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Abstract—Accommodating digital twins (DTs) in the metaverse
is essential to achieving digital reality. This need for integrating
DTs into the metaverse while operating them at the network
edge has increased the demand for a decentralized edge-enabled
metaverse. Hence, to consolidate the fusion between real and
digital entities, it is necessary to harmonize the interoperability
between DTs and the metaverse at the edge. In this paper, a novel
decentralized metaverse framework that incorporates DT opera-
tions at the wireless edge is presented. In particular, a system of
autonomous physical twins (PTs) operating in a massively-sensed
zone is replicated as cyber twins (CTs) at the mobile edge comput-
ing (MEC) servers. To render the CTs’ digital environment, this
zone is partitioned and teleported as distributed sub-metaverses
to the MEC servers. To guarantee seamless synchronization of
the sub-metaverses and their associated CTs with the dynamics
of the real world and PTs, respectively, this joint synchronization
problem is posed as an optimization problem whose goal is to
minimize the average sub-synchronization time between the real
and digital worlds, while meeting the DT synchronization intensity
requirements. To solve this problem, a novel iterative algorithm
for joint sub-metaverse and DT association at the MEC servers
is proposed. This algorithm exploits the rigorous framework
of optimal transport theory so as to efficiently distribute the
sub-metaverses and DTs, while considering the computing and
communication resource allocations. Simulation results show that
the proposed solution can orchestrate the interplay between DTs
and sub-metaverses to achieve a 25.75% reduction in the sub-
synchronization time in comparison to the signal-to-noise ratio-
based association scheme.

Index Terms—metaverse, digital twins, synchronization, sub-
metaverse, optimal transport theory

I. INTRODUCTION
The metaverse is perhaps one of the most anticipated tech-

nological breakthroughs of the coming decade [1]. In essence,
the metaverse is a massively scaled and interoperable network
of real-time rendered three-dimensional digital worlds. The
metaverse will lead to the emergence of a novel suite of hybrid
physical-virtual-digital services that could revolutionize the
interconnection between people, things, and places [2], [3]. In
essence, building a limitless metaverse of today’s real world
has various device (e.g. extended reality devices), communi-
cation, computing, and artificial intelligence (AI) challenges.
Chief among those challenges is the end-to-end (E2E) synchro-
nization of the real world with the metaverse and its compo-
nents such as digital twins (DTs). Indeed, achieving this trans-
parent replication imposes a set of stringent wireless network
demands such as near-zero E2E latency, effective computing,
ubiquitous connectivity, and ultra-high data rates [4]. Thus, in
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an attempt to meet the aforementioned demands, the meta-
verse must adopt a decentralized, edge-enabled model. Instead
of limiting the metaverse to a centralized, computationally-
draining, and rigid architecture as in the state-of-the-art [5],
this shift enables segmenting the metaverse into a decentralized
system of interconnected sub-metaverses distributed at the
network edge [6]. Here, a sub-metaverse is defined as a digital
replica of a physical space in the real world. Furthermore, the
decentralization of the metaverse requires decentralizing its key
components as well, notably, DTs. DTs are used to coordinate
autonomous Internet of Everything (IoE) applications that exist
in the real world (e.g., autonomous vehicles) with their digital
counterparts in the metaverse [7]. Thus, it is vital for such
real-time DTs to replicate the functionalities of the underlying
physical applications while meeting the DT synchronization
requirements. Consequently, synchronizing both metaverse and
DTs is pivotal for guaranteeing a high fidelity replica in the
digital world.

Recent works in [8]–[11] have studied merging DTs and the
metaverse with mobile edge computing (MEC) in an effort to
meet synchronization demands. The authors in [8] proposed
a deep reinforcement learning approach coupled with trans-
fer learning to solve the DT-MEC placement and migration
problems while minimizing the DT synchronization delay. The
work in [9] studied the resource allocation problem for Internet
of Things (IoT) sensing devices with the goal of synchronizing
the metaverse by controlling its DTs’ synchronization using
a game-theoretic framework. In [10], the authors proposed
equipping IoT sensing devices with semantic extraction al-
gorithms to minimize the size of the transmitted data in
an attempt to achieve enhanced metaverse synchronization.
The work in [11] introduced a stochastic semantic resource
allocation scheme to enhance the synchronization of virtual
transportation networks in the metaverse. However, these prior
works are limited in various ways. First, the work in [8] is
limited to DT synchronization and completely neglects that
DTs are constituents of the metaverse, that in turn should be
synchronized as well. Furthermore, the work in [9] assumes
that the metaverse synchronization is achieved through the DT
synchronization, without strictly differentiating between them
as two separate synchronization streams. Meanwhile, synchro-
nization of the metaverse in [10] and [11] does not account for
the need to synchronize the metaverse constituents, e.g., DTs.
Moreover, despite adopting a MEC framework in [9]–[11],
these works still consider a centralized metaverse architecture,



which cannot accommodate the deployment of DTs distributed
across the edge. Notably, if done in a centralized way, building
a limitless metaverse remains highly intractable. This demands
decomposing the metaverse into sub-metaverses that reside at
the edge along with the DT models. Clearly, there is a lack
of works that investigate the joint synchronization of DTs and
sub-metaverses in a distributed metaverse framework, while
orchestrating the interoperability between them at the edge.

The main contribution of this paper is a novel decentralized
metaverse framework that distributes DTs and sub-metaverses
over the wireless edge network, while preserving upmost
synchronization with their physical counterparts in the real
world. In particular, a system of autonomous physical twins
(PTs) that operate in a physical zone are digitally replicated as
cyber twins (CTs) at the network’s MEC servers. To perfectly
replicate the physical environment in the digital world, this
zone is equipped with massive sensing abilities. Furthermore,
the zone is partitioned into separate regions that are teleported
as sub-metaverses at the MEC servers. To perfectly synchronize
the distributed sub-metaverses and their residing CTs with the
corresponding physical counterparts, this joint synchronization
problem is posed as an optimization problem whose goal is
to minimize the average sub-synchronization time with the
real world, while satisfying the DT synchronization intensity
requirements. To solve this problem, we propose an iterative
algorithm based on optimal transport theory to determine the
joint association of the sub-metaverses and their corresponding
CTs at the MEC servers. We then prove the existence of an
optimal solution for the physical region partitioning problem.
Subsequently, we find the corresponding map to determine the
optimal partitions and DT association to minimize the sub-
synchronization time, while considering the communications
and computing resource allocations in the network. To the
best of our knowledge, this is the first work that considers
the synchronization of both DTs and metaverse by addressing
the interplay between them at the edge. Simulation results
show that the proposed solution can provide a tradeoff between
associating DTs and sub-metaverses to achieve a 25.75%
reduction in sub-synchronization time compared to a baseline
association scheme based on the signal-to-noise ratio (SNR).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a geographical zone Z ⊂ R3 representing a portion
of the real world as shown in Fig. 1. In this zone, there exists
a set B of B MEC servers deployed at the wireless network
base stations (BSs) to provide digital teleportation, replication,
and fine-tuned rendering services. Given that the real world
is massive and limitless, it must be digitally represented as a
massive system of decentralized sub-metaverses. As such, B
MEC servers must collectively teleport zone Z into the digital
world as a set of decentralized, yet tightly interconnected sub-
metaverses. This guarantees that the computationally inten-
sive teleportation and rendering processes within each sub-
metaverse are efficiently deployed and distributed across the
network’s MEC servers. Subsequently, zone Z is partitioned
into a set A of A non-overlapping regions. Accordingly, each
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Fig. 1: Illustrative figure showcasing the decentralized sub-metaverses
and their associated digital twins distributed at the network edge.

region a ∈ A is mapped to a decentralized sub-metaverse s ∈
S ≜ {1, 2, . . . , S}, such that each sub-metaverse is associated
to a MEC server. Thus, we denote the tuple ub = (ab, sb) that
maps every region a ∈ A to its corresponding sub-metaverse
s ∈ S at the designated MEC server b ∈ B.

Furthermore, there exists a set K of K of autonomous
cyber-physical systems that physically operate in zone Z .
To ensure that such systems participate in the metaverse
and are autonomously replicated (twinned), a seamless digital
replication must be performed on each one of them. Thus,
each system k ∈ K will be operating as a DT. Accordingly,
for these DTs, we define the set P of P PTs. Such PTs are
served by the B MEC servers to simulate and render their
corresponding set C of C CTs. Thus, each DT application
k ∈ K is represented as a tuple vk = (pk, ck) that maps
every PT p ∈ P to its corresponding CT c ∈ C, where
K = P = C. Essentially, the set of PT systems that exist
within each region a ∈ A, have corresponding CT counterparts
that reside in the respective digital replica of this region, i.e.,
sub-metaverse s ∈ S . Consequently, it is necessary that each
MEC server b ∈ B first replicates each physical region into the
digital world as a sub-metaverse, while also, simultaneously
guaranteeing the synchronization of the PT of each region with
its respective CT in its sub-metaverse. It is important to note
that the simultaneity of these two processes is a necessary
condition that guarantees the duality and twinning between
the real world and the metaverse.
A. Decentralized Metaverse Model

To digitally model the physical regions in the metaverse,
with high precision, a massive number of sensors must be
deployed to replicate aspects of the real world. Because of
this large number of sensors deployed, we assume that the
inter-spacing between these sensors is relatively minimal. As



such, the sensors will be continuously distributed according to a
spatial distribution g(x, y, z) that describes the likelihood local-
ization of the sensors around the 3D objects in zone Z , where x
is the longitude unit distance, y is the latitude unit distance, and
z is the height unit distance. For instance, areas with a large
number of physical objects, have a high number of sensors
(e.g. highly urban and crowded areas). Meanwhile, areas with a
considerable lower physical density, require a smaller number
of sensors to be deployed and replicated (e.g. empty fields
in rural areas). Also, given that 3D objects in the real world
are described with unique attributes of different dimensions, a
unit volumetric sensing density ρ(x, y, z) (bps/m3) is used to
describe the flow of data from these sensors [12].

To tractably maintain the metaverse synchronized with the
real world, we discretize time into independent time slots
of duration ∆. During each slot, the sensory data must be
uploaded to the network edge. We assume that ∆ is minimal,
i.e., ∆ will not affect the precision of the teleported sub-
metaverse in mimicking reality. Hence, we consider that each
sensor q ∈ Q ≜ {1, 2, . . . , Q} forms an independent unit of
infinitesimal volume ϵ centered at (x, y, z) such that the rate
in which data is generated from this infinitesimal volume is
ϵρ(x, y, z). Then, the rate at which sensor q uploads its data
to MEC server b is:

Rq,b(Qb) =
W s
b

Qb
log2

(
1 +

hq,bξq
σ2
b

)
, (1)

where W s
b is the available bandwidth for uploading sensor data

to synchronize sub-metaverse s at MEC server b, Qb is the
number of sensors connected to MEC server b, hq,b is the
channel gain between the sensor q and MEC server b, ξq is the
transmit power of sensor q, and σ2

b is the spectral noise power
at MEC server b.

Subsequently, the time needed for sensor q to upload its data
generated within ∆ to MEC server b is:

tcomq,b (Qb) =
∆ϵ

Rq,b(Qb)
ρ(x, y, z). (2)

Furthermore, the computing time needed to render this in-
finitesimal volume in sub-metaverse s ∈ S at its associated
MEC server b ∈ B can be written as:

tcmp
q,b (Qb, ψ

s
b) =

Λ∆ϵ

ψsb
Qbρ(x, y, z), (3)

where Λ is a coefficient related to the topological complexity
of the regions and ψsb is the number of computing resources
assigned for rendering the sub-metaverse s assigned at MEC
server b. Then, we define the total delay needed to synchronize
the volume unit ϵ of sensor q from the real world with its
representative unit in the designated sub-metaverse at MEC
server b as:

tsyncq,b (Qb, ψ
s
b) = tcomq,b (Qb) + tcmp

q,b (Qb, ψ
s
b). (4)

Moreover, replicating region a that is composed of a large
number of these infinitesimal sensors requires synchronizing
each sensor with its infinitesimal representation in the sub-
metaverse. Hence, we define the sub-synchronization time
as the total delay needed to synchronize region a and its
corresponding sub-metaverse s at MEC server b as:

Tb(Qb, ψ
s
b) =

∫∫∫
ab

tsyncq,b (Qb, ψ
s
b)g(x, y, z) dx dy dz. (5)

B. DT Model

To perfectly consider a synchronized digital world, there is
a need to synchronize each of the constituents of the sub-
metaverse as well. In the designated zone, the PTs are spatially
distributed according to a distribution f(x, y, z) in the three
dimensional plane. These PTs are autonomous systems that
execute real-time decisions (e.g., autonomous vehicles, drones,
robots, etc). Each DT k ∈ K is described with a synchroniza-
tion intensity µk that captures the maximum allowable time
for the CT to replicate the same action executed by the PT.
µk is primarily characterized by the time needed for the PT to
execute its task. For instance, an autonomous vehicle will have
a high synchronization intensity as it executes its decisions
in near real-time (the digital counterpart must execute actions
critically). Meanwhile, a robot can tolerate a larger time margin
with respect to action execution.

Each PT is equipped with a large set of sensors that
enable a real-time execution of decisions. Concurrently, the
corresponding CT must to mimic the same action performed
by its twinned PT while bounded by its intensity limit µk. We
assume that the inter-region mobility in this system is limited
such that each PT remains connected to the same BS; and thus,
each CT remains residing in the same sub-metaverse. Hence,
each PT pk must offload its sensory data Dk collected at each
time step to the MEC server that hosts its CT ck. Subsequently,
the achievable uplink rate by pk and its designated MEC server
b will be: rk,b = Wk log2

(
1 +

hk,bζk
σ2
b

)
, where Wk is the

uplink bandwidth for DT k, hk,b is the channel gain between
PT pk and MEC server b, and ζk is the transmit power of pk.
Thus, the time needed to upload the data generated from pk to
MEC server b where the CT resides:

τ comk,b =
Dk

rk,b
. (6)

In addition, the time needed to execute the corresponding CT
action at the MEC server b is defined as:

τ cmp
k,b (ϕkb ) =

ΓkDk

ϕkb
, (7)

where Γk is the twin complexity that relates to the accuracy
of the CT replication and the intricacy of the underlying
physical application, and ϕkb is the computing power allocated
to the DT application vk at MEC server b. Then, the twinning
synchronization time needed for DT k to map the PT action in
the real world to its CT in the sub-metaverse will be:

τ synck,b (ϕkb ) = τ comk,b + τ cmp
k,b (ϕkb ). (8)

C. Problem Formulation

Our goal is to teleport the zone and the existing PT applica-
tions into the digital world by distributing them over the net-
work edge. This requires partitioning the regions and mapping
them into sub-metaverses at the MEC servers, while accom-
modating the CTs in their designated sub-metaverses. Thus,
our goal to minimize the sub-synchronization time between
the real world and distributed metaverses, while satisfying the



DT synchronization intensity requirements. In addition to this
association, accommodating the sub-metaverses and the DTs at
the edge requires an efficient allocation of the computational
resources at the MEC server between sub-synchronization and
DT synchronization. Then, this problem can be formulated as
follows:

min
ab,b∈B,ψ,Φ

1

B

∑
b∈B

Tb(Qb, ψ
s
b), (9a)

s.t. τ synck,b (ϕkb ) ≤
1

µk
∀k ∈ K, ∀b ∈ B, (9b)

ψsb +
K∑
k=1

ϕkb ≤ Ψb ∀b ∈ B, (9c)∑
b∈B

xk,b ≤ 1 ∀k ∈ K, (9d)

xk,b ∈ {0, 1} ∀k ∈ K, ∀b ∈ B, (9e)⋃
b∈B

ab = Z, (9f)

ai ∩ aj = ∅ ∀i, j ∈ A, i ̸= j, (9g)

where ψ = [ψs1, ψ
s
2, . . . , ψ

s
B ]
T is the computing resource allo-

cation vector for sub-synchronization. The computing resource
allocation and association matrix for DTs synchronization is
given by:

Φ =


ϕ11, . . . , ϕ

K
1

ϕ12, . . . , ϕ
K
2

. . .
ϕ1B . . . , ϕ

K
B

 . (10)

Here, xk,b is the association variable between the MEC server
and the DT, and Ψb is the maximum computing power of MEC
server b.

Problem (9) is challenging to solve as: a) it involves a set of
mutually correlated regions, and b) the effective partitioning
of the regions depends on the distribution of DTs and their
synchronization requirements. Hence, an effective solution that
can address both region partitioning and DT association is
needed to alleviate the complexity of the problem. Next, we
present an iterative algorithm that leverages optimal transport
theory [13] to solve (9).

III. OPTIMAL TRANSPORT THEORY FOR JOINT
SUB-METAVERSE AND DTS ASSOCIATION AT THE EDGE

In this section, we introduce a novel iterative algorithm to
solve (9) by considering an optimal transport theory frame-
work [13]. Optimal transport is suitable here because it pro-
vides the optimal mapping, from the sensors to the MEC
servers, which determines the region partitions that yield the
minimal sub-synchronization time. We first derive the optimal
region partitions that minimize the sub-synchronization time
based on the metaverse synchronization resources at the MEC
servers. Then, the DT-MEC association is determined under
given optimal region partitions and the corresponding comput-
ing resources required to synchronize each DT are allocated
accordingly.

First, we consider finding the optimal region partitions
that minimize the sub-synchronization time, under a given

computing resource allocation for metaverse synchronization.
For that, we define ω = (x, y, z) as the 3D location of
sensor q, and define κb as the location of the MEC server b.
Then, we reformulate tsyncq,b = L(g(x, y, z))F (ω,κb), where
L(g(x, y, z)) = Q∆ϵ

∫∫∫
ab
g(x, y, z) dx dy dz, F (ω,κb) =

ρ(ω)

W s
b log2(1+

β(ω,κb)

σ2
b

)
+ Λρ(ω)

ψs
b

, and βq,b(ω,κb) = hq,bξq as the

received power from sensor q at BS b. Hence, problem (9) is
reduced to a region partitioning optimization problem under
given resource allocation, and can be expressed as:

min
ab,b∈B

1

B

∑
b∈B

∫∫∫
ab

L(g(x, y, z))F (ω,κb) (11a)

×g(x, y, z) dx dy dz,
s.t.

⋃
b∈B

ab = Z, (11b)

ai ∩ aj = ∅ ∀i, j ∈ A, i ̸= j. (11c)

Solving (11) is challenging since the optimization variables
are a set of continuous and dependent region partitions. Thus,
to overcome this challenge, we model it as an optimal trans-
port theory problem to derive the optimal region partitions
that minimize the sub-synchronization time [14]. In general,
optimal transport is a mathematical framework that considers
quantifying the minimal cost for transporting the probability
mass of a distribution χ1 to another one χ2 on Ω ⊂ Rw,
by finding an optimal transport map Π from χ1 to χ2 that
minimizes the following function:

min
Π

∫
Ω

J (m,n)χ1(m) dm; n = Π(m), (12)

where J (m,n) is the cost of transporting a unit from point m
to point n.

Since the sensing density follows a continuous distribution
and the MEC servers can be considered as discrete points of
this distribution, it is natural to model our region partitioning
problem as a semi-discrete optimal transport problem. Thus,
we formulate this mapping problem from the infinitesimal
sensor to the MEC server as a semi-discrete optimal transport
problem that minimizes its sub-synchronization time. In this
case, the cost of transportation is considered to be the syn-
chronization time of the infinitesimal volume. Thus, the zone
is partitioned into optimal region partitions via this optimal
transport map, while noting that 1

B is a constant term that
does affect the mapping function as it aids in computing the
average only. We consider the objective in (11a) equivalent
to (12) without the constant term. Next, we prove that an
optimal solution for this semi-discrete mapping in (11) exists.

Lemma 1. The optimization problem in (11) admits an optimal
solution.

Proof. Let αb =
∫∫∫

ab
g(x, y, z) dx dy dz, ∀b ∈ B,

and define the unit simplex as follows: E = {α =
(α1, α2, . . . , αB) ∈ RB ,

∑B
b=1 αb = 1, αb ≥ 0}. Moreover, we

define χ1(x, y, z) = g(ω) and J (ω,κb) = L(αb)F (ω,κb).
Clearly, since F (ω,κb) is continuous, and noting that L(αb)
is differentiable, we can see that J (ω,κb) is continuous.



Algorithm 1: Optimal Transport Algorithm for Joint Sub-
Metaverse and DT Association

Input: g(x, y, z), ρ(x, y, z), f(x, y, z), Q, µk , ∀k ∈ K, βq,b,
∀b ∈ B, ∀q ∈ Q.

Output: a∗b , T ∗
b , ∀b ∈ B, ψ∗,Φ∗.

Initialize: Set iterations ν = 0 and ψs(0)

b = Ψb, ∀b ∈ B.
1 Generate initial region partitions a(0)b and calculate α(0)

b .
2 repeat
3 ν ← ν + 1.
4 Generate region partitions a(ν)b using α(ν−1)

b and ψs(ν−1)

b
according to (14).

5 Update α(ν)
b =

∫∫∫
a
(ν)
b

g(ω) dω

6 for each region ab do
7 Associate the DTs in region ab to MEC server b.
8 for each DT k connected to MEC server b do
9 Compute ϕk

(ν)

b = Γk
1

µkDk
− 1

rk,b

.

10 Update ψs(ν)

b = Ψb −
∑

k ϕ
k(ν)

b .

11 until the convergence of (12);
12 Determine a∗b = a

(ν)
b , ψ∗ = ψ(ν), Φ∗ = Φ(ν).

13 Compute the average sub-synchronization time as (12) × 1
B
.

Subsequently, J (ω,κb) is also a lower semi-continuous func-
tion. Hence, considering g as a continuous distribution and
λ =

∑
b∈B αbδκb

as a discrete distribution, with the lower
semi-continuous cost function, there theoretically exists an
optimal transport map Π from g to λ. Then, for any α ∈ E,
problem (11) admits an optimal solution. Since E is a unit
simplex that is a compact set and non-empty, then problem (11)
admits an optimal solution over the entire set E. Thus, the
lemma is proved.

Furthermore, we characterize the transport map Π which
relates each sensor to its corresponding sub-metaverse as
follows:{

Π(ω) =

B∑
b=1

κb1ab(ω);

∫∫∫
ab

g(ω) dω = αb

}
(13)

In the following proposition, we set up the solution space
for problem (11), which yields the optimal region partitions
that minimize the sub-synchronization time.

Proposition 1. The optimal region partitioning is given by the
following map:

a∗
b =

{
ω = (x, y, z)| αbF (ω,κb) ≤ αjF (ω,κj), ∀j ̸= b ∈ B

}
.

(14)
Proof. The complete proof is omitted due to space limitations.
Essentially, Proposition 1 can be proved by extending Theorem
1 in [15] to a 3D scenario, while modifying the cost function
to include both communication and computing resources at the
BS and converting it to an uplink scenario.

According to Proposition 1, we can see that ab and αb are
correlated. Hence, to divide the zone into optimal partitions, it
is necessary to first initialize region partitions from an arbitrary
partitioning scheme (e.g., Voronoi diagrams). After that, the
partitions are iteratively updated based on (14). Moreover, after
the partitions in each iteration are determined, the DTs residing
in each region are accommodated in the corresponding sub-
metaverse, whereby each DT should have its synchronization

(a) (b)

Fig. 2: Region Partitioning and DT association according to the a)
SNR method and b) proposed optimal transport method.

requirement satisfied. This will require providing them with
sufficient computing resources at the MEC server. Note that
the region boundaries impact the number of PTs within each
region, and hence, the DT computing power that the MEC
server can provide for each DT application. After determining
the remaining computing resources at each MEC server, this
mapping procedure is iterated until convergence. Hence, we
can reach the optimal association of the regions and DT
applications that can simultaneously guarantee upmost syn-
chronization of the metaverse and its DT components. This
iterative algorithm is summarized in Algorithm 1.

IV. SIMULATION RESULTS AND ANALYSIS
For our simulations, we consider a cross-sectional grid zone

having dimensions of 2 km × 2 km, in which B = 4 BSs
are deployed to provide digital teleportation services. The
sensing density is modeled as a truncated Gaussian distribution
with mean values centered at (750 m, 750 m) and having
a standard deviation σ. This model is suitable to model
hotspots of sensors. We consider that the MEC servers have
a computing power of Ψb = [8, 8, 16, 16] GHz and a band-
width for metaverse synchronization W s

b = [10, 10, 20, 20]
MHz. We consider three types of DT applications having
µk = [10, 100, 1000] s−1 and ζk = [100, 200, 300] mW,
respectively. Also, the PTs are distributed according to a
Gaussian mixture model. Unless otherwise stated, we set the
following simulation parameters: Q = 25, 000, ∆ = 1ms,
ϵ = 0.01m3, ξq = 1mW, σ2

b = σ2
o = −170 dBm/Hz,

ρ(x, y, z) = 50 bps/m3, Λ = 5000 cycles/bit, Dk = 10Mb,
Wk = 1 MHz, and Γk = 104cycles/bit. As a benchmark, we
compare our proposed optimal transport solution to an SNR-
based association scheme. In the SNR scheme, the sensors
are associated to the BS having the best channel conditions.
Accordingly, the PTs in the resulting region are associated to
the same BS to execute their twinning processes.

Fig. 2 compares the partitioning technique adopted by the
SNR-based approach in Fig. 2a, and our proposed partitioning
technique in Fig. 2b. Here, the number of DTs in the network
is considered to be K = 60. Fig. 2a clearly shows that the
regions are equally partitioned based on the SNR method.
Given that our approach considers the DTs’ operation and its
corresponding computing and communication resources, the
regions are unequally divided. Moreover, owing to the fact
that region 1 has the highest sensing density, it was associated
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with the smallest region portion and the least number of
DTs. Notably, the other regions characterized with less sensing
density are larger in size and encompass a higher number of
DTs. Hence, this figure showcases that our approach provides
a tradeoff between DTs and sub-metaverses to guarantee the
least sub-synchronization time, unlike the SNR-based method.

In Fig. 3, the average sub-synchronization time for different
number of DTs in the system is evaluated for the SNR-based
association and our proposed optimal transport approach. The
proposed method clearly outperforms the SNR-based associ-
ation for all the numbers of DTs. Fig. 3 shows that, in our
proposed approach, the sub-synchronization time is robust to
changes in the number of DTs. That is, the sub-synchronization
time merely increases from 19.11 ms to 25.17 ms while
increasing the number of DTs from K = 50 to K = 200.
Meanwhile, when adopting the SNR based association, the
average sub-synchronization time varies from 31.23 ms to
51.23 ms for an increase of K = 50 to K = 200.

Fig. 4 showcases the average sub-synchronization time and
the regional density of DTs versus the standard deviation of
sensing density distribution σ. First, we can see that the SNR-
based association does not take into account the number of
DTs nor the available resources. Thus, the regional density of
DTs remains constant despite changes in the sensing density.
Meanwhile, in our proposed approach, as σ increases, the num-
ber of DTs becomes more uniformly distributed across regions.
Thus, the density of DTs per region increases to asymptotically
reach a plateau. Given that a high σ characterizes a more
uniformly sparsed distribution of sensors, we can see that
the regional density reaches a plateau close to that of the
SNR-based approach. With regards to the sub-synchronization

time, we can see that our proposed approach has a 25.75%
lower sub-synchronization time for all values of σ. Fig. 4
also shows that the gap between the two methods decreases
as σ increases. This results from the fact that the number of
DTs becomes more uniformly distributed across regions, which
should asymptotically lead to that of the SNR method.

V. CONCLUSION
In this paper, we have proposed a novel framework that

decentralizes the metaverse and distributes it along with its
DT constituents at the edge. In particular, we have digitally
replicated a physical zone containing autonomous PT systems
as sub-metaverses that encompass CTs at the MEC servers.
To perform an E2E synchronization that utilizes the overall
computing and communication resources, we have formulated
an optimization problem whose goal is to minimize the sub-
synchronization time, while satisfying the DT synchronization
intensity requirements. This requires partitioning the zone into
regions that are associated along with their PTs as CTs in their
respective sub-metaverses. To solve this problem, we have pre-
sented an iterative algorithm based on optimal transport theory
to determine the optimal region mapping and DT association
that minimizes the sub-synchronization time and synchronizes
the DT applications. Simulation results show the superiority of
our approach compared to SNR-based associations that fail to
consider the DTs’ operation and its synchronization resources.
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