
k
2
2 + k↵�

k
2
2 + 2

Z

Sd�1⇥R
↵+

· ↵� d�d�1(V)dc

= k↵+
k
2
2 + k↵�

k
2
2,

where the last equality holds true since ↵+
· ↵� is odd. Then we have k↵k2 � k↵+

k2 and
k↵k2 � k↵�

k2.

The next lemma shows that the output of the infinite-width network is Lipschitz continuous.
This is also observed in (Ongie et al., 2020, Proposition 8).
Lemma 31 Assume that (1) the norm of the random vector kWk has the finite second
moment; (2)

R
R+⇥Sd�1⇥R �

2(u,V , c) d⌫(u,V , c) < +1; (3) u 2 Rd and v 2 R. Then
g(x, (�,u, v)) is Lipschitz continuous.
Proof [Proof of Lemma 31] Let ↵(uV ,�cu) = �(u,V , c). For all x1,x2 2 Rd, we have

|g(x1, (�,u, v))� g(x2, (�,u, v))|



����
Z

Rd⇥R
|↵(W(1), b)|

���[hW(1),x1i+ b]+ � [hW(1),x2i+ b]+
��� dµ(W(1), b)

����+ |hu,x1 � x2i|



����
Z

Rd⇥R
|↵(W(1), b)|

���hW(1),x1 � x2i

��� dµ(W(1), b)

����+ |hu,x1 � x2i|



✓Z

Rd⇥R
|↵(W(1), b)|kW(1)

k dµ(W(1), b) + kuk

◆
kx1 � x2k



✓Z

Rd⇥R
↵2(W(1), b) dµ(W(1), b) ·

Z

Rd⇥R
kW(1)

k
2 dµ(W(1), b) + kuk

◆
kx1 � x2k



✓Z

Rd⇥R
↵2(W(1), b) dµ(W(1), b) · E(kWk

2) + kuk

◆
kx1 � x2k.

6. The k-th derivative of � can be defined as a tempered distribution on the Schwartz test function � by:

�
(k)(�) = (�1)k�(k)(0).

53

Jin and Montúfar

According to the assumptions,
R
Rd⇥R ↵

2(W(1), b) dµ(W(1), b), E(kWk
2) and kuk are all

finite. Then g(x, (�,u, v)) is Lipschitz continuous.

Lemma 32 Given a function h 2 Lip(Rd) \ C(Rd). Define : Sd�1
⇥ R ! R by :=

�
1

2(2⇡)d�1R{(��)(d+1)/2h}. Assume that (1)
R
supp(⇣) ((V , c))2 /⇣(V , c) d�d�1(V)dc <

+1, where ⇣(V , c) is define in (36), and (V , c) = 0, 8(V , c) 62 supp(⇣); (2) kWk2 and B

both have finite second moments; (3) (��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1). Then there
exist u 2 Rd and v 2 R such that h(x) =

R
Sd�1⇥R (V , c)[hV ,xi�c]+ d�d�1(V)dc+hu,xi+v.

Proof [Proof of Lemma 32] Since kWk2 and B both have finite second moments, we have
Z

supp(⇣)
⇣(V , c) d�d�1(V)dc =

Z

supp(⇣)
pC|V=V (c) pV(V)E(U2

|V = V , C = c) d�d�1(V)dc

= E
�
E(U2

|V , C)
�

= E(U2)

= E(kWk
2
2)

< +1,

and
Z

supp(⇣)
⇣(V , c) · c2 d�d�1(V)dc =

Z

supp(⇣)
pC|V=V (c) pV(V)E(U2

|V = V , C = c) · c2 d�d�1(V)dc

= E
�
E(U2

C
2
|V , C)

�

= E(U2
C
2)

= E(B2)

< +1.

Let h̃(x) =
R
Sd�1⇥R (V , c)[hV ,xi � c]+ d�d�1(V)dc. For any x 2 Rd, we have
Z

Sd�1⇥R
| (V , c)| [hV ,xi � c]+ d�d�1(V)dc



Z

supp(⇣)
| (V , c)| (kV k2kxk2 + |c|) d�d�1(V)dc



Z

supp(⇣)
| (V , c)| (kxk2 + |c|) d�d�1(V)dc

kxk2

sZ

supp(⇣)

((V , c))2

⇣(V , c)
d�d�1(V)dc ·

Z

supp(⇣)
⇣(V , c) d�d�1(V)dc

+

sZ

supp(⇣)

((V , c))2

⇣(V , c)
d�d�1(V)dc ·

Z

supp(⇣)
⇣(V , c) · c2 d�d�1(V)dc

<+1.

54

Implicit bias of gradient descent for regression

So h̃(x) is well-defined. The above inequality also implies that the Lipschitz constant of
h̃(x) is bounded by

R
supp(⇣) | (V , c)| kV k2 d�d�1(V)dc, which is finite. So h̃(x) is Lipschitz

continuous. Then we have

(��)(d+1)/2h̃ = �(��)(d�1)/2
Z

Sd�1⇥R
 (V , c)�(hV ,xi � c) d�d�1(V)dc

= �(��)(d�1)/2
Z

Sd�1
 (V , hV ,xi) d�d�1(V)

= �(��)(d�1)/2
R

⇤
{ }.

(99)

Since (��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1), we can apply the inversion formula of the
Radon transform (Solmon, 1987):

(��)(d+1)/2h =
1

2(2⇡)d�1
(��)(d�1)/2

R
⇤
{R{(��)(d+1)/2h}}

= �(��)(d�1)/2
R

⇤
{ }

= (��)(d+1)/2h̃.

According to Lemma 29, we have that h� h̃ is linear, which gives the claim.

Lemma 32 immediately gives the following corollary:

Corollary 33 If R{(��)(d+1)/2g} ⌘ R{(��)(d+1)/2h}, and (��)(d+1)/2g, (��)(d+1)/2h 2

Lp(Rd), 1  p < d/(d� 1), then g � h is linear.

The next lemma shows that the minimizer h(x) of problem (37) satisfies that R{(��)(d+1)/2h}
is compactly supported.

Lemma 34 Consider the training data {(xi, yi)}Mi=1. Let R be the maximum 2-norm of
training inputs, i.e., R = maxi kxik2. Suppose h(x) is the solution of the optimization
problem (37). Then R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 Sd�1

⇥ [�R,R].

Proof [Proof of Lemma 34] Define : Sd�1
⇥ R ! R by := �

1
2(2⇡)d�1R{(��)(d+1)/2h}.

Then we construct the function : Sd�1
⇥ R ! R as follows:

 (V , c) =

(
 (V , c), for |c|  R

0. for |c| > R.

Since the Radon transform is even, we have that and are both even. Since h is the solution
of (37), satisfies all assumptions of Lemma 32. Then according to Lemma 32, h(x) =R
Sd�1⇥R (V , c)[hV ,xi � c]+ d�d�1(V)dc+ hu,xi+ v. Let h(x) =

R
Sd�1⇥R (V , c)[hV ,xi �

c]+ d�d�1(V)dc. Then h(x) � h(x) =
R
Sd�1⇥R(�)(V , c)[hV ,xi � c]+ d�d�1(V)dc +

hu,xi+ v. When |c|  R, � = 0. When |c| > R, [hV ,xi � c]+ is linear with respect to x
on {x : kxk2  R}. It means that h(x)�h(x) is linear on {x : kxk2  R}. Then we can find
out u and v such that h(x) = h(x)+hu,xi+v on {x : kxk2  R}. Let eh(x) = h(x)+hu,xi+v.
Since all training inputs satisfy kxik  R, we have that eh(x) fits all training data. Similar
to (99), we have that �eh = R

⇤
{ }. Since has compact support, the inversion formula of

55

Jin and Montúfar

the Radon transform (Solmon, 1987) gives that = �
1

2(2⇡)d�1R{(��)(d+1)/2eh}. Since the

support of is contained in the support of , we have R{(��)(d+1)/2eh}(V , c) = 0, 8(V , c) 62
supp(⇣). Since (��)(d+1)/2eh = �(��)(d�1)/2

R
⇤
{ } and is compactly supported, we have

(��)(d�1)/2
R

⇤
{ } 2 Lp(Rd), 1  p < d/(d� 1) according to (Solmon, 1987, Lemma 4.1).

The above argument shows that eh satisfies all constrains of the problem (37). Since h is the

solution of (37), we have
R
supp(⇣)

((V ,c))2

⇣(V ,c) d�d�1(V)dc 
R
supp(⇣)

((V ,c))2

⇣(V ,c) d�d�1(V)dc. It
means that (V , c) = 0 when |c| > R, which gives the claim.

The proof of Lemma 34 also applies to the optimization problem without the constraint
R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 supp(⇣). Then we have the following corollary.

Corollary 35 Consider the training data {(xi, yi)}Mi=1. Let R be the maximum 2-norm
of training inputs, i.e., R = maxi kxik2. Suppose h(x) is the solution of the following
optimization problem:

min
h2Lip(Rd)\C(Rd)

Z

supp(⇣)

�
R{(��)(d+1)/2h}(V , c)

�2

⇣(V , c)
d�d�1(V)dc

subject to h(xj) = yj , j = 1, . . . ,M,

(��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1).

(100)

Then R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 Sd�1
⇥ [0, R]. It means that if Sd�1

⇥ [0, R] ⇢
supp(⇣), h(x) is also the solution of (37).

Now we are ready to prove Theorem 16. We use the proof technique of Theorem 13 and
(34).
Proof [Proof of Theorem 16] First, according to (28) and (34), if (V , c) 62 supp(⇣), we have

|R{(��)(d+1)/2g(·, (�,u, v))}(V , c)|

=|2(2⇡)d�1
Z

R
�(u,V , c) · u d⌫U|V=V ,C=c(u) · pC|V=V (c) pV(V)|

|2(2⇡)d�1
Z

R
�2(u,V , c) d⌫U|V=V ,C=c(u) · E(U2

|V = V , C = c)pC|V=V (c) pV(V)|

=0.

(101)

By Lemma 31, we have that g(x, (�,u, v)) is Lipschitz continuous, thus g(x, (�,u, v)) satisfies
all constraints of (37). Next, we prove that g(x, (�,u, v)) is the solution of (37).

Let L(f) =
R
supp(⇣)

(R{(��)(d+1)/2g}(V ,c))2

⇣(V ,c) d�d�1(V)dc. We first show that when m �

d + 1, the functional L(f) is strictly convex on the feasible set, which means that the
minimizer of problem (37) is unique.

Suppose f1, f2 are two different functions in the feasible set of (37). Then R{(��)(d+1)/2f1}
and R{(��)(d+1)/2f2} should be different. Otherwise, according to Corollary 33, f1 � f2
is a linear function. We know that (f1 � f2)(xi) = 0, i = 1, . . . ,m. So f1 = f2 on at least
d+ 1 points. Then f1 � f2 ⌘ 0 and this is a contradiction. Since R{(��)(d+1)/2(f1)} and
R{(��)(d+1)/2(f2)} are different, by strict convexity of the square function, we have that
L(f) is strictly convex on the feasible set.

56

Implicit bias of gradient descent for regression

Suppose h(x) is the minimizer of problem (37) and h(x) is different from g(x, (�,u, v)).
Then by uniqueness of the solution,

L(h) < L(g(x, (�,u, v))). (102)

Now our goal is to find a different (�,u, v) with smaller cost in problem (26). Then
(�,u, v) is not the solution of (26), which is a contradiction. We set

�(u,V , c) =

8
><

>:

R{(��)(d+1)/2h}(V , c) · u

�2(2⇡)d�1⇣(V , c)
, (V , c) 2 supp(⇣),

0, (V , c) 62 supp(⇣).

According to (32), we have �g(·, (�,0, 0)) = R
⇤
{�} where � is defined in (28) and (31).

Using Lemma 34, we know that R{(��)(d+1)/2h} is compactly supported. Then we can
easily verify that � is also compactly supported. According to (Solmon, 1987, Lemma 4.1),
(��)(d�1)/2

R
⇤
{�} 2 Lp(Rd), 1  p < d/(d� 1), which means that g(·, (�,0, 0)) satisfies the

third constraint of the optimization problem (37).

Since the Radon transform is an even function, we have �(u,V , c) = �(u,�V ,�c). Since
the distribution of (W ,B) is symmetric, we have that ⌫U|V=V ,C=c is the same probability
measure as ⌫U|V=�V ,C=�c and pC|V=V (c)p�V(V) = pC|V=V (�c)pV(�V). From the defini-
tion of  (28) and � (31), we have that  and � are even. Then the odd part �� of � is 0.
According to (34),

R{(��)(d+1)/2g(·, (�,0, 0)))}(V , c)

=� 2(2⇡)d�1pC|V=V (c)pV(V)

Z

R+
�(u,V , c) · u d⌫U|V=V ,C=c(u)

=� 2(2⇡)d�1pC|V=V (c)pV(V)

Z

R+

R{(��)(d+1)/2h}(V , c) · u2

�2(2⇡)d�1⇣(V , c)
d⌫U|V=V ,C=c(u)

=� 2(2⇡)d�1pC|V=V (c)pV(V)
R{(��)(d+1)/2h}(V , c) · E(U2

|V = V , C = c)

�2(2⇡)d�1⇣(V , c)

=R{(��)(d+1)/2h}(V , c), (V , c) 2 supp(⇣).

(103)

It is not difficult to show that if (V , c) 62 supp(⇣), then R{(��)(d+1)/2g(·, (�,0, 0)))}(V , c) =
0 as in (101). Then, according to (103), R{(��)(d+1)/2g(·, (�,0, 0)))} ⌘ R{(��)(d+1)/2h}.
According to Corollary 33, we have that g(·, (�,0, 0)))� h is a linear function. This means
that we can find u 2 Rd, v 2 R such that hu,xi + v + g(x, (�,0, 0))) ⌘ h(x). Then we
find (�,u, v) such that g(x, (�,u, v)) = hu,xi + v + g(x, (�,0, 0))) = h(x) on supp(⇣). So
g(xj , (�,u, v)) = h(xj) = yj . This means that (�,u, v) satisfies the condition in problem

57

Jin and Montúfar

(26). Next we compute the cost of (�,u, v):

Z

R+⇥Sd�1⇥R
�2(u,V , c) d⌫(u,V , c)

=

Z

R+⇥Sd�1⇥R

R{(��)(d+1)/2h}(V , c) · u

�2(2⇡)d�1⇣(V , c)

!2

d⌫(u,V , c)

=

Z

Sd�1⇥R

R{(��)(d+1)/2h}(V , c)

⇣(V , c)

!2 R
R+ u2 d⌫U|V=V ,C=c(u)

4(2⇡)2(d�1)

!
d⌫V,C(V , c)

=

Z

Sd�1⇥R

R{(��)(d+1)/2h}(V , c)

⇣(V , c)

!2 E(U2
|V = V , C = c)pC|V=V (c) pV(V)

4(2⇡)2(d�1)
d�d�1(V)dc

=
1

4(2⇡)2(d�1)

Z

Sd�1⇥R

�
R{(��)(d+1)/2h}(V , c)

�2

⇣(V , c)
d�d�1(V)dc

=
1

4(2⇡)2(d�1)
L(h).

(104)
According to (34), the cost of (�,u, v) is

Z

R+⇥Sd�1⇥R
�2(u,V , c) d⌫(u,V , c)

=

Z

Sd�1⇥R

✓Z

R+
�2(u,V , c) d⌫U|V=V ,C=c(u)

◆
d⌫V,C(V , c)

�

Z

Sd�1⇥R

�R
R+ �(u,V , c) · u d⌫U|V=V ,C=c(u)

�2

E(U2|V = V , C = c)
d⌫V,C(V , c)

=

Z

Sd�1⇥R

R{(��)(d+1)/2g(·, (�,0, 0))}(V , c)� 2(2⇡)d�1��

2(2⇡)d�1pC|V=V (c) pV(V)

!2
1

E(U2|V = V , C = c)
d⌫V,C(V , c)

�

Z

Sd�1⇥R

R{(��)(d+1)/2g(·, (�,0, 0))}(V , c)

2(2⇡)d�1pC|V=V (c) pV(V)

!2
pC|V=V (c) pV(V)

E(U2|V = V , C = c)
d�d�1(V)dc

=

Z

Sd�1⇥R

�
R{(��)(d+1)/2g(·, (�,0, 0))}(V , c)

�2

4(2⇡)2(d�1)pC|V=V (c) pV(V)E(U2|V = V , C = c)
d�d�1(V)dc

=
1

4(2⇡)2(d�1)
L(g(·, (�,0, 0)))

=
1

4(2⇡)2(d�1)
L(g(·, (�,u, v))) (since (��)(d+1)/2 is invariant up to a linear function),

(105)
where the first inequality is by the Cauchy-Schwarz inequality and the second inequality
is by the Lemma 30 and the fact that R{(��)(d+1)/2g(·,(�,0,0))}(V ,c)

2(2⇡)d�1pC|V=V (c) pV (V)
is an even function and

58

Implicit bias of gradient descent for regression

�2(2⇡)d�1��

2(2⇡)d�1pC|V=V (c) pV (V)
is an odd function. Then we have

Z

R+⇥Sd�1⇥R
�2(u,V , c) d⌫(u,V , c)

=
1

4(2⇡)2(d�1)
L(h) (according to (104))

<
1

4(2⇡)2(d�1)
L(g(·, (�,u, v))) (according to (102))



Z

R+⇥Sd�1⇥R

1

4(2⇡)2(d�1)
�2(u,V , c) d⌫(u,V , c) (according to (105)).

This means that the cost of (�,u, v) is smaller than the cost of (�,u, v). This implies that
(�,u, v) is not the solution of (26), which is a contradiction and hence the assumption cannot
be true. In turn, h(x) ⌘ g(x, (�,u, v)), and g(x, (�,u, v) is the solution of problem (26).
This concludes the proof.

I.2 Proof of Theorem 7

Proof [Proof of Theorem 7] To simplify the analysis, we let f(x, ✓0) ⌘ 0. The analysis still
holds without this simplification. It is easy to verify that supp(⇣) = Sd�1

⇥ [�ab, ab] and
⇣(V , c) is constant over supp(⇣) according to Proposition 17. According to Corollary 35, we
have that the variational problem (8) is equivalent to the following variational problem:

min
h2Lip(Rd)\C(Rd)

Z

supp(⇣)

⇣
R{(��)(d+1)/2h}(V , c)

⌘2
d�d�1(V)dc

subject to h(xj) = yj , j = 1, . . . ,M,

(��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1).

(106)

The solution h(x) of (106) satisfies that R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 Sd�1
⇥

[0,maxi kxik2]. The assumption ab � maxi kxik2 means that Sd�1
⇥[0,maxi kxik2] ⇢ supp(⇣).

So R{(��)(d+1)/2h}(V , c) = 0, 8(V , c) 62 supp(⇣), which means that h(x) is also the solution
of the following variational problem:

min
h2Lip(Rd)\C(Rd)

Z

Sd�1⇥R

⇣
R{(��)(d+1)/2h}(V , c)

⌘2
d�d�1(V)dc

subject to h(xj) = yj , j = 1, . . . ,M.

(��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1).

(107)

So it is sufficient to prove that if h 2 Lip(Rd) and (��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d�1),
we have

Z

Sd�1⇥R

⇣
R{(��)(d+1)/2h}(V , c)

⌘2
d�d�1(V)dc =

Z

Rd

⇣
(��)(d+3)/4h(x)

⌘2
dx.

59

Jin and Montúfar

Given f : Sd�1
⇥ R ! R, let ef be the Fourier transform over affine parameter:

ef(V , ⌧) =

Z
1

1

f(V , c)e�ic⌧dc.

According to Solmon (1987, Lemma 4.5), we have

eR{(��)(d+1)/2h}(V , ⌧) = \(��)(d+1)/2h(⌧V)

= k⌧kd+1bh(⌧V) a.e.,

where bh is the Fourier transform of h. Then we have
Z

Sd�1⇥R

⇣
R{(��)(d+1)/2h}(V , c)

⌘2
d�d�1(V)dc

=

Z

Sd�1⇥R

⇣
eR{(��)(d+1)/2h}(V , ⌧)

⌘2
d�d�1(V)d⌧

=

Z

Sd�1⇥R

⇣
k⌧kd+1bh(⌧V)

⌘2
d�d�1(V)d⌧

=

Z

Rd

⇣
k⌧k(d+3)/2bh(x)

⌘2
dx

=

Z

Rd

⇣
\(��)(d+3)/4h(x)

⌘2
dx

=

Z

Rd

⇣
(��)(d+3)/4h(x)

⌘2
dx.

I.3 Proof of Theorem 8

In order to prove Theorem 8, we need following lemmas:

Lemma 36 For any d � 2 and x1,x2 2 Rd, we have (��)(d+1)/2(kx�x1k
3
�kx�x2k

3) =
Cd(�(x� x1)� �(x� x2)), where Cd is a constant.

Proof [Proof of Lemma 36] In order to prove the lemma, we need the following simple fact
that

(��)kxkp = C̃pkxk
p�2, (108)

where C̃p is a constant depends on p.
For d � 3, we can actually prove that (��)(d+1)/2

kxk3 = Cd(�(x)). We discuss the cases
of odd d and even d separately. If d is odd, we apply (108) for (d+ 1)/2 times and get

(��)(d+1)/2
kxk3 = C̄kxk3�(d+1)

= Cd(�(x)),

where Cd and C̄ are some constants.

60

Implicit bias of gradient descent for regression

If d is even, we apply (108) for d/2 times and get

(��)(d+1)/2
kxk3 = C̄(��)1/2kxk3�d.

Then we only need to prove that (��)1/2kxk3�d = Ckxk2�d for some constant C. Let
g(x) = (��)1/2kxk3�d. Since the fractional Laplacian can be written as a singular integral
(Kwaśnicki, 2017), we have

g(x) = C1

Z

Rd

kxk3�d
� kyk3�d

kx� ykd+1
dy,

where C1 is some constant. Since the fractional Laplacian of a radially symmetric function
is also radially symmetric, we have that g(x) is radially symmetric, which means g(x) only
depends on kxk. For any positive number k > 0, we have

g(kx) = C1

Z

Rd

kkxk3�d
� kyk3�d

kkx� ykd+1
dy

= C1

Z

Rd
kd ·

kkxk3�d
� kkyk3�d

kkx� kykd+1
dy

= C1

Z

Rd
k2�d

·
kxk3�d

� kyk3�d

kx� ykd+1
dy

= k2�dg(x).

Combining the above equation with the fact that g(x) is radially symmetric, we show that
g(x) = kxk2�dg(x

kxk) = Ckxk2�d for some constant C.
Now we have proved the lemma for d � 3. Next we consider the case when d = 2. Since

(��)3/2(kx � x1k
3
� kx � x2k

3) = (��)1/2(kx � x1k � kx � x2k), we only need to prove
that (��)1/2(kx� x1k� kx� x2k) = C(log kx� x1k� log kx� x2k), where C is a constant.
Using the singular integral definition of fractional Laplacian, we get

(��)1/2(kx� x1k � kx� x2k)

=C1

Z

Rd

kx� x1k � kx� x2k � ky � x1k+ ky � x2k

kx� yk3
dy

=C1 lim
R!1

Z

B(x1,R)[B(x2,R)

kx� x1k � kx� x2k � ky � x1k+ ky � x2k

kx� yk3
dy

=C1 lim
R!1

Z

B(x1,R)

kx� x1k � ky � x1k

kx� yk3
dy � C1 lim

R!1

Z

B(x2,R)

kx� x2k � ky � x2k

kx� yk3
dy

+C1 lim
R!1

Z

B(x2,R)\B(x1,R)

kx� x1k � ky � x1k

kx� yk3
dy

�C1 lim
R!1

Z

B(x1,R)\B(x2,R)

kx� x2k � ky � x2k

kx� yk3
dy.

61

Jin and Montúfar

Since for y 2 B(x2, R)\B(x1, R), we have kyk � R�kx1k. And the area of B(x2, R)\B(x1, R)
is at most 2Rkx1 � x2k. So

lim
R!1

Z

B(x2,R)\B(x1,R)

����
kx� x1k � ky � x1k

kx� yk3

���� dy

 lim
R!1

2Rkx1 � x2k ·
kx� x1k+R+ kx1k+ kx2k

(R� kxk � kx1k)3

=0.

Similarly we have limR!1

R
B(x1,R)\B(x2,R)

kx�x2k�ky�x2k

kx�yk3 dy = 0. Then we get

(��)1/2(kx� x1k � kx� x2k)

=C1 lim
R!1

Z

B(x1,R)

kx� x1k � ky � x1k

kx� yk3
dy � C1 lim

R!1

Z

B(x2,R)

kx� x2k � ky � x2k

kx� yk3
dy

=C1 lim
R!1

Z

B(0,R)

kx� x1k � kyk

kx� x1 � yk3
dy � C1 lim

R!1

Z

B(0,R)

kx� x2k � kyk

kx� x2 � yk3
dy.

Let f(x, R) =
R
B(0,R)

kxk�kyk
kx�yk3 dy. Then (��)1/2(kx � x1k � kx � x2k) = limR!1 f(x �

x1, R)� f(x� x2, R). Next we show that f(�x,�R) = f(x, R) for any � > 0. Actually

f(�x,�R) =

Z

B(0,�R)

k�xk � kyk

k�x� yk3
dy

=

Z

B(0,R)

�kxk � �kyk

k�x� �yk3
�ddy

=

Z

B(0,R)

kxk � kyk

kx� yk3
dy = f(x, R).

Also it is easy to see that f(x, R) is radially symmetric over x. So f(x, R) = f(kxku, R) for
any unit vector u 2 R2. Then we get

lim
R!1

f(x� x1, R)� f(x� x2, R) = lim
R!1

f(u,
R

kx� x1k
)� f(u,

R

kx� x2k
)

= lim
R!1

Z

B(0, R
kx�x1k

)\B(0, R
kx�x2k

)

kuk � kyk

ku� yk3
dy

= lim
R!1

Z

B(0, R
kx�x1k

)\B(0, R
kx�x2k

)

�kyk

k � yk3
dy

= � lim
R!1

Z

[R
kx�x2k

, R
kx�x1k

]

2⇡

r
dr

= �2⇡ lim
R!1

log
R

kx� x1k
� log

R

kx� x2k

= 2⇡(log kx� x1k � log kx� x2k).

So we proved the lemma for case d = 2.

The problem (37) is over the Lipschitz continuous function space, which is hard to analyse.
The following Lemma shows that we can consider the optimization problem over ��h.

62

Implicit bias of gradient descent for regression

Lemma 37 Suppose h(x) is the solution of the variational problem (37). Then there exist
u 2 Rd, v 2 R such that (��h(x),u, v) is the solution of the following variational problem:

min
f2C(Rd),
u2Rd,v2R

Z

supp(⇣)

�
R{(��)(d�1)/2f}(V , c)

�2

⇣(V , c)
d�d�1(V)dc

subject to
Z

Rd
f(s) [�(xj � s)� �(�s)� hxj ,r�(�s)i] ds+ hu,xji+ v = yj , j = 1, . . . ,M,

R{(��)(d�1)/2f}(V , c) = 0, 8(V , c) 62 supp(⇣),

(��)(d�1)/2f 2 Lp(Rd), 1  p < d/(d� 1),

sup
x2Rd

kxk · |f(x)| < 1,

(109)
where �(x) is the fundamental solution of the Laplace equation ���(x) = �(x). The closed
form of �(x) is

�(x) =

(
�

1
2⇡ log kxk, d = 2,

1
d(d�2)Vdkxkd�2 , d � 3,

where Vd is the volume of the unit ball in Rd.

Proof [Proof of Lemma 37] First we prove that supx2Rd kxk · | � �h| < 1. According
to Lemma 34 and Lemma 32, we have ��h = R

⇤
{ }, where is tightly supported.

Then (Solmon, 1987, Corollary 3.6) shows that R
⇤
{ } = O(kxk�1), which gives that

supx2Rd kxk · |��h| < 1.
Now it is sufficient to prove that for any h 2 Lip(Rd) satisfying that ��h 2 C(Rd) and

supx2Rd kxk · |��h(x)| < 1, there exist u 2 Rd, v 2 R such that
Z

Rd
[��h(s)] [�(x� s)� �(�s)� hx,r�(�s)i] ds+ hu,xi+ v = h(x).

Let g(x) =
R
Rd [��h(s)] [�(x� s)� �(�s)� hx,r�(�s)i] ds. First we show that g(x) is

well-defined. Since
R
ksk�1 ksk

�(d+1)ds < 1, we only need to prove that �(x� s)� �(�s)�

hx,r�(�s)i = O(ksk�d) as ksk ! 1 for any given x. Using Taylor’s expansion, we have

�(x� s)� �(�s)� hx,r�(�s)i = xTH�(cx� s)x for some c 2 [0, 1], (110)

where H� is the Hessian matrix of �. Since

@�

@si@sj
(s) = �

�ijksk2 � dsisj
dVdkskd+2

= O(ksk�d), (111)

where �ij = 1 when i = j, and �ij = 0 otherwise. According to (110) we have �(x � s) �
�(�s)� hx,r�(�s)i = O(ksk�d) as ksk ! 1. Then we proved that g(x) is well-defined.

Next we prove that krg(x)k = O(log kxk). We only need to consider the large enough x.
Suppose kxk � 2. The partial derivative of g is given by

@g

@xi
(x) =

Z

Rd
�

1

dVd
[��h(s)]


xi � si
kx� skd

+
si

kskd

�
ds. (112)

63

Jin and Montúfar

Since supx2Rd kxk · |��h(x)| < 1, we have k��h(x)k  C ·min{1, 1
x)} for some constant

C. It is easy to see that the integrand of (112) is O(kskd+1). So |
@g
@xi

(x)| < 1. Next we
estimate the integral (112) on Rd

\B(0, kxk/2):
�����

Z

ksk>kxk/2
[��h(s)]


xi � si
kx� skd

+
si

kskd

�
ds

�����



�����

Z

ksk>kxk/2

1

ksk


xi � si
kx� skd

+
si

kskd

�
ds

�����

=

�����

Z

ksk>1/2

1

ksk


xi/kxk � si
kx/kxk � skd

+
si

kskd

�
ds

�����

 max
kbxk=1

�����

Z

ksk>1/2

1

ksk


bxi � si
kbx� skd

+
si

kskd

�
ds

����� .

(113)

Since
���
R
ksk>1/2

1
ksk

h
bxi�si
kbx�skd

+ si
kskd

i
ds
��� is well-defined and continuous function over bx. Then

maxkbxk=1

���
R
ksk>1/2

1
ksk

h
bxi�si
kbx�skd

+ si
kskd

i
ds
��� is a finite number.

Next we estimate the integral (112) on B(0, kxk/2):
�����

Z

kskkxk/2
[��h(s)]


xi � si

kx� skd�1
+

si
kskd

�
ds

�����



�����

Z

ksk1
C


1

kx� skd
+

1

kskd�1

�
ds

�����+

�����

Z

1<kskkxk/2

C

ksk


1

kx� skd�1
+

1

kskd�1

�
ds

�����



�����

Z

ksk1
C


2d

kxkd
+

1

kskd�1

�
ds

�����+

�����

Z

1<kskkxk/2

C

ksk


2d

kxkd�1
+

1

kskd�1

�
ds

�����

C1 +
2dC

kxkd�1

�����

Z

1<kskkxk/2

1

ksk
ds

�����+ C

�����

Z

1<kskkxk/2

1

kskd
ds

�����

C1 +
2dC2

kxkd�1
kxkd�1 + C3 log kxk

C4 + C3 log kxk,
(114)

where C1, C2, C3 and C4 are some constants. Combining (113) and (114) we proved that
krg(x)k = O(log kxk).

In our last step, we prove that g�h is linear. Because of the property of the fundamental
solution, we have ��(g�h) ⌘ 0. Since h is Lipschitz continuous and krg(x)k = O(log kxk),
we have r(g�h) = O(log kxk). So we can regard g�h as a tempered distribution. Using the
proof technique of Lemma 29, we have that g�h is a polynomial. Since r(g�h) = O(log kxk),
g � h must be a linear function, which gives the claim.

64

Implicit bias of gradient descent for regression

Proof [Proof of Theorem 8] To simplify the proof, we let f(x, ✓0) ⌘ 0. The analysis still
holds without this simplification. Let h(x) be the solution of (9). Then Lemma 37 tell
us that there exist u 2 Rd, v 2 R such that (��h(x),u, v) is the solution of the following
variational problem:

min
f2C(Rd),
u2Rd,v2R

Z

Rd

⇣
(��)(d�1)/4f(x)

⌘2
dx

subject to
Z

Rd
f(s) [�(xj � s)� �(�s)� hxj ,r�(�s)i] ds+ hu,xji+ v = yj , j = 1, . . . ,M

(��)(d�1)/2f 2 Lp(Rd), 1  p < d/(d� 1)

sup
x2Rd

kxk · |f(x)| < 1,

(115)
Suppose that f(x) is the solution of (115). Let J(f,u, v) =

R
Rd

�
(��)(d�1)/4f(x)

�2
dx

and Gj(f,u, v) =
R
Rd f(s) [�(xj � s)� �(�s)� hxj ,r�(�s)i] ds + hu,xji + v. For any

function ' in Schwartz space S(Rd),7 ũ 2 Rd and ṽ 2 R, we consider the perturbation
(✏', ✏ũ, ✏ṽ) to the solution (��h,u, v). It is easy to verify that ��h + ✏' satisfies that
(��)(d�1)/2(��h+✏') 2 Lp(Rd), 1  p < d/(d�1) and supx2Rd kxk · |(��h+✏')(x)| < 1.
Next we have

d

d✏
J(��h+ ✏',u+ ✏ũ, v + ✏ṽ) = 2

Z

Rd

⇣
(��)(d�1)/4(��h)

⌘⇣
(��)(d�1)/4')

⌘
dx

= 2

Z

Rd
' ·

⇣
(��)(d�1)/2(��h))

⌘
dx,

The last equality holds because ' 2 S(Rd). Also we have

d

d✏
Gj(��h+ ✏',u+ ✏ũ, v + ✏ṽ) =

Z

Rd
'(s) [�(xj � s)� �(�s)� hxj ,r�(�s)i] ds+ hũ,xji+ ṽ.

Then according to the first-order optimality condition, there are scalars �̄1, . . . , �̄M such that

8
><

>:

(��)(d�1)/2(��h(x)) =
PM

j=1 �̄j [�(xj � x)� �(�x)� hxj ,r�(�x)i]
PM

j=1 �̄j = 0
PM

j=1 �̄jxj = 0

,

which can be simplified to

8
><

>:

(��)(d+1)/2h(x) =
PM

j=1 �̄j [�(x� xj)� �(x)]PM
j=1 �̄j = 0

PM
j=1 �̄jxj = 0

. (116)

7. The Schwartz functions on Rd
is the function space S(Rd) = {f 2 C1(Rd) : 8↵,� 2

Nd
, supx2Rd x↵(D�

f)(x) <1}, where ↵ and � are multi-indices.

65

Jin and Montúfar

According to Lemma 36 and Lemma 29, we can find out u 2 Rd, v 2 R such that

h(x) =
1

Cd

MX

j=1

�̄j
⇥
kx� xjk

3
� kxk3

⇤
+ hu,xi+ v

=
1

Cd

MX

j=1

�̄jkx� xjk
3 + hu,xi+ v,

which gives (10) after substituting �̄j
Cd

by �j . Since h(x) should fit all training data and �j
should satisfy (116), the coefficients �j , u and v satisfy (11). Now h(x) satisfies the first-order
optimality condition and fits all training data. Since the variational problem (107) is convex,
we only need to check that h 2 Lip(Rd) and (��)(d+1)/2h 2 Lp(Rd), 1  p < d/(d� 1) then
we can conclude that h(x) is the solution of (107). Using (110), we have

(��)(d+1)/2h(x) =
MX

j=1

�̄j [�(xj � x)� �(�x)� hxj ,r�(�x)i]

=
MX

j=1

�̄jx
T
j H�(cxj � x)xj for some c 2 [0, 1].

According to (111), we get that (��)(d+1)/2h(x) = O(kxk�d). We set p = (d+ 1)/d which
satisfies 1  p < d/(d � 1). It is easy to verify that

R
B(xj ,✏)

�p(xj � x)dx is integrable for
small enough ✏ and

R
Rd\B(0,1) kxk

�pddx is integrable. Then (��)(d+1)/2h 2 Lp(Rd).
Similarly we have

h(x) =
MX

j=1

�̄j
⇥
kxj � xk3 � k � xk3 � hxj ,r(k · k3)(�x)i

⇤

=
MX

j=1

�̄jx
T
j Hk·k3(cxj � x)xj for some c 2 [0, 1],

where Hk·k3 is the Hessian matrix of kxk3. As kxk ! 1, we have

@k · k3

@xi@xj
(x) = 3�ijkxk � 3

xixj
kxk

= O(kxk), (117)

where �ij = 1 when i = j, and �ij = 0 otherwise. Then we have h 2 Lip(Rd).

I.4 Explicit Form of the Curvature Penalty Function

Proof [Proof of Proposition 17] Since W ⇠ U(Sd�1), we have that pV(V) is constant over
Sd�1 and E(U2

|V = V , C = c) = 1 because U = kWk = 1. Since B ⇠ U(�a, a) and W and
B are independent, we have pC|V=V (c) = 1

2a [�a,a](c). Then we get

⇣(V , c) = pC|V=V (c) pV(V)E(U2
|V = V , C = c)

= C1 [�a,a](c),

66

Implicit bias of gradient descent for regression

where C1 is a constant.

Proof [Proof of Proposition 18] Let pW,B and pU ,V,C denote the joint density functions of
(W ,B) and (U ,V , C), respectively. We have

pU ,V,C(u,V , c) =

����
@(uV ,�uc)

@(u,V , c)

���� pW,B(uV ,�uc) = udpW,B(uV ,�uc),

and
pC|V=V (c) pV(V)E(U2

|V = V , C = c)

=pC|V=V (c) pV(V) ·

Z

R+
u2pU|V=V ,C=c(u) du

=

Z

R+
u2pU ,V,C(u,V , c) du

=

Z

R+
ud+2pW,B(uV ,�uc) du.

(118)

Proof [Proof of Theorem 19] Using (118), we have

⇣(V , c) =

Z

R+
ud+2pW,B(uV ,�uc) du

=

Z

R+
ud+2 1p

(2⇡)d�dw
e
�

kuV k22
2�2

w
1

p
2⇡�b

e
�

u2c2

2�2
b du

=
1

(2⇡)(d+1)/2�dw�b

Z

R+
ud+2e

�(1
2�2

w
+ c2

2�2
b
)u2

du.

Let �2 = 1/
⇣

1
�2
w
+ c2

�2
b

⌘
, then we have

⇣(V , c) =
�

(2⇡)d/2�dw�b

Z

R+
ud+2 1

p
2⇡�

e�
u2

2�2 du

=
�

(2⇡)d/2�dw�b
�d+2

· 2d/2 ·
�(d+3

2)
p
⇡

=
�d+3

⇡(d+1)/2�dw�b
�(

d+ 3

2
)

=
1

⇡(d+1)/2�dw�b
⇣

1
�2
w
+ c2

�2
b

⌘(d+3)/2
�(

d+ 3

2
)

=
�3w�

d+2
b

⇡(d+1)/2
�
�2b + c2�2w

�(d+3)/2
�(

d+ 3

2
).

67

Jin and Montúfar

Appendix J. Other Activation Functions for Univariate Regression

We have focused on networks with ReLUs. The ReLU is special in that the second derivative
of ReLU is a delta function. For other activation functions the variational problem on
function space will look different.

The paper by Parhi and Nowak (2019) considers different types of activation functions
�. These are then related to different types of linear operators L in the definition of the
smoothness regularizer. Here L and � satisfy L� = �, i.e., � is a Green’s function of L.
Suppose � is homogeneous. Then Parhi and Nowak (2019) show that minimizing the weight
“norm”8 of two-layer neural networks with activation function � is actually minimizing 1-norm
of Lf where f is the output function of the neural network.

The approach in Parhi and Nowak (2019) can be combined with our analysis. So if
for example we replace the ReLU by another homogeneous activation, we can replace the
operator accordingly and get an analogous result.
Proof [Proof of Corollary 4] Use the same notation as in Section 5, and let � be the
activation function, where we assume that � is a Green’s function of a linear operator L.
Then optimization problem (19) becomes:

min
↵n2C(R2)

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b)

subject to
Z

R2
↵n(W

(1), b)�(W (1)xj + b) dµn(W
(1), b) = yj , j = 1, . . . ,M.

(119)

The limit of the problem (119) as width n ! 1 is

min
↵2C(R2)

Z

R2
↵2(W (1), b) dµ(W (1), b)

subject to
Z

R2
↵(W (1), b)�(W (1)xj + b) dµ(W (1), b) = yj , j = 1, . . . ,M.

(120)

As in Section 6, we can change the variables and relax the optimization problem (120) to

min
�2C(R2),
p2C(R)

Z

R2
�2(W (1), c) d⌫(W (1), c)

subject to p(xj) +

Z

R2
�(W (1), c)�

⇣
W (1)(xj � c)

⌘
d⌫(W (1), c) = yj , j = 1, . . . ,M

L p ⌘ 0.
(121)

If the activation function � is ReLU, p is a linear function. Then (121) becomes the
optimization problem (22). Define the output function g of the neural network by

g(x, (�, p)) = p(x) +

Z

R2
�(W (1), c)[W (1)(x� c)]+ d⌫(W (1), c).

8. Here the form of “norm” depends on the degree of homogeneity of the activation �. We use quotation

marks because it is a generalized notion of norm which may not satisfy the property of a norm.

68

Implicit bias of gradient descent for regression

Assume that the activation function � is homogeneous of degree k, i.e., �(ax) = ak�(x) for
all a > 0. Similar to (86), we have

(Lg)(x, (�, p)) = L

✓Z

R2
�(W (1), c)

���W (1)
���
k
�
⇣
sign(W (1)) · (x� c)

⌘
d⌫(W (1), c)

◆

=

Z

R2
�(W (1), c)

���W (1)
���
k
�(x� c) d⌫(W (1), c)

=

Z

supp(⌫C)

✓Z

R
�(W (1), c)

���W (1)
���
k
d⌫W|C=c(W

(1))

◆
�(x� c) d⌫C(c)

=

Z

supp(⌫C)

✓Z

R
�(W (1), c)

���W (1)
���
k
d⌫W|C=c(W

(1))

◆
�(x� c)pC(c)dc

= pC(x)

Z

R
�(W (1), x)

���W (1)
���
k
d⌫W|C=x(W

(1)).

(122)

Then similar to Theorem 13, we show that the solution of (121) in function space actually
solves the following optimization problem:

min
h2C2(S)

Z

S

((Lh)(x))2

⇣(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m, (123)

where ⇣(x) = pC(x)E(W2k
|C = x) and S = supp(⇣) \ [mini xi,maxi xi]. Then Corollary 4

can be shown by using (123) and the technique used in proof of Theorem 1.

Appendix K. Effect of Linear Adjustment of the Training Data

In this section, we show that the solution of the variational problem with linearly adjusted
training data (25) is close to the solution of training with the original training data (20). This
means that our characterization of the implicit bias in Theorem 1 gives a close description of
the solution of gradient descent training with the original data set. The high level intuition is
that fitting a linear function only requires a very small adjustment of the parameters of the
network in comparison with the parameter adjustment needed to fit a non-linear function.

For the reader’s convenience, we restate the continuous version of the problem (20):

min
↵2C(Rd⇥R)

Z

Rd⇥R
↵2(W(1), b) dµ(W(1), b)

subject to
Z

Rd⇥R
↵(W(1), b)[hW(1),xji+ b]+ dµ(W(1), b) = yj , j = 1, . . . ,M,

(124)

and the linearly adjusted variational problem:

min
↵2C(Rd

⇥R),
u2Rd,v2R

Z

Rd⇥R
↵2(W(1), b) dµ(W(1), b)

subject to
Z

Rd⇥R
↵(W(1), b)[hW(1),xji+ b]+ dµ(W(1), b) + hu,xji+ v = yj , j = 1, . . . ,M.

(125)

69

Jin and Montúfar

In this paper, our main focus is on the variational problem (125), thus we derive our main
result Theorem 1 and Theorem 6 which are statements on linearly adjusted training data.
In this section, we try to analyze the difference between solutions of variational problems
(124) and (125), and thus show that to what extent the variational problem (5) and (8) in
Theorem 1 and Theorem 6 describes the implicit bias of gradient descent on original training
data.

Suppose the solution of problem (124) is ↵̄1, and the corresponding output function is

g(x, ↵̄1) =

Z

R2
↵̄1(W

(1), b)[hW(1),xi+ b]+ dµ(W(1), b).

The solution of problem (125) is (↵̄2, ū, v̄) and the corresponding output function is:

g(x, (↵̄2, ū, v̄)) = hū,xi+ v̄ +

Z

R2
↵̄2(W

(1), b)[hW(1),xi+ b]+ dµ(W(1), b).

Our goal is to show that g(x, ↵̄1) and g(x, (↵̄2, ū, v̄)) are close to each other.
Suppose that the linear function hū,xi+ v̄ can be fitted by an infinite width network

with parameters ↵s, i.e.,
Z

R2
↵s(W

(1), b)[hW(1),xi+ b]+ dµ(W(1), b) = hū,xi+ v̄. (126)

Then ↵̄2+↵s is a feasible solution of the problem (124). It is easy to show that g(x, ↵̄2+↵s) =
g(x, (↵̄2, ū, v̄)). So we only need to measure the difference between g(x, ↵̄1) and g(x, ↵̄2+↵s).
The next theorem characterizes the relative difference between ↵̄1 and ↵̄2 + ↵s.

Theorem 38 Suppose that the solution of the optimization problem (124) is ↵̄1 and the
solution of the optimization problem (125) is (↵̄2, ū, v̄). Suppose that ↵s satisfies (126). Then
we have

R
R2(↵̄1 � ↵̄2 � ↵s)2 dµ(W(1), b)R

R2 ↵̄2
1 dµ(W(1), b)

 2

sR
R2 ↵2

s dµ(W(1), b)R
R2 ↵̄2

1 dµ(W(1), b)
+

R
R2 ↵2

s dµ(W(1), b)R
R2 ↵̄2

1 dµ(W(1), b)
.

Proof [Proof of Theorem 38] Since (↵̄2, ū, v̄) is the minimizer of (125), we have that (↵̄1, 0, 0)
is a feasible solution of (124) but not optimal, which means

Z

R2
↵̄2
1(W

(1), b) dµ(W(1), b) �

Z

R2
↵̄2
2(W

(1), b) dµ(W(1), b). (127)

From the optimality of ↵1, we have
Z

R2
↵̄2
1(W

(1), b) dµ(W(1), b) 

Z

R2
(↵̄2 + ↵s)

2(W(1), b) dµ(W(1), b).

Using the first order optimality condition on the problem (124), we have that there exist
�j 2 R such that

↵1(W
(1), b) =

MX

j=1

�j [hW
(1),xi+ b]+. (128)

70

Implicit bias of gradient descent for regression

Since both ↵̄1 and ↵̄2 + ↵s are the feasible solutions of the problem (120),
Z

R2
(↵̄1 � ↵̄2 � ↵s) · [hW

(1),xji+ b]+ dµ(W(1), b) = 0, j = 1, . . . ,M. (129)

Using (128) and (129), we have
Z

R2
(↵̄1 � ↵̄2 � ↵s)↵̄1 dµ(W(1), b)

=

Z

R2
(↵̄1 � ↵̄2 � ↵s)

MX

j=1

�j [hW
(1),xi+ b]+ dµ(W(1), b)

=
MX

j=1

�j

Z

R2
(↵̄1 � ↵̄2 � ↵s) · [hW

(1),xi+ b]+ dµ(W(1), b)

=0.

(130)

Then we measure the difference between ↵̄1 and ↵̄2 + ↵s:Z

R2
(↵̄1 � ↵̄2 � ↵s)

2 dµ(W(1), b)

=

Z

R2
(↵̄2 + ↵s)

2
� (2↵̄2 + 2↵s � ↵̄1)↵̄1 dµ(W(1), b)

=

Z

R2
(↵̄2 + ↵s)

2
� ↵̄2

1 + (2↵̄2 + 2↵s � 2↵̄1)↵̄1 dµ(W(1), b)

=

Z

R2
(↵̄2 + ↵s)

2
� ↵̄2

1 dµ(W(1), b) (use (130))

=

Z

R2
(↵̄2

2 + 2↵̄2↵s + ↵2
s)� ↵̄2

1 dµ(W(1), b)



Z

R2
(↵̄2

1 + 2↵̄2↵s + ↵2
s)� ↵̄2

1 dµ(W(1), b) (use (127))



Z

R2
2↵̄2↵s + ↵2

s dµ(W(1), b)

2

sZ

R2
↵̄2
2 dµ(W(1), b) ·

Z

R2
↵2
s dµ(W(1), b) +

Z

R2
↵2
s dµ(W(1), b)

2

sZ

R2
↵̄2
1 dµ(W(1), b) ·

Z

R2
↵2
s dµ(W(1), b) +

Z

R2
↵2
s dµ(W(1), b) (use (127)).

Then we bound the relative difference between ↵̄1 and ↵̄2 + ↵s:
R
R2(↵̄1 � ↵̄2 � ↵s)2 dµ(W(1), b)R

R2 ↵̄2
1 dµ(W(1), b)



2
qR

R2 ↵̄2
1 dµ(W(1), b) ·

R
R2 ↵2

s dµ(W(1), b) +
R
R2 ↵2

s dµ(W(1), b)
R
R2 ↵̄2

1 dµ(W(1), b)

=2

sR
R2 ↵2

s dµ(W(1), b)R
R2 ↵̄2

1 dµ(W(1), b)
+

R
R2 ↵2

s dµ(W(1), b)R
R2 ↵̄2

1 dµ(W(1), b)
.

71

Jin and Montúfar

dimension
of inputs

training input set X training output Y distribution of
(W ,B)

Setting 1 1 �2, �1.6, 0.3, 0.6, 2 1.5, 0.5, 1.5, 0.5, 1.5 W ⇠ U(�1, 1)
B ⇠ U(�2, 2)

Setting 2 2 (�1,�1), (1, 1), (0, 0),
(�1, 1), (1,�1)

1.5, 1.5, 0.5, �0.5,
�0.5

W ⇠ U(S1)
B ⇠ U(�2, 2)

Setting 3 2 (�1, 1), (1, 1), (0.5, 0.9),
(�1,�1), (1,�1), (0, 0),
(�1.3,�0.7), (�0.8, 0.3),
(�0.4, 1.6), (1.6,�0.4)

1.5, 1.5, 0.5, �0.5,
�0.5, �1.5, �1.5,
�0.5, 0.5, 0.5

W ⇠ U(S1)
B ⇠ U(�2, 2)

Table 1: Experimental settings.

The above theorem means that if
R
R2 ↵2

s dµ(W(1), b) is much smaller than
R
R2 ↵̄2

1 dµ(W(1), b),
the relative difference between ↵̄1 and ↵̄2 + ↵s is quite small. Here ↵s fits a linear function
and ↵̄1 fits the original training data. Since it is much easier for a neural network to fit a
linear function than a non-linear function, in practice we observe that

R
R2 ↵2

s dµ(W(1), b) is
indeed much smaller than

R
R2 ↵̄2

1 dµ(W(1), b) when the training data is not highly linearly
correlated. This is shown in the right panel of Figure 12.

Generally speaking, the relative difference between g(x, ↵̄1) and g(x, (↵̄2, ū, v̄)) can
be related to the relative difference between ↵̄1 and ↵̄2 + ↵s, which can be bounded by
using D1 :=

R
R2 ↵

2
s dµ(W(1),b)R

R2 ↵
2
1 dµ(W(1),b)

. In experiments, the relative difference between g(x, ↵̄1) and

g(x, (↵̄2, ū, v̄)) is measured by D :=
R
[�R,R]d (g(x,↵̄1)�g(x,(↵̄2,ū,v̄)))

2 dx
R
[�R,R]d (g(x,↵̄1))

2 dx
, where R is the minimal

positive number such that [�R,R]d includes all training samples. In order to computeR
R2 ↵̄2

1 dµ(W(1), b) we only need to solve the optimization problem (124) and get ↵1. To
compute

R
R2 ↵2

s dµ(W(1), b), we first need to solve the optimization problem (125) and
get (↵̄2, ū, v̄). Then we need to find out ↵s which satisfies (126). We can give an easy
form of ↵s if we assume that the distribution of (W ,B) is symmetric over each component,
i.e., (W1, . . . ,Wi, . . . ,Wd,B) and (W1, . . . ,�Wi, . . . ,Wd,B) have the same distribution for
i = 1, . . . , d. In this case we can choose ↵s(W(1), b) = C1hW(1), ūi+ C2v̄ where C1, C2 are
constants which is determined by (126).

Next, we conduct some experiments to verify the above argument. We try three different
settings and they are summarized in Table 1. For each setting, we add different linear
functions to training data and compute corresponding D1 and D. In order to verify the
idea that D1 is small if training data is not highly correlated, we compute the coefficient of
determination R2 of the training data and then compare it with D1. In Figure 12 we plot
D against D1 and D1 against R2. We observe that D1 is small when R2 is small and D1 is
a loose upper bound of D. Actually, D is very small even if D1 is relatively large, which
implies that the relative difference between solutions of (124) and (125) is small in practice.

72

Implicit bias of gradient descent for regression

D against D1 D1 against R
2

Figure 12: Scatter plots of D1, D and R2. The left panel is the scatter plot of D against D1,
which shows that D1 is a very loose upper bound of D. Even when D1 is around
1, D is still around 10�3. The right panel is the scatter plot of D1 against R2,
which shows that D1 is small when training data are not highly linearly correlated
and D1 is large when training data are highly linearly correlated.

Appendix L. Neural Networks with Skip Connections

For any given input x 2 Rd, the network with skip connections from the inputs to the outputs
computes a function of the form

f(x, ✓) =
nX

i=1

W (2)
i �(hW(1)

i ,xi+ b(1)i) + hu,xi+ v. (131)

The skip connection corresponds to the term hu,xi. The initializations of W(1)
i , b(1)i ,W (2)

i are
the same as (3). The parameters of skip connections are initialized by zero. We also train this
network by gradient descent. The learning rate of parameters W(1)

i , b(1)i ,W (2)
i is ⌘r and the

learning rate of parameters of skip connections u, v is ⌘s. Let ✓0 = vec(W
(1)

,b
(1)

,W
(2)

,0, 0)

be the parameters at initialization and ✓t = vec(W(1)
t ,b(1)

t ,W(2)
t ,ut, vt) be the parameters

after t steps of gradient descent. Then the gradient descent iterations are

W(1)
0 = W

(1)
, W(1)

t+1 = W(1)
t � ⌘rrW(1)Llin(✓t)

b(1)
0 = b

(1)
, b(1)

t+1 = b(1)
t � ⌘rrb(1)Llin(✓t)

W(2)
0 = W

(2)
, W(2)

t+1 = W(2)
t � ⌘rrW(2)Llin(✓t)

u0 = 0, ut+1 = ut � ⌘sruL
lin(✓t)

v0 = 0, vt+1 = vt � ⌘srvL
lin(✓t)

(132)

73

Jin and Montúfar

Let e!t = vec(W
(1)

,b
(1)

,fW(2)
t , eu, ev) be the parameters at time t under the update rule where

W
(1)

,b
(1) are kept fixed at their initial values, and

fW(2)
0 = W

(2)
, fW(2)

t+1 =
fW(2)

t � ⌘rrW(2)Llin(e!t)

eu0 = 0, eut+1 = eut � ⌘sruL
lin(e!t)

ev0 = 0, evt+1 = evt � ⌘srvL
lin(e!t)

(133)

Let =
PM

j=1(xj , 1)T (xj , 1). Using the similar argument in Section 4, we can show that
training all parameters can be approximated by training only output weights and skip
connections parameters, which is actually a linearized model. Then we can apply Theorem 44
with some modifications and show that gradient descent training of the output weights (133)
on mean squared loss with ⌘r  M

4n�max(⇥̂n)
, ⌘s 

M
4�max()

, achieves zero loss and solves the
following optimization problem:

min
W(2)

1

⌘r
kW(2)

�W
(2)

k
2
2 +

1

⌘s

�
kuk22 + v2

�

s.t.
nX

i=1

(W (2)
i �W

(2)
i)[hW

(1)
i ,xji+ b

(1)
i]+ + hu,xji+ v = yj � f(xj , ✓0), j = 1, . . . ,M.

(134)
Similar to Section 5, we let f lin(x, ✓0) ⌘ 0 by using the Anti-Symmetrical Initialization (ASI)
trick. Let µn denote the empirical distribution of the samples (W

(1)
i , b

(1)
i)ni=1, i.e., µn(A) =

1
n

Pn
i=1 A

⇣
(W

(1)
i , b

(1)
i)
⌘
, where A denotes the indicator function for measurable subsets A

in R2. We further consider a function ↵n : R2
! R, ↵n(W

(1)
i , b

(1)
i) = n(W (2)

i �W
(2)
i). Then

(134) with ASI can be rewritten as

min
↵n2C(R2)

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b) +

n⌘r
⌘s

�
kuk22 + v2

�

s.t.
Z

R2
↵n(W

(1), b)[hW(1),xji+ b]+ dµn(W
(1), b) + hu,xji+ v = yj , j = 1, . . . ,M.

(135)
Now we can consider the infinite width limit. Let µ be the probability measure of (W ,B).

Assume that ⌘r  n�1.5⌘s. Then n⌘r
⌘s

= o(1) as n ! 1, thus it can be ignored in the infinite
width limit. By substituting µ for µn, we obtain a continuous version of problem (135) as
follows:

min
↵2C(R2)

Z

R2
↵2(W(1), b) dµ(W(1), b)

s.t.
Z

R2
↵(W(1), b)[hW(1),xji+ b]+ dµ(W(1), b) + hu,xji+ v = yj , j = 1, . . . ,M.

(136)
Using that µn weakly converges to µ, we show that in fact the solution of problem (135)
converges to the solution of (136) in Theorem 39.

74

Implicit bias of gradient descent for regression

Theorem 39 (Infinite width limit for network with skip connections) Let (W(1)
i , b

(1)
i)ni=1

be i.i.d. samples from a pair (W ,B) with finite fourth moment. Suppose µn is the empirical
distribution of (W(1)

i , b
(1)
i)ni=1 and (↵n,un, vn) is the solution of (135). Let (↵,u, v) be the

solution of (136). Assume that ⌘r  n�1.5⌘s. Then, for any compact set D ⇢ Rd, we
have supx2D |gn(x, (↵n,un, vn))� g(x, (↵,u, v))| = Op(n�1/2) , where gn(x, (↵n,un, vn)) =R
R2 ↵n(W(1), b)[hW(1),xi + b]+ dµn(W(1), b) + hun,xi + vn is the function represented by

a network with n hidden neurons and skip connections after training, and g(x, (↵,u, v)) =R
R2 ↵(W(1), b)[hW(1),xi + b]+ dµ(W(1), b) + hu,xi + v is the function represented by the

infinite-width network with skip connections.

The proof of Theorem 39 is provided at the end of the section. In Section 6 and Section 7,
we show that the optimization problem (136) is equivalent to (24) in the univariate case
and equivalent to (37) in the multivariate case. From this we immediately obtain our main
theorems for networks with skip connections without adjusting the training data, namely the
following Theorem 40 and Theorem 41.

Theorem 40 (Implicit bias of networks with skip connections, univariate) Consider
a two-layer feedforward network with skip connections (131). Assume parameter initialization
(3), which means for each hidden unit the input weight and bias are initialized from a sub-
Gaussian (W,B) with joint density pW,B. Then, for any finite data set {(xj , yj)}Mj=1 and suf-
ficiently large n, the optimization of the mean squared error on the training data {(xj , yj)}Mj=1

by gradient descent iterations (132) with learning rate ⌘s  M
4�max()

, ⌘r  n�1.5⌘s converges
to a parameter ✓⇤ for which the output function f(x, ✓⇤) attains zero training error. Further-
more, letting ⇣(x) =

R
R |W |

3pW,B(W,�Wx) dW and S = supp(⇣) \ [minj xj ,maxj xj], we
have supx2S kf(x, ✓⇤)� g⇤(x)k2 = Op(n

�
1
2)over the random initialization ✓0, where g⇤ solves

following variational problem:

min
g2C2(S)

Z

S

1

⇣(x)
(g00(x)� f 00(x, ✓0))

2 dx

subject to g(xj) = yj , j = 1, . . . ,M.

(137)

Theorem 41 (Implicit bias of networks with skip connections, multivariate) Consider
the same network settings as in Theorem 40 except with d input units instead of a sin-
gle input unit. Assume that W is a random vector with P(kWk = 0) = 0 and B is a
random variable; the distribution of (W ,B) is symmetric, i.e., (W ,B) and (�W ,�B)
have the same distribution; and kWk2 and B are both sub-Gaussian. Then, for any fi-
nite data set {(xj , yj)}Mi=1 and sufficiently large n, the optimization of the mean squared
error on the training data {(xj , yj)}Mj=1 by gradient descent iterations (132) with learning
rate ⌘s 

M
4�max()

, ⌘r  n�1.5⌘s converges to a parameter ✓⇤ for which f(x, ✓⇤) attains
zero training error. Furthermore, let U = kWk2, V = W/kWk2, C = �B/kWk2 and
⇣(V , c) = pV,C(V , c)E(U2

|V = V , C = c), where pV,C is the joint density of (V , C). Then,
for any compact set D ⇢ Rd, we have supx2D kf(x, ✓⇤)�g⇤(x)k2 = Op(n

�
1
2) over the random

75

Jin and Montúfar

initialization ✓0, where g⇤ solves following variational problem:

min
g2Lip(Rd)

Z

supp(⇣)

�
R{(��)(d+1)/2(g � f(·, ✓0))}(V , c)

�2

⇣(V , c)
dV dc

subject to g(xj) = yj , j = 1, . . . ,M

R{(��)(d+1)/2(g � f(·, ✓0))}(V , c) = 0, (V , c) 62 supp(⇣)

(��)(d+1)/2(g � f(·, ✓0)) 2 Lp(Rd), 1  p < d/(d� 1).

(138)

Proof [Proof of Theorem 39] The Lagrangian of problem (135) is

L((↵n,un, vn),�
(n)) =

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b)+

n⌘r
⌘s

�
kunk

2
2 + v2n

�
+

MX

j=1

�(n)j (gn(xj ,↵n)�yj).

The optimal condition is r↵nL = 0, which means

2↵n(W
(1), b) +

MX

j=1

�(n)j [hW(1),xji+ b]+ = 0 when (W(1), b) = (W(1)
i , bi), i = 1, . . . , k

2n⌘r
⌘s

un +
MX

j=1

�(n)j xj = 0

2n⌘r
⌘s

vn +
MX

j=1

�(n)j = 0.

Since only function values on (W(1)
i , bi)Mi=1 are taken into account in problem (135), we can

let

↵n(W
(1), b) = �

1

2

MX

j=1

�(n)j [hW(1),xji+ b]+ 8(W(1), b) 2 Rd+1 (139)

without changing
R
R2 ↵2

n(W
(1), b) dµn(W(1), b) and gn(x,↵n).

Here �(n)j , j = 1, . . . ,M are chosen to make gn(xi,↵n) = yi, i = 1, . . . ,M . So we get a
system of linear equations in variables {�(n)j }

M
j=1,un and vn:

�
1

2

MX

j=1

�(n)j

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµn(W
(1), b) + hun,xii+ vn = yi, i = 1, . . . ,M

MX

j=1

�(n)j xj +
2n⌘r
⌘s

un = 0

MX

j=1

�(n)j +
2n⌘r
⌘s

vn = 0.

(140)

76

Implicit bias of gradient descent for regression

Similarly, the Lagrangian of problem (136) is

eL(↵,�) =
Z

R2
↵2(W(1), b) dµ(W(1), b) +

MX

j=1

�j(g(xj ,↵)� yj).

The optimality condition is r↵
eL = 0, which means

2↵(W(1), b) +
MX

j=1

�(n)j [hW(1),xji+ b]+ = 0 8(W(1), b) 2 Rd+1

0 · u+
MX

j=1

�(n)j xj = 0

0 · v +
MX

j=1

�(n)j = 0.

Then we get

↵(W(1), b) = �
1

2

MX

j=1

�j [hW
(1),xji+ b]+ 8(W(1), b) 2 R2. (141)

Here �j , j = 1, . . . ,M are chosen to make g(x,↵) = yi, i = 1, . . . ,M . This means that

�
1

2

MX

j=1

�j

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµ(W(1), b) + hu,xii+ v = yi, i = 1, . . . ,M

MX

j=1

�jxj + 0 · u = 0

MX

j=1

�j + 0 · v = 0

.
(142)

Compare (140) and (142). Since the number of samples is finite, xi is also bounded. Then
by the assumption that W and B have finite fourth moments, we have that [hW(1),xji +
b]+[hW(1),xii + b]+ has finite variance. According to central limit theorem, as n ! 1,R
R2 [hW(1),xji + b]+[hW(1),xii + b]+ dµn(W(1), b) tends to a Gaussian distribution with

variance O(n�1). This implies that 8i = 1, . . . ,M, 8j = 1, . . . ,M ,

|

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµn(W
(1), b)

�

Z

R2
[hW(1),xji+ b]+[hW

(1),xii+ b]+ dµ(W(1), b)|

= Op(n
�1/2)

77

Jin and Montúfar

Also according to the assumption ⌘r  n�1.5⌘s, we have 2n⌘r
⌘s

= O(n�1/2). So coefficients of
(140) converge to coefficients of (142) at the rate of Op(n�1/2), then we get

|�nj � �j | = Op(n
�1/2), j = 1, . . . ,M. (143)

Compare (139) and (141). Given (W(1), b), we have

|↵n(W
(1), b)� ↵(W(1), b)| = Op(n

�1/2). (144)

Next we want to prove that supx2D |gn(x, (↵n,un, vn))�g(x, (↵,u, v))| = Op(n�1/2). Firstly,
we prove that supx2D |gn(x, (↵,u, v))�g(x, (↵,u, v))| = Op(n�1/2). Note that |gn(x, (↵,u, v))�
g(x, (↵,u, v))| = |gn(x, (↵,0, 0)) � g(x, (↵,0, 0))|. According to (84) in the proof of Theo-
rem 12 in Appendix G, we have supx2D |gn(x, (↵,0, 0))� g(x, (↵,0, 0))| = Op(n�1/2). Then
we have

sup
x2D

|gn(x, (↵,u, v))� g(x, (↵,u, v))| = Op(n
�1/2). (145)

Finally, we prove that supx2D |gn(x, (↵n,un, vn))� gn(x, (↵,u, v))| = Op(n�1/2). Since
8x 2 D

|gn(x, (↵n,un, vn))� gn(x, (↵,u, v))|



Z

R2

���↵n(W
(1), b)[hW(1),xi+ b]+ � ↵(W(1), b)[hW(1),xi+ b]+

��� dµn(W
(1), b)

+ kxk2kun � uk2 + |vn � v|



Z

R2

���↵n(W
(1), b)� ↵(W(1), b)

��� [hW(1),xi+ b]+ dµn(W
(1), b) + kxk2kun � uk2 + |vn � v|



Z

R2

������
�
1

2

MX

j=1

(�nj � �j)[hW
(1),xji+ b]+

������
[hW(1),xi+ b]+ dµn(W

(1), b)

+ kxk2kun � uk2 + |vn � v|


1

2

MX

j=1

|�nj � �j |

Z

R2
[hW(1),xji+ b]+[hW

(1),xi+ b]+ dµn(W
(1), b)

+ kxk2kun � uk2 + |vn � v|


1

2

✓
max
x2D

Z

R2
[hW(1),xji+ b]+[hW

(1),xi+ b]+ dµn(W
(1), b)

◆ MX

j=1

|�nj � �j |

+max
x2D

kxk2kun � uk2 + |vn � v|.

Because D is compact and
R
R2 [hW(1),xji + b]+[hW(1),xi + b]+ dµn(W(1), b) converges

according to the law of large numbers, we have that maxx2D
R
R2 [hW(1),xji+ b]+[hW(1),xi+

b]+ dµn(W(1), b) and maxx2D kxk2 is bounded by a finite number independent of n. Then
according to (143),

sup
x2D

|gn(x, (↵n,un, vn))� gn(x, (↵,u, v))| = Op(n
�1/2).

78

Implicit bias of gradient descent for regression

Combined with (145), we have

sup
x2D

|gn(x, (↵n,un, vn))� g(x, (↵,u, v))| = Op(n
�1/2).

This concludes the proof.

Appendix M. Equivalence of Our Characterization and NTK Norm
Minimization for Univariate Regression

In this section we demonstrate that NTK norm minimization (Zhang et al., 2020), which
characterizes the implicit bias of training a linearized model by gradient descent, is equivalent
to our characterization in Section 5 and Section 6. For simplicity, we only consider univariate
regression in this section. Following Jacot et al. (2018), Zhang et al. (2020) show that gradient
descent can be regarded as a kernel gradient descent in function space, whereby the kernel is
given by the NTK. Then for a linearized model, gradient descent finds the global minimum
that is closest to the initial output function in the corresponding reproducing kernel Hilbert
space (RKHS). Let ⇥̃n be the empirical neural tangent kernel of training only the output
layer, i.e.,

⇥̃n(x1, x2) =
1

n
rW (2)f(x1, ✓0)rW (2)f(x2, ✓0)

T

=
1

n

nX

i=1

r
W

(2)
i

f(x1, ✓0)rW
(2)
i

f(x2, ✓0)

=
1

n

nX

i=1

[W (1)
i x1 + b(1)i]+[W

(1)
i x2 + b(1)i]+.

As n ! 1, ⇥̃n ! ⇥̃, where

⇥̃(x1, x2) =

Z

R2
[W (1)x1 + b(1)]+[W

(1)x2 + b(1)]+ dµ(W (1), b). (146)

Equivalently, using the notation in Section 6, we have

⇥̃(x1, x2) =

Z

R2
[W (1)(x1 � c)]+[W

(1)(x2 � c)]+ d⌫(W (1), c). (147)

Next, Zhang et al. (2020) construct a RKHS H⇥̃(S) by kernel ⇥̃, and the inner product
of the RKHS is denoted by h·, ·i⇥̃. Then H⇥̃(S) satisfies:

(i) 8x 2 S, ⇥̃(·, x) 2 H⇥̃(S); (148)

(ii) 8x 2 S, 8f 2 H⇥̃, hf(·), ⇥̃(·, x)i⇥̃ = f(x); (149)

(iii) 8x, y 2 S, h⇥̃(·, x), ⇥̃(·, y)i⇥̃ = ⇥̃(x, y). (150)

Here the domain is S = supp(⇣) \ [mini xi,maxi xi], which is the same as in Theorem 1 and
Theorem 13. Using the reproducing kernel Hilbert space, Zhang et al. (2020) prove that
f lin(x, e!1) (defined in Section 4.2) is the solution of the following optimization problem:

min
g2H⇥̃(S)

kgk⇥̃n
s.t. g(xj) = yj , j = 1, . . . ,M.

79

Jin and Montúfar

As the width n tends to infinity, the above optimization problem becomes

min
g2H⇥̃(S)

kgk⇥̃ s.t. g(xj) = yj , j = 1, . . . ,M. (151)

In Section 5, we show that f lin(x, e!1) is the solution of the optimization problem (19) in
function space. As width n tends to infinity, the optimization problem (19) becomes (20),
which we repeat below:

min
↵2C(R2)

Z

R2
↵2(W (1), b) dµ(W (1), b)

subject to
Z

R2
↵(W (1), b)[W (1)xj + b]+ dµ(W (1), b) = yj , j = 1, . . . ,M.

(152)

Since optimization problems (151) and (152) both characterize the implicit bias of training a
linearized model by gradient descent, they must have the same solution in function space.
We express this formally in the following theorem:

Theorem 42 (Equivalence of our variational problem and NTK norm minimization)
Assume that optimization problems (151) and (152) are both feasible. Suppose ↵ is the solution
of (152), and consider the corresponding output function:

g(x) =

Z

R2
↵(W (1), b)[W (1)x+ b]+ dµ(W (1), b). (153)

Then g(x) restricted on S is the solution of the optimization problem (151).

Next, we give a standalone proof of this theorem using the property of kernel norm. The
proof gives us an idea of what the kernel norm actually looks like.
Proof [Proof of Theorem 42] Since ↵(W (1), b) is the solution of (152), according to (79) in
the proof of Theorem 12,

↵(W (1), b) = �
1

2

MX

j=1

�j [W
(1)xj + b]+ 8(W (1), b) 2 R2

for some constants �j , j = 1, . . . ,M . Then we write ↵(W (1), b) in the following form:

↵(W (1), b) =

Z

S
h(x)[W (1)x+ b]+dx, (154)

where h(x) can be a combination of Dirac delta functions. Then substitute (154) into the
expression of g(x) (153) to obtain

g(x) =

Z

R2⇥S
h(x̃)[W (1)x̃+ b]+[W

(1)x+ b]+ dµ(W (1), b)dx̃

=

Z

S
h(x̃)⇥̃(x, x̃)dx̃,

(155)

80

Implicit bias of gradient descent for regression

where we use the expression of the NTK in equation (146). Then we get

hg(x), g(x)i⇥̃ = hg(x),

Z

S
h(x̃)⇥̃(x, x̃)dx̃i⇥̃dx̃

=

Z

S
h(x̃)hg(x), ⇥̃(x, x̃)i⇥̃dx̃

=

Z

S
h(x̃)g(x̃)dx̃ (here we use the property of RKHS norm (149))

=

Z

S⇥S
h(x̃)h(x̄)⇥̃(x̃, x̄)dx̃dx̄ (use (155)).

(156)

On the other hand, using (154), the objective of (152) becomes
Z

S2
↵2(W (1), b) dµ(W (1), b)

=

Z

S⇥S⇥R2
h(x̃)[W (1)x̃+ b]+h(x̄)[W

(1)x̄+ b]+ dx̃dx̄dµ(W (1), b)

=

Z

S⇥S
h(x̃)h(x̄)

Z

R2
[W (1)x̃+ b]+[W

(1)x̄+ b]+dµ(W
(1), b) dx̃dx̄

=

Z

S⇥S
h(x̃)h(x̄)⇥̃(x̄, x̃) dx̃dx̄ (use (146)).

(157)

Comparing (156) and (157), we have that optimization problems (151) and (152) are equiva-
lent if ↵(W (1), b) has the form (154) and g(x) has the form (155). Moreover, if every function
g 2 H⇥̃(S) can be approximated by the shallow network, we can find ↵(W (1), b) in form of
(154) such that g(x) is expressed in the form of (155). In this sense we show that optimization
problems (151) and (152) are equivalent.

In Section 6, we relax the optimization problem (21) to (22) in order to characterize
the implicit bias in function space. This relaxation can also be done in the NTK norm
minimization setting. It means that we can equivalently relax the problem (151) to the
following problem:

min
g2H⇥̃(S),u2R,v2R

kg � ux� vk⇥̃ s.t. g(xj) = yj , j = 1, . . . ,M. (158)

Then the optimization problems (22) and (158) are equivalent. Theorem 13 shows that (22)
and (24) have the same solution on the set S = supp(⇣) \ [mini xi,maxi xi]. Then we have
that optimization problems (158) and (24) are equivalent, which means that

min
u2R,v2R

kg � ux� vk⇥̃ =

Z

S

(g00(x))2

⇣(x)
dx, 8g 2 H⇥̃(S). (159)

Next, we directly prove the above equation (159). Given function g 2 H⇥̃(S), let h =
argminh2H⇥̃(S) khk⇥̃, s.t. h = g�ux�v for some u 2 R, v 2 R. Then according to optimality
of h, we have hh, xi⇥̃ = 0 and hh, 1i⇥̃ = 0. Consider the space G = {h 2 H⇥̃(S) : hh, xi⇥̃ =
0, hh, 1i⇥̃ = 0}, which is the orthogonal complement of span{1, x}. Then h is the projection
of g on G. Since h = g � ux� v, h00 = g00. So we can reformulate the equation (159) which
we want to prove in the following theorem:

81

Jin and Montúfar

Theorem 43 (Explicit form of the kernel norm) The kernel norm on the space G =
{h 2 H⇥̃(S) : hh, xi⇥̃ = 0, hh, 1i⇥̃ = 0} is given as follows:

khk2
⇥̃
=

Z

S

(h00(x))2

⇣(x)
dx, 8h 2 G. (160)

This theorem gives the explicit form of the kernel norm in a subspace of H⇥̃(S). Next we
prove the above theorem using the property of kernel norm.
Proof [Proof of Theorem 43] Let ⇥̃x(·) = ⇥̃(·, x). We can find the orthogonal projection of
⇥̃x on space G, which is denoted by ⇥̃x,G. Then we only need to prove that hh, ⇥̃x,Gi⇥̃ =
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy for any h 2 G and x 2 S.

First, ⇥̃x,G = ⇥̃x � ux � v for some constant u, v 2 R. Since h 2 G, hh, 1i⇥̃ = 0 and
hh, xi⇥̃ = 0. Then we have

hh, ⇥̃x,Gi⇥̃ = hh, ⇥̃x � ux� vi⇥̃

= hh, ⇥̃xi⇥̃ � uhh, xi⇥̃ � vhh, 1i⇥̃

= hh, ⇥̃xi⇥̃

= h(x) (use the reproducing property of the kernel (149)).

(161)

Next, using the notation from Section 6 we have

⇥̃00

x,G(y) = (⇥̃x(y)� uy � v)00 = ⇥̃x(y)
00 =

@2

@y2
⇥̃(x, y)

=
@2

@y2

Z

R2
[W (1)(x� c)]+[W

(1)(y � c)]+ d⌫(W (1), c) (use (147))

=
@2

@y2

Z

R2
(W (1))2[sign(W (1))(x� c)]+[sign(W

(1))(y � c)]+ d⌫W|C=c(W
(1))d⌫C(c)

=
@2

@y2

Z

R

�
E(W2 (W � 0)|C = c)[x� c]+[y � c]+

+E(W2 (W < 0)|C = c)[c� x]+[c� y]+
�
pC(c) dc

=

Z

R

✓
E(W2 (W � 0)|C = c)[x� c]+

@2

@y2
[y � c]+

+E(W2 (W < 0)|C = c)[c� x]+
@2

@y2
[c� y]+

◆
pC(c) dc

=

Z

R

�
E(W2 (W � 0)|C = c)[x� c]+�(y � c)

+E(W2 (W < 0)|C = c)[c� x]+�(y � c)
�
pC(c) dc

=
�
E(W2 (W � 0)|C = y)[x� y]+ + E(W2 (W < 0)|C = y)[y � x]+

�
pC(y).

82

Implicit bias of gradient descent for regression

Then we have
Z

S

h00(y)⇥̃00

x,G(y)

⇣(y)
dy

=

Z

S

h00(y)
�
E(W2 (W � 0)|C = y)[x� y]+ + E(W2 (W < 0)|C = y)[y � x]+

�
pC(y)

⇣(y)
dy

=

Z

S

h00(y)
�
E(W2 (W � 0)|C = y)[x� y]+ + E(W2 (W < 0)|C = y)[y � x]+

�

E(W2|C = y)
dy

=

Z

S

E(W2 (W � 0)|C = y)

E(W2|C = y)
h00(y)[x� y]+ +

E(W2 (W < 0)|C = y)

E(W2|C = y)
h00(y)[y � x]+ dy.

Now, if we regard
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy as a function of x, then we get

@2

@x2

Z

S

h00(y)⇥̃00

x,G(y)

⇣(y)
dy

=
@2

@x2

Z

S

E(W2 (W � 0)|C = y)

E(W2|C = y)
h00(y)[x� y]+ +

E(W2 (W < 0)|C = y)

E(W2|C = y)
h00(y)[y � x]+ dy

=

Z

S

E(W2 (W � 0)|C = y)

E(W2|C = y)
h00(y)�(x� y) +

E(W2 (W < 0)|C = y)

E(W2|C = y)
h00(y)�(y � x) dy

=
E(W2 (W � 0)|C = x)

E(W2|C = x)
h00(x) +

E(W2 (W < 0)|C = x)

E(W2|C = x)
h00(x)

=h00(x).

From the definition of the space G, we see that the second derivative uniquely determines the
element in G. Since h 2 G, in order to show that

R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy = h(x), we only need to

show
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy 2 G, i.e., h
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy, 1i⇥̃ = 0 and h
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy, xi⇥̃ = 0.
Then we get

h

Z

S

h00(y)⇥̃00

x,G(y)

⇣(y)
dy, 1i⇥̃ =h

Z

S

h00(y) @
2

@y2 ⇥̃(x, y)

⇣(y)
dy, 1i⇥̃

=h

Z

S

h00(y) limh!0
⇥̃(x,y+h)�2⇥̃(x,y)+⇥̃(x,y�h)

h2

⇣(y)
dy, 1i⇥̃

= lim
h!0

h

Z

S

h00(y) ⇥̃(x,y+h)�2⇥̃(x,y)+⇥̃(x,y�h)
h2

⇣(y)
dy, 1i⇥̃

= lim
h!0

Z

S

h00(y)
h⇥̃(x,y+h),1i⇥̃�2h⇥̃(x,y),1i⇥̃+h⇥̃(x,y�h),1i⇥̃

h2

⇣(y)
dy

= lim
h!0

Z

S

h00(y)y+h�2y+y�h
h2

⇣(y)
dy

=0.

Similarly we can show that h
R
S

h00(y)⇥̃00
x,G(y)

⇣(y) dy, xi⇥̃ = 0. This concludes the proof.

83

Jin and Montúfar

Appendix N. Gradient Descent Trajectory and Trajectory of Smoothing
Splines for Univariate Regression

In the following we discuss the relation between the trajectory of functions obtained by
gradient descent training of a neural network and a trajectory of solutions to the variational
problem with the data fitting constraints replaced by a MSE for decreasing smoothness
regularization strength. This Lagrange version of the variational problem is solved by so-
called smoothing splines. Smoothing splines have been studied intensively in the literature
and in particular they can be written explicitly. We give the explicit form of the solution for
the trajectory in the context of our discussion.

N.1 Regularized Regression and Early Stopping

Bishop (1995) shows that for linear regression with quadratic loss, early stopping and L2

regularization lead to similar solutions. Let us recall some details of his analysis, before
proceeding with our particular setting. He considers the loss function E(w) = kXw � yk22,
where X = [x1, . . . ,xM]T is the matrix of training inputs, y = [y1, . . . , yM]T is the vector of
training outputs, and w is the weight vector of the linear model. Next the loss function can
be written in the form of a quadratic function:

E(W) = kXw � yk22

= wTXTXw � 2yTXw + yTy

= wTXTXw � 2yTXw + yTy

=
1

2
(w �w⇤)TH(w �w⇤) + E0,

where H = 2XTX, E0 is the minimum of the loss function, and w⇤ is the minimizer. The
eigenvalues and eigenvectors of H are as follows:

Huj = �juj .

Then expand w and w⇤ in terms of the eigenvectors of H:

w =
X

j

wjuj , w⇤ =
X

j

w⇤

juj .

For the L2 regularized regression problem, consider the regularized loss function Ẽ(w) =
E(w)+ ckwk

2
2. Denote the minimizer by w = w̃ and consider its expansion as w̃ =

P
j w̃juj .

Bishop (1995) shows that

w̃j =
�j

�j + c
w⇤

j . (162)

For early stopping, consider the gradient descent on E(w) with zero initial weight vector:

w(⌧) = w(⌧�1)
� ⌘rE

= w(⌧�1)
� ⌘H(w(⌧�1)

�w⇤),

w(0) = 0.

84

Implicit bias of gradient descent for regression

Figure 13: Plot of functions h1(x) and h2(x). The left panel plots the two function when
�j = 1. The right panel plots the two function when �j = 5.

Writing w(⌧) =
P

j w
(⌧)
j uj , we have

w(⌧)
j = (1� (1� ⌘�j)

⌧)w⇤

j .

Note that 1� (1� ⌘�j)⌧ ! 1� e�⌘⌧�j as ⌘ ! 0. Hence choosing a sufficiently small learning
rate, approximately we have

w(⌧)
j = (1� e�⌘⌧�j)w⇤

j . (163)

From (162) and (163), Bishop (1995) observes that if c is much larger than �j , then the
regularized solution has coordinate w̃j close to 0, and similarly if 1/(⌘⌧) is much larger than
�j , then the early-stopping solution has coordinate w(⌧)

j close to the initial value 0. We
note that analogous observations apply when the regularization term has a reference point
different from zero, ckw �wk

2
2, and the gradient descent iteration is initialized at a point

different from zero, w(0) = w.
Now we want to take a closer look at the trajectories. Consider the following two

functions:

h1(x) =
�j

�j + x
, h2(x) = 1� e��j/x.

Actually we can verify that h1(0) = h2(0) = 1 and limx!1

h1(x)
h2(x)

= 1. It implies that these
two functions are close to each other on [0,1). Figure 13 shows the plot of functions h1(x)
and h2(x).

Now we choose the coefficient of regularization c = 1
⌘⌧ . Comparing (162) and (163), and

using the fact that h1(x) and h2(x) are close to each other on [0,1), we show that early
stopping and L2 regularization lead to similar solutions across different values of c = 1

⌘⌧ .
Back to our problem, we repeat the gradient descent procedures (17) here:

fW (2)
0 = W

(2)
, fW (2)

t+1 =
fW (2)

t � ⌘rW (2)Llin(e!t).

85

Jin and Montúfar

It is actually minimizing the following loss function of W (2)
�W :

E(W (2)
�W) =

MX

j=1

nX

i=1

(W (2)
i �W

(2)
i)[W (1)

i xj + bi]+ � (yj � f(xj , ✓0))

!2

.

Here we change the variable from W (2) to W (2)
�W . Then W (2)

t �W = 0 when t = 0, so
that gradient descent starts from the zero initial weight vector. Since the above model is
linear with respect to W (2)

�W , we can apply the above argument about early stopping
and L2 regularization. Suppose that we use learning rate µn for the neural network of width
n. We show that the solution fW (2)

t at iteration t is close to the minimizer of the following
regularized optimization problem:

min
W (2)

MX

j=1

nX

i=1

(W (2)
i �W

(2)
i)[W (1)

i xj + bi]+ � (yj � f(xj , ✓0))

!2

+ ckW (2)
�Wk

2
2, (164)

where c = 1
⌘nt

. Using the same approach and notation as in Section 5, the optimization
problem (164) is equivalent to

min
↵n2C(R2)

MX

j=1

✓Z

R2
↵n(W

(1), b)[W (1)xj + b]+ dµn(W
(1), b)� yj

◆2

+
1

n⌘nt

Z

R2
↵2
n(W

(1), b) dµn(W
(1), b),

(165)

where we use the ASI trick (see Appendix B.2). Here (165) has an extra factor 1
n compared

to (164). This is because we define ↵n(W
(1)
i , bi) = n(W (2)

i �W
(2)
i). According to Theorem

20, ⌘n 
M

Kn�max(⇥̂n)
is sufficient in order to ensure convergence. Then we suppose that

⌘n = ⌘̄/n, where ⌘̄ is a constant so that the requirement on the learning rate in Theorem 20
is satisfied. The limit of the optimization problem (165) as the width n tends to infinity is:

min
↵2C(R2)

MX

j=1

✓Z

R2
↵(W (1), b)[W (1)xj + b]+ dµ(W (1), b)� yj

◆2

+
1

⌘̄t

Z

R2
↵2(W (1), b) dµ(W (1), b).

(166)

Following the same reasoning of Section 6, we relax the optimization problem (166) to the
following one:

min
↵2C(R2),u2R,v2R

MX

j=1

✓
uxj + v +

Z

R2
↵(W (1), b)[W (1)xj + b]+ dµ(W (1), b)� yj

◆2

+
1

⌘̄t

Z

R2
↵2(W (1), b) dµ(W (1), b).

(167)

86

Implicit bias of gradient descent for regression

-6 -4 -2 0 2 4 6
-1

0

1

2

3

x

training data
smoothing splines
NN trained with GD

-6 -4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

smoothing splines
NN trained with GD

Trajectories of functions 2D PCA of the trajectories

Figure 14: Trajectories of functions obtained by gradient descent training a neural network
and by smoothing splines of the training data with decreasing regularization
strength (from dark to bright). The left panel plots 20 functions along each
trajectory. The right panel shows the same functions in a two dimensional PCA
representation. With asymmetric initialization of the network parameters and
adjusting the training data by ordinary linear regression, both trajectories start
at the zero function. The trajectories are not equivalent, but are close, and both
converge to the same (spatially adaptive) cubic spline interpolation of the training
data (in the limit of infinite wide networks). Here we used a large network with
n = 2000 hidden units and Gaussian initialization W ⇠ N (0, 1), B ⇠ N (0, 1).
The results are similar for smaller networks and different initializations.

Using the same technique and notation as in Theorem 13, we can prove that the solution of
(167) actually solves the following optimization problem:

min
h2C2(S)

MX

j=1

[h(xj)� yj]
2 +

1

⌘̄t

Z

S

(h00(x))2

⇣(x)
dx. (168)

Then in order to study the trajectory of gradient descent, we can study the optimization
problem (168) with varying t. Figure 14 illustrates smoothing spline and gradient descent
trajectories. The solution of (168) is called spatially adaptive smoothing spline. Here
the curvature penalty function is 1

⌘̄t
1

⇣(x) , with time dependent smoothness regularization
coefficient 1

⌘̄t . Next, we give the solution of (168) in the following two cases: (1) uniform case
(⇣ is constant over domain S); (2) spatially adaptive case (⇣ is not constant over domain S).

Remark 44 (Spectral bias) We have thus that the gradient descent optimization trajectory
can be described approximately by a trajectory of smoothing splines which gradually relaxes the
smoothness regularization (relative to initialization) until perfectly fitting the training data.
If the function at initialization is at the zero function, e.g., by ASI, then the regularization
is on the function itself. Hence the result provides a theoretical explanation for the spectral

87

Jin and Montúfar

bias phenomenon that has been observed by Rahaman et al. (2019). The spectral bias is that
lower frequencies are learned first.

N.2 Trajectory of Smoothing Splines with Uniform Curvature Penalty

Suppose the reciprocal curvature penalty is constant ⇣(x) ⌘ z on the domain S. Let � = 1
⌘̄tz .

Then (168) becomes the following optimization problem:

min
h2C2(S)

MX

j=1

[h(xj)� yj]
2 + �

Z

S
(h00(x))2 dx. (169)

German (2001) gives the explicit form of the minimizer ĥ of (169), which is called a smoothing
spline. The minimizer ĥ is a natural cubic spline with knots at the sample points x1, . . . , xM .
The smoothing spline does not fit the training data exactly, but rather it balances fitting
and smoothness. The smoothing parameter � � 0 controls the trade off between fitting and
roughness. The values of the smoothing spline at the knots can be obtained as

(ĥ(x1), . . . , ĥ(xM))> = (I + �A)�1Y. (170)

The matrix A has entries Aij =
R
S h00i (x)h

00

j (x) dx, where hi are spline basis functions which
satisfy hi(xj) = 0 for j 6= i and hi(xj) = 1 for j = i. German (2001) gives a rather explicit
form of matrix A, which is an M ⇥ M matrix given by A = �TW�1�. Here � is an
(M � 2)⇥M matrix of second differences with elements:

�ii =
1

hi
, �i,i+1 = �

1

hi
�

1

hi+1
, �i,i+2 =

1

hi+1
.

And W is an (M � 2)⇥ (M � 2) symmetric tri-diagonal matrix with elements:

Wi�1,i = Wi,i�1 =
hi
6
, Wi,i =

hi + hi+1

3
, here hi = xi+1 � xi.

As � ! 0, the smoothing spline converges to the interpolating spline, and as � ! 1, it
converges to the linear least squares estimate.

N.3 Trajectory of Spatially Adaptive Smoothing Splines

Let the curvature penalty ⇢(x) = 1
⌘̄t

1
⇣(x)

1
M . Then (168) can be written as

min
h2W2(S)

1

M

MX

i=1

[h(xj)� yj]
2 +

Z

S
⇢(x)(h00(x))2 dx, (171)

where W2(S) = {f : f, f 0 absolutely continuous and f 00
2 L2(S)}, with L2(S) the square

integrable functions over the domain S. Abramovich and Steinberg (1996); Pintore et al.
(2006) give the solution of (171) explicitly, which is called a spatially adaptive smoothing
spline.

According to Pintore et al. (2006), the solution can be derived in terms of an appropriate
RKHS representation of W 0

2 with inner product hf, gi⇢ =
R
f 00(x)g00(x)⇢(x) dx. Here

88

Implicit bias of gradient descent for regression

W 2
0 (S) = W2(S)\B2(S), where W2(S) is defined above, and B2(S) = {f : f(0) = f 0(0) = 0}.

Notice that when defining B2(S) we need 0 2 S. Actually we can choose any point in S.
Pintore et al. (2006) define B2(S) in this way just for simplicity. Then the kernel of the
space W 2

0 (S) is given by

K⇢(x1, x2) =

Z

S
⇢(u)�1[x1 � u]+[x2 � u]+du. (172)

Then the minimizer ĥ of (171) is given by

ĥ(x) =
MX

j=1

cjK⇢(xj , x) + a+ bx. (173)

Now define the M ⇥M matrix

⌃⇢ = {K⇢(xi, xj)}i,j=1,...,M , (174)

and the M ⇥ 2 matrix

T =

2

6664

1 x1
1 x2
...

...
1 xM

3

7775
. (175)

Denote the vector of coefficients c = (c1, . . . , cM)T and the vector of output values y =
(y1, . . . , yM)T . Then the coefficients in (173) satisfy the following conditions:

⌃⇢


(⌃⇢ +MI)c+ T

✓
a
b

◆�
= ⌃⇢y and T>


⌃⇢c+ T

✓
a
b

◆�
= T>y. (176)

After solving for (176), we get the values of c, a and b. Plug them into (173), then we get
the exact form of the minimizer of (171).

Appendix O. Solution to the Variational Problems for Univariate
Regression after Training

O.1 Interpolating Splines with Uniform Curvature Penalty

Theorem 2 (b) and (c) show that for certain distributions of (W,B), ⇣ is constant. In this
case problem (5) with ASI is solved by the cubic spline interpolation of the data with natural
boundary conditions (Ahlberg et al., 1967).

Theorem 45 (Ahlberg et al. 1967) For training samples {(xi, yi)}Mi=1, suppose xj 2

S, j = 1, . . . ,M . Then cubic spline interpolation of data {(xi, yi)}Mi=1 with natural boundary
condition is the solution of

min
h2C2(S)

Z

S
(h00(x))2dx

subject to h(xj) = yj , j = 1, . . . ,m.

89

Jin and Montúfar

As already mentioned in Appendix N, cubic spline interpolation is a finite dimensional
linear problem and can be solved exactly. A cubic spline is a piecewise polynomial of
order 3 with (M � 1) pieces. The j-th piece has the form Sj(x) = aj + bjx+ cjx2 + djx3,
j = 1, . . . ,M � 1. These (M � 1) pieces satisfy equations Si(xi) = yi, Si(xi+1) = yi+1,
i = 1, . . . ,M � 1 and S0

i(xi+1) = S0

i+1(xi+1), S00

i (xi+1) = S00

i+1(xi+1), i = 1, . . . ,M � 2, and
S00

1 (x1) = S00

M�1(xM) = 0. Hence computing the spline amounts to solving a linear system in
4(M � 1) indeterminates.

O.2 Spatially Adaptive Interpolating Splines

In the case that ⇣ is not constant, we can still give the form of the solution to the variational
problem (5) with ASI by using the result in Appendix N. We multiply by a coefficient � the
regularization term in the optimization problem (171) and choose ⇢(x) = 1

⇣(x) . Then we get

min
h2W2(S)

1

M

MX

i=1

[h(xj)� yj]
2 + �

Z

S

1

⇣(x)
(h00(x))2 dx. (177)

As � ! 0, the minimizer of (177) converges to the solution of the following optimization
problem:

min
h2W 2(S)

Z

S

(h00(x))2

⇣(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m,

which is the variational problem (5) with ASI. According to Appendix N, the solution of
(177) is given by:

ĥ(�)(x) =
MX

j=1

c(�)j K�
⇣
(xj , x) + a(�) + b(�)x. (178)

And the vector c(�) = (c(�)1 , . . . , c(�)M)T , a(�) and b(�) satisfy the following conditions:

⌃�
⇣


(⌃�

⇣
+MI)c(�) + T

✓
a(�)

b(�)

◆�
= ⌃�

⇣
y and T>


⌃�

⇣
c(�) + T

✓
a(�)

b(�)

◆�
= T>y, (179)

where K�
⇣
, ⌃�

⇣
and T are defined in (172), (174) and (175). Next we show that K�

⇣
is

inversely proportional to �:

K�
⇣
(x1, x2) =

Z

S

✓
�

⇣

◆
�1

[x1 � u]+[x2 � u]+du

= ��1
Z

S

✓
1

⇣

◆
�1

[x1 � u]+[x2 � u]+du

= ��1K 1
⇣
(x1, x2).

(180)

Also ⌃�
⇣
= ��1⌃ 1

⇣
. Then we let c̄(�)j = ��1c(�)j and c̄(�) = ��1c(�). So we can rewrite (178)

and (179) as

ĥ(�)(x) =
MX

j=1

c̄(�)j K 1
⇣
(xj , x) + a(�) + b(�)x, (181)

90

Implicit bias of gradient descent for regression

where c̄(�), a(�) and b(�) satisfy the following conditions:

⌃ 1
⇣


(⌃ 1

⇣
+ �MI)c̄(�) + T

✓
a(�)

b(�)

◆�
= ⌃ 1

⇣
y and T>


⌃ 1

⇣
c̄(�) + T

✓
a(�)

b(�)

◆�
= T>y, (182)

Now, as �! 0, (181) and (182) become:

ĥ(0
+)(x) =

MX

j=1

c̄(0
+)

j K 1
⇣
(xj , x) + a(0

+) + b(0
+)x, (183)

where c̄(0
+), a(0+), and b(0

+) satisfy the following conditions:

⌃ 1
⇣

"
⌃ 1

⇣
c̄(0

+) + T

a(0

+)

b(0
+)

!#
= ⌃ 1

⇣
y and T>

"
⌃ 1

⇣
c̄(�) + T

a(0

+)

b(0
+)

!#
= T>y. (184)

The expressions (183) and (184) give the solution of (177) as �! 0, which is also the solution
to the variational problem (24).

Appendix P. Possible Generalizations

P.1 Deep Networks and Other Architectures

For deep networks with L layers, if we only train the output layer, then we actually train a
linear model. We can actually write down the exact form of the NTK. However it is unclear
whether we can write the explicit form of implicit bias in this case.

In the case of shallow networks, we show that training only the output layer is similar
to training all parameters. Our analysis of shallow networks is based on this. However, in
the case of a deep network, training only the output layer is no longer similar to training all
parameters. If we train all model parameters, the results from Lee et al. (2019); Lai et al.
(2023) show that the model still is approximated by a linearized model. The result on kernel
norm minimization (Zhang et al., 2020) holds in this case. It will be interesting to study the
explicit form of the kernel norm, and extensions of our analysis to the case of training all
parameters of deep networks.

P.2 Other Loss Functions

We have focused on the implicit bias of gradient descent for regression. For this type of
problems, one often considers a loss function (per example) which has a single finite minimum.
Roughly speaking, our description of the bias is in terms of smoothness properties of the
solution functions. There are various works on the implicit bias of gradient descent for
classification problems, e.g., Soudry et al. (2018). In this case, the implicit bias is often
formulated in terms of maximum margins.

In our analysis, some theorems require that the loss function is mean square error (MSE).
In Theorem 10, the gradient flow is a linear differential equation if we use MSE. If we use
a different loss, this will be more complicated. However, we think that the results can be
generalized. We are also using the result from Lee et al. (2018), which is based on MSE.
According to them it is not clear whether their result will still apply for other loss functions.

91

Jin and Montúfar

Theorems 12 and 13 are about a variational problem that is derived from Theorem 20, in
relation to the minimization of k✓ � ✓2k2. Theorem 20 remains valid for other loss functions
beside MSE. To sum up, if we can generalize the Theorem 10 and the result of Lee et al.
(2018) to other loss functions, then we can generalize our main result in Theorem 1 to other
loss functions as well.

P.3 Other Optimization Procedures

It would be interesting to extend the analysis to modifications of the basic gradient descent
optimization procedure. The implicit bias of different optimization methods has been
studied by Gunasekar et al. (2018a) covering some instances of mirror descent, natural
gradient descent, Adam, and steepest descent with respect to different potentials and norms.
In particular, they show that the implicit bias of coordinate descent corresponds to the
minimization of the 1-norm of the weights. It will be interesting to work out the explicit
form of these descriptions in function space.

References

Felix Abramovich and David M. Steinberg. Improved inference in nonparametric regression
using Lk-smoothing splines. Journal of Statistical Planning and Inference, 49(3):327–341,
1996. URL http://www.sciencedirect.com/science/article/pii/0378375895000216.

J. H. Ahlberg, Edwin N. Nilson, and J. L. Walsh. The Theory of Splines and Their
Applications. ISSN. Elsevier Science, 1967. URL https://books.google.com/books?id=

S7d1pjJHsRgC.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 242–252, Long Beach, California, USA, 09–
15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/allen-zhu19a.html.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal
Vincent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment.
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 2269–2277. PMLR, 13–15 Apr 2021. URL http://proceedings.

mlr.press/v130/baratin21a.html.

Christopher Bishop. Regularization and complexity control in feed-forward
networks. In Proceedings International Conference on Artificial Neu-
ral Networks ICANN’95, volume 1, pages 141–148. EC2 et Cie, January
1995. URL https://www.microsoft.com/en-us/research/publication/

regularization-and-complexity-control-in-feed-forward-networks/.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. Advances in neural information processing systems, 32, 2019.

92

http://www.sciencedirect.com/science/article/pii/0378375895000216
https://books.google.com/books?id=S7d1pjJHsRgC
https://books.google.com/books?id=S7d1pjJHsRgC
http://proceedings.mlr.press/v97/allen-zhu19a.html
http://proceedings.mlr.press/v130/baratin21a.html
http://proceedings.mlr.press/v130/baratin21a.html
https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-forward-networks/
https://www.microsoft.com/en-us/research/publication/regularization-and-complexity-control-in-feed-forward-networks/

Implicit bias of gradient descent for regression

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards under-
standing the spectral bias of deep learning. In Zhi-Hua Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
2205–2211. International Joint Conferences on Artificial Intelligence Organization, 8 2021.
URL https://doi.org/10.24963/ijcai.2021/304. Main Track.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal,
editors, Proceedings of Thirty Third Conference on Learning Theory, volume 125 of
Proceedings of Machine Learning Research, pages 1305–1338. PMLR, 09–12 Jul 2020. URL
http://proceedings.mlr.press/v125/chizat20a.html.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/

file/ae614c557843b1df326cb29c57225459-Paper.pdf.

Amit Daniely. Sgd learns the conjugate kernel class of the network. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

489d0396e6826eb0c1e611d82ca8b215-Paper.pdf.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1019–1028, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/dinh17b.html.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

Wilna Du Toit. Radial basis function interpolation. PhD thesis, Stellenbosch: Stellenbosch
University, 2008.

PPB Eggermont and VN LaRiccia. Uniform error bounds for smoothing splines. Lecture
Notes-Monograph Series, pages 220–237, 2006.

Gerald B Folland. Real analysis: modern techniques and their applications, volume 40. John
Wiley & Sons, 1999.

G German. Smoothing and non-parametric regression. International Journal of Systems
Science, 2001.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of

93

https://doi.org/10.24963/ijcai.2021/304
http://proceedings.mlr.press/v125/chizat20a.html
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/489d0396e6826eb0c1e611d82ca8b215-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/489d0396e6826eb0c1e611d82ca8b215-Paper.pdf
http://proceedings.mlr.press/v70/dinh17b.html
https://openreview.net/forum?id=S1eK3i09YQ

Jin and Montúfar

Machine Learning Research, pages 1832–1841, Stockholmsmässan, Stockholm Sweden, 10–
15 Jul 2018a. PMLR. URL http://proceedings.mlr.press/v80/gunasekar18a.html.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias
of gradient descent on linear convolutional networks. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 31, pages 9461–
9471. Curran Associates, Inc., 2018b. URL http://papers.nips.cc/paper/

8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.

pdf.

Charles A Hall and W Weston Meyer. Optimal error bounds for cubic spline interpolation.
Journal of Approximation Theory, 16(2):105–122, 1976.

Jakob Heiss, Josef Teichmann, and Hanna Wutte. How implicit regularization of neural
networks affects the learned function - part i. arXiv preprint arXiv:1911.02903, 2019.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 8571–8580. Curran Associates, Inc., 2018.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference
on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages 1772–
1798, Phoenix, USA, 25–28 Jun 2019. PMLR. URL http://proceedings.mlr.press/

v99/ji19a.html.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. In International Conference on Learning Representations, 2017. URL
https://openreview.net/pdf?id=H1oyRlYgg.

Mateusz Kwaśnicki. Ten equivalent definitions of the fractional laplace operator. Fractional
Calculus and Applied Analysis, 20(1):7–51, 2017.

Jianfa Lai, Manyun Xu, Rui Chen, and Qian Lin. Generalization ability of wide neural
networks on R. arXiv preprint arXiv:2302.05933, 2023.

Jaehoon Lee, Jascha Sohl-Dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz,
and Yasaman Bahri. Deep neural networks as Gaussian processes. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?

id=B1EA-M-0Z.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 8572–8583. Curran Associates, Inc., 2019.

94

http://proceedings.mlr.press/v80/gunasekar18a.html
http://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf
http://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf
http://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf
http://proceedings.mlr.press/v99/ji19a.html
http://proceedings.mlr.press/v99/ji19a.html
https://openreview.net/pdf?id=H1oyRlYgg
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z

Implicit bias of gradient descent for regression

Ziyue Liu and Wensheng Guo. Data driven adaptive spline smoothing. Statistica Sinica,
pages 1143–1163, 2010.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes ReLU
network features. arXiv preprint arXiv:1803.08367, 2018.

Richard B Melrose and Gunther Uhlmann. An introduction to microlocal analysis. Department
of Mathematics, Massachusetts Institute of Technology, 2008.

C. Nasim. The solution of an integral equation. Proceedings of the American Mathematical
Society, 40(1):95–101, 1973. URL http://www.jstor.org/stable/2038642.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29–53. Springer, 1996.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. In ICLR (Workshop), 2015. URL
http://arxiv.org/abs/1412.6614.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071,
2017.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view
of bounded norm infinite width ReLU nets: The multivariate case. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?

id=H1lNPxHKDH.

Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient
descent takes the shortest path? In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4951–4960, Long Beach, California, USA,
09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/oymak19a.html.

Rahul Parhi and Robert D. Nowak. Minimum "norm" neural networks are splines. arXiv
preprint arXiv:1910.02333, 2019.

Rahul Parhi and Robert D Nowak. What kinds of functions do deep neural networks learn?
insights from variational spline theory. arXiv preprint arXiv:2105.03361, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

95

http://www.jstor.org/stable/2038642
http://arxiv.org/abs/1412.6614
https://openreview.net/forum?id=H1lNPxHKDH
https://openreview.net/forum?id=H1lNPxHKDH
http://proceedings.mlr.press/v97/oymak19a.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Jin and Montúfar

Alexandre Pintore, Paul Speckman, and Chris C. Holmes. Spatially adaptive smoothing
splines. Biometrika, 93(1):113–125, 03 2006. doi: 10.1093/biomet/93.1.113. URL https:

//doi.org/10.1093/biomet/93.1.113.

Evelyn Dianne Hatton Potter. Multivariate polyharmonic spline interpolation. Iowa State
University, 1981.

David L Ragozin. Error bounds for derivative estimates based on spline smoothing of exact
or noisy data. Journal of approximation theory, 37(4):335–355, 1983.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5301–5310, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http:

//proceedings.mlr.press/v97/rahaman19a.html.

Justin Sahs, Aneel Damaraju, Ryan Pyle, Onur Tavaslioglu, Josue Ortega Caro, Hao Yang
Lu, and Ankit Patel. A functional characterization of randomly initialized gradient descent
in deep ReLU networks, 2020a. URL https://openreview.net/forum?id=BJl9PRVKDS.

Justin Sahs, Ryan Pyle, Aneel Damaraju, Josue Ortega Caro, Onur Tavaslioglu, Andy Lu,
and Ankit Patel. Shallow univariate ReLU networks as splines: Initialization, loss surface,
Hessian, & gradient flow dynamics, 2020b.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width
bounded norm networks look in function space? In Alina Beygelzimer and Daniel Hsu,
editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of
Proceedings of Machine Learning Research, pages 2667–2690, Phoenix, USA, 25–28 Jun
2019. PMLR. URL http://proceedings.mlr.press/v99/savarese19a.html.

Johannes Schmidt-Hieber. Rejoinder: “nonparametric regression using deep neural networks
with ReLU activation function”. The Annals of Statistics, 48(4):1916–1921, 2020.

Karel Segeth. Multivariate smooth interpolation that employs polyharmonic functions.
Programs and Algorithms of Numerical Mathematics, pages 140–148, 2019.

Donald C Solmon. Asymptotic formulas for the dual radon transform and applications.
Mathematische Zeitschrift, 195(3):321–343, 1987.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. The Journal of Machine Learning
Research, 19(1):2822–2878, 2018.

Curtis B Storlie, Howard D Bondell, and Brian J Reich. A locally adaptive penalty for
estimation of functions with varying roughness. Journal of Computational and Graphical
Statistics, 19(3):569–589, 2010.

Xiao Wang, Pang Du, and Jinglai Shen. Smoothing splines with varying smoothing parameter.
Biometrika, 100(4):955–970, 2013.

96

https://doi.org/10.1093/biomet/93.1.113
https://doi.org/10.1093/biomet/93.1.113
http://proceedings.mlr.press/v97/rahaman19a.html
http://proceedings.mlr.press/v97/rahaman19a.html
https://openreview.net/forum?id=BJl9PRVKDS
http://proceedings.mlr.press/v99/savarese19a.html

Implicit bias of gradient descent for regression

Holger Wendland. Scattered data approximation, volume 17. Cambridge university press,
2004.

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan
Bruna. Gradient dynamics of shallow univariate ReLU networks. In Advances in Neural
Information Processing Systems, pages 8378–8387, 2019.

Lei Wu, Zhanxing Zhu, and E Weinan. Towards understanding generalization of deep learning:
Perspective of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In International Conference on
Learning Representations, ICLR 2017, 2017. URL https://arxiv.org/abs/1611.03530.

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. A type of generalization error
induced by initialization in deep neural networks. In Jianfeng Lu and Rachel Ward, editors,
Proceedings of The First Mathematical and Scientific Machine Learning Conference, volume
107 of Proceedings of Machine Learning Research, pages 144–164, Princeton University,
Princeton, NJ, USA, 20–24 Jul 2020. PMLR. URL http://proceedings.mlr.press/

v107/zhang20a.html.

97

https://arxiv.org/abs/1611.03530
http://proceedings.mlr.press/v107/zhang20a.html
http://proceedings.mlr.press/v107/zhang20a.html

	Introduction
	Notation and Problem Setup
	Main Results
	Univariate Regression
	Multivariate Regression
	Discussion of the Main Results

	Wide Networks and Parameter Space
	Implicit Bias in Parameter Space for a Linearized Model
	Training Only the Output Layer Approximates Training All Parameters

	Infinite Width Limit of Shallow Networks
	Implicit Bias for Univariate Regression
	Implicit Bias for Multivariate Regression
	Conclusion
	Numerical Illustration of the Theoretical Results
	Additional Background on the NTK, Initialization, and Parametrization
	NTK Convergence and Positive-definiteness
	Anti-Symmetrical Initialization (ASI)
	Standard vs NTK Parametrization
	Weight Norm Minimization
	Basis Parameter for Linearization of the Model

	Proof of Theorem 1 and Theorem 6
	Implicit Bias in Parameter Space for a Linearized Model
	Proof of Theorem 10
	Training Only the Output Layer Approximates Training a Wide Shallow Network
	Proof of Theorem 12
	Proofs of Results for Univariate Regression
	Proof of Theorem 13
	Proof of Proposition 14 and Remarks to Proposition 15
	Proof of Theorem 2

	Proofs of Results for Multivariate Regression
	Proof of Theorem 16
	Proof of Theorem 7
	Proof of Theorem 8
	Explicit Form of the Curvature Penalty Function

	Other Activation Functions for Univariate Regression
	Effect of Linear Adjustment of the Training Data
	Neural Networks with Skip Connections
	Equivalence of Our Characterization and NTK Norm Minimization for Univariate Regression
	Gradient Descent Trajectory and Trajectory of Smoothing Splines for Univariate Regression
	Regularized Regression and Early Stopping
	Trajectory of Smoothing Splines with Uniform Curvature Penalty
	Trajectory of Spatially Adaptive Smoothing Splines

	Solution to the Variational Problems for Univariate Regression after Training
	Interpolating Splines with Uniform Curvature Penalty
	Spatially Adaptive Interpolating Splines

	Possible Generalizations
	Deep Networks and Other Architectures
	Other Loss Functions
	Other Optimization Procedures

