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ABSTRACT

Certified robustness in machine learning has primarily focused on adversarial per-
turbations with a fixed attack budget for each sample in the input distribution. In
this work, we present provable robustness guarantees on the accuracy of a model
under bounded Wasserstein shifts of the data distribution. We show that a simple
procedure that randomizes the input of the model within a transformation space
is provably robust to distributional shifts under that transformation. Our frame-
work allows the datum-specific perturbation size to vary across different points in
the input distribution and is general enough to include fixed-sized perturbations
as well. Our certificates produce guaranteed lower bounds on the performance of
the model for any shift (natural or adversarial) of the input distribution within a
Wasserstein ball around the original distribution. We apply our technique to cer-
tify robustness against natural (non-adversarial) transformations of images such as
color shifts, hue shifts, and changes in brightness and saturation. We obtain strong
performance guarantees for the robust model under clearly visible shifts in the in-
put images. Our experiments establish the non-vacuousness of our certificates by
showing that the certified lower bound on a robust model’s accuracy is higher than
the empirical accuracy of an undefended model under a distribution shift. We also
show provable distributional robustness against adversarial attacks. Moreover, our
results also imply guaranteed lower bounds (hardness result) on the performance
of models trained on so-called ªunlearnableº datasets that have been poisoned to
interfere with model training. We show that the performance of a robust model is
guaranteed to remain above a certain threshold on the test distribution even when
the base model is trained on the poisoned dataset.

1 INTRODUCTION

Machine learning models often suffer significant performance loss under minor shifts in the data
distribution that do not affect a human’s ability to perform the same task± e.g., input noise (Dodge
& Karam, 2016; Geirhos et al., 2018), image scaling, shifting and translation (Azulay & Weiss,
2019), spatial (Engstrom et al., 2019) and geometric transformations (Fawzi & Frossard, 2015; Al-
corn et al., 2019), blurring (Vasiljevic et al., 2016; Zhou et al., 2017), acoustic corruptions (Pearce &
Hirsch, 2000) and adversarial perturbations (Szegedy et al., 2014; Carlini & Wagner, 2017; Good-
fellow et al., 2015; Madry et al., 2018; Biggio et al., 2013). Overcoming such robustness chal-
lenges is a major hurdle for deploying these models in safety-critical applications where reliability
is paramount. Several techniques have been developed to improve the empirical robustness of a
model to data shifts, e.g., diversifying datasets (Taori et al., 2020), training with natural corruptions
(Hendrycks & Dietterich, 2019), data augmentations (Yang et al., 2019), contrastive learning (Kim
et al., 2020; Radford et al., 2021; Ge et al., 2021) and adversarial training (Goodfellow et al., 2015;
Madry et al., 2018; Tramèr & Boneh, 2019; Shafahi et al., 2019; Maini et al., 2020). Empirical
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robustness techniques are designed to protect a model against a particular type of shift or adversary
(e.g., by introducing similar shifts during training) and may not be effective against new ones. For
instance, adversarial defenses have been shown to break down under newer attacks (Carlini & Wag-
ner, 2017; Athalye et al., 2018; Uesato et al., 2018; Laidlaw & Feizi, 2019; Laidlaw et al., 2021).

Certifiable robustness methods, on the other hand, seek to produce provable guarantees on the ro-
bustness of a model which hold for any perturbation within a certain neighborhood of the input
instance regardless of the strategy used to generate this perturbation. A robustness certificate pro-
duces a verifiable lower bound on the size of the perturbation required to fool a model. Apart from
being a guarantee on the robust performance, these certificates may also serve as a metric to com-
pare the robustness of different models that is independent of the mechanism producing the input
perturbations. However, the study of provable robustness has mostly focused on perturbations with
a fixed size budget (e.g., an ℓp-ball of same size) for all input points (Cohen et al., 2019; LÂecuyer
et al., 2019; Li et al., 2019; Salman et al., 2019; Gowal et al., 2018; Huang et al., 2019; Wong &
Kolter, 2018; Raghunathan et al., 2018; Singla & Feizi, 2019; 2020; Levine & Feizi, 2021; 2020a;b).
Among provable robustness methods, randomized smoothing based procedures have been able to
successfully scale up to high-dimensional problems (Cohen et al., 2019; LÂecuyer et al., 2019; Li
et al., 2019; Salman et al., 2019) and adapted effectively to other domains such as reinforcement
learning (Kumar et al., 2021; Wu et al., 2021) and models with structured outputs (Kumar & Gold-
stein, 2021) as in segmentation tasks and generative modeling. However, these techniques cannot
be extended to certify under distribution shifts as the perturbation size for each instance in the input
distribution need not have a fixed bound. For example, stochastic changes in the input images of a
vision model caused by lighting and weather conditions may vary across time and location. Even
adversarial attacks may choose to adjust the perturbation size depending on the input instance.

A standard way of describing a distribution shift is to constrain the Wasserstein distance between

the original distribution D and the shifted distribution D̃ to be bounded by a certain amount ϵ, i.e.,

W d
1 (D, D̃) ≤ ϵ, for an appropriate distance function d. The Wasserstein distance is the minimum

expectation of the distance function d over all possible joint distributions with marginals D and

D̃. Wasserstein distance is a standard similarity measure for probability distributions and has been
extensively used to study distribution shifts (Courty et al., 2017; Damodaran et al., 2018; Lee &
Raginsky, 2018; Wu et al., 2019). Certifiable robustness against Wasserstein shifts is an interesting
problem to study in its own right and a useful tool to have in the arsenal of provable robustness
techniques in machine learning.

In this work, we design robustness certificates for distribution shifts bounded by a Wasserstein dis-
tance of ϵ. We show that by simply randomizing the input in a transformation space, it is possible
to bound the difference between the accuracy of the robust model under the original distribution D
and the shifted distribution D̃ as a function of their Wasserstein distance ϵ under that transformation.
Given a base model µ, we define a robust model µ̄ which replaces the input of µ with a randomized
version sampled from a ªsmoothingº distribution around the original input. Let h̄ be a function
denoting the performance of the robust model µ̄ on an input-output pair (x, y) (see Section 3 for a
formal definition). Then, our main theoretical result in Theorem 1 shows that

∣

∣

∣
E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]

∣

∣

∣
≤ ψ(ϵ),

where ψ is a concave function that bounds the total variation between the smoothing distributions
at two input points as a function of the distance between them (condition (3) in Section 3). Such
an upper bound always exists for any smoothing distribution as the total variation remains between
zero and one as the distance between the two distributions increases. We discuss how to find the
appropriate ψ for different smoothing distributions in Appendix G.

We apply our result to certify model performance for families of parameterized distribution shifts
which include shifts in the RBG color balance of an image, the hue/saturation balance, the bright-
ness/contrast, and more. Our method does not make any assumptions on the model and applies to
both natural and adversarial shifts of the distribution. It does not increase the computational require-
ments of the base model as it only samples one randomized input per robust prediction, making
it scalable to high-dimensional problems that require conventional deep neural network architec-
tures. The sample complexity for generating the Wasserstein certificates over the entire distribution
is roughly the same as obtaining adversarial certificates for a single input instance using existing
randomized smoothing based techniques (Cohen et al., 2019; Salman et al., 2019).
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lower bounds on the performance of a model trained on such unlearnable datasets. Our certificates
guarantee that the performance of the robust model (using input randomization) will remain above
a certain threshold on the test distribution even when the base model is trained on the poisoned
dataset with a smoothing noise of suitable magnitude. This demonstrates a fundamental limitation
in producing unlearnable datasets.

2 RELATED WORK

Several methods for introducing corruptions during training have been shown to improve the em-
pirical robustness of machine learning models (Hendrycks & Dietterich, 2019; Yang et al., 2019;
Goodfellow et al., 2015; Madry et al., 2018). Training with input transformations, such as blurring,
cropping and rotations, can improve test accuracy against these corruptions. However, these meth-
ods do not produce any guarantees on the performance of the model with respect to the amount of
shift added to the distribution. Our method applies random input transformations during inference to
make the model provably robust against any distribution shift within a certain Wasserstein distance.
It is independent of the model architecture and training procedure, and can be coupled with robust
training techniques, such as noise or adversarial training, to improve the certified performance.

Randomized smoothing based approaches that aggregate model predictions over a large number of
noised samples of the input (Cohen et al., 2019; LÂecuyer et al., 2019; Li et al., 2019; Salman et al.,
2019) and that use input randomization (Pinot et al., 2021) have been studied in the context of cer-
tified adversarial robustness. Provable robustness for parameterized transformations on images also
exist (Fischer et al., 2020). These techniques produce instance-wise fixed-budget certificates and
do not generate robustness guarantees over the entire data distribution or allow varying perturba-
tion sizes for different instances. Our work also differs from instance-wise adversarial attacks and
defenses (Wong et al., 2019; Levine & Feizi, 2019) that use the Wasserstein distance (instead of
conventional ℓp distances) to measure difference between an image and its perturbed version. In
contrast, our certificates consider the Wasserstein distance between data distributions from which
images themselves are sampled.

Robustness bounds on the population loss against Wasserstein shifts under the ℓ2-distance (Shen
et al., 2018; Sinha et al., 2018) have been derived assuming Lipschitz-continuity of the base model.
These bounds depend on the Lipschitz constant for the underlying model, which can grow rapidly
for deep neural networks. We produce guarantees on the accuracy of an arbitrary model without
requiring any restrictive assumptions or a global Lipschitz bound. Additionally, our approach can
certify robustness against non-ℓp changes, such as visible color shifts, for which the ℓ2-norm of
the perturbation in the image space will be very large. Another line of work proves generaliza-
tion bounds with for divergence-based measures of distribution shift (Ben-David et al., 2006; Zhao
et al., 2019; Mehra et al., 2021; Weber et al., 2022) like KL-divergence, total variation distance and
Hellinger distance. Divergence measures between two distributions become arbitrarily large (e.g.
KL-divergence becomes infinity) or attain their maximal value (e.g. total variation and Hellinger
distances become equal to one) when their supports do not coincide. This drawback makes them
unsuitable for measuring out-of-distribution data shifts which by definition have non-overlapping
support. Wasserstein distance, on the other hand, captures the spatial separation of two distributions
and produces a more meaningful measure of the distance even when their supports are disjoint.

3 PRELIMINARIES AND NOTATIONS

Let D be the data distribution representing a machine learning task over an input space X and an
output space Y . We define a distribution shift as a covariate shift that only changes the distribution of
the input element in samples (x, y) ∈ X×Y drawn from D and leaves the output element unchanged,
i.e., (x, y) changes to (x̃, y) under the shift. Given a distance function dX : X × X → R≥0 over
the input space, we define the following distance function between two tuples τ1 = (x1, y1) and
τ2 = (x2, y2) to capture the above shift:

d(τ1, τ2) =

{

dX (x1, x2) if y1 = y2
∞ otherwise.

(1)
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Let D̃ denote a shift in the original data distribution D such that the Wasserstein distance under d
between D and D̃ is bounded by ϵ (i.e., W d

1 (D, D̃) ≤ ϵ). Define the set of all joint probability
distributions with marginals µD and µD̃ as follows:

Γ(D, D̃) =

{

γ s.t.

∫

X×Y

γ(τ1, τ2)dτ2 = µD(τ1) and

∫

X×Y

γ(τ1, τ2)dτ1 = µD̃(τ2)

}

.

The Wasserstein bound implies that there exists an element γ∗ ∈ Γ(D, D̃) such that

E(τ1,τ2)∼γ∗ [d(τ1, τ2)] ≤ ϵ. (2)

Let S : X → ∆(X ) be a function mapping each element x ∈ X to a smoothing distribution S(x),
where ∆(X ) is the set of all probability distributions over X . For example, smoothing with an
isometric Gaussian noise distribution with variance σ2 can be denoted as S(x) = N (x, σ2I). Let
the total variation between the smoothing distributions at two points x1 and x2 be bounded by a
concave increasing function ψ of the distance between them, i.e.,

TV(S(x1),S(x2)) ≤ ψ(dX (x1, x2)). (3)

For example, when the distance function d is the ℓ2-norm of the difference of x1 and x2, and the

smoothing distribution is an isometric Gaussian N (0, σ2I) with variance σ2, ψ(·) = erf(·/2
√
2σ)

is a valid upper bound on the above total variation that is concave in the positive domain (see Ap-
pendix G for more examples).

Consider a function h : X × Y → [0, 1] that represents the performance (e.g., accuracy) of a
model µ over all possible input-output pairs. For example, in the case of a classifier µ : X → Y
that maps inputs from space X to a class label in Y , h(x, y) := 1{µ(x) = y} could indicate
whether the prediction of µ on x matches the desired output label y or not. Another example could
be that of segmentation/detection tasks, where y represents a region on an input image x. Then,
h(x, y) := IoU(µ(x), y)1 could represent the overlap between the predicted regions µ(x) and the
ground truth y. The overall accuracy of the model µ under D is then given by E(x,y)∈D[h(x, y)].
Now, define a robust model µ̄(x) = µ(x′) where x′ ∼ S(x) which simply applies the base model
µ on a randomized version of the input x sampled from a smoothing distribution S(x). Our goal
is to bound the difference in the expected performance of the robust model between the original

distribution D and the shifted distribution D̃. Let h̄ be the performance function for the robust
model µ̄ defined as

h̄(x, y) = Ex′∼S(x)[h(x
′, y)]. (4)

Then, the accuracy of the robust model µ̄ under D is given by E(x,y)∈D[h̄(x, y)]. Our result in

Theorem 1 bounds the difference between the expectation of h̄ under D and D̃ with ψ(ϵ).

3.1 PARAMETERIZED TRANSFORMATIONS

We apply our distributional certificates to produce guarantees on the accuracy of an image classifier
under natural transformations such as color shifts, hue shifts and changes in brightness and satu-
ration. We model each transformation as a function T : X × P → X over the image space X
and a parameter space P . It takes an image x ∈ X and a parameter vector θ ∈ P as inputs and
outputs a transformed image x′ = T (x, θ) ∈ X . An example of such a transformation could be
a color shift in an RGB image produced by scaling the intensities in the red, green and blue chan-
nels x = ({xRij}, {xGij}, {xBij}) defined as CS(x, θ) = (2θR{xRij}, 2θG{xGij}, 2θB{xBij})/MAX for

a tuple θ = (θR, θG, θB), where MAX is the maximum of all the RGB values after scaling. Ad-
ditive perturbations in the input space can also be captured as parameterized transformations, e.g.,
VT(x, θ) = x + θ. We assume that the transformation returns x if the parameters are all zero,
i.e., T (x, 0) = x and that the composition of two transformations with parameters θ1 and θ2 is a
transformation with parameters θ1 + θ2 (additive composability), i.e.,

T (T (x, θ1), θ2) = T (x, θ1 + θ2). (5)

1IoU stands for Intersection over Union.
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Given a norm ∥ · ∥ in the parameter space P , we define a distance function in the input space X as
follows:

dT (x1, x2) =

{

min{∥θ∥ | T (x1, θ) = x2} if ∃θ s.t. T (x1, θ) = x2
∞ otherwise.

(6)

Now, define a smoothing distribution S(x) = T (x,Q(0)) for some distribution Q in the parameter
space of T such that ∀θ ∈ P,Q(θ) = θ + Q(0) is the distribution of θ + δ where δ ∼ Q(0), and
TV(Q(0),Q(θ)) ≤ ψ(∥θ∥) for a concave function ψ. For example, Q(·) = N (·, σ2I) satisfies

these properties for ψ(·) = erf(·/2
√
2σ). Then, the following lemma holds (proof in Appendix B):

Lemma 1. For two points x1, x2 ∈ X such that dT (x1, x2) is finite,

TV(S(x1),S(x2)) ≤ ψ(dT (x1, x2)).

4 CERTIFIED DISTRIBUTIONAL ROBUSTNESS

In this section, we state our main theoretical result which shows that the difference in the expectation
of the performance function h̄ of the robust model (equation (4)) under the original distribution D
and any shifted distribution D̃ within a Wasserstein distance of ϵ from D is bounded by ψ(ϵ), where
ψ is the concave upper bound on the total variation between the smoothing distributions at two points
x1 and x2 as defined in condition (3).

Theorem 1. Given a function h : X × Y → [0, 1], define its smoothed version as h̄(x, y) =
Ex′∼S(x)[h(x

′, y)]. Then,

∀ D̃ s.t. W d
1 (D, D̃) ≤ ϵ,

∣

∣

∣
E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]

∣

∣

∣
≤ ψ(ϵ).

We defer the proof to Appendix A. Note that this certificate does not require us to compute the

Wasserstein distance between D and D̃. Given a value for ϵ, it holds for all distributions D̃ such
that W d

1 (D, D̃) ≤ ϵ. Our certified guarantees hold for the entire input distribution (potentially
continuous) and not just for a finite set of samples. The intuition behind the above bound is that if the
overlap between the smoothing distributions between two individual points does not decrease rapidly

with the distance between them, then the overlap between D and D̃ augmented with the smoothing
distribution is high when the Wasserstein distance between them is small. The key observation here
is that the total variation of the individual smoothing distributions can be upper bounded by a convex
function ψ and this upper bound can then be generalised over the entire distribution using Jensen’s

inequality. The above guarantee implies that for any distribution D̃ that is within a Wasserstein

distance of ϵ from the original distribution D, the accuracy of the model under D̃ can be bounded as
E(x2,y2)∼D̃[h̄(x2, y2)] ≥ E(x1,y1)∼D[h̄(x1, y1)]− ψ(ϵ).

4.1 COMPUTING THE CERTIFICATE AND EMPIRICAL EVALUATIONS

Given a target Wasserstein bound ϵ and an appropriate function ψ, we simply need to cal-
culate the expected performance of the robust model over the original distribution D, i.e.,
E(x1,y1)∼D[h̄(x1, y1)]. Since we only have sample access to the original distribution D, we esti-

mate the expected performance on D, i.e. E(x1,y1)∼D[h̄(x1, y1)], using a finite number of samples.
In our experiments, we compute a high-confidence lower bound of this quantity using the Clopper-
Pearson method (Clopper & Pearson, 1934) that holds with 1 − α probability, for some α > 0
(usually 0.001). Note that although we calculate the bound with a finite number of samples from the
distribution D, this lower bound holds for the expectation over the entire distribution and not just
for the samples. See Appendix C for pseudocodes of the prediction and certification steps.

To compare our certified guarantees against the empirical performance of an undefended model un-
der distribution shifts, we design shifted distributions using natural and adversarial transformations
on the original distribution. We ensure that the constructed distribution shift is within the desired
Wasserstein distance using two methods:

1. By construction: We analytically guarantee beforehand that the applied transformation does
not exceed the Wasserstein bound. For example, in Figure 2, we report the empirical per-
formance of the base models under distribution shifts constructed by adding a noise vector
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A PROOF OF THEOREM 1

Statement. Given a function h : X × Y → [0, 1], define its smoothed version as h̄(x, y) =
Ex′∼S(x)[h(x

′, y)]. Then,

∣

∣

∣
E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]

∣

∣

∣
≤ ψ(ϵ).

Proof. Let τ1 = (x1, y1) and τ2 = (x2, y2) denote the input-output tuples sampled from D and D̃
respectively. Then, for the joint distribution γ∗ ∈ Γ(D, D̃) in (2), we have

Eτ1∼D[h̄(τ1)] = E(τ1,τ2)∼γ∗ [h̄(τ1)] and Eτ2∼D̃[h̄(τ2)] = E(τ1,τ2)∼γ∗ [h̄(τ2)].

This is because when (τ1, τ2) is sampled from the joint distribution γ∗, τ1 and τ2 individually have

distributions D and D̃ respectively. Also, since the expected distance between τ1 = (x1, y1) and
τ2 = (x2, y2) is finite, the output elements of the sampled tuples must be the same, i.e. y1 = y2 = y
(say). See lemma 2 below. Then,

∣

∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣

∣

=
∣

∣Eτ1∼D[h̄(τ1)]− Eτ2∼D̃[h̄(τ2)]
∣

∣

=
∣

∣E(τ1,τ2)∼γ∗ [h̄(τ1)− h̄(τ2)]
∣

∣

≤ E(τ1,τ2)∼γ∗ [|h̄(τ1)− h̄(τ2)|].

Now, from definition (4) and for i = 1 and 2,

h̄(τi) = h̄(xi, y) = Ex′

i
∼S(xi)[h(x

′
i, y)] = Ex′

i
∼S(xi)[g(x

′
i)]

can be expressed as the expected value of a function g : X → [0, 1] under distribution S(xi).
Without loss of generality, assume Ex′

1
∼S(x1)[g(x

′
1)] ≥ Ex′

2
∼S(x2)[g(x

′
2)]. Then,
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∣

∣Ex′

1
∼S(x1)[g(x

′
1)]− Ex′

2
∼S(x2)[g(x

′
2)]

∣

∣

=

∫

X

g(x)µ1(x)dx−
∫

X

g(x)µ2(x)dx

(µ1 and µ2 are the PDFs of S(x1) and S(x1))

=

∫

X

g(x)(µ1(x)− µ2(x))dx

=

∫

µ1>µ2

g(x)(µ1(x)− µ2(x))dx−
∫

µ2>µ1

g(x)(µ2(x)− µ1(x))dx

≤
∫

µ1>µ2

max
x′∈X

g(x′)(µ1(x)− µ2(x))dx−
∫

µ2>µ1

min
x′∈X

g(x′)(µ2(x)− µ1(x))dx

≤
∫

µ1>µ2

(µ1(x)− µ2(x))dz

(since maxx′∈X g(x
′) ≤ 1 and minx′∈X g(x

′) ≥ 0)

=
1

2

∫

X

|µ1(x)− µ2(x)|dx = TV(S(x1),S(x2)).
(since

∫

µ1>µ2

(µ1(x)− µ2(x))dx =
∫

µ2>µ1

(µ2(x)− µ1(x))dx = 1
2

∫

X |µ1(x)− µ2(x)|dx)

Thus, from (1) and (3), we have |h̄(τ1)− h̄(τ2)| ≤ ψ(dX (x1, x2)) = ψ(d(τ1, τ2)), and therefore,
∣

∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣

∣

≤ E(τ1,τ2)∼γ∗ [ψ(d(τ1, τ2))]

≤ ψ
(

E(τ1,τ2)∼γ∗ [d(τ1, τ2)]
)

. (ψ is concave, Jensen’s inequality)

Hence, from (2) and since ψ is non-decreasing, we have
∣

∣

∣
E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]

∣

∣

∣
≤ ψ(ϵ).

Lemma 2. Let Ω = {(τ1, τ2) s.t. y1 ̸= y2 where τ1 = (x1, y1) and τ2 = (x2, y2)}. Then

P(τ1,τ2)∼γ∗ [(τ1, τ2) ∈ Ω] = 0.

Proof. Assume, for the sake of contradiction, that

P(τ1,τ2)∼γ∗ [(τ1, τ2) ∈ Ω] ≥ p

for some p > 0. From condition (2), we have

E(τ1,τ2)∼γ∗ [d(τ1, τ2)] ≤ ϵ.

By the law of total expectation

Eγ∗ [d(τ1, τ2)] =Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω]

+Eγ∗ [d(τ1, τ2) | (τ1, τ2) /∈ Ω] Pγ∗ [(τ1, τ2) /∈ Ω].

We replace (τ1, τ2) ∼ γ∗ with just γ∗ in the subscripts for brevity. Since both summands are non-
negative,

Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ.

Consider a real number l > ϵ/p. Then, for any (τ1, τ2) ∈ Ω, from definition (1) and because
y1 ̸= y2, d(τ1, τ2) ≥ l. Therefore, Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] ≥ l and

l Pγ∗ [(τ1, τ2) ∈ Ω] ≤ Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω]

l Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ

Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ/l < p,

which contradicts our initial assumption.
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Algorithm 1 Prediction

Input: Model µ, input instance x.
Output: Robust prediction y.
Randomize input: x′ ∼ S(x).
Evaluate model: y = µ(x′).
Return y.

Algorithm 2 Certification

Input: Accuracy function h, data distribution
D, Wasserstein bound ϵ, integer n and α > 0.
Output: Certified accuracy for bound ϵ.
sum = 0.
for i in 1 . . . n do

Sample (x, y) ∼ D.
Sample x′ ∼ S(x).
Compute h(x′, y).
sum = sum + h(x′, y)

end for
Compute 1 − α confidence lower-bound h of
E(x,y)∼D[h̄(x, y)] using sum and n.

Return h− ψ(ϵ).

B PROOF OF LEMMA 1

Statement. For two points x1, x2 ∈ X such that dT (x1, x2) is finite,

TV(S(x1),S(x2)) ≤ ψ(dT (x1, x2)).

Proof. Consider the θ for which dT (x1, x2) = ∥θ∥. Then, T (x1, θ) = x2.

TV(S(x),S(x2)) = TV(T (x,Q(0)), T (z,Q(0)))

= TV(T (x,Q(0)), T (T (x, θ),Q(0)))

= TV(T (x,Q(0)), T (x, θ +Q(0))) (additive composability, equation (5))

= TV(T (x,Q(0)), T (x,Q(θ))). (definition of Q)

LetA be the event in the spaceM that maximizes the difference in the probabilities assigned toA by
T (x,Q(0)) and T (x,Q(θ)). Let u : P → [0, 1] be a function that returns the probability (over the
randomness of T ) of any parameter η ∈ P being mapped to a point in A, i.e., u(η) = P{T (x, η) ∈
A}. For a deterministic transformation T , u is a 0/1 function. Then, the probabilities assigned by
T (x,Q(0)) and T (x,Q(θ)) to A is equal to Eη∼Q(0)[u(η)] and Eη∼Q(θ)[u(η)]. Therefore,

TV(S(x),S(x2)) = |Eη∼Q(0)[u(η)]− Eη∼Q(θ)[u(η)]|
≤ TV(Q(0),Q(θ))

≤ ψ(∥θ∥) = ψ(dT (x1, x2)). (definition of Q and dT )

C PSEUDOCODE FOR PREDICTION AND CERTIFICATION

Algorithm 1 and Algorithm 2 describe the prediction and certification steps of our method.

D POPULATION-LEVEL CERTIFICATES AGAINST ADVERSARIAL ATTACKS

In this section, we consider the ℓ2-distance in the image space to measure the Wasserstein distance
instead of a parameterized transformation. We use a pixel-space Gaussian smoothing distribution
S(x) = N (x, σ2I) to obtain robustness guarantees under this metric. To motivate this, consider an
adversarial attacker Adv : X → X , which takes an image x and computes perturbation Adv(x) to

try and fool a model into misclassifying the input. If (x, y) ∼ D, define D̃ to be the distribution of
the tuples (Adv(x), y). Defining d in 1 using dX = ℓ2, it is easy to show that:

W d
1 (D, D̃) ≤ Ex∼D[∥Adv(x)− x∥2] (8)

17







Published as a conference paper at ICLR 2023

We also must consider how to correctly make the attacker ªstrategicº: that is, how to allocate attack
magnitude so as to attack most effectively while minimizing Wasserstein distance. This is more
difficult than in the undefended case, because it is no longer true that for each sample x, we can
identify the magnitude ∥CW (x, y; g) − x∥2 such that an attack of this magnitude is guaranteed to
be successful, while a smaller attack is unsuccessful and hence is not attempted. Rather, for a given
attack magnitude, there is instead a probability of success, over the distribution of δ.

In order to deal with this, we perform PGD at a range of attack magnitudes, specifically E =
{i/8|i ∈ {1, ..., 16}}. Let PGDe(x, y; g) be the result of the attack at magnitude e ∈ E. We then
define the adaptive attacker as:

Advγ(x) := PGDe∗(x, y; g) (11)

Where:

e∗ := max e ∈ E such that

Eδ

[

L0/1

(

f̃θ(PGDe(x, y; g) + δ), y
)]

− Eδ

[

L0/1

(

f̃θ(x+ δ), y
)]

e
> γ

(12)

In other words, we use the largest attack such that the increase in misclassification rate per unit
attack magnitude is above the threshold γ. If this is not the case for any e ∈ E, we elect not to
attack, and set Advγ(x) := x. As was described in the main text for the baseline case, we sweep
over a range of threshold values γ when reporting results. When evaluating the expectations in
Equation 12, we use a sample of 100 noise instances. However, once e∗ is identified, we then use
a different sample of 100 noise instances per training sample x when reporting the final accuracy:
this is to de-correlate the attack generation of Advγ(x) with the evaluation of the attack. (However,
noise instances are kept constant over the sweep of γ). When reporting results (the upper bounds
of the Wasserstein distances), we use e∗ as an upper bound on ∥PGDe∗(x, y; g)− x∥2, rather than
using ∥PGDe∗(x, y; g)− x∥2 directly. Also, we upper bound the population expectation of e∗ (and
therefore of ∥PGDe∗(x, y; g)−x∥2) for each γ with 99% confidence using the empirical expectation
on the test set using a Hoeffding bound, using the fact that 0 ≤ e∗ ≤ min(2, 1/γ).

Attack hyperparameters are taken from Salman et al. (2019): We use 20 attack steps, a step size
of e/10, and use 128 noise instances when computing gradients. We evaluate using 10% of each
dataset.

F EXPERIMENT DETAILS FOR SECTION 6

As mentioned, for the certified models, we use the released pre-trained ResNet110 models from
Cohen et al. (2019) for CIFAR-10 and train ResNet20 models in a similar manner for SVHN, using
the same level of Gaussian Noise for training and testing. For empirical results, we use the imple-
mentation of the ℓ2 Carlini and Wagner (Carlini & Wagner, 2017) attack provided by the IBM ART
package (Nicolae et al., 2018) with default parameters (except for batch size which we set at 256 to
increase processing speed.)

We also tested an alternative attack, which is still strategic but does not require that we measure the
Wasserstein distance empirically. In this attack, we define Adv′

γ , that if ∥CW (x, y; g) − x∥2 ≤ γ
always returns CW (x, y; g), and if ∥CW (x, y; g) − x∥2 > γ, instead returns x with probability
1 − γ

∥CW (x,y;g)−x∥2

. Note that in this case, the perturbation ∥Adv′γ(x, y; g) − x∥2 is guaranteed

to be less than or equal to γ in expectation for all x, so γ can be used as an upper bound on the
Wasserstein distance. Results are shown in Figure 10.

G FUNCTION ψ FOR DIFFERENT DISTRIBUTIONS

For an isometric Gaussian distribution N (0, σ2I),

TV(N (0, σ2I),N (θ, σ2I)) = erf(∥θ∥2/2
√
2σ).

Proof. Due to the isometric symmetry of the Gaussian distribution and the ℓ2-norm, we may assume,
without loss of generality, that N (θ, σ2I) is obtained by shifting N (0, σ2I) only along the first
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Similarly,

g′max =
2θ

G

1 gmax

MAX
and b′max =

2θ
B

1 bmax

MAX
.

Therefore,

MAX
′ =

max(2θ
R

1
+θR

2 rmax, 2
θG

1
+θG

2 gmax, 2
θB

1
+θB

2 bmax)

MAX
.

Substituting r′ij and MAX’ in the expression for r′′ij , we get:

r′′ij =
2θ

R

2 2θ
R

1 rij
MAX′MAX

=
2θ

R

1
+θR

2 rij

max(2θ
R

1
+θR

2 rmax, 2θ
G

1
+θG

2 gmax, 2θ
B

1
+θB

2 bmax)
.

Similarly,

g′′ij =
2θ

G

1
+θG

2 gij

max(2θ
R

1
+θR

2 rmax, 2θ
G

1
+θG

2 gmax, 2θ
B

1
+θB

2 bmax)
and b′′ij =

2θ
B

1
+θB

2 bij

max(2θ
R

1
+θR

2 rmax, 2θ
G

1
+θG

2 gmax, 2θ
B

1
+θB

2 bmax)
.

Hence, x′′ = CS(x, θ1 + θ2).

Lemma 4. The transformation SV satisfies the additive composability property, i.e., ∀x ∈
M, θ1, θ2 ∈ R

2
≥0,

SV(SV(x, θ1), θ2) = SV(x, θ1 + θ2).

Proof. Let x = {(h, s, v)ij}H×W , x′ = {(h, s′, v′)ij}H×W = SV(x, θ1) and x′′ =
{(h, s′′, v′′)ij}H×W = SV(x′, θ2) in HSV format. We need to show that x′′ = SV(x, θ1 + θ2). Let
smean, smax, vmean and vmax be the means and maximums of the saturation and brightness values
of x and s′mean, s

′
max, v

′
mean and v′max be the same for x′. From the definition of SV in Section 5.2,

we have:

s′ij =
sij + (2θ

S

1 − 1)smean

MAX
, v′ij =

vij + (2θ
V

1 − 1)vmean

MAX

and s′′ij =
s′ij + (2θ

S

2 − 1)s′mean

MAX′
, v′′ij =

v′ij + (2θ
V

2 − 1)v′mean

MAX′

where MAX = max(smax + (2θ
S

1 − 1)smean, vmax + (2θ
V

1 − 1)vmean) and MAX′ = max(s′max +

(2θ
S

2 − 1)s′mean, v
′
max + (2θ

V

2 − 1)v′mean). From the definitions of s′mean and s′max, we have:

s′mean = mean s′ij = mean
sij + (2θ

S

1 − 1)smean

MAX
=

mean sij + (2θ
S

1 − 1)smean

MAX
=

2θ
S

1 smean

MAX

s′max = max s′ij = max
sij + (2θ

S

1 − 1)smean

MAX
=

max sij + (2θ
S

1 − 1)smean

MAX
=
smax + (2θ

S

1 − 1)smean

MAX
.

Similarly,

v′mean =
2θ

V

1 vmean

MAX
and v′max =

vmax + (2θ
V

1 − 1)vmean

MAX
.

Therefore,

MAX
′ = max(s′max + (2θ

S

2 − 1)s′mean, v
′
max + (2θ

V

2 − 1)v′mean)

= max(
smax + (2θ

S

1 − 1)smean + (2θ
S

2 − 1)2θ
S

1 smean

MAX
, v′max + (2θ

V

2 − 1)v′mean)

= max(
smax + (2θ

S

1
+θS

2 − 1)smean

MAX
, v′max + (2θ

V

2 − 1)v′mean)

= max(smax + (2θ
S

1
+θS

2 − 1)smean, vmax + (2θ
V

1 − 1)vmean + (2θ
V

2 − 1)2θ
V

1 vmean)/MAX

= max(smax + (2θ
S

1
+θS

2 − 1)smean, vmax + (2θ
V

1
+θV

2 − 1)vmean)/MAX.
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Substituting s′ij , s
′
mean and MAX′ in the expression for s′′ij , we get:

s′′ij =
sij + (2θ

S

1 − 1)smean + (2θ
S

2 − 1)2θ
S

1 smean

MAX′MAX

=
sij + (2θ

S

1
+θS

2 − 1)smean

max(smax + (2θ
S

1
+θS

2 − 1)smean, vmax + (2θ
V

1
+θV

2 − 1)vmean)
.

Similarly,

v′′ij =
vij + (2θ

V

1
+θV

2 − 1)vmean

max(smax + (2θ
S

1
+θS

2 − 1)smean, vmax + (2θ
V

1
+θV

2 − 1)vmean)
.

Hence, x′′ = SV(x, θ1 + θ2).

I DETAILS FOR PLOTS IN FIGURE 2

The distribution shifts used to evaluate the empirical performance of the base models in Figure 2
have been generated by first sampling an image x from the original distribution D and then ran-
domly transforming it images from the original distribution by adding a noise in the corresponding
transformation space. The Wasserstein bound of these shifts can be calculated by computing the
expected perturbation size of the smoothing distribution. For example, the expected ℓ2-norm of a

3-dimensional Gaussian vector is given by 2
√
2σ/

√
π and expected ℓ1-norm a 2-dimensional vector

sampled uniformly from [0, b]2 is b.

The training and smoothing noise levels used for color shift, hue shift and SV shift are (0.8, 10.0),
(180◦, 180◦) and (8.0, 12.0) respectively.

J HUE SHIFT

Any RGB image can be alternatively represented in the HSV image format by mapping the (r, g, b)
tuple for each pixel to a point (h, s, v) in a cylindrical coordinate system where the values h, s
and v represent the hue, saturation and brightness (value) of the pixel. The mapping from the
RGB coordinate to the HSV coordinate takes the [0, 1]3 color cube and transforms it into a cylinder
of unit radius and height. The hue values are represented as angles in [0, 2π) and the saturation
and brightness values are in [0, 1]. Define a hue shift of an H × W sized image x by an angle
θ ∈ [−π, π] in the HSV space that rotates each hue value by an angle θ and wraps it around to the
[0, 2π) range. In appendix J, we show that the certified accuracy under hue shifts does not depend
on the Wasserstein distance of the shifted distribution and report the certified accuracies obtained by
various base models trained under different noise levels.

Define a hue shift of an H ×W sized image x by an angle θ ∈ [−π, π] in the HSV space as:

HS(x, θ) =
{

(w(h+ θ), s, v)ij

}H×W

where w(x) = x− 2π
⌊ x

2π

⌋

which rotates each hue value by an angle θ and wraps it around to the [0, 2π) range. It is easy
to show that this transformation satisfies additive composability in condition (5). The Wasserstein
distance is defined using the corresponding distance function dHS by taking the absolute value of the
hue shift |θ|.
Lemma 5. The transformation HS satisfies the additive composability property, i.e., ∀x ∈
M, θ1, θ2 ∈ [−π, π],

HS(HS(x, θ1), θ2) = HS(x, θ1 + θ2).

Proof. Let h be the hue value of the (i, j)th pixel of the image x. Since the transformation only
affects the hue values, we ignore the other coordinates. The hue value after the transformation
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L.3 ADAPTIVE ATTACK SETTING

When testing our smoothing algorithm, we tested two types of attacks:

• Non-adaptive attack: the proxy model is trained and perturbations are generated using
undefended models without smoothing: only the victim policy applies smoothing noise
during training and evaluation.

• Adaptive attack: In the minimization of Equation 13, the loss term L(fθ(xi + ϵi), yi) is
replaced by the expectation:

E
δ∼N (0,σ2I)

L(fθ(xi + ϵi + δ), yi) (15)

In other words, this models the expectation of a smoothed model, like the victim classifier.
This smoothed optimization is used in both the proxy model training, as well as the gener-
ation of the training and validation sets. Following Salman et al. (2019), which proposed a
similar adaptive attack for sample-wise smoothed classifiers we approximate the expecta-
tion using a small number of random perturbations, which are held fixed for the 20 steps of
the inner optimization. In our experiments, we use 8 samples for approximation. Because,
at large smoothing noises, this makes the attack much less effective, we cut off training after
20 steps of the outer maximization, rather than relying on the accuracy to reach 99%. (the
maximum number of steps required to converge we observed for the non-adaptive attack
was 15).

L.4 RESULTS

Complete experimental results are presented in Figure 13. All results are means of 5 independent
runs, and error bars represent standard errors of the means.

M CONCLUSION

We show that it is possible to certify the distributional robustness of a general deep neural network
without increasing its computational requirements. We obtain robustness guarantees with respect
to the Wasserstein distance of the distribution shift which is a more suitable metric for out-of-
distribution shifts than divergence measures such as KL-divergence and total variation. We only
consider predefined distance functions in this work which may not be suitable for capturing more
sophisticated distribution shifts such as perceptual changes. A future direction of research could be
to adapt our certificates for learnable transformations for domain generalization and adaptation.
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