Improved techniques for deterministic [, robustness

Sahil Singla Soheil Feizi
Department of Computer Science Department of Computer Science
University of Maryland University of Maryland
ssingla@umd.edu sfeiziOumd.edu
Abstract

Training convolutional neural networks (CNNs) with a strict 1-Lipschitz constraint
under the [, norm is useful for adversarial robustness, interpretable gradients and
stable training. 1-Lipschitz CNNs are usually designed by enforcing each layer to
have an orthogonal Jacobian matrix (for all inputs) to prevent the gradients from
vanishing during backpropagation. However, their performance often significantly
lags behind that of heuristic methods to enforce Lipschitz constraints where the
resulting CNN is not provably 1-Lipschitz. In this work, we reduce this gap by intro-
ducing (a) a procedure to certify robustness of 1-Lipschitz CNNs by replacing the
last linear layer with a 1-hidden layer MLP that significantly improves their perfor-
mance for both standard and provably robust accuracy, (b) a method to significantly
reduce the training time per epoch for Skew Orthogonal Convolution (SOC) layers
(> 30% reduction for deeper networks) and (c) a class of pooling layers using the
mathematical property that the [, distance of an input to a manifold is 1-Lipschitz.
Using these methods, we significantly advance the state-of-the-art for standard and
provable robust accuracies on CIFAR-10 (gains of +1.79% and +3.82%) and sim-
ilarly on CIFAR-100 (+3.78% and +4.75%) across all networks. Code is available
athttps://github.com/singlasahili4/improved_12_robustness.

1 Introduction

The Lipschitz constant ! of a neural network f : R — R¢, denoted by Lip(f), controls the change
in the output divided by change in the input (both changes measured in the /5 norm). Previous
work provides evidence that a small Lipschitz constant is useful for interpretable saliency maps
[Tsipras et al., 2018], generalization bounds [Long and Sedghi, 2020], Wasserstein distance estimation
[Villani, 2008], adversarial robustness [Szegedy et al., 2014] and preventing gradient explosion during
backpropagation [Xiao et al., 2018]. Several prior works [Miyato et al., 2018, Gulrajani et al., 2017]
use heuristic methods to enforce Lipschitz constraints to successfully address problems such as
stabilizing GAN training. However, these methods do not enforce a guaranteed lipschitz bound and it
remains challenging to achieve strong results with provable guarantees.

Using the composition property i.e. Lip(g o h) < Lip(g) Lip(h), we can construct a 1-Lipschitz
neural network by constraining each layer to be 1-Lipschitz. However, a key difficulty with this
approach is that because a 1-Lipschitz layer can only reduce the gradient norm during backpropagation,
for deeper networks, this results in small gradient values for layers closer to the input making training
slow and difficult. To address this problem, Anil et al. [2018] introduce Gradient Norm Preserving
(GNP) architectures where each layer preserves the gradient norm during backpropagation. For
1-Lipschitz Convolutional Neural Networks (CNNSs), this involves using orthogonal convolutions
(convolution layers with an orthogonal Jacobian matrix) [Li et al., 2019b, Trockman and Kolter,

'In this work, we assume the Lipschitz constant under the /> norm.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: CIFAR-10 results using faster gradients, projection pooling, CRC-Lip

SOC | Time/epoch (secs) | Reduction | Standard accuracy | Provable robust accuracy
layers | Ours Previous Ours Previous | Ours Previous

6 25.34 30.63 -17.27% | 79.36% 76.68% | 67.13% 60.09%
11 3711 4844 -23.39% | 79.57% 77.73% | 66.75% 62.82%
16 49.27 66.74 -26.17% | 79.44% T7.78% | 66.99% 62.75%
21 61.59 83.18 -2596% | 79.13% 77.50% | 66.45% 63.31%
26 71.51 100.70 -2899% | 79.19% 77.18% | 66.28% 62.46%
31 84.00 119.55 -29.74% | 78.64% 74.43% | 66.05% 59.65%
36 95.06 137.10 -30.66% | 78.57% 72.73% | 65.94% 57.18%
41 106.01 156.25 -32.16% | 7841% 71.33% | 65.51% 55.74%

2021, Singla and Feizi, 2021, Yu et al., 2022, Kiani et al., 2022] and using a class of GNP activation
functions called HouseHolder activations [Singla et al., 2022].

Among orthogonal convolutions, SOC [Singla and Feizi, 2021] achieves state-of-the-art results
on CIFAR-10, 100 [Singla et al., 2022]. SOC uses the following two mathematical properties to
construct an orthogonal convolution: (a) the exponential of a skew symmetric matrix is orthogonal
and (b) the matrix exponential can be computed using the exponential series. A drawback of using
the exponential series is that it requires us to apply the convolution operation multiple times to
achieve a reasonable approximation of an orthogonal matrix. Consequently, during backpropagation,
computing the gradient with respect to the weights for a single SOC layer requires us to compute
the weight gradient for each of these convolutions resulting in significant training overhead. In this
work, we show that because the matrix is skew symmetric, using some approximations, the gradients
with respect to weights can be computed in significantly reduced time with no loss in performance.
This enables us to reduce the training time per epoch using SOC by > 30% for networks with large
number of SOC layers (Results in Table 1).

Another limitation of 1-Lipschitz CNNss is that their performance is often significantly below com-
pared to that of standard CNNs. Recently, Singla et al. [2022] introduced a procedure for certifying
robustness by relaxing the orthogonality requirements of the last linear layer (i.e. the linear layer
mapping penultimate neurons to class logits) achieving state of the art results on CIFAR-10, 100
[Krizhevsky, 2009]. Since MLPs are more expressive than linear layers, one would expect improved
standard accuracy by replacing the last linear layer with them. However, the resulting networks are
not 1-Lipschitz and achieving high robustness guarantees (provable robust accuracy) is difficult.

To certify robustness for these networks, note that since the mapping from input to penultimate layer
is 1-Lipschitz, the robustness certificate for the penultimate output also provides a certificate for the
input. Thus, we first replace the linear layer mapping penultimate output to logits with a 1-hidden
layer MLP (Multi layer Perceptron) because such MLPs are easier to certify compared to deep MLPs.
To certify robustness for the MLP, we use the Curvature-based Robustness Certificate or CRC [Singla
and Feizi, 2020]. To train MLP to have high robustness guarantees, we use a variant of adversarial
training that only applies adversarial perturbations to the MLP (not the whole network). We call our
certification procedure CRC-Lip. This results in improved results for both the standard and also the
provable robust accuracy across all network architectures on CIFAR-10 (> 1.63%, > 3.14%) and
CIFAR-100 (> 2.49%, > 2.27% respectively). Results are in Tables 3 and 4.

While several works have attempted to construct novel and more expressive orthogonal convolution
layers and GNP activation functions, current state-of-the-art 1-Lipschitz CNNs still use pooling
layers by taking the max of different elements. In this work, we introduce a class of 1-Lipschitz
pooling layers called projection pooling using the following mathematical property: Given a manifold
M C R” and input x € R", the function dpq : R® — R defined as the [5 distance of x to M
is 1-Lipschitz. Thus, to construct a pooling layer, we can first define a learnable manifold with
parameters © (Example in Section 6). During training, for input x € R, the pooling layer simply
outputs drq(x) € R as the output, resulting in decrease in input dimension by a factor of . Moreover,
since the output d o4 (x) is also a function of ©, © can be learned during training. However, solving
for the distance d 4 (x) can be difficult especially when M is a high-dimensional manifold.

To address this limitation, (a) we use 2D projection pooling layers that reduce the dimension by factor
of 2 and (b) we construct these layers using piecewise linear curves for which the distance can be
computed efficiently by computing the minimum distance to all line segments and the connecting
points (Example in Appendix Figure 2). If the curve is closed and without self-intersections, we can
also define a signed projection pooling for which the signs of the output for points inside and outside
the region enclosed by the curve are different (x and y in Figure 2). This allows the subsequent
layers to distinguish between the inputs inside and outside the region. In this work, we show some
preliminary results using a simple 2D projection pooling layer (Section 6). We leave the problem of
constructing high performance 2D projection pooling layers open for future research.

In summary, in this paper, we make the following contributions:

* We introduce a method for faster computation of the weight gradient for SOC layers. For deeper
networks, we observe reduction in training time per epoch by > 30% (Table 1).

* We introduce a certification procedure called CRC-Lip that replaces the last linear layer with a 1-
hidden layer MLP and results in significantly improved standard and provable robust accuracy. For
deeper networks (> 35 layers), we observe improvements of > 5.84%, > 8.00% in standard and
> 8.76%, > 8.65% in provable robust accuracy (s radius 36,/255) on CIFAR-10,100 respectively.

* We introduce a large class of 1-Lipschitz pooling layers called projection pooling using the
mathematical property that the I distance d(x) of an input x to the manifold M is 1-Lipschitz.

* On CIFAR-10, across all architectures, we achieve the best standard and provable robust accuracy
(at 36,/255) of 79.57, 67.13% respectively (gain of +1.79%, +3.82% from prior works). Similarly,
on CIFAR-100, we achieve 51.84,39.27% (+3.78%, +4.75% from prior works). These results
establish new state-of-the-art results in the standard and provable robust accuracy on both datasets.

2 Related work

Provable defenses against adversarial examples: For a provably robust classifier, we can guarantee
that its predictions remain constant within some region around the input. Most of the existing methods
for provable robustness either bound the Lipschitz constant or use convex relaxations [Singh et al.,
2017, 2018a, 2019a,b,c, Weng et al., 2018, Salman et al., 2019b, Zhang et al., 2019, 2018, Wong
et al., 2018, Wong and Kolter, 2018, Singh et al., 2018b, Raghunathan et al., 2018, Dvijotham* et al.,
2018, Croce et al., 2019, Gowal et al., 2019, Dvijotham* et al., 2020, Lu and Kumar, 2020, Singla
and Feizi, 2020, Bunel et al., 2020, Leino et al., 2021, Leino and Fredrikson, 2021, Zhang et al.,
2021, 2022, Wang et al., 2021, Huang et al., 2021, Miiller et al., 2021, Singh et al., 2021, Palma et al.,
2021]. However, these methods are often not scalable to large neural networks while achieving high
performance. In contrast, randomized smoothing [Liu et al., 2018, Cao and Gong, 2017, Lécuyer
et al., 2018, Li et al., 2019a, Cohen et al., 2019, Salman et al., 2019a, Levine et al., 2019, Kumar
et al., 2020a,b, Salman et al., 2020, 2021] scales to large neural networks but is a probabilistically
certified defense: certifying robustness with high probability requires generating a large number of
noisy samples leading to high inference-time. The defense we propose in this work is deterministic
and not comparable to randomized smoothing.

Provably Lipschitz neural networks: The class of Gradient Norm Preserving (GNP) and 1-Lipschitz
fully connected neural networks was first introduced by Anil et al. [2018]. To design each layer to
be GNP, they orthogonalize weight matrices and use a class of piecewise linear GNP activations
called GroupSort. Later, Singla et al. [2022] proved that for any piecewise linear GNP function to be
continuous, different Jacobian matrices in a neighborhood must change via householder transforma-
tions, implying that GroupSort is a special case of more general HouseHolder activations. Several
previous works enforce Lipschitz constraints on convolution layers using spectral normalization,
clipping or regularization [Cissé et al., 2017, Tsuzuku et al., 2018, Qian and Wegman, 2019, Gouk
et al., 2020, Sedghi et al., 2019]. However, these methods either enforce loose lipschitz bounds or do
not scale to large networks. To ensure that the Lipschitz constraint on convolutional layers is tight,
recent works construct convolution layers with an orthogonal Jacobian [Li et al., 2019b, Trockman
and Kolter, 2021, Singla and Feizi, 2021, Yu et al., 2022, Su et al., 2022, Kiani et al., 2022]. These
approaches avoid the aforementioned issues and allow training of large, provably 1-Lipschitz CNNs
achieving state-of-the-art results for deterministic 5 robustness.

3 Problem setup and Notation
For a vector v, v; denotes its j*" element. For a matrix A, A ;. and A. ; denote the j*" row and k'"
column respectlvely Both A ;. and A. j, are assumed to be column vectors (thus A ; . is the transpose
of j** row of A). A ;i denotes the element in 4" row and k** column of A. A ., denotes the
matrix containing the first j rows and k columns of A. We define A.; = A and A =A;
Similar notation applies to higher order tensors. I denotes the identity matrlx R to denote the ﬁeld of
real numbers. We construct a 1-Lipschitz neural network, f : R* — R€ (d is the input dimension, ¢
is the number of classes) by composing 1-Lipschitz convolution layers and GNP activation functions.
We often use the abbreviation f; — f; : R? — R to denote the function so that:

(fl f])() fz() fg() VXERd

For a matrix A € R?*" and a tensor B €]Rp xqxr, A denotes the vector constructed by stacking the
rows of A and B by stacking the vectors B ., J € [p— 1] so that:

R) =g AL aT] (B) - [E0)) ()]

yiyt

For a 2D convolution filter, L. € RP*7*7*5 and input X € R?*"*" we use L * X € RP*"*" to
denote the convolution of filter L with X. We use the the notation L x* X = L x~! (L x X) and
L «* X = X. Unless specified, we assume zero padding and stride 1 in each direction.

4 Faster gradient computation for Skew Orthogonal Convolutions

Among the existing orthogonal convolution layers in the literature, Skew Orthogonal Convolutions
(or SOC) by Singla and Feizi [2021] achieves state-of-the-art results on CIFAR-10,100 [Singla
et al., 2022]. SOC first constructs a convolution filter L, whose Jacobian is skew-symmetric. This is
followed by a convolution exponential [Hoogeboom et al., 2020] operation. Since the exponential of
a skew-symmetric matrix is orthogonal, the Jacobian of the resulting layer is an orthogonal matrix.

However, a drawback of this procedure is that convolution exponential requires multiple convolution
operations per SOC layer to achieve a reasonable approximation of the orthogonal Jacobian. Conse-
quently, if we use k convolution operations in the SOC layer during forward pass, we need to compute
the gradient with respect to the weights L (called convolution weight gradient) per convolution
operation (k times) which can lead to slower training time especially when the number of SOC layers
is large. To address this limitation, we show that even if we use k convolutions in the forward pass of
an SOC layer, the weight gradient for the layer can be computed using a single convolution weight
gradient during backpropagation leading to significant reduction in training time.

For simplicity, let us first consider the case of an orthogonal fully connected layer (i.e. not convolution)
with the same input and output size (n). Later, we will see that our analysis leads to improvements for
orthogonal convolutional layers. Further, assume that the weightsi.e. A € R™*™ are skew-symmetric
i.e. A = —AT and given the input x € R", the output z € R" is computed as follows:

k .
z = Zﬁ x+b where A = —AT (D
—~ i ’

We approximate the exponential series: exp(A) = >°° ' A’/i! using a finite number of terms (k).
Forward pass (z): To compute z during the forward pass, we use the following iterations:

! {x+<Au<f‘+l>>/<i+1> i<k-2 ®)

It can be shown that z = u(®) (Appendix C). During backpropagation, given the gradient of loss /
w.r.t. layer output z i.e. V, ¢, we want to compute Vy ¢ (input gradient) and V 5 ¢ (weight gradient).

Input gradient (Vy ¢): To compute Vi £, observe that z is a linear function of x. Thus, using the
chain rule, skew-symmetricity (A7 = —A) and the property (Al) (AT) , we have:

Eoai\ © (AN
Val- (z“‘,) (V.0 = (Z“,”) (V.)

=0 =0

We can again approximate the exponential series using the same number of terms as in the forward
pass i.e. k. To compute the finite term approximation, we use the following iterations:

o _ {Val i=k-1 3)
TV = (AVEED) (i 1) i<k -2

Similar to forward pass, it can be shown that V ¢ = v(®) (Appendix C).
Weight gradient (V 5 ¢): We first derive the exact expression for V o ¢ in the Theorem below:

Theorem 1 The gradient of the loss function £ w.rt A i.e. V a { is given by:
k

Val=-— Z ((Ai_lx) (v(i))T — v (Ai_lx)T) “4)

i=1

where v(9) is defined as in equation (3).

Note that the first outer product i.e. (A*'x) (v(i))T and the second i.e. (v(¥)) (Ai_lx)T are
transpose of each other implying that each term in the summation is skew-symmetric. Although these
outer products can be computed in a straightforward way for orthogonal fully connected layers, this is
not the case for orthogonal convolution layers (SOC in this case). This is because, for a convolution
filter L € RPX9X7*5 the term analogous to A*~!x is a patch of size ¢ x r x s and that analogous to
v(? is another patch of size p x 1 x 1 resulting in an outer product of the desired size p x g X X s per
patch. Thus, for SOC layers, each term inside the summation is computed by summing over the outer
products for all such patches. For large input sizes, the number of such patches can often be large,
making this computation expensive. To address this limitation, we use the following approximation:

Valr— <u(1) (V(1)>T — v (u(1)>T> (5

In Appendix B, we show that the above approximation is principled because after subtracting the
exact and approximation gradients (equations (4) and (5)) and simplifying, each term in the resulting
series is divided by a large value in its denominator (= 0). This approximation is useful because in
equation (5), the outer product needs to be computed once whereas in equation (4), the outer products
need to be computed k times. Also, both u() and v(!) are computed while computing u(®) = z
during the forward pass and v(?) = V. z during the backward pass using the recurrences in equations
(2) and (3). Thus, we can simply store u®, v during the forward,backward pass respectively so
that V o ¢ can be computed directly using equation (5). In our experiments, we observe that this leads
to significant reduction in training time with almost no drop in performance (Tables 1, 3, 4).

5 Curvature-based Robustness Certificate

A key property of 1-Lipschitz CNNss is that the output of each layer is 1-Lipschitz with respect to
the input. Given an input x € R%, consider the penultimate output g(x) € R™ and logits f(x) € R®
for some 1-Lipschitz CNN. Existing robustness certificates [Li et al., 2019b, Singla et al., 2022] rely
on the linearity of the function from g(x) — f(x). However, since MLPs have higher expressive
power than linear functions [Cybenko, 1989], one way to improve performance could be to replace
this mapping with MLPs. However, certifying robustness for deep MLPs is difficult.

To address these challenges, we first replace the mapping from g(x) — f(x) with a 1-hidden
layer MLP because they are easier to certify compared to deeper networks. Because computing
exact certificates for ReLU networks is known to be NP-complete [Sinha et al., 2018], we use the
differentiable Softplus activation [Dugas et al., 2000] to certify robustness. To certify robustness,
we use the Curvature-based Robustness Certificate or CRC [Singla and Feizi, 2020] because it
provides exact certificates for a significant fraction of inputs for shallow MLPs. We provide a brief
review of CRC in Appendix Section D. Let g : R? — R™ be a 1-Lipschitz continuous function and
h : R™ — RR¢ be a 1-hidden layer MLP such that f = h o g. Further, let [be the predicted class
for input x i.e. fj(x) > max; f;(x). Since g is 1-Lipschitz, it can be shown that if & is provably
robust in an I radius R around input g(x), then f is also provably robust in the /5 radius R around x.
The resulting procedure is called CRC-Lip and is given in the following proposition:

(a) Rearrangement operation [Singla and Feizi, o .
2021] (b) 2D projection pooling

Figure 1: Ilustration of the rearrangement operation (left) and 2D projection pooling (right).

Proposition 1 (CRC-Lip) For input x such that fi(x) > max;- fi(x), let R be the robustness
certificate for h using input g(x), then R is also the robustness certificate for the function f:

min min *—g(x > R = min min x"—x|ls >R 6
17l hl(y*):hz‘(y*)“y g()”2 o i#l fz(x*):fi(x*)H H2 o ©

Proof is in Appendix A.2. In our experiments, we find that although replacing the linear layer with an
MLP achieves high standard accuracy, directly using the above certificate often leads to very small
robustness certificates and thus low certified robust accuracy. To address this problem, we introduce
(a) an adversarial training procedure that only applies to the input of the MLP g(x) (i.e. not the input
of the neural network x) and (b) curvature regularization to reduce the curvature of the MLP. It was
shown in Singla and Feizi [2021] that combining adversarial training with curvature regularization
leads to significantly improved provable robust accuracy with small reduction in standard accuracy.
This results in the following loss function for training:

min = B e max L(ha(y™, 1)) +v Ky 7
min Eee D|:(||y*g\1,(x)||2<p (haly))) v }} (7N

In the above equation, {2 denote the parameters of the MLP (i.e. h), U are the parameters of the
1-Lipschitz function g, Ky, is the bound on the curvature of the MLP, p denotes the [, perturbation
radius and -y denotes the curvature regularization coefficient. The curvature bound Ky, is the same as
in Singla and Feizi [2020]. Also, since we apply adversarial perturbations in the penultimate layer, we
also need to backpropagate through this procedure to enable training of previous layers. To this end,
we simply use an identity map (same gradient output as the gradient input) to backpropagate through
the adversarial training procedure and find that it works well in practice, achieving significantly
better results compared to the state-of-the-art. It is possible that a more principled method of
backpropagation may lead to better results and we leave that avenue open for future research.

6 Projection pooling layers

In 1-Lipschitz CNNs, pooling is usually carried out as follows: given input X € RI*"*" (r is
even), we first use rearrangement [Jacobsen et al., 2018] illustrated in Figure 1b to construct
X' € R*ax(r/2)x(r/2) Next, we apply an orthogonal convolution which gives an output of the same
size Z € R*4*(1/2)x(r/2) and divide it into two tensors of equal sizes (along the channel dimension)
giving Z.o, € R24x("/2)x(r/2) and Z,,. € R24*("/2)x(r/2) We then define max(Z.o,, Zag.) (or
either one of Z.o,, Z2,.) as the output of the pooling layer.

Although max is 1-Lipschitz, its expressive power is limited. For example, consider the 1-Lipschitz

function ||z, y|l2 = /2?2 +y?. It is easy to see that if z = y, the error between ||z, y||2 and
max(x,y) can be arbitrarily large for large values of x, y. To address such limitations, we construct
expressive pooling layers using the following mathematical property:

Theorem 2 Given x € R" and manifold M C R", the distance function (in lo norm) is 1-Lipschitz:
dm(x) = min |x* —xlz = [dm(x) —dm(y)] < llx = yll2 @)

The above theorem provides a powerful method for constructing a learnable pooling layer by selecting
a learnable manifold Mg C R" (O denotes the set of learnable parameters). To apply the pooling

Output Size Layer

32x32x32 Conv + MaxMin Output Size Layer Repeats
64 x 16 x 16 LipBlock-n/5 gxXrXr Input _
128 x 8 x 8 LipBlock-n/5 gxXrxr Conv + MaxMin n/5—1
256 x 4 x 4 LipBlock-n/5 4gx(r/2)x(r/2) Rearrange 1
512 x2x 2 LipBlock-n/5 4gx(r/2)x(r/2) Conv 1
1024 x 1 x 1 LipBlock-n/5 2qx(r/2)x(r/2) Pooling 1

of classes Linear/MLP-1 (b) LipBlock-n/5

(a) LipConvnet-n Architecture

Table 2: LipConvnet-n and LipBlock-n/5 architectures

operation to an input x € R", we simply output its /5 distance to the manifold Mg denoted by
d e (X). Since daqg (x) € R while x € R”, this operation reduces the input size by a factor of n.

As an example, let M,, = {u}. Here u € R" is the learnable parameter and the distance function
da, (x) = ||x — u|2. Even in this very simple case, for u = 0, d ¢, (x) = ||x||2 and for n = 2, this
function can learn to represent the function ||z, y||2 discussed earlier exactly. We also prove that a
signed l5 distance function can be defined when M satisfies certain properties:

Corollary 1 If M is a connected manifold that divides R™ into two nonempty connected sets A and
B such that AN B = ¢ and every path from a € A and b € B intersects a point on M, then there
exists a signed ls distance function with different signs in A and B.

Proofs of Theorems 2 and Corollary 1 are given in Appendix A.3 and A.4 respectively.

In practice, computing d o4 can be difficult for high-dimensional M. To tackle this issue, we use 2D
pooling layers where M is defined to be a piecewise linear curve in 2D. The l5 distance can then
be computed by finding the minimum distance to all the line segments and connecting points. We
emphasize that even in this relatively simple case, M can have large number of parameters and d aq
can still be efficient to compute because these individual distances can be computed in parallel. We
use My defined below (illustrated in Figure 1b, lines Ly, Lo correspond to ¢ = 46, —0):

My ={R(cos ¢, sing): R>0, ¢ € {+0,—0}}
In each colored region (Figure 1b), d 4, can be computed using the following:

Rsin(a—0), 0<a<f+mx/2
dam, (R(cosay, sina)) =< —Rsin(a+0), 0<—-a<0+7/2 9
R, otherwise

To apply projection pooling on Z.o,, Zsa,. discussed previously, we output d g, (Z.24, Zog:).

7 Experiments

We perform experiments under the setting of provably robust image classification on CIFAR-10
and CIFAR-100 datasets. We use the LipConvnet-5, 10, 15, ..., 40 architectures for comparison.
We use SOC as the orthogonal convolution and MaxMin as the activation in all architectures. All
experiments were performed using 1 NVIDIA GeForce RTX 2080 Ti GPU. All networks were trained
for 200 epochs with initial learning rate of 0.1, dropped by a factor of 0.1 after 100 and 150 epochs.
For adversarial training with curvature regularization, we use p = 36/255 (0.1411), v = 0.5 for
CIFAR-10 and p = 0.2, v = 0.75 for CIFAR-100. We find that certifying robustness using CRC-Lip
is computationally expensive for CIFAR-100 due to large number of classes. To address this issue,
we only use classes with top-10 logits (instead of all 100 classes) for CIFAR-100 (Table 4). Since
CRC-Lip requires us to solve a convex optimization, we consider a certificate to be valid if the input
is correctly classified and gradient at the optimal solution is < 10~° (0 otherwise). All results are

Table 3: Provable robustness results on CIFAR-10 (LipConvnet-5, 10 results in Appendix Table 5)

LipConv Methods | Standard Provable Robust Accuracy Increase
net- Accuracy 36/255 72/255 108/255 | (standard) (36/255)
15 Baseline | 77.78% 62.75% 46.34% 31.38%

+ Fast 77.75% 62.52% 46.23% 31.19% | -0.03% -0.23%
+ CRC 79.44% 66.99% 52.56% 38.30% | +1.66% +4.24%

20 Baseline | 77.50% 63.31% 46.42% 31.53% | _ _
+ Fast 77.13% 62.05% 45.86% 31.13% | -0.37% -1.26%
+ CRC 79.13% 66.45% 52.45% 38.12% | +1.63% +3.14%
25 Baseline | 77.18% 62.46% 45.78% 31.16%

+ Fast 76.94% 6191% 45.59% 30.69% | -0.24% -0.55%
+ CRC 79.19 % 66.28% 51.74% 37.99% | +2.01% +3.82%
30 Baseline | 74.43% 59.65% 43.76% 29.16% | _ _
+ Fast 74.69% 58.84% 43.33% 28.93% | +0.26% -0.81%
+ CRC 78.64 % 66.05% 51.31% 37.30% | +4.21% +6.40%
35 Baseline | 72.73% 57.18% 42.08% 28.09% | _ _
+ Fast 72.91% 57.58% 41.52% 27.37% | +0.18% +0.40%
+ CRC 78.57% 65.94% 52.04% 37.63% | +5.84% +8.76 %
40 Baseline | 71.33% 55.74% 39.32% 26.06% | _ _
+ Fast 71.60% 56.15% 39.82% 25.63% | +0.27% +0.41%
+ CRC 78.41% 65.51% 51.32% 37.30% | +7.08% +9.77 %

reported using the complete test sets of CIFAR-10 and CIFAR-100. We compare the provable robust
accuracy using 3 different [y perturbation radii: 36/255, 72/255, 108/255.

Table details: For the baseline ("Baseline" in Tables 3, 4), we use the standard max pooling with the
certificate based on LLN [Singla et al., 2022] due to their superior performance over prior works. In
Tables 3 and 4, for each architecture, "+ Fast" adds faster gradient computation, "+ CRC" replaces
max pooling with projection pooling (equation (9)) and replaces the last linear layer with a 1-hidden
layer MLP (CRC-Lip certificate) while also using faster gradients. For each architecture, the columns
"Increase (Standard)" and "Increase (36/255)" denote the increase in standard and provable robust
accuracy relative to "Baseline" standard and provable robust accuracy (36/255). Results where
Projection pooling and CRC-Lip are added separately are given in Appendix Tables 5 and 6.

LipConvnet Architecture: We use a 1-Lipschitz CNN architecture called LipConvnet-n where n is
a multiple of 5 and n + 1 is the total number of convolution layers. It consists of an initial SOC layer
that expands the number of channels from 3 to 32. This is followed by 5 blocks that reduce spatial
dimensions (height and width) by half while doubling the number of channels. The architecture is
summarized in Tables 2a and 2b. The last layer outputs the class logits and is either a linear layer in
which case we use LLN to certify robustness or a single-hidden layer MLP where we use CRC-Lip.

Correcting the certificates: Since SOC is an approximation, the Lipschitz constant of each SOC
layer can be slightly more than 1 and if we use a large number of SOC layers (e.g. 41 in LipConvnet-
40), the Lipschitz constant of the full network (Lip(f)) can be significantly larger than 1. To mitigate
this issue, we take the following steps: (a) We use a large number of terms (k = 15) during test time
to approximate the exponential which results in a small approximation error (using the error bound in
Singla and Feizi [2021]) and (b) We compute Lip(f) by multiplying the lipschitz constant of all SOC
layers (using the power method) and then divide the certificate by Lip(f).

Table 4: Provable robustness results on CIFAR-100 (LipConvnet-5, 10 results in Appendix Table 6)

LipConv Methods | Standard Provable Robust Accuracy Increase
net- Accuracy 36/255 72/255 108/255 | (standard) (36/255)
15 Baseline | 48.06% 3452% 23.08% 14.70%

+ Fast 47.97% 33.84% 22.66% 14.26% | -0.09% -0.68%
+ CRC | 50.79% 37.50% 26.16% 17.27% | +2.73% +2.98 %
20 Baseline | 47.37% 33.99% 23.40% 14.69% | _ _
+ Fast 46.41% 33.07% 22.06% 14.00% | -0.96% -0.92%
+ CRC | 51.84% 38.54% 27.32% 18.53% | +4.47% +4.55%

25 Baseline | 45.77% 32.08% 21.36% 13.64% | _ _
+ Fast 45.28% 31.67% 20.69% 13.26% | -0.49% -0.41%
+ CRC | 51.59% 3927% 2794% 19.06% | +5.82% +7.19%
30 Baseline | 46.39% 33.08% 22.02% 13.77%

+ Fast 45.86% 32.54% 21.18% 12.77% | -0.53% -0.54%
+ CRC | 50.97% 3877% 27.73% 19.28% | +4.58% +5.69%
35 Baseline | 43.42% 30.36% 19.71% 12.66% | _ _
+ Fast 42.78% 29.88% 19.73% 12.52% | -0.64% -0.48%
+ CRC | 5142% 39.01% 28.94% 20.29% | +8.00% +8.65%
40 Baseline | 41.72% 28.53% 18.37% 11.49% | _ _
+ Fast 42.07% 28.51% 18.86% 11.89% | +0.35% -0.02%
+ CRC | 50.11% 38.69% 28.45% 20.05% | +8.39% +10.16 %

7.1 Results using Faster gradient computation

We show the reduction in training time per epoch (in seconds) on CIFAR-10 in Table 1 and CIFAR-
100 in Appendix Table 8. In both Tables, we observe that for deeper networks (> 25 layers), the
reduction in time per epoch is &2 30%. The corresponding standard and provable robust accuracy
numbers are given in Tables 3 (CIFAR-10) and 4 (CIFAR-100) in the row "+ Fast". From the columns
"Increase (Standard)" and "Increase (36/255)", we observe that the performance is similar to the
baseline across all network architectures. For deeper networks: LipConvnet-35, 40, we observe an
increase in performance for CIFAR-10 and small decrease (< 0.64%) for CIFAR-100.

7.2 Results using projection pooling and CRC-Lip

We observe that using CRC and projection pooling (row "+ CRC") leads to significant improvements
in performance across all LipConvnet architectures. On CIFAR-10, we observe significant improve-
ments in both the standard (> 1.63%, column "Increase (standard)") and provable robust accuracy
(> 3.14%, column "Increase (36/255)") across all architectures. On CIFAR-100, we also observe
significant improvements in the standard (> 2.49%) and provable robust accuracy (> 2.27%). For
deeper networks (LipConvnet-35, 40), on CIFAR-10, we observe even more significant gains in the
standard (> 5.84%) and provable robust accuracy (> 8.76%). Similarly on CIFAR-100, we observe
gains of > 8.00% (standard) and > 8.65% (provable robust).

Our results establish a new state-of-the-art for both the standard and provable robust accuracy across
all attack radii. In Table 3 (CIFAR-10), the best "Baseline" standard and provable robust accuracy val-
ues (at 36/255,72/255,108/255) are 77.78% and 63.31%, 46.42%, 31.53% respectively. The best
"+ CRC" values are 79.57% and 67.13%, 53.17%, 38.60%. This results in improvements of +1.79%
and +3.82%, +6.75%, +7.07% respectively. Similarly, in Table 4 (CIFAR-100), the best "Baseline"
standard and provable robust values are 48.06% and 34.52%, 23.40%, 14.70%. The best "+ CRC"
values are 51.84% (43.78%) and 39.27% (+4.75%), 27.94% (+4.54%), 20.29% (+5.59%).

8 Acknowledgements

This project was supported in part by NSF CAREER AWARD 1942230, a grant from NIST
60NANB20D134, HR001119S0026 (GARD), ONR YIP award N00014-22-1-2271, Army Grant No.
WOI11NF2120076 and the NSF award CCF2212458.

References

C. Anil, J. Lucas, and R. B. Grosse. Sorting out lipschitz function approximation. In ICML, 2018.

R. Bunel, J. Lu, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar. Branch and bound for piecewise
linear neural network verification. J. Mach. Learn. Res., 21:42:1-42:39, 2020.

X. Cao and N. Z. Gong. Mitigating evasion attacks to deep neural networks via region-based
classification. In Proceedings of the 33rd Annual Computer Security Applications Conference,
ACSAC 2017, page 278-287, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450353458. doi: 10.1145/3134600.3134606. URL https://doi.org/10.1145/
3134600.3134606.

M. Cissé, P. Bojanowski, E. Grave, Y. N. Dauphin, and N. Usunier. Parseval networks: Improving
robustness to adversarial examples. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 854—863. PMLR, 2017.
URL http://proceedings.mlr.press/v70/cissel7a.html.

J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, 2019.

F. Croce, M. Andriushchenko, and M. Hein. Provable robustness of relu networks via maximization
of linear regions. AISTATS 2019, 2019.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Sig-
nals, and Systems (MCSS), 2(4):303-314, Dec. 1989. ISSN 0932-4194. doi: 10.1007/BF02551274.
URL http://dx.doi.org/10.1007/BF02551274.

C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-
order functional knowledge for better option pricing. In T. Leen, T. Dietterich,
and V. Tresp, editors, Advances in Neural Information Processing Systems, vol-
ume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper/2000/file/
44968aece94£667e4095002d140b5896-Paper . pdf.

K. Dvijotham*, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A dual approach to scalable
verification of deep networks. In Proceedings of the Thirty-Fourth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-18), Corvallis, Oregon, 2018. AUAI Press.

K. D. Dvijotham*, A. Raghunathan, J. Uesato, S. Dathathri, A. Kurakin, I. Goodfellow, P. Kohli,
J. Steinhardt, and P. Liang. Enabling certification of verification-agnostic networks via memory-
efficient semidefinite programming. In Advances in Neural Information Processing Systems,
pages —, 2020.

H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing
lipschitz continuity, 2020.

S. Gowal, K. Dvijotham*, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic, T. A. Mann,
and P. Kohli. On the effectiveness of interval bound propagation for training verifiably robust
models. In ICCV, volume 9, pages —, 2019.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of
wasserstein gans. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages
5767-5777. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/892c3blc6dccd52936e27cbd0f£683d6-Paper . pdf.

10

E. Hoogeboom, V. G. Satorras, J. Tomczak, and M. Welling. The convolution exponential and
generalized sylvester flows. ArXiv, abs/2006.01910, 2020.

Y. Huang, H. Zhang, Y. Shi, J. Z. Kolter, and A. Anandkumar. Training certifiably robust neural
networks with efficient local lipschitz bounds. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=FTt28RYj5Pc.

J.-H. Jacobsen, A. W. Smeulders, and E. Oyallon. i-revnet: Deep invertible networks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
HJs jkMbOZ.

B. Kiani, R. Balestriero, Y. Lecun, and S. Lloyd. projunn: efficient method for training deep networks
with unitary matrices, 2022. URL https://arxiv.org/abs/2203.05483.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

A. Kumar, A. Levine, S. Feizi, and T. Goldstein. Certifying confidence via randomized
smoothing. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems, volume 33, pages 5165-5177. Cur-
ran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
37aabdfc44dddd0d19d4311e2c7a0240-Paper . pdf.

A. Kumar, A. Levine, T. Goldstein, and S. Feizi. Curse of dimensionality on randomized smoothing
for certifiable robustness. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 5458-5467. PMLR, 13-18 Jul 2020b. URL http://proceedings.mlr.press/v119/
kumar20b.html.

M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. K. K. Jana. Certified robustness to adversarial
examples with differential privacy. In IEEE S&P 2019, 2018.

K. Leino and M. Fredrikson. Relaxing local robustness. In Neural Information Processing Systems
(NIPS), 2021.

K. Leino, Z. Wang, and M. Fredrikson. Globally-robust neural networks. In International Conference
on Machine Learning (ICML), 2021.

A. Levine, S. Singla, and S. Feizi. Certifiably robust interpretation in deep learning, 2019.

B. Li, C. Chen, W. Wang, and L. Carin. Certified adversarial robustness with additive noise.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32, pages 9464-9474. Cur-
ran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
335cd1b90bfadee70b39d08a4ae0cf2d-Paper. pdf.

Q. Li, S. Haque, C. Anil, J. Lucas, R. Grosse, and J.-H. Jacobsen. Preventing gradient attenuation
in lipschitz constrained convolutional networks. Conference on Neural Information Processing
Systems, 2019b.

X. Liu, M. Cheng, H. Zhang, and C. Hsieh. Towards robust neural networks via random self-ensemble.
In ECCV, 2018.

P. M. Long and H. Sedghi. Generalization bounds for deep convolutional neural networks. In
International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rle_FpNFDr.

J. Lu and M. P. Kumar. Neural network branching for neural network verification. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
Blevfa4tPB.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=B1QRgziT-.

11

C. Miiller, F. Serre, G. Singh, M. Piischel, and M. Vechev. Scaling polyhedral neural network
verification on gpus. In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine
Learning and Systems, volume 3, pages 733-746, 2021. URL https://proceedings.mlsys.
org/paper/2021/file/cad6c1b9512a7a8315fa3c5a946e8265-Paper . pdf.

A. D. Palma, H. Behl, R. R. Bunel, P. Torr, and M. P. Kumar. Scaling the convex barrier with
active sets. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=uQf0y7Lr1TR.

H. Qian and M. N. Wegman. L2-nonexpansive neural networks. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=ByxGSsRIFQ.

A. Raghunathan, J. Steinhardt, and P. Liang. Semidefinite relaxations for certifying robustness to
adversarial examples. In NeurIPS, 2018.

H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang. Prov-
ably robust deep learning via adversarially trained smoothed classifiers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32, pages 11292-11303. Cur-
ran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
3a24b25a7b092a252166a1641ae953e7-Paper . pdf.

H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang. A convex relaxation barrier to tight
robustness verification of neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019b. URL https://proceedings.neurips.
cc/paper/2019/file/246a3c5544feb054f3ea718f61adfal6-Paper.pdf.

H. Salman, M. Sun, G. Yang, A. Kapoor, and J. Z. Kolter. Denoised smoothing: A provable
defense for pretrained classifiers. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS 20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546.

H. Salman, S. Jain, E. Wong, and A. Madry. Certified patch robustness via smoothed vision
transformers. CoRR, abs/2110.07719, 2021. URL https://arxiv.org/abs/2110.07719.

H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJevYoA9Fm.

G. Singh, M. Piischel, and M. Vechev. Fast polyhedra abstract domain. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, page 46-59,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346603. doi:
10.1145/3009837.3009885. URL https://doi.org/10.1145/3009837.3009885.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev. Fast and effective robustness
certification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018a. URL https://proceedings.neurips.cc/paper/2018/file/
£2£446980d8e971e£3da97af089481c3-Paper . pdf.

G. Singh, T. Gehr, M. Mirman, M. Puschel, and M. T. Vechev. Fast and effective robustness
certification. In NeurIPS, 2018b.

G. Singh, R. Ganvir, M. Piischel, and M. Vechev. Beyond the single neuron convex barrier for neural
network certification. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
0a9fdbb17feb6ccb7ec405cfb85222c4-Paper. pdf.

G. Singh, T. Gehr, M. Piischel, and M. Vechev. An abstract domain for certifying neural networks.
Proc. ACM Program. Lang., 3(POPL), jan 2019b. doi: 10.1145/3290354. URL https://doi.
org/ 10.1145/3290354.

12

G. Singh, T. Gehr, M. Piischel, and M. Vechev. Robustness certification with refinement. In
International Conference on Learning Representations, 2019c. URL https://openreview.
net/forum?id=HJgeEh09KQ.

H. Singh, M. P. Kumar, P. Torr, and K. D. Dvijotham. Overcoming the convex barrier for simplex
inputs. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
JXREUkyHi7u.

S. Singla and S. Feizi. Second-order provable defenses against adversarial attacks. In H. D. IIT and
A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 8981-8991. PMLR, 13—18 Jul 2020.
URL http://proceedings.mlr.press/v119/singla20a.html.

S. Singla and S. Feizi. Skew orthogonal convolutions. In /CML, 2021. URL https://arxiv.org/
abs/2105.11417.

S. Singla, S. Singla, and S. Feizi. Improved deterministic 12 robustness on CIFAR-10 and CIFAR-100.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=tD7eCtaSkR.

A. Sinha, H. Namkoong, and J. Duchi. Certifiable distributional robustness with principled adversarial
training. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Hk6kPgZA-.

J. Su, W. Byeon, and F. Huang. Scaling-up diverse orthogonal convolutional networks with a
paraunitary framework. In ICML, 2022. URL https://arxiv.org/abs/2106.09121.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations, 2014.
URL http://arxiv.org/abs/1312.6199.

A. Trockman and J. Z. Kolter. Orthogonalizing convolutional layers with the cayley transform. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=Pbj8H_jEHYv.

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at odds with
accuracy. In ICLR, 2018.

Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scalable certification of perturba-
tion invariance for deep neural networks. In NeurIPS, 2018.

C. Villani. Optimal transport, old and new, 2008.

S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Beta-CROWN: Efficient
bound propagation with per-neuron split constraints for neural network robustness verification. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=ahYI1RBeCFw.

L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards
fast computation of certified robustness for ReLU networks. In J. Dy and A. Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 5276-5285. PMLR, 10-15 Jul 2018. URL https://
proceedings.mlr.press/v80/wengi8a.html.

E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5286-5295, Stockholmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/wongl8a.html.

E. Wong, F. R. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling provable adversarial defenses. In
NeurlPS, 2018.

13

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isome-
try and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neu-
ral networks. In J. Dy and A. Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5393-5402, Stockholmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/xiaol8a.html.

T. Yu, J. Li, Y. CAI and P. Li. Constructing orthogonal convolutions in an explicit manner. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=Zr5W2LSRhD.

B. Zhang, T. Cai, Z. Lu, D. He, and L. Wang. Towards certifying linfinity robustness using neural
networks with linfinity-dist neurons. In ICML, 2021.

B. Zhang, D. Jiang, D. He, and L. Wang. Boosting the certified robustness of I-infinity distance nets.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=Q76Y7wkiji.

H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural network robustness
certification with general activation functions. In Advances in Neural Information Processing
Systems (NIPS), arXiv preprint arXiv:1811.00866, dec 2018.

H. Zhang, P. Zhang, and C.-J. Hsieh. Recurjac: An efficient recursive algorithm for bounding jacobian
matrix of neural networks and its applications. In AAAI Conference on Artificial Intelligence
(AAAI), arXiv preprint arXiv:1810.11783, dec 2019.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] in Section 7, we discuss how CRC-
Lipmight lead to slower certification.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A] because it is expensive to run.
(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

15

	Introduction
	Related work
	Problem setup and Notation
	Faster gradient computation for Skew Orthogonal Convolutions
	Curvature-based Robustness Certificate
	Projection pooling layers
	Experiments
	Results using Faster gradient computation
	Results using projection pooling and CRC-Lip

	Acknowledgements

