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ABSTRACT

Despite the recent advances in communication-efficient distributed bandit learn-
ing, most existing solutions are restricted to parametric models, e.g., linear bandits
and generalized linear bandits (GLB). In comparison, kernel bandits, which search
for non-parametric functions in a reproducing kernel Hilbert space (RKHS), of-
fer higher modeling capacity. But the only existing work in distributed kernel
bandits adopts a synchronous communication protocol, which greatly limits its
practical use (e.g., every synchronization step requires all clients to participate
and wait for data exchange). In this paper, in order to improve the robustness
against delays and unavailability of clients that are common in practice, we pro-
pose the first asynchronous solution based on approximated kernel regression for
distributed kernel bandit learning. A set of effective treatments are developed to
ensure approximation quality and communication efficiency. Rigorous theoreti-
cal analysis about the regret and communication cost is provided; and extensive
empirical evaluations demonstrate the effectiveness of our solution.

1 INTRODUCTION

There are many application scenarios where an environment repeatedly provides a learner with a set
of candidate actions to choose from, and possibly some side information (aka., context) (Li et al.,
2010a;b; Durand et al., 2018); and the learner, whose goal is to maximize cumulative reward over
time, can only observe the reward corresponding to the chosen action. This is often modeled as a
bandit learning problem (Abbasi-Yadkori et al., 2011; Krause & Ong, 2011), which exemplifies the
well-known exploitation-exploration dilemma (Auer, 2002). Various modeling assumptions have
been made about the relation between the context for each action and its expected reward. Com-
pared with parametric bandits, such as linear and generalized linear bandits (Abbasi-Yadkori et al.,
2011; Filippi et al., 2010), kernel/Gaussian process bandits (Valko et al., 2013; Srinivas et al., 2009)
offer greater flexibility as they find non-parametric functions lying in a RKHS. And thus they have
become a powerful tool for optimizing black box functions based on noisy observations in vari-
ous applications, such as recommender systems (Vanchinathan et al., 2014), mobile health (Tewari
& Murphy, 2017), environment monitoring (Srinivas et al., 2009), automatic machine learning (Li
et al., 2017), cyber-physical systems (Lizotte et al., 2007; Li et al., 2016), etc.

Motivated by the rapid growth in affordability and availability of hardware resources, e.g., computer
clusters or IoT devices, there is increasing interest in distributing the learning tasks, which gives
rise to the recent research efforts in distributed bandits (Wang et al., 2019; Huang et al., 2021; Li &
Wang, 2022a;b; Li et al., 2022; He et al., 2022), where N clients collaboratively maximize the over-
all cumulative rewards over time T . As communication bandwidth is the key bottleneck in many
distributed applications (Huang et al., 2013), these studies emphasize communication efficiency,
i.e., incur sub-linear communication cost with respect to time T , while attaining near-optimal re-
gret. However, most of these works are restricted to simple parametric models, like linear bandits
(Wang et al., 2019; Huang et al., 2021; Li & Wang, 2022a; He et al., 2022) or GLB (Li & Wang,
2022b). The only exception is Li et al. (2022), who proposed the first algorithm for distributed ker-
nel bandit that has sub-linear communication cost. They achieved this via a NystrÈom embedding
function (NystrÈom, 1930) shared among all the clients, such that the clients only need to transfer the
embedded statistics for joint kernelized estimation. Nevertheless, in their algorithm, the update of
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the NystrÈom embedding function, as well as the communication of the embedded statistics, relies
on a synchronization round that requires participation of all the clients. As is widely recognized in
distributed optimization (Low et al., 2012; Xie et al., 2019; Lian et al., 2018; Chen et al., 2020; Lim
et al., 2020) and distributed bandit learning (Li & Wang, 2022a; He et al., 2022), this design is vul-
nerable to stragglers (i.e., slower clients) in the system, i.e., the update procedure of Li et al. (2022)
is paused until the slowest client responds. Due to device heterogeneity and network unreliability,
this situation unfortunately is common especially at the scale of hundreds of devices/clients. Thus,
asynchronous communication is preferred, as the server can readily perform model update when
communication from a client is received, which is more robust against stragglers.

The main bottleneck in addressing this limitation of Li et al. (2022) lies in computing NystrÈom
approximation under asynchronous communication. Specifically, during synchronization step, their
algorithm first samples a small set of representative data points (i.e., the dictionary) from all clients,
and then lets each client project their local data to the subspace spanned by this dictionary and share
statistics about the projected data with others. However, new challenges arise in both algorithmic
design and theoretical analysis when extending their solution to asynchronous communication, since
a ‘fresh’ re-sample from the data of all clients is no longer possible, and each client has a different
copy of the dictionary due to the asynchronous communication with the server, such that their local
data will be projected to different subspaces, and thus causes difficulty in joint kernel estimation.

In this paper, we address these challenges and propose the first asynchronous algorithm for dis-
tributed kernelized contextual bandits. Compared with prior works in distributed bandits, our al-
gorithm simultaneously enjoys the modeling capacity of non-parametric models and the improved
robustness against delays and unavailability of clients, making it suitable for a wider range of ap-
plications. To ensure the approximation quality and compactness of the constructed dictionary in
asynchronous communications, we design an incremental update procedure tailored to our prob-
lem setting with a variant of Ridge leverage score (RLS) sampling. Compared with the sampling
procedure in prior works (Li et al., 2022; Calandriello et al., 2020), this requires specialized treat-
ments in analysis, since the quality of the current dictionary now relies on all previous asynchronous
communications. Moreover, to enable joint kernel estimation, we perform transformations on the
server side to convert statistics from different clients to a common subspace, which to the best of
our knowledge is also new in bandit literature. We rigorously proved that the proposed algorithm in-

curs an Õ(N2γ3T ) communication cost, matching that of Li et al. (2022), where γT is the maximum

information gain, while still attaining the optimal O(
√
TγT ) regret.

2 RELATED WORKS

There have been increasing research efforts in distributed bandit learning in recent years, i.e., mul-
tiple agents collaborate in pure exploration (Hillel et al., 2013; Tao et al., 2019; Du et al., 2021), or
regret minimization (Wang et al., 2019; Li & Wang, 2022a;b). They mainly differ in the relations
of learning problems solved by the agents (i.e., homogeneous vs., heterogeneous) and the type of
communication network (i.e., peer-to-peer (P2P) vs., star-shaped). However, most of these works
assume linear reward functions, and the clients communicate by transferring the O(d2) sufficient
statistics. For example, Korda et al. (2016) considered a peer-to-peer (P2P) communication net-
work and assumes that the clients form clusters, i.e., each cluster is associated with a unique bandit
problem. Huang et al. (2021) considered a star-shaped communication network as in our paper,
but their proposed phase-based elimination algorithm only works in the fixed arm set setting. The
closest works to ours are Wang et al. (2019); Dubey & Pentland (2020); Li & Wang (2022a); He
et al. (2022), which propose event-triggered communication protocols to obtain sub-linear commu-
nication cost over time for distributed linear bandits with a time-varying arm set. In particular, Li
& Wang (2022a) first considered the asynchronous communication setting for distributed bandit
learning. Though their proposed algorithm avoids global synchronization (Wang et al., 2019), it still
involves download to inactive clients. He et al. (2022) further improved their algorithm design and
analysis, such that only the active client in each round needs to participate in communication.

In comparison, distributed kernelized contextual bandits still remain under-explored. Prior work
in this direction assumes a local communication setting (Dubey et al., 2020), where the agent im-
mediately shares the new raw data point to its neighbors after each interaction, and thus the com-
munication cost is still linear over time. A recent work by Li et al. (2022) addresses this issue by
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letting clients communicate via statistics computed using a shared NystrÈom embedding function
(Calandriello et al., 2019; 2020). However, though their proposed algorithm attains sub-linear com-
munication cost over time, it relies on a global synchronization operation similar to that of Wang
et al. (2019) to update the embedding function and share the embedded statistics. In comparison, our
proposed method in this paper effectively addresses this issue using a novel asynchronous update
procedure for the embedding function, making asynchronous kernel bandit learning possible.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a learning system consisting of (1) N clients that directly interact with the environment
by taking actions and receiving the corresponding rewards, and (2) a central server that coordinates
the communication among the clients to facilitate their learning. The clients cannot directly commu-
nicate with each other, but only with the central server, i.e., a star-shaped communication network.
At each time step t ∈ [T ], an arbitrary client it ∈ [N ] becomes active and chooses an arm xt from a
candidate set At ⊆ R

d, and then receives the corresponding reward feedback yt = f(xt) + ηt ∈ R.
Note that At is time-varying and assumed to be chosen by an oblivious adversary, f denotes the
unknown reward function shared by all clients, and ηt denotes the noise. Moreover, under the asyn-
chronous communication scheme considered in this paper, only the active client it is allowed to
communicate with the server, e.g., to send or receive updates, after its interaction at time step t.

Kernelized Reward Function Following Valko et al. (2013), we assume the unknown reward
function f lies in the RKHS, denoted as H, such that the reward can be equivalently written as
yt = θ⊤⋆ ϕ(xt) + ηt, where θ⋆ ∈ H is an unknown parameter vector and ϕ : Rd → H is a known
feature map associated with H. We assume that ηt is zero-mean R-sub-Gaussian conditioned on
σ
(
(is,xs, ηs)s∈[t−1], it,xt

)
, i.e., the σ-algebra generated by previous clients, their pulled arms, and

the corresponding noises. In addition, there exists a positive definite kernel k(·, ·) associated with
H, and we assume ∀x ∈ A := ∪t∈[T ]At that, ∥x∥k ≤ L and ∥f∥k ≤ S for some L, S > 0.

Regret and Communication Cost The learning system’s goal is to minimize the cumulative

(pseudo) regret for all N clients, i.e., RT =
∑T

t=1 rt, where rt = maxx∈At
ϕ(x)⊤θ⋆ − ϕ(xt)

⊤θ⋆.
Meanwhile, the system also needs to keep the communication cost CT low, which is measured by
the total number of scalars being transferred across the system up to time T .

3.2 KERNEL RIDGE REGRESSION & NYSTR ÈOM APPROXIMATION

Throughout the paper, we use D ⊆ [T ] to denote a set of time steps and |D| as its size. The design
matrix and reward vector constructed using data collected at these time steps, i.e., {xs, ys}s∈D, are

denoted as XD = [xs]
⊤
s∈D ∈ R

|D|×d and yD = [ys]
⊤
s∈D ∈ R

|D|. Applying feature map ϕ(·) to each

row of XD, we have ΦD ∈ R
|D|×p, where p denotes the dimension of H and is possibly infinite.

Kernel Ridge Regression Since the reward function f is linear in H, one can construct the Ridge
regression estimator for θ⋆ as,

θ̂ = (Φ⊤
DΦD + λI)−1Φ⊤

DyD

where λ > 0 is the regularization parameter. This gives us the following estimated mean reward and
standard deviation in the primal form for any arm x ∈ A:

µ̂(x) = ϕ(x)⊤
(
Φ⊤

DΦD + λI
)−1

(Φ⊤
DyD)

σ̂(x) =

√

ϕ(x)⊤
(
Φ⊤

DΦD + λI
)−1

ϕ(x).

Note that directly working with the possibly infinite-dimension θ̂ ∈ R
p is impractical. Instead, using

the kernel trick (Valko et al., 2013; Li et al., 2022), we can obtain an equivalent dual form that only
involves entries of the kernel matrix:

µ̂(x) = KD(x)
⊤(KD,D + λI

)−1
yD

σ̂(x) = λ−1/2

√

k(x,x)−KD(x)⊤
(
KD,D + λI

)−1
KD(x)

(1)
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where KD(x) = ΦDϕ(x) = [k(xs,x)]
⊤
s∈D ∈ R

|D| and KD,D = Φ⊤
DΦD = [k(xs,xs′)]s,s′∈D ∈

R
|D|×|D|.

NystrÈom Approximation Though equation 1 avoids directly working in H, it requires computing
the inverse of KD,D, which is expensive in terms of both computation cost (Calandriello et al., 2019),

i.e., O(T 3) as |D| = O(T ), and communication cost (Li et al., 2022), i.e., O(T ) as {(xs, ys)}s∈D
needs to be transferred across the clients. Therefore, NystrÈom method is used to approximate equa-
tion 1, so clients can share embedded statistics, which improves communication efficiency.

As Calandriello et al. (2020); Li et al. (2022), we project the original dataset D1 to the subspace
defined by a small representative subset S ⊆ D, i.e., the dictionary, and the orthogonal projection
matrix is defined as

PS = Φ⊤
S
(
ΦSΦ

⊤
S
)−1

ΦS = Φ⊤
SK

−1
S,SΦS ∈ R

p×p.

Taking eigen-decomposition of KS,S = UΛU⊤ ∈ R
|S|×|S|, we can rewrite the orthogonal projec-

tion as PS = Φ⊤
SUΛ−1/2Λ−1/2U⊤ΦS , and define the NystrÈom embedding function as

z(x;S) = P
1/2
S ϕ(x) = Λ−1/2U⊤ΦSϕ(x) = K

−1/2
S,S KS(x),

which maps the data point x from R
d to R

|S|. Therefore, we can approximate the Ridge regression

estimator on dataset D as θ̃ =
(
PSΦ⊤

DΦDPS + λI
)−1 (

PSΦ⊤
DyD

)
, and equation 1 as

µ̃(x) = z(x;S)⊤
(
Z⊤

D;SZD;S + λI
)−1

Z⊤
D;SyD

σ̃(x) = λ−1/2
√

k(x,x)− z(x;S)⊤Z⊤
D;SZD;S [Z⊤

D;SZD;S + λI]−1z(x|S)
(2)

where ZD;S ∈ R
|D|×|S| is obtained by applying z(·;S) to each row of XD, i.e., ZD;S = ΦDP

1/2
S .

Note that the computation of µ̃(x) and σ̃(x) only requires the embedded statistics, i.e., matrix

Z⊤
D;SZD;S ∈ R

|S|×|S| and vector Z⊤
D;SyD ∈ R

|S|, which makes joint kernelized estimation among
N clients much more efficient in communication compared with equation 1.

4 METHODOLOGY

In this section, we propose and analyze the first asynchronous algorithm for distributed kernelized
contextual bandit problem that addresses the challenges mentioned in Section 1, and name the re-
sulting algorithm Async-KernelUCB, with its description given in Algorithm 1.

4.1 ALGORITHM

We denote the embedded statistics used in the computation of equation 2 by Ã(D;S) := Z⊤
D;SZD;S

and b̃(D;S) := Z⊤
D;SyD, to explicitly emphasize they are computed by projecting the data

points from dataset D to the subspace spanned by dictionary S . We denote the sequence of
time steps corresponding to the interactions between client i and the environment up to time t as
Nt(i) = {1 ≤ s ≤ t : is = i} for t ∈ [T ]. Throughout the paper, we reserve k as the index for
communication, and use tk ∈ [T ] to denote the time step when the k-th communication happens.
Moreover, as each client has a different copy of the embedding function and embedded statistics due
to asynchronous communication, we use k(i) to denote the index of client i’s latest communication
with the server, up to the k-th one: if client i triggers the k-th communication, then k(i) = k.

Arm Selection At each round t ∈ [T ], client it ∈ [N ] selects arm xt from the candidate set At by
maximizing the following upper confidence bound (line 5)

xt = argmax
x∈At

µ̃k(it)(x) + ασ̃k(it)(x) (3)

where µ̃k(it)(x) and σ̃k(it)(x) are approximated mean and standard deviation of arm x’s reward,

computed using statistics Ã(Dk(it),Sk(it)) and b̃(Dk(it),Sk(it)) that client it received from the

server during the k(it)-th communication. Proper choice of α is given in Lemma 4.4.

1Throughout this paper, we will often use the set of indices D (or S) to refer to the actual dataset
{xs, ys}s∈D (or dictionary {xs, ys}s∈S ) for simplicity.
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Algorithm 1 Asynchronous KernelUCB (Async-KernelUCB)

1: Input: α, q̄, communication threshold D > 0, regularization parameter λ > 0, δ ∈ (0, 1) and
kernel function k(·, ·).

2: Initialize approximated mean and variance µ̃0(x) = 0, σ̃0(x) = λ−1/2
√

k(x,x), dataset D0 =
∅, dictionary S0 = ∅, index of communication k = 0, and N0(i) = ∅ for each client i ∈ [N ]

3: for t = 1, 2, ..., T do
4: Client it ∈ [N ] becomes active, and observes arm set At

5: [Client it] Choose arm xt ∈ At according to equation 3, and observe reward yt
6: // Set Nt(it) = Nt−1(it) ∪ {t}, and Nt(i) = Nt−1(i) for i ̸= it
7: if

∑

s∈Nt(it)\Ntk(it)
(it)

σ̃2
k(it)

(xs) > D then

// Denote ∆Dk = Nt(it) \ Ntk(it)
(it), and set k = k + 1

8: [Server → Client it] Send {xs, ys}s∈Sk−1
, Ã(Dk−1;Sk−1), b̃(Dk−1;Sk−1) to client it

9: [Client it] Select ∆Sk ⊆ ∆Dk via RLS sampling with probability q̄σ̃2
k−1(·)

// Set Sk = Sk−1 ∪∆Sk

10: [Client it] Compute Ã(∆Dk;Sk), b̃(∆Dk;Sk)

11: [Client it → Server] Send {xs, ys}s∈∆Sk
, Ã(∆Dk;Sk) and b̃(∆Dk;Sk) to server

// Set Dk = Dk−1 ∪∆Dk

12: [Server] Compute Ã(Dk;Sk), b̃(Dk;Sk) according to equation 5

13: [Server → Client it] Send Ã(Dk;Sk), b̃(Dk;Sk) to client it
14: [Client it] Update µ̃k(·) and σ̃k(·) using Ã(Dk;Sk), b̃(Dk;Sk) according to equation 2
15: end if
16: end for

Event-triggered Asynchronous Communication After the interaction at time step t, µ̃k(it)(·) and

σ̃k(it)(·) of active client it will only be updated if the following event is true (line 7):

∑

s∈Nt(it)\Ntk(it)
(it)

σ̃2
k(it)

(xs) > D, (4)

where D > 0 denotes the communication threshold. This measures whether sufficient amount of
new information has been collected by client it since its lastest (the k(it)-th) communication with
the server. If true, communication between client it and the server is triggered (line 8-14), where
the update procedure described in the following paragraphs will be performed. And this procedure
is also illustrated in Figure 1.

Dictionary and Embedded Statistics Update During the k-th communication, the server first

sends its latest dictionary Sk−1, as well as its latest embedded statistics Ã(Dk−1;Sk−1) and

b̃(Dk−1;Sk−1), to client it (line 8), which is illustrated as the blue lines in Figure 1. Then client it
selects a subset ∆Sk from the data it has collected since its lastest communication (line 9), i.e.,
∆Dk, which will be used to incrementally update dictionary Sk−1. This is done by sampling
qk,s ∼ B(p̃k,s) for each data point with time index s ∈ ∆Dk, where p̃k,s := q̄σ̃2

k−1(xs). This
can be considered as a variant of Ridge leverage score (RLS) sampling (Calandriello et al., 2020; Li

et al., 2022). It is worth noting that the only purpose of sending Ã(Dk−1;Sk−1) and b̃(Dk−1;Sk−1)
is to enable RLS sampling with the latest σ̃2

k−1(·). Otherwise, client it, whose lastest communica-
tion with the server can be long time ago, would include unnecessary data points into ∆Sk due to
its unawareness of server’s current status. We will demonstrate in the proof of Lemma 4.3 that our
design here is necessary to obtain a compact dictionary under asynchronous communication. With

the dictionary updated, client it computes the embeddings of its new local data, i.e., Ã(∆Dk;Sk)

and b̃(∆Dk;Sk), and sends them, as well as ∆Sk, to the server (the yellow lines in Figure 1).

As shown in Figure 1, the server stores: 1) the last received embedded statistics from each client

i ∈ [N ], i.e., Ã(Ntk(i)
(i);Sk(i)) ∈ R

|Sk(i)|×|Sk(i)| and b̃(Ntk(i)
(i);Sk(i)) ∈ R

|Sk(i)|; 2) their corre-
sponding dictionary Sk(i). As mentioned earlier, due to asynchronous communication, the statistics
from different clients are based on different dictionaries, which means they have different dimen-
sions and thus cannot be directly aggregated as in Li et al. (2022). We propose to transform the
statistics from each client i ∈ [N ] using the latest dictionary Sk. This is based on the fact that
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fresh re-sampling over Dk using the latest approximated variance σ̃2
k−1(·), and thus they only need

to guarantee σ̃2
k−1(·) is a good approximation to σ2

k−1(·). In our case, Sk is incrementally updated

in each communication, i.e., Sk = ∪k
k′=1∆Sk′ where each ∆Sk′ is sampled using σ̃2

k′−1(·). The

accuracy of Sk depends on the accuracy of every Sk′ , i.e., ∩k−1
k′=1A

C
k′ . Therefore, we decompose

P
(
∪B
k=0Ak

)
= 1− P

(
∩B
k=0A

C
k

)
= 1−∏B

k=1[1− P
(
Ak| ∩k−1

k′=0 A
C
k′

)
] ≤ ∑B

k=1 P
(
Ak| ∩k−1

k′=0 A
C
k′

)

using Bayes theorem and Weierstrass product inequality, and bound each conditional probability
separately, which leads to Lemma 4.2.

Lemma 4.2 (Bounding
∑B

k=1 P
(
Ak| ∩k−1

k′=0A
C
k′

)
). By setting q̄ = 4 ln(2

√
2T/δ)β(1+ ϵ/3)/ϵ2, we

have
∑B

k=0 P
(
Ak| ∩k−1

k′ AC
k′

)
≤ δ/2, for δ ∈ (0, 1).

Bounding the second term: The second term can be decomposed as P
(
(∪B

k=0Ek)∩ (∪B
k=0Ak)

C
)
≤

∑B
k=0 P

(
Ek ∩ (∩B

k=0A
C
k )

)
. Note that the size of dictionary |Sk| =

∑

s∈Dk
qk,s by the definition of

qk,s, and its analysis relies on upper bounding
∑

s∈Dk
p̃k,s (Calandriello et al., 2020). Again, due

to asynchronous communication, for data point s that was added during the k′-th communication,

i.e., s ∈ ∆Dk′ , we have qk,s = qk′,s, p̃k,s = p̃k′,s and thus
∑

s∈Dk
p̃k,s =

∑k
k′=1

∑

s∈∆Dk′
p̃k′,s.

Compared with Li et al. (2022); Calandriello et al. (2020) that re-sample all s ∈ Dk using p̃k,s =
q̄σ̃2

k−1(xs), we use a different approximated variance function for each ∆Sk′ . Nevertheless, with

our design in Section 4.1, i.e., p̃k′,s = q̄σ̃2
k′−1(xs), we show in Lemma 4.3 that we can still ensure

|Sk| = O(γT ), as long as a proper threshold D is chosen to avoid any ∆Dk′ being too large.

Lemma 4.3 (Bounding
∑B

k=0 P
(
Ek ∩ (∩B

k=0A
C
k )

)
). By setting q̄ = 4 ln(2

√
2T/δ)β(1 + ϵ/3)/ϵ2,

and λ ≤ k(x,x), ∀x ∈ A, we have
∑B

k=0 P
(
Ek ∩ (∩B

k=0A
C
k )

)
≤ δ/2, for δ ∈ (0, 1).

Putting everything together, we have P
(
∪B
k=0Hk

)
≤ δ, for δ ∈ (0, 1), which finishes the proof.

4.3 ANALYSIS OF REGRET AND COMMUNICATION COST

Lemma 4.1 guarantees a compact and accurate dictionary for NystrÈom approximation throughout
the learning process. Based on it, we establish the upper bounds for the cumulative regret and com-
munication cost of Async-KernelUCB. First, motivated by the confidence ellipsoid for asynchronous
linear bandits (He et al., 2022), we construct the following confidence ellipsoid for our approximated
estimator for kernel bandit defined in Section 3.2 (proof is provided in appendix).

Lemma 4.4 (Confidence ellipsoid for approximated estimator). Under the same condition as
Lemma 4.1, with probability at least 1− 2δ, for δ ∈ (0, 1), we have ∀k that

∥θ̃k − θ⋆∥Ṽk
≤ (1/

√
1− ϵ+ 1)

√
λS + 2R

(
√

1 +NDβ +N
√

2Dβ
)
√

ln(1/δ) + γT := α,

where Ṽk := PSk
Φ⊤

Dk
ΦDk

PSk
+λI and γT := maxD⊂A:|D|=T

1
2 log det(KD,D/(Dβλ)+ I) 2 is

the maximum information gain after T interactions (Chowdhury & Gopalan, 2017; Li et al., 2022).

Then based on Lemma 4.4, we establish Theorem 4.5 below (proof is provided in appendix).

Theorem 4.5. Under the same condition as Lemma 4.1, we have

RT ≤ 4NγTLS + 4
√
2
[

(1/
√
1− ϵ+ 1)

√
λS + 2R

(
√

1 +NDβ +N
√

2Dβ
)
√

ln(1/δ) + γT
]

·
√

Tβ[1 +Nβ(L2/λ+D)]γT

with probability at least 1− 2δ, and

CT ≤ 2γT (N + 4β/D)
[

3(|SB |2 + |SB |) + d|SB |
]

.

where the dictionary size |SB | ≤ 12β(1 + βD)q̄γT due to Lemma 4.1. By setting D = 1/N2, we

have RT = O
(
NγTLS +

√
T (S

√
γT + γT )

)
, and CT = Õ(N2γ3T ).

2As discussed in Li et al. (2022), γT is problem-dependent, showing how fast kernel’s eigenvalues de-
cay. For kernels with exponentially decaying eigenvalues, i.e., λm = O(exp(−mβe)), for βe > 0,

γT = O(log1+1/βe(T )), which includes Gaussian kernel that is widely used for GPs and SVMs. For kernels

with polynomially decaying eigenvalues, i.e., λm = O(m−βp), for βp > 1, γT = O(T 1/βp log1−1/βp(T )).
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5 EXPERIMENTS

To validate Async-KernelUCB’s effectiveness in reducing communication cost, we performed exten-
sive empirical evaluations on both synthetic and real-world datasets, and reported the results (over
10 runs) in Figure 2. The baselines included in our comparisons are: 1) OneKernelUCB (Valko
et al., 2013), it learns a shared kernel bandit model across all clients’ aggregated data where data
aggregation happens immediately after each new data point becomes available; 2) NKernelUCB, it
learns a separate kernel bandit model for each client with no communication; 3) FedGLBUCB (Li
& Wang, 2022b), it is a synchronous distributed GLB algorithm; 4) DisLinUCB (Wang et al., 2019),
it is a synchronous distributed linear bandit algorithm; 5) FedLinUCB (He et al., 2022), it is an
asynchronous distributed linear bandit algorithm; and 6) Approx-DisKernelUCB (Li et al., 2022), it
is a synchronous distributed kernel bandit algorithm. For all the kernel bandit algorithms, we used
the Gaussian kernel k(x, y) = exp(−γ∥x − y∥2), where we did a grid search of γ ∈ {0.1, 1, 4},
and for FedGLBUCB, we used Sigmoid function µ(z) = (1 + exp(−z))−1 as link function. For
all algorithms, instead of using their theoretically derived exploration coefficient α, we followed the
convention Li et al. (2010a); Zhou et al. (2020) to use grid search for α in {0.1, 1, 4}.

5.1 EXPERIMENT SETUP

Synthetic dataset We simulated the distributed bandit setting in Section 3.1, with d = 20, T =
104, N = 102. At each time step t ∈ [T ], client it ∈ [N ] selects an arm from candidate set At (with
|At| = 20), which is uniformly sampled from a ℓ2 unit ball. Then the reward is generated using one
of the following reward functions: 1) f1(x) = cos(3x⊤θ⋆), and 2) f2(x) = (x⊤θ⋆)3− 3(x⊤θ⋆)2−
(x⊤θ⋆) + 3, where the parameter θ⋆ is uniformly sampled from a ℓ2 unit ball and fixed.

UCI Datasets We also performed experiments using MagicTelescope and Mushroom from the UCI
Machine Learning Repository (Dua & Graff, 2017), which are converted to bandit problem follow-
ing Filippi et al. (2010). Specifically, we partitioned the dataset into 20 clusters using k-means,
and used the centroid of each cluster as the context for the arms and used the averaged response as
mean reward (the response is binarized by setting one class as 1, and all the others as 0). Then we
simulated the distributed bandit setting in Section 3.1 with |At| = 20, T = 104 and N = 102.

MovieLens and Yelp dataset Yelp dataset is released by the Yelp dataset challenge, and consists of
4.7 million rating entries for 157 thousand restaurants by 1.18 million users. MovieLens consists of
25 million ratings between 160 thousand users and 60 thousand movies (Harper & Konstan, 2015).
Following the pre-processing steps in Ban et al. (2021), we built the rating matrix by choosing
the top 2,000 users and top 10,000 restaurants/movies and used singular-value decomposition to
extract a 10-dimension feature vector for each user and restaurant/movie. We treated ratings greater
than 2 as positive, and simulated the distributed bandit setting in Section 3.1 with T = 104 and
N = 102. The candidate set At (with |At| = 20) is constructed by sampling an arm with positive
reward and nineteen arms with negative reward from the arm pool, and the concatenation of user
and restaurant/movie feature vector is used as the context vector for the arm (thus d = 20).

5.2 EXPERIMENT RESULTS

OneKernelUCB and NKernelUCB correspond to the two extreme cases where the clients either com-
municate in every time step to learn a shared model, or they learn their own models independently
with no communication. As shown in Figure 2, OneKernelUCB achieved the smallest cumulative
regret in almost all experiments, but also incurred the highest communication cost, i.e., O(TNd)
due to sending each new data point to all clients in every round, which demonstrates the necessity
of communication efficient bandit algorithms. On the other hand, distributed linear bandit algo-
rithms, e.g., DisLinUCB and FedLinUCB, incurred very low communication cost as they directly
communicate via the d× d statistics, but fail to capture the complicated reward mappings in most of
these datasets, e.g., in Figure 2(d), they even had much worse regret than NKernelUCB that requries
no communication. Equipped with logistic function, distributed GLB algorithm FedGLBUCB at-
tained both low regret and low communication cost on the two classification datasets, i.e., Figure
2(c) and Figure 2(d), but required many iterations of distributed gradient updates to converge on the
other four datasets where logistic function may not fit, and led to huge communication costs. In
comparison, Approx-DisKernelUCB and our proposed Async-KernelUCB had consistently smaller
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A TECHNICAL LEMMAS

Lemma A.1 (Lemma 11 of Abbasi-Yadkori et al. (2011)). Let {xt}∞t=1 be a sequence in R
d, V ∈

R
d×d a positive definite matrix, and define Vt = V +

∑t
s=1 xsx

⊤
s . Then we have that

ln
(det(Vn)

det(V )

)
≤

n∑

t=1

∥xt∥2V −1
t−1

.

If ∥xt∥2 ≤ L, ∀t, and λmin(V ) ≥ max(1, L2), then
n∑

t=1

∥xt∥2V −1
t−1

≤ 2 ln
(det(Vn)

det(V )

)
.

Lemma A.2 (Lemma 12 of Abbasi-Yadkori et al. (2011)). Let A, B and C be positive semi-definite
matrices such that A = B + C. Then, we have that:

sup
x ̸=0

x⊤Ax
x⊤Bx

≤ det(A)

det(B)

Lemma A.3 (Lemma A.2 of Li et al. (2022)). Define positive definite matrices A = λI+Φ⊤
1 Φ1 +

Φ⊤
2 Φ2 and B = λI + Φ⊤

1 Φ1, where Φ⊤
1 Φ1,Φ

⊤
2 Φ2 ∈ R

p×p and p is possibly infinite. Then, we
have that:

sup
ϕ ̸=0

ϕ⊤Aϕ
ϕ⊤Bϕ

≤ det(I+ λ−1KA)

det(I+ λ−1KB)

where KA =

[
Φ1

Φ2

]
[
Φ⊤

1 ,Φ
⊤
2

]
and KB = Φ1Φ

⊤
1 .

Lemma A.4 (Eq (26) and Eq (27) of Zenati et al. (2022)). Let {ϕt}∞t=1 be a sequence in R
p, V ∈

R
p×p a positive definite matrix, where p is possibly infinite, and define Vt = V +

∑t
s=1 ϕsϕ

⊤
s . Then

we have that
n∑

t=1

min
(
∥ϕt∥2V −1

t−1

, 1
)
≤ 2 ln

(
det(I+ λ−1KVt

)
)
,

where KVt
is the kernel matrix corresponding to Vt as defined in Lemma A.3.

Lemma A.5 (Lemma 4 of Calandriello et al. (2020)). For t > t′, we have for any x ∈ R
d

σ2
t (x) ≤ σ2

t′(x) ≤
(
1 +

t∑

s=t′+1

σ2
t′(xs)

)
σ2
t (x)

Lemma A.6 (Lemma 6 of Calandriello et al. (2019)). If Sk is ϵ-accurate w.r.t. Dk, then

1− ϵ

1 + ϵ
σ2(x) ≤ min(σ̃2

k(x), 1) ≤
1 + ϵ

1− ϵ
σ2(x)

for all x ∈ R
d.

Lemma A.7 (Proposition 7 of Calandriello et al. (2019)). Let G1, . . . , Gn be a sequence of inde-
pendent self-adjoint random operators such that E[Gi] = 0 and ∥Gi∥ ≤ R. Then for any ϵ ≥ 0, we
have

P
(
∥

t∑

i=1

Gi∥ ≥ ϵ
)
≤ 4t exp

(
− ϵ2/2

∥∑t
i=1 E[G

2
i ]∥+Rϵ/3

)
.

Lemma A.8 (Proposition 8 of (Calandriello et al., 2019)). Let {qs}ts=1 be independent Bernoulli
random variables, each with success probability ps. Then we have

P
(

t∑

s=1

qs ≥ 3

t∑

s=1

ps
)
≤ exp(−2

t∑

s=1

ps).

Lemma A.9 (Corollary 7.7.4. (a) of Horn & Johnson (2012)). LetA,B be positive definite matrices,
such that A ⪰ B, then we have

A−1 ⪯ B−1.

Lemma A.10 (Lemma 2.2 of Tie et al. (2011)). For any positive semi-definite matrices A,B and
C, it holds that det(A+B + C) + det(A) ≥ det(A+B) + det(A+ C).
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B PROOF OF LEMMAS IN SECTION 4.2

Let’s define the unfavorable eventHk = Ak∪Ek, whereAk is the event that the dictionary Sk is not
ϵ-accurate w.r.t. Dk, and Ek is the event that the size of dictionary |Sk| is large, i.e., |Sk| > 12β(1+
βD)q̄γT . Therefore, we want to bound the probability of ∪B

k=0Hk, which can be decomposed as

P
(
∪B
k=0Hk

)
= P

(
∪B
k=0(Ak ∪ Ek)

)
= P

(
(∪B

k=0Ak) ∪ (∪B
k=0Ek)

)

= P
(
∪B
k=0Ak

)
+ P

(
∪B
k=0Ek

)
− P

(
(∪B

k=0Ak) ∩ (∪B
k=0Ek)

)

= P
(
∪B
k=0Ak

)
+ P

(
(∪B

k=0Ek) ∩ (∪B
k=0Ak)

C
)

Note that, as in Calandriello et al. (2017), we bound the second term as P
(
(∪B

k=0Ek) ∩
(∪B

k=0Ak)
C
)

= P
(
(∪B

k=0Ek) ∩ (∩B
k=0A

C
k )

)
= P

(
∪B
k=0[Ek ∩ (∩B

k=0A
C
k )]

)
≤ ∑B

k=0 P
(
Ek ∩

(∩B
k=0A

C
k )

)
. For the first term P

(
∪B
k=0Ak

)
, we need a decomposition different from prior works

(Calandriello et al., 2017; 2019), since our dictionary is incrementally updated with a batch of sam-
ples at each communication round (line 9 in Algorithm 1). Specifically, when bounding the probabil-
ity of having an inaccurate dictionary at the k-th communication, i.e., eventAk, we need to condition

on the event that dictionaries at all previous communications are ϵ-accurate, i.e., event ∩k−1
k′=0A

C
k′ .

Hence, we decompose P
(
∪B
k=0Ak

)
= 1− P

(
∩B
k=0A

C
k

)
= 1− P(AC

0 )
∏B

k=1 P
(
AC

k | ∩k−1
k′=0 A

C
k′

)
=

1 − ∏B
k=1[1 − P

(
Ak| ∩k−1

k′=0 A
C
k′

)
] ≤ ∑B

k=1 P
(
Ak| ∩k−1

k′=0 A
C
k′

)
, where the second equality is due

to Bayes theorem, the third equality is because D0 = ∅ is well-approximated by S0 = ∅, and thus
P
(
AC

0

)
= 1, and the inequality is due to Weierstrass product inequality. Putting everything together,

we have

P
(
∪B
k=0Hk

)
≤

B∑

k=1

P
(
Ak| ∩k−1

k′ AC
k′

)
+

B∑

k=1

P
(
Ek ∩ (∩B

k=0A
C
k )

)
(7)

Then we can upper bound these two terms using Lemma 4.2 and Lemma 4.3 given in Section 4.2,
which leads to P

(
∪B
k=0Hk

)
≤ δ, for δ ∈ (0, 1), and thus finishes the proof of Lemma 4.1.

Proof of Lemma 4.2: bounding
∑B

k=1 P
(
Ak| ∩k−1

k′ AC
k′

)
. As Calandriello et al. (2019), we can

rewrite the event Ak, based on the definition of ϵ-accuracy given in equation 6, as

Ak =
{
∥
∑

s∈Dk

Gk,s∥ > ϵ
}

where Gk,s = (
qk,s

p̃k,s
− 1)ψk,sψ

⊤
k,s and ψk,s = (Φ⊤

Dk
ΦDk

+ λI)−1/2ϕ(xs). Then let’s define

Fk := {qk,s, ηs}s∈Dk
for k ∈ [B], which contains all randomness in the construction of Sk during

the k-th communication. With conditioning, we have

P(Ak | ∩k−1
k′ AC

k′) = P
(
∥
∑

s∈Dk

Gk,s∥ > ϵ | ∩k−1
k′ AC

k′

)
= EFk

[
1
{
∥
∑

s∈Dk

Gk,s∥ > ϵ
}
| ∩k−1

k′ AC
k′

]

= EFk−1

[
EFk\Fk−1

[
1
{
∥
∑

s∈Dk

Gk,s∥ > ϵ
}
|Fk−1

]
| ∩k−1

k′ AC
k′

]

= EFk−1:∩k−1

k′ AC
k′

[
EFk\Fk−1

[
1
{
∥
∑

s∈Dk

Gk,s∥ > ϵ
}
|Fk−1

]]

= EFk−1:∩k−1

k′ AC
k′

[
PFk\Fk−1

(
∥
∑

s∈Dk

(
qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s∥ > ϵ | Fk−1

)]
.

where the third equality holds because when conditioned on the event ∩k−1
k′ AC

k′ , the outcomes asso-
ciated with the complement of this event have zero probability, and thus we can restrict the expecta-

tion to the outcomes where the event ∩k−1
k′ AC

k′ holds.

Consider the k-th communication for k ∈ [B]. We denote the client who triggers the k-th com-
munication as ck ∈ [N ], and the time step when the k-th communication happens as tk ∈ [T ]. In
addition, recall that we denote the sequence of time steps in-between client ck’s last communication
(whose index is denoted as k(ck) ∈ [0, k−1]) and the current (the k-th) communication when client
ck’s is active as ∆Dk := Ntk(ck) \ Ntk(ck)

(ck) = {tk(ck) < s ≤ tk : is = ck}.
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Note that due to our incremental update procedure, for some data point with time index s, that was
added into Dk during the k′-th communication (sent to the server in the form of embedded statistics),
i.e., s ∈ ∆Dk′ , for k′ = 1, . . . , k, we have qk,s = qk′,s and p̃k,s = p̃k′,s. When conditioned on
Fk−1, qk,s for all s ∈ Dk are independent Bernoulli random variable with mean p̃k,s, because they
only correlate via the approximated variance function(s) that were used for arm selection and RLS
sampling up to the k-th communication, which are deterministic conditioned on Fk−1, and thus both
p̃k,s and ψk,s are deterministic as well.

Therefore, we can bound PFk\Fk−1

(
∥∑s∈Dk

(
qk,s

p̃k,s
− 1)ψk,sψ

⊤
k,s∥ > ϵ|Fk−1

)
using Lemma A.7.

First, we need to show that each term in the summation has zero mean and bounded norm, i.e.,
EFk\Fk−1

[Gk,s|Fk−1] = 0 and ∥Gk,s∥ ≤ R for some constant R:

EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s|Fk−1

]
= (

EFk\Fk−1

[
qk,s|Fk−1

]

p̃k,s
− 1)ψk,sψ

⊤
k,s = 0,

and

∥Gk,s∥ = ∥( qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s∥ ≤ (

qk,s
p̃k,s

− 1)∥ψk,sψ
⊤
k,s∥ ≤ σ2

k(xs)

p̃k,s
,

where the last inequality is because qk,s ≤ 1 and ∥ψk,sψ
⊤
k,s∥ = ψ⊤

k,sψk,s = σ2
k(xs). As mentioned

earlier, for s ∈ ∆Dk′ , k′ = 1, . . . , k, we have p̃k,s = p̃k′,s = q̄σ̃2
k′−1(xs), i.e., during the k′-

th communication, client ck′ first receives server’s latest statistics to compute σ̃2
k′−1(·) for RLS

sampling. Conditioned on ∩k
k′=0A

C
k′ and by Lemma A.6, we have σ̃2

k′−1(xs) ≥ σ2
k′−1(xs)/β,

where β := (1 + ϵ)/(1− ϵ). Hence,

∥Gk,s∥ ≤ σ2
k(xs)

p̃k,s
=

σ2
k(xs)

q̄σ̃2
k′−1(xs)

≤ β

q̄

σ2
k(xs)

σ2
k′−1(xs)

≤ β

q̄
:= R.

where the last inequality is because the variance is non-increasing over time. Then by Lemma A.7,

PFk\Fk−1

(
∥
∑

s∈Dk

Gk,s∥ > ϵ|Fk−1

)
≤ 4|Dk| exp(−

ϵ2/2

∥∑s∈Dk
EFk\Fk−1

[G2
k,s|Fk−1]∥+Rϵ/3

)

Now we need to further upper bound the term ∥∑s∈Dk
EFk\Fk−1

[G2
k,s|Fk−1]∥. First, note that

EFk\Fk−1
[G2

k,s|Fk−1] = EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)2ψk,sψ
⊤
k,sψk,sψ

⊤
k,s|Fk−1

]

= EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)2|Fk−1

]
ψk,sψ

⊤
k,sψk,sψ

⊤
k,s,

and EFk\Fk−1
[(

qk,s

p̃k,s
− 1)2|Fk−1] = EFk\Fk−1

[(
qk,s

p̃k,s
)2|Fk−1] − 2EFk\Fk−1

[
qk,s

p̃k,s
|Fk−1] + 1 =

EFk\Fk−1
[
qk,s

p̃2
k,s

|Fk−1]− 1 = 1
p̃k,s

− 1 ≤ 1
p̃k,s

. Substituting this to the RHS, we have

EFk\Fk−1
[G2

k,s|Fk−1] ⪯
1

p̃k,s
ψk,sψ

⊤
k,sψk,sψ

⊤
k,s ⪯

1

p̃k,s
∥ψk,sψ

⊤
k,s∥ψk,sψ

⊤
k,s ⪯ Rψk,sψ

⊤
k,s,

and thus,

∥
∑

s∈Dk

EFk\Fk−1
[G2

k,s|Fk−1]∥ ≤ R∥
∑

s∈Dk

ψk,sψ
⊤
k,s∥

= R∥
∑

s∈Dk

(Φ⊤
Dk

ΦDk
+ λI)−1/2ϕsϕ

⊤
s (Φ

⊤
Dk

ΦDk
+ λI)−1/2∥

= R∥(Φ⊤
Dk

ΦDk
+ λI)−1/2Φ⊤

Dk
ΦDk

(Φ⊤
Dk

ΦDk
+ λI)−1/2∥ ≤ R,

where the first equality is by definition of ψk,s. Putting everything together, we have

PFk\Fk−1

(
∥
∑

s∈Dk

Gk,s∥ > ϵ|Fk−1

)
≤ 4|Dk| exp(−

ϵ2/2

1 + ϵ/3
· q̄
β
),
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and thus P(Ak | ∩k−1
k′=0A

C
k′) ≤ 4|Dk| exp(− ϵ2/2

1+ϵ/3 · q̄
β ). Summing over B terms, we have

B∑

k=0

P
(
Ak| ∩k−1

k′=0 A
C
k′

)
≤ 4 exp(− ϵ2/2

1 + ϵ/3
· q̄
β
)

B∑

k=1

|Dk| ≤ 4T 2 exp(− ϵ2/2

1 + ϵ/3
· q̄
β
)

In order to make sure
∑B

k=0 P
(
Ak| ∩k−1

k′=0 A
C
k′

)
≤ δ

2 , we need to set q̄ = 4β 1+ϵ/3
ϵ2 ln( 2

√
2T
δ ).

Proof of Lemma 4.3: bounding
∑B

k=0 P
(
Ek ∩ (∩B

k=0A
C
k )

)
. First, note that P(E0 ∩ (∩B

k=0A
C
k )) =

0, because S0 = ∅, and by definition of qk,s for s ∈ Dk, the size of dictionary |Sk| =
∑

s∈Dk
qk,s.

We formally define unfavorable event Ek as

Ek =
{ ∑

s∈Dk

qk,s > 12β(1 + βD)q̄γT
}
,

where β = (1 + ϵ)/(1 − ϵ). Similar to Calandriello et al. (2017; 2019), we will use a stochastic
dominance argument to upper bound the probability of event Ek. First, we use conditioning again
to rewrite P

(
Ek ∩ (∩B

k=1A
C
k )

)
as

P(Ek ∩ (∩B
k=1A

C
k )) = P(Ek | ∩B

k=1A
C
k )P(∩B

k=1A
C
k ) ≤ P(Ek | ∩B

k=1A
C
k )

= P
( ∑

s∈Dk

qk,s ≥ 12β(1 + βD)q̄γT | ∩B
k=1A

C
k

)

= EFk−1:∩B
k=1A

C
k

[
PFk\Fk−1

( ∑

s∈Dk

qk,s ≥ 12β(1 + βD)q̄γT | Fk−1

)]
.

As discussed earlier, when conditioned on Fk−1, qk,s for s ∈ Dk becomes independent Bernoulli
random variable, with mean p̃k,s. In addition, as a result of our incremental dictionary update
(line 9 in Algorithm 1), the partition in Dk that were added during the k′-th communication for
k′ ∈ 1, . . . , k, which is denoted by ∆Dk′ , is sampled using q̄σ̃2

k′−1(xs) for s ∈ ∆Dk′ . Hence,

EFk\Fk−1

[ ∑

s∈Dk

qk,s|Fk−1

]
=

∑

s∈Dk

p̃k,s

=
k∑

k′=1

∑

s∈∆Dk′

p̃k′,s = q̄
k∑

k′=1

∑

s∈∆Dk′

σ̃2
k′−1(xs)

≤ βq̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1(xs) = βq̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs) ·

σ2
k′−1(xs)

σ2
k′−1,s−1(xs)

≤ βq̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 +

∑

s′∈∆Dk′ :s′≤s−1

σ2
k′−1(xs′)]

≤ βq̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 +

∑

s′∈∆Dk′ :s′≤s−1

σ2
k′(ck′ )(xs′)]

≤ βq̄
k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 + β

∑

s′∈∆Dk′ :s′≤s−1

σ̃2
k′(ck′ )(xs′)]

≤ β(1 + βD)q̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs)

where the imaginary variance function σ2
k′−1,s−1(·) is constructed using dataset

(
∪k′−1
k=1 ∆Dk

)
∪

{s′ ∈ ∆Dk′ : s′ ≤ s − 1} (not computed in the actual algorithm); the first and forth inequality is
due to Lemma A.6 as we conditioned on ∩B

k=0A
C
k ; the second is due to Lemma A.5; the third is

because k′(ck′) ≤ k′ − 1 and the variance is non-increasing over time; and the fifth is due to our
event-trigger design in equation 4, i.e.,

∑

s∈∆Dk′ :s≤tk′−1 σ̃
2
k′(ck′ )

(xs) < D.

16



Published as a conference paper at ICLR 2023

Now for each term in the summation on the RHS of the inequality above, we introduce an inde-
pendent Bernoulli random variable q̂k,s ∼ B

(
β(1 + βD)q̄σ2

k′−1,s−1(xs)
)
. Since q̂k,s stochastically

dominates qk,s, i.e., E
[
qk,s | Fk−1

]
= p̃k,s ≤ β(1 + βD)q̄σ2

k′−1,s−1(xs) = E
[
q̂k,s

]
, we have

P
( ∑

s∈Dk

qk,s > 12β(1 + βD)q̄γT | Fk−1

)
≤ P

( ∑

s∈Dk

q̂k,s > 12β(1 + βD)q̄γT
)
.

Then we can further upper bound the RHS

P
( ∑

s∈Dk

q̂k,s > 12β(1 + βD)q̄γT
)

≤ P
( ∑

s∈Dk

q̂k,s > 3β(1 + βD)q̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs)

)

≤ exp
(
−2β(1 + βD)q̄

k∑

k′=1

∑

s∈∆Dk′

σ2
k′−1,s−1(xs)

)

where the first inequality is because
∑k

k′=1

∑

s∈∆Dk′
σ2
k′−1,s−1(xs) ≤ 4γT , and the

second inequality is due to Lemma A.8. By substituting q̄ = 4β 1+ϵ/3
ϵ2 ln( 2

√
2T
δ )

and under the condition that
∑k

k′=1

∑

s∈∆Dk′
σ2
k′−1,s−1(xs) ≥ 1, we have

exp
(
−2β(1 + βD)q̄

∑k
k′=1

∑

s∈∆Dk′
σ2
k′−1,s−1(xs)

)
≤ exp

(
− ln(8T 2/δ)

)
. To ensure

∑k
k′=1

∑

s∈∆Dk′
σ2
k′−1,s−1(xs) ≥ 1, we can set λ ≤ k(x,x), ∀x ∈ A. Finally, by summing over

B terms, we have

B∑

k=0

P
(
Ek ∩ (∩B

k=0A
C
k )

)
≤ T exp

(
− ln(8T 2/δ)

)
≤ T · δ

8T 2
<
δ

2

where the last inequality is because T ≥ 1.

C PROOF OF LEMMA 4.4 IN SECTION 4.3

Recall from Section 3.2 that the approximated kernel Ridge regression estimator for θ⋆ is defined as

θ̃k = Ṽ−1
k PSk

Φ⊤
Dk

yDk

where Ṽk := PSk
Φ⊤

Dk
ΦDk

PSk
+ λI. Then we can decompose

∥θ̃k − θ⋆∥2
Ṽk

= (θ̃k − θ⋆)
⊤Ṽk(θ̃k − θ⋆)

=(θ̃k − θ⋆)
⊤Ṽk(Ṽ

−1
k PSk

Φ⊤
Dk

yDk
− θ⋆)

=(θ̃k − θ⋆)
⊤Ṽk[Ṽ

−1
k PSk

Φ⊤
Dk

(ΦDk
θ⋆ + ηDk

)− θ⋆]

= (θ̃k − θ⋆)
⊤Ṽk(Ṽ

−1
k PSk

Φ⊤
Dk

ΦDk
θ⋆ − θ⋆)

︸ ︷︷ ︸

A1

+(θ̃k − θ⋆)
⊤PSk

Φ⊤
Dk
ηDk

︸ ︷︷ ︸

A2

Since Ṽk(Ṽ
−1
k PSk

Φ⊤
Dk

ΦDk
θ⋆ − θ⋆) = PSk

Φ⊤
Dk

ΦDk
θ⋆ − PSk

Φ⊤
Dk

ΦDk
PSk

θ⋆ − λθ⋆ =

PSk
Φ⊤

Dk
ΦDk

(I−PSk
)θ⋆ − λθ⋆, we have

A1 =(θ̃k − θ⋆)
⊤PSk

Φ⊤
Dk

ΦDk
(I−PSk

)θ⋆ − λ(θ̃k − θ⋆)
⊤θ⋆

=(θ̃k − θ⋆)
⊤Ṽ1/2

k Ṽ
−1/2
k PSk

Φ⊤
Dk

ΦDk
(I−PSk

)θ⋆ − λ(θ̃k − θ⋆)
⊤Ṽ1/2

k Ṽ
−1/2
k θ⋆

≤∥θ̃k − θ⋆∥Ṽk

(
∥Ṽ−1/2

k PSk
Φ⊤

Dk
ΦDk

(I−PSk
)θ⋆∥+ λ∥θ⋆∥Ṽ−1

k

)

≤∥θ̃k − θ⋆∥Ṽk

(
∥Ṽ−1/2

k PSk
Φ⊤

Dk
∥∥ΦDk

(I−PSk
)∥∥θ⋆∥+

√
λ∥θ⋆∥

)

≤∥θ̃k − θ⋆∥Ṽk

(
∥ΦDk

(I−PSk
)∥+

√
λ
)
∥θ⋆∥
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where the first inequality is due to Cauchy Schwartz, and the last inequality is because

∥Ṽ−1/2
k PSk

Φ⊤
Dk

∥ =
√

ΦDk
PSk

(PSk
Φ⊤

Dk
ΦDk

PSk
+ λI)−1PSk

Φ⊤
Dk

≤ 1. Then by definition

of the spectral norm ∥·∥, and the properties of the orthogonal projection matrix PSk
, we have

∥ΦDk
(I−PSk

)∥ =
√

λmax

(
ΦDk

(I−PSk
)2Φ⊤

Dk

)
=

√

λmax

(
ΦDk

(I−PSk
)Φ⊤

Dk

)
.

Moreover, due to Lemma 4.1, Sk is ϵ-accurate w.r.t. Dk, for all k, so we have I − PSk
⪯

λ
1−ϵ (Φ

⊤
Dk

ΦDk
+ λI)−1 by the property of ϵ-accuracy (Proposition 10 of Calandriello et al. (2019)).

Substituting this to RHS of the equality above, we have

∥ΦDk
(I−PSk

)∥ ≤
√

λ

1− ϵ
λmax

(
ΦDk

(Φ⊤
Dk

ΦDk
+ λI)−1Φ⊤

Dk

)
≤

√

λ

1− ϵ
.

Therefore, A1 ≤ ∥θ̃k − θ⋆∥Ṽk

(√
1

1−ϵ + 1
)√
λ∥θ⋆∥.

Similarly, by applying Cauchy-Schwartz inequality on term A2, we have

A2 =(θ̃k − θ⋆)
⊤Ṽ1/2

k Ṽ
−1/2
k PSk

Φ⊤
Dk
ηDk

≤ ∥θ̃k − θ⋆∥Ṽk
∥Ṽ−1/2

k PSk
Φ⊤

Dk
ηDk

∥
=∥θ̃k − θ⋆∥Ṽk

∥Ṽ−1/2
k PSk

V
1/2
k V

−1/2
k Φ⊤

Dk
ηDk

∥
≤∥θ̃k − θ⋆∥Ṽk

∥Ṽ−1/2
k PSk

V
1/2
k ∥∥V−1/2

k Φ⊤
Dk
ηDk

∥

where Vk := Φ⊤
Dk

ΦDk
+λI. Note that PSk

Vkk
PSk

= PSk
(Φ⊤

Dk
ΦDk

+λI)PSk
= Ṽk+λ(PSk

−
I) and PSk

⪯ I, so we have

∥Ṽ−1/2
k PSk

V
1/2
k ∥ =

√

∥Ṽ−1/2
k PSk

V
1/2
k V

1/2
k PSk

Ṽ
−1/2
k ∥ ≤

√

∥Ṽ−1/2
k (Ṽk + λ(PSk

− I))Ṽ
−1/2
k ∥

=

√

∥I+ λṼ
−1/2
k (PSk

− I))Ṽ
−1/2
k ∥ ≤

√

1 + λ∥Ṽ−1
k ∥∥PSk

− I∥

≤
√

1 + λ · λ−1 · 1 =
√
2,

and thus A2 ≤
√
2∥θ̃k − θ⋆∥Ṽk

∥V−1/2
k Φ⊤

Dk
ηDk

∥.

As mentioned by He et al. (2022), the standard self-normalized bound for vector-valued martingales

cannot be directly applied to bound the term ∥V−1/2
k Φ⊤

Dk
ηDk

∥, since Dk is constructed by the data
that each client has uploaded so far during the event-triggered communications. Therefore, in the
following paragraphs, we bound this term by extending their results to the kernel bandit problem
considered in our paper.

We first need to establish the following lemma.

Lemma C.1. Let’s denote Vk(i) =
∑

s∈Ntk(i)
(i) ϕ(xs)ϕ(xs)

⊤, such that Vk = λI+
∑N

i=1 Vk(i),

and then denote the covariance matrix for client i’s data that hasn’t been uploaded to server by time
step tk as ∆Vk(i) =

∑

s∈Ntk
(i)\Ntk(i)

(i) ϕ(xs)ϕ(xs)
⊤ for i ∈ [N ]. Then we have

Vk ⪰ 1

βD
∆Vk(i), (8)

and ∀x ∈ R
d,

ϕ(x)⊤V−1
k ϕ(x)

ϕ(x)⊤(Φ⊤
[tk]

Φ[tk] + λI)−1ϕ(x)
≤ 1 +NβD.

Bounding ∥V−1/2
k Φ⊤

Dk
ηDk

∥: Recall that Dk contains data points that N clients have uploaded up

to the k-th communication, i.e., Dk = ∪N
i=1Ntk(i)

(i), where tk(i) denotes the time step of client i’s
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last communication with the server. Therefore, we have the following decomposition

V
−1/2
k Φ⊤

Dk
ηDk

=

N∑

i=1

V
−1/2
k Φ⊤

Ntk(i)
(i)ηNtk(i)

(i)

=

N∑

i=1

V
−1/2
k

[
Φ⊤

Ntk(i)
(i)ηNtk(i)

(i) +Φ⊤
Ntk

(i)\Ntk(i)
(i)ηNtk

(i)\Ntk(i)
(i)

]

−
N∑

i=1

V
−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)

= V
−1/2
k Φ⊤

[tk]
η[tk] −

N∑

i=1

V
−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i).

Then using triangle inequality, we have

∥V−1/2
k Φ⊤

Dk
ηDk

∥ ≤ ∥V−1/2
k Φ⊤

[tk]
η[tk]∥+

N∑

i=1

∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥.

We can bound ∥V−1/2
k Φ⊤

[tk]
η[tk]∥ as

∥V−1/2
k Φ⊤

[tk]
η[tk]∥ = ∥Φ⊤

[tk]
η[tk]∥V−1

k
≤ ∥Φ⊤

[tk]
η[tk]∥(Φ⊤

[tk]
Φ[tk]+λI)−1

√

1 +NDβ

≤
√

1 +NDβR
√

2 ln(1/δ) + ln(det(K[T ],[T ]/λ+ I)),

with probability at least 1 − δ, where the first inequality is due to Lemma C.1, and the second
inequality is due to the standard self-normalized bound for kernelized contextual bandit, e.g., Lemma
B.3. of Li et al. (2022).

Then we can bound ∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥ as

∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥

≤
√

2Dβ∥
[
DβλI+Φ⊤

Ntk
(i)\Ntk(i)

(i)ΦNtk
(i)\Ntk(i)

(i)

]−1/2
Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥

=
√

2Dβ∥Φ⊤
Ntk

(i)\Ntk(i)
(i)ηNtk

(i)\Ntk(i)
(i)∥[

DβλI+Φ⊤
Ntk

(i)\Ntk(i)
(i)

ΦNtk
(i)\Ntk(i)

(i)

]−1

≤
√

2DβR
√

2 ln(1/δ) + ln(det(K[T ],[T ]/(Dβλ) + I))

where the first inequality is because Vk = λI+Φ⊤
Dk

ΦDk
⪰ 1

DβΦ
⊤
Ntk

(i)\Ntk(i)
(i)ΦNtk

(i)\Ntk(i)
(i)

due to equation 8 in Lemma C.1, so Vk = λI + Φ⊤
Dk

ΦDk
⪰ 1

2Dβ (DβλI +

Φ⊤
Ntk

(i)\Ntk(i)
(i)ΦNtk

(i)\Ntk(i)
(i)), and the second inequality is again obtained using the standard

self-normalized bound.

Putting everything together, we have

∥θ̃k − θ⋆∥Ṽk
≤ (

√

1/(1− ϵ) + 1)
√
λ∥θ⋆∥+ 2

(√

1 +NDβ +N
√

2Dβ
)
R
√

ln(1/δ) + γT ,

where γT := maxD⊂A:|D|=T
1
2 log det(KD,D/(Dβλ) + I).

Proof of Lemma C.1. Note that by definition, ∆Vk(ck) = 0, where ck ∈ [N ] is the index of the
client who triggers the k-th communication. In the following, we first show that

Vk ⪰ 1

βD
∆Vk(i)
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for all i ∈ [N ]. For client ck, Vk ⪰ 0 = 1
βD∆Vk(ck). For client i ̸= ck, we have

ϕ(x)⊤V−1
k(i)ϕ(x)

ϕ(x)⊤
(
Vk(i) +∆Vk(i)

)−1
ϕ(x)

≤ 1 +
∑

s∈Ntk
(i)\Ntk(i)

(i)

ϕ(xs)
⊤V−1

k(i)ϕ(xs) = 1 +
∑

s∈Ntk
(i)\Ntk(i)

(i)

σ2
k(i)(xs)

≤ 1 + β
∑

s∈Ntk
(i)\Ntk(i)

(i)

σ̃2
k(i)(xs) ≤ 1 + βD,

where the first inequality is due to Lemma A.5, the second is due to property of ϵ-accuracy in Lemma
A.6, and the third is due to our event-trigger in equation 4.

This implies V−1
k(i) ⪯ (1 + βD)

(
Vk(i) + ∆Vk(i)

)−1
. Then due to Lemma A.9, we have (1 +

βD)Vk(i) ⪰ Vk(i) +∆Vk(i), and thus Vk(i) ⪰ 1
βD∆Vk(i). In addition, since k(i) < k, ∀i ̸= ck,

we have Vk ⪰ Vk(i) ⪰ 1
βD∆Vk(i).

By averaging equation 8 over all N clients, we have

Vk ⪰ 1

NβD

N∑

i=1

∆Vk(i),

and thus, we have

Φ⊤
[tk]

Φ[tk] + λI = Vk +

N∑

i=1

∆Vk(i) ⪯ (1 +NβD)Vk.

Using Lemma A.9 again finishes the proof.

D PROOF OF THEOREM 4.5 IN SECTION 4.3

D.1 COMMUNICATION COST

Recall from Section 4.1 that Dk is the set of time indices for the data points that are used to construct
the embedded statistics on the server at the k-th communication round, for k = 1, . . . , B. We denote
the corresponding (exact) covariance matrix as Vk = λI +Φ⊤

Dk
ΦDk

∈ R
p×p, with V0 = λI, and

kernel matrix as KDk,Dk
= ΦDk

Φ⊤
Dk

∈ R
|Dk|×|Dk|.

Similar to (He et al., 2022), by defining kp = min{k ∈ [B] | det(I + λ−1KDk,Dk
) ≥ 2p)}, we

have log
(
det(I + λ−1KDkp+1

,Dkp+1
)/ det(I + λ−1KDkp ,Dkp

)
)
≥ 1 for each p ≥ 0. We call the

sequence of time steps in-between tkp
and tkp+1 an epoch, and denote the total number of epochs as

P . Note that since

log
(det(I+ λ−1

KDk1
,Dk1

)

det(I)

)

+ log
(det(I+ λ−1

KDk2
,Dk2

)

det(I+ λ−1KDk1
,Dk1

)

)

+ · · ·+ log
(

det(I+ λ−1
KDkP

,DkP
)

det(I+ λ−1KDkP−1
,DkP−1

)

)

≤ log
(

det(I+ λ−1
K[T ],[T ])

)

≤ 2γT ,

there can be at most 2γT terms, i.e., P ≤ 2γT . Now that we have divided the time horizon [T ] into
P epochs using {tkp

}p∈[P ], we prove the following lemma that upper bounds the total number of
times communication is triggered in each epoch.

Lemma D.1 (Number of communications per epoch). For each epoch, i.e., the sequence of time

steps in-between tkp
and tkp+1 , the number of communications is upper bounded by N + 4β

D .

Since there are at most 2γT epochs, the total number of communications B ≤ 2γT (N + 4β
D ). More-

over, by Lemma 4.1, we know that during each communication, the size of data being communicated

is O
(
log2(T )γ2T

)
. Hence, with D = 1

N2 , CT = O(N2γ3T log2(T )).
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Proof of Lemma D.1. Consider the epoch [tkp
, tkp+1

− 1] for some p = 0, 1, . . . , P . We denote the
total number of communications in this epoch as Qp, and the total number of communications in

this epoch that are triggered by client i as Qp,i for i ∈ [N ], i.e., Qp =
∑N

i=1Qp,i.

Let’s denote the indices associated with the communications triggered by some client i as
κ1, κ2, . . . , κQp,i

∈ [kp, kp+1 − 1]. Then for each j = 2, 3, . . . , Qp,i, i.e., excluding client i’s
first communication in this epoch, due to our event-trigger design in equation 4, we have

β
∑

s∈∆Dκj

σ2
kp
(xs) ≥ β

∑

s∈∆Dκj

σ2
κj−1

(xs) ≥
∑

s∈∆Dκj

σ̃2
κj−1

(xs) > D,

where the first inequality is because by definition of κj−1, we have κj−1 ≥ kp, so

σ2
κj−1

(x) ≤ σ2
kp
(x), ∀x, and the second inequality is due to Lemma A.6. Therefore, we have

∑

s∈∆Dkj
σ2
kp
(xs) ≥ D/β. Since σ2

kp
(x) = ∥ϕ(x)∥2

V
−1
kp

, we have

D/β ≤
∑

s∈∆Dkj

∥ϕ(xs)∥2
V

−1
kp

≤ 4 log
(det(I+ λ−1KDkp∪∆Dκj

,Dkp∪∆Dκj
)

det(I+ λ−1KDkp ,Dkp
)

)

≤ −4 + 4
det(I+ λ−1KDkp∪∆Dκj

,Dkp∪∆Dκj
)

det(I+ λ−1KDkp ,Dkp
)

where the second inequality is by definition of epoch, i.e., det(I+λ−1KDkp+1−1,Dkp+1−1
)/ det(I+

λ−1KDkp ,Dkp
) ≤ 2, combined with Lemma A.4, and the third is because log(x) ≤ x−1 for x > 0.

Hence, we have

det(I+ λ−1KDkp∪∆Dκj
,Dkp∪∆Dκj

)

det(I+ λ−1KDkp ,Dkp
)

≥ 1 +
D

4β
,

and thus, we have det(I + λ−1KDkp∪∆Dκj
,Dkp∪∆Dκj

) − det(I + λ−1KDkp ,Dkp
) ≥ D

4β det(I +

λ−1KDkp ,Dkp
) for all j = 2, 3, . . . ,Qp,i and all client i ∈ [N ].

Denote the indices associated with the communications of all clients in this epoch as
κ′1, κ

′
2, . . . , κ

′
Qp

∈ {kp, kp+1 − 1}. Then for each j ∈ [Qp], if client cκ′
j

has already communi-

cated with the server ealier in this epoch, we have

det(I+ λ−1KDκ′
j
,Dκ′

j

)− det(I+ λ−1KDκ′
j−1

,Dκ′
j−1

)

= det(I+ λ−1KDκ′
j−1

∪∆Dκ′
j
,Dκ′

j−1
∪∆Dκ′

j

)− det(I+ λ−1KDκ′
j−1

,Dκ′
j−1

)

≥ det(I+ λ−1KDkp∪∆Dκ′
j
,Dkp∪∆Dκ′

j

)− det(I+ λ−1KDkp ,Dkp
)

≥ D

4β
det(I+ λ−1KDkp ,Dkp

)

where the first inequality is obtained via matrix determinant lemma and Lemma A.10, and the second
is due to the inequality we derived above. Summing over all communications in this epoch, we have

det(I+ λ−1KDkp+1−1,Dkp+1−1
)− det(I+ λ−1KDkp ,Dkp

)

=

Qp∑

j=1

det(I+ λ−1KDκ′
j
,Dκ′

j

)− det(I+ λ−1KDκ′
j−1

,Dκ′
j−1

)

≥
N∑

i=1

(Qp,i − 1)
D

4β
det(I+ λ−1KDkp ,Dkp

),

and since det(I+λ−1KDkp+1−1,Dkp+1−1
)/ det(I+λ−1KDkp ,Dkp

) ≤ 2 by our definition of epoch,

we have

1 +
D

4β

N∑

i=1

(Qp,i − 1) ≤ det(I+ λ−1KDkp+1−1,Dkp+1−1
)/ det(I+ λ−1KDkp ,Dkp

) ≤ 2,

so Qp =
∑N

i=1Qp,i ≤ N + 4β
D , which finishes the proof.
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D.2 CUMULATIVE REGRET

To facilitate regret analysis of Async-KernelUCB, we need to introduce some additional notations.
First, let’s denote the client who triggers the k-th communication as ck ∈ [N ], the index of its
next communication as k̄(ck), and the time step when the k̄(ck)-th communication happens is tk̄(ck)
(tk̄(ck) = T if k is client ck’s final communication with the server). Then we denote the set of

time steps in-between (but not including) the current (the k-th) communication and client ck’s next
communication when client ck is active as Pk := {tk < s < tk̄(ck) : is = ck}, and thus by

definition ∆Dk̄(ck) = Ntk̄(ck)
(ck) \ Ntk(ck) = Pk ∪ {tk̄(ck)}. We also define P0 as the union

over the set of time steps before the first communication of each client i ∈ [N ]. Therefore, we

have
(
∪B
k=0Pk

)
∪ {tk}k∈[B] = [T ]. Since in Algorithm 1, the approximated mean and variance

of each client only get updated when it triggers communication, and then remain fixed until after
its next communication, we have that all the interactions in Pk ∪ {tk̄(ck)} are based on the same

{µ̃k(·), σ̃k(·)}, for k = 0, 1, . . . , B. In addition, an important observation is that, based on our
event-trigger in equation 4, we have

∑

s∈Pk

σ̃2
k(xs) ≤ D,

[∑

s∈Pk

σ̃2
k(xs)

]
+ σ̃2

k(xtk̄(ck)
) > D.

(9)

Now we are ready to upper bound the cumulative regret. Consider some time step t ∈ Pk∪{tk̄(ck)}.

Due to our arm selection rule (line 5 of Algorithm 1), we have xt = argmax
x∈At

µ̃k(x)+ασ̃k(x).
Combining this with Lemma 4.4, with probability at least 1− δ, we have

f(x⋆
t ) ≤ µ̃k(x

⋆
t ) + ασ̃k(x

⋆
t ) ≤ µ̃k(xt) + ασ̃k(xt),

f(xt) ≥ µ̃k(xt)− ασ̃k(xt),

where x⋆
t := argmax

x∈At
f(x) = argmax

x∈At
ϕ(x)⊤θ⋆ is the optimal arm at time step t, and

thus rt = f(x⋆
t )− f(xt) ≤ 2ασ̃k(xt). The cumulative regret RT can be rewritten as

RT =

B∑

k=0

∑

s∈Pk

rs +

B∑

k=1

rtk ≤
B∑

k=0

∑

s∈Pk

min(2LS, 2ασ̃k(xs)) +

B∑

k=1

min{2LS, 2ασ̃k(ck)(xtk)}.

Bounding first term: To bound the first term, we introduce an imaginary variance function σ2
k,s−1(·)

(not computed in the actual algorithm) for s ∈ Pk and k = 0, 1, . . . , B, which is constructed using

dataset
(
∪k−1
k′=0Pk′

)
∪ {s′ ∈ Pk : s′ ≤ s − 1}. In the following paragraph, we will bound the first

term by showing that
∑B

k=0

∑

s∈Pk
σ̃2
k(xs) is not too much larger than

∑B
k=0

∑

s∈Pk
σ2
k,s−1(xs).

This requires us to bound the ratio
σ2
k(xs)

σ2
k,s−1(xs)

for s ∈ Pk and k = 0, 1, . . . , B. Recall that

σ2
k(·) is constructed using data points that N clients have uploaded to the server up to the k-

th communication, i.e., Dk = ∪N
i=1Ntk(i)

(tk), which is a subset of Dk ∪
(
∪N
i=1∆Dk̄(i)

)
=

Dk ∪
(
∪N
i=1Pk(i) ∪ {tk̄(i)}

)
. However, as shown in equation 9, the event-trigger cannot be directly

used to upper bound the summation of approximated variances in Pk(i) ∪{tk̄(i)}, but can be used to

upper bound that in Pk(i), which is why we construct the imaginary variance function without using

data points with time indices {tk}k∈[B]. Specifically, using the notations we just introduced, we can

rewrite the variance as

σ2
k(x) = ϕ(x)⊤

(

Φ
⊤
Dk

ΦDk
+ λI

)−1
ϕ(x)

σ2
k,s−1(x) = ϕ(x)⊤

(

Φ
⊤
Dk\{tk′}k′∈[k]

ΦDk\{tk′}k′∈[k]
+ λI+

∑

i ̸=ck

Φ
⊤
Pk(i)

ΦPk(i)

+Φ
⊤
{s′∈Pk:s

′≤s−1}Φ{s′∈Pk:s
′≤s−1}

)−1
ϕ(x)

≥ ϕ(x)⊤
(

Φ
⊤
Dk

ΦDk
+ λI+

∑

i ̸=ck

Φ
⊤
Pk(i)

ΦPk(i)
+Φ

⊤
{s′∈Pk:s

′≤s−1}Φ{s′∈Pk:s
′≤s−1}

)−1
ϕ(x)

The following lemma provides a upper bound for this ratio.
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Lemma D.2 (Bounding σ2
k(xs)/σ

2
k,s−1(xs)). Under the same condition as Lemma 4.1, with com-

munication threshold D, we have ∀k, s that

σ2
k(xs)/σ

2
k,s−1(xs) ≤ 1 +NβD.

With Lemma D.2, we can bound the first term as

B∑

k=0

∑

s∈Pk

min(2LS, 2ασ̃k(xs)) ≤ 2α

√
√
√
√T

B∑

k=0

∑

s∈Pk

σ̃2
k(xs) ≤ 2α

√
√
√
√Tβ

B∑

k=0

∑

s∈Pk

σ2
k(xs)

= 2α

√
√
√
√Tβ

B∑

k=0

∑

s∈Pk

σ2
k,s−1(xs) ·

σ2
k(xs)

σ2
k,s−1(xs)

≤ 2α

√
√
√
√Tβ(1 +NβD)

B∑

k=0

∑

s∈Pk

σ2
k,s−1(xs)

≤ 4α
√

Tβ(1 +NβD)γT

≤ 4
[

(1/
√
1− ϵ+ 1)

√
λS + 2R

(√

1 +NDβ +N
√

2Dβ
)√

ln(1/δ) + γT

]√

Tβ(1 +NβD)γT

with probability at least 1 − 2δ, where the first inequality is due to Cauchy-Schwarz, and second
is due to the property of ϵ-accuracy in Lemma A.6, the third is due to Lemma D.2, the forth is by
definition of maximum information gain γT , and the last is by substituting α defined in Lemma 4.4.

Bounding second term: For the second term
∑B

k=1 min{2LS, 2ασ̃k(ck)(xtk)}, we should note that

σ̃k(ck)(·) is the approximated variance function that client ck received during its last communica-

tion with the server, instead of σk−1(·) as in our proof of Lemma 4.3 when bounding the size of
dictionary. Ideally, we want to relate each σk(ck)(·) to σk(·) and then apply the elliptical potential
argument, but as we do not make any assumption on how frequent client arrives, it is possible that
for clients who show up infrequently, these two functions are very different.

However, by using the epoch argument as in the proof for communication cost, we can show that
this undesirable situation only occurs at most 2γT times. Specifically, recall that Vk = λI +
Φ⊤

Dk
ΦDk

, with V0 = λI, and kernel matrix as KDk,Dk
= ΦDk

Φ⊤
Dk

∈ R
|Dk|×|Dk|. We define kp =

min{k ∈ [B] | det(I + λ−1KDk,Dk
) ≥ 2p)}, such that log

(
det(I + λ−1KDkp+1

,Dkp+1
)/ det(I +

λ−1KDkp ,Dkp
)
)
≥ 1 for each p ≥ 0. We call the sequence of time steps in-between tkp

and tkp+1

an epoch, and denote the total number of epochs as P . As shown in the proof for communication
cost, we have P ≤ 2γT .

Consider the epoch [tkp
, tkp+1

− 1] for some p = 0, 1, . . . , P . We denote the total number of
communications in this epoch that are triggered by client i as Qp,i for i ∈ [N ], and the indices
associated with these communications triggered by client i as κ1, κ2, . . . , κQp,i

∈ [kp, kp+1 − 1].

As mentioned above, the approximated variance used during arm selection at tκ1 , i.e, σ2
κ1(cκ1

)(·)
could be from a very long time ago. Therefore, we simply bound its regret by 2LS, and in total,
there can be at most 2γTN such terms for all N clients, leading to a upper bound of 4NγTLS.

Now we only need to be concerned about the communications at j = 2, 3, . . . , Qp,i, and show that

σ2
κj(cκj

)(x) is close to σ2
κj
(x) for all x. Specifically, we have

σ2
κj(cκj

)(x) = σ2
κj−1

(x) = σ2
κj
(x)

σ2
κj−1

(x)

σ2
κj
(x)

≤ 2σ2
κj
(x),

where the first equality is because by definition κj(cκj
) = κj−1, the first inequality is because

σ2
κj−1

(x)/σ2
κj
(x) ≤ det(I+ λ−1KDkp+1−1,Dkp+1−1

)/ det(I+ λ−1KDkp ,Dkp
) ≤ 2 due to Lemma

A.3, Lemma A.9 and the definition of epoch. Therefore, further applying Cauchy-Schwarz and the
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ϵ-accuracy property in Lemma A.6, the second term can be bounded by

B∑

k=1

min{2LS, 2ασ̃k(ck)(xtk)} ≤ 4NγTLS + 2α

√
√
√
√2Bβ

B∑

k=1

σ2
k(xtk)

≤ 4NγTLS + 2α

√
√
√
√2Bβ

B∑

k=1

σ2
k−1,tk−1(xtk) < 4NγTLS + 2α

√
√
√
√2Bβ

B∑

k=1

∑

s∈∆Dk

σ2
k−1,s−1(xs)

≤ 4NγTLS + 4α
√

2TβγT

where the imaginary variance function σ2
k−1,s−1(·) is constructed using dataset

(
∪k−1
k′=1∆Dk′

)
∪

{s′ ∈ ∆Dk : s′ ≤ s − 1}, the second inequality is because variance is non-increasing over time,
the third is because variances are positive, and the last is due to definition of maximum information
gain γT and that B ≤ T .

Putting upper bounds for the first and second term together, we have RT ≤ 4NγTLS +

4
√
2
[

(1/
√
1− ϵ+ 1)

√
λS + 2R

(√
1 +NDβ +N

√
2Dβ

)√

ln(1/δ) + γT

]√

Tβ(1 +NβD)γT .

Proof of Lemma D.2. We denote Vk = λI + Φ⊤
Dk

ΦDk
, ∆Vk,s−1(i) = Φ⊤

Pk(i)
ΦPk(i)

for i ̸= ck

and ∆Vk,s−1(ck) = Φ⊤
{s′∈Pk:s′≤s−1}Φ{s′∈Pk:s′≤s−1}.

In the following, we first show that

Vk ⪰ 1

βD
∆Vk,s−1(i) (10)

for all i ∈ [N ]. Note that for any client i ̸= ck, we have

x⊤V−1
k(i)x

x⊤(Vk(i) +∆Vk,s−1(i)
)−1

x
≤ 1 +

∑

s∈Pk(i)

x⊤
s V

−1
k(i)xs

= 1 +
∑

s∈Pk(i)

σ2
k(i)(xs) ≤ 1 + β

∑

s∈Pk(i)

σ̃2
k(i)(xs)

≤ 1 + βD,

where the first inequality is due to Lemma A.5, the second inequality is due to Lemma 4.1 and
Lemma A.6, and the last inequality is due to equation 9.

This implies V−1
k(i) ⪯ (1 + βD)

(
Vk(i) + ∆Vk,s−1(i)

)−1
. Then due to Lemma A.9, we have

(1 + βD)Vk(i) ⪰ Vk(i) + ∆Vk,s−1(i), and thus Vk(i) ⪰ 1
βD∆Vk,s−1(i). Moreover, since

k(i) < k, ∀i ̸= ck, we have Vk ⪰ Vk(i) ⪰ 1
βD∆Vk,s−1(i). Similarly for client ck, we have

x⊤V−1
k x

x⊤(Vk +∆Vk,s−1(ck)
)−1

x
≤ 1 +

∑

s′∈Pk:s′≤s−1

σ2
k(xs′) ≤ 1 + βD.

Again, this implies Vk ⪰ 1
βD∆Vk,s−1(ck), which finishes the proof of equation 10.

By averaging equation 10 over all N clients, we have

Vk ⪰ 1

NβD

N∑

i=1

∆Vk,s−1(i),

and thus, we have

Vk +

N∑

i=1

∆Vk,s−1(i) ⪯ (1 +NβD)Vk.
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Using Lemma A.9 again, we have (1+NβD)(Vk +
∑N

i=1 ∆Vk,s−1(i))
−1 ⪰ V−1

k . Therefore, we
have

σ2
k(x)

σ2
k,s−1(x)

≤ ϕ(x)⊤V−1
k ϕ(x)

ϕ(x)⊤
(
Vk +

∑N
i=1 ∆Vk,s−1(i)

)−1
ϕ(x)

≤ 1 +NβD
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