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Abstract. Dense prediction tasks such as segmentation and detection of patho-
logical entities hold crucial clinical value in computational pathology workflows.
However, obtaining dense annotations on large cohorts is usually tedious and
expensive. Contrastive learning (CL) is thus often employed to leverage large
volumes of unlabeled data to pre-train the backbone network. To boost CL for
dense prediction, some studies have proposed variations of dense matching objec-
tives in pre-training. However, our analysis shows that employing existing dense
matching strategies on histopathology images enforces invariance among incor-
rect pairs of dense features and, thus, is imprecise. To address this, we propose
a precise location-based matching mechanism that utilizes the overlapping infor-
mation between geometric transformations to precisely match regions in two aug-
mentations. Extensive experiments on two pretraining datasets (TCGA-BRCA,
NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight
the superiority of our method in semantic and instance segmentation tasks. Our
method outperforms previous dense matching methods by up to 7.2% in average
precision for detection and 5.6% in average precision for instance segmentation
tasks. Additionally, by using our matching mechanism in the three popular con-
trastive learning frameworks, MoCo-v2, VICRegL, and ConCL, the average pre-
cision in detection is improved by 0.7% to 5.2%, and the average precision in
segmentation is improved by 0.7% to 4.0%, demonstrating generalizability. Our
code is available at https://github.com/cvlab-stonybrook/PLM_SSL

Keywords: Dense contrastive learning · Self-supervised learning · Segmentation
· Detection · Computational Pathology

1 Introduction

In computational pathology, dense prediction tasks such as segmentation and detection
are essential in analyzing digitized histology scans [24,25]. However, unlike classifica-
tion, obtaining labels from pathologists for dense prediction tasks is very tedious and
expensive.
? These authors contributed equally to this paper.
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Contrastive learning (CL) is being increasingly adopted as a self-supervised learn-
ing (SSL) strategy in computational pathology [17,5,4] to reduce the need for an-
notations. In standard CL, two augmented views are obtained from the input image,
and the key idea is to pull the representations of these views closer while pushing
apart representations from any other image. Popular CL methods such as SimCLR [6],
MoCo [12,7,8], BYOL [11], and VICReg [2], generalize well to multiple computer
vision and medical imaging tasks. In CL, traditionally, a spatial pooling operation is
applied to the output feature map of the backbone network to encode each view into a
global representation. These global CL approaches [6,7,11] work well when the down-
stream tasks involve classification problems; however, for dense prediction tasks, such
representations are not optimal since they require detailed local descriptors of the im-
ages. Towards this direction, DenseCL [26] and VICRegL [3] propose incorporating
local details in pre-training through leveraging dense matching objectives between the
feature maps across both views. In particular, representations from local patches are
extracted, and their correspondences across the different views are investigated through
the dense matching operation. DenseCL utilizes feature space cosine similarity match-
ing (denoted by Mft) between local representations across the views to find the cor-
respondence pairs. Whereas VICRegL employs spatial location of local patches of the
feature maps (denoted byMloc) to find the closest spatial distance between correspond-
ing pairs across the views.

(a) (b) (c)

𝑀𝑓𝑡 (DenseCL) 𝑀𝑙𝑜𝑐 (VICRegL) 𝑀𝑝𝑙 (Ours)

Fig. 1. Local feature matching using three methods for two random augmentations of the same
image. Green arrows indicate the matching operation, and orange boxes indicate the same regions
in the two views. (a) Feature similarity-based matching (Mft), used by DenseCL [26]. The
network erroneously pairs patches with multiple nuclei to a local patch containing mainly stroma
and non-tissue. (b) Location-based matching (Mloc), proposed by VICRegL [3]. It matches a
patch consisting of multiple nuclei to only one patch in another view containing fewer nuclei
due to zooming augmentation. (c) Precise location-based matching (Mpl). We match a patch
to multiple patches in the other view by incorporating exact overlapping weights between the
orange boxes across the views.

Need for precise matching in pathology: The pitfalls of bothMft andMloc can be
observed in Fig. 1 (a) & (b) respectively. The feature-based matching,Mft, erroneously
matches the local patch consisting of multiple nuclei to a patch in another view predom-



Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology 3

inantly consisting of stroma and non-tissue regions. This is because their similarity is
defined on the features, which is significantly affected by the model. This could crit-
ically hamper the representation learning in histopathology as the invariance between
these two patches could force the model to focus on stroma-based descriptors while
ignoring other crucial information about cells and their morphology. Location-based
matching Mloc avoids this error by storing the location information after the geometric
transformations to find the pairs. However it can be observed in Fig. 1 (b) that the local
patch consisting of multiple nuclei is matched with a patch in the other view containing
fewer nuclei. This is because they allow matching to strictly one patch. This invariance
could potentially enforce the network to ignore crucial information regarding cell den-
sity. Due to the zooming and cropping augmentations, a local patch in a given view may
overlap with multiple local patches in another. Formulation of Mloc thus has the unde-
sired constraint that a local patch in a view can only match to one corresponding local
patch in the other, which is not precise and sub-optimal. Since histopathology images
consist of numerous fine-grained individual entities/objects, there is a need for more
precise dense matching across the views to overcome the limitations encountered and
provide better representations for dense prediction tasks.

To this end, we propose a precise location-based matching strategy, denoted byMpl,
which matches a local patch in a view to multiple corresponding overlapping patches in
another, as shown in Fig. 1 (c). By relaxing the previous constraint,Mpl enables precise
matching between the views. We demonstrate the efficacy of our precise matching strat-
egy in dense prediction tasks involving detection and segmentation on multiple datasets
across colon and breast cancer. Experiment results show that our precise location-based
matching outperforms previous local matching strategies, improving average precision
by up to 7.2% for detection and 5.6% for instance segmentation. We further demon-
strate the generalizability of our approach by adopting Mpl in three popular contrastive
learning frameworks: MoCo-v2 [7], VICRegL [3], and ConCL [28]. Mpl shows a rela-
tive improvement in average precision by 5.2%, 1.5%, 0.7% for detection, and by 4.0%,
2.9%, 0.7% for instance segmentation with the three aforementioned CL frameworks,
respectively.

2 Method

Our method consists of a global contrastive learning part similar to MoCo, which learns
a global feature representation of an input image, and a local dense contrastive learning
part that learns the local feature representations of small local patches in an input image.
These two parts share the same backbone, while the projection heads are different. For
the rest of the paper, we use x to represent the input image and xq and xk to represent
the query and key images, respectively. When xq and xk are two randomly augmented
views of the same image, we optimize the network to pull their feature representations
closer. When xq and xk come from two different images, we optimize the network to
push their feature representations apart.
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Fig. 2. Overview of the proposed method. (a) Overall structure of our global contrastive frame-
work, the same as MoCo-v2 [7]. For each view of the image, we generate a single global feature
representation that represents the entire image. (b) Overall structure of our local dense contrastive
framework. For each view of the image, we generate several local feature representations. Each
local feature represents a local patch in the image. (c) Without zooming and cropping, patches
from two augmentations (for e.g., color jitter) precisely match with each other. (d) If the aug-
mentation contains zooming and cropping, Q1 matches the weighted sum of K5, K6, K8 and
K9. The weights are calculated as the overlapping ratio of Ki and the red boxed region in xk

corresponding to Q1. M1,j is the first row of overlapping matrix M .

2.1 Global Contrastive Learning

As shown in Fig. 2 (a), in the left branch (query branch), image xq is passed to a back-
bone F (·) and a global head HG(·) to produce a global representation q as shown in
Eq. 1. In the right branch (key branch), the same operation is performed on input image
xk to produce a global representation k, as shown in Eq. 1.

q = HG(F (x
q)); k = HG(F (x

k)) (1)

We then calculate the global contrastive loss LG between the two global feature q and
k as follows:

LG = Lcon(q, k) (2)

where the Lcon represents the vanilla MoCo-v2 loss [7].

2.2 Local Dense Contrastive Learning

Apart from the global head, we also have a local dense head similar to the DenseCL [26].
As shown in Fig. 2 (b), in the left query branch, backbone F (·) and a dense headHD(·)
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map the input image xq to a set of local query features:

Q = HD(F (xq)) = {Qi}, i = 1, . . . , n (3)

where n is the number of local features. Similarly, the right key branch produces a set
of local key features:

K = HD(F (xk)) = {Ki}, i = 1, . . . , n (4)

Each feature Qi or Ki in the two sets corresponds to a local patch in the original image
x; we use P q

i and P k
i to represent such regions. As shown in Fig. 2 (c), assuming xq is

a 96× 96 patch and HD(F (xq)) outputs a 3× 3 feature map {Qi}, i = 1, . . . , 9, each
Qi corresponds to a 32× 32 P q

i patch in xq .
We calculate a local dense contrastive loss LL between the two groups of local

features Q and K as:

LL = Lpre(Q,K) + Lpre(K,Q) (5)

where the loss is calculated by matching both Q to K and K to Q and Lpre(·) is the
precise location-based feature matching loss we will introduce in the next subsection.

2.3 Precise Location-based Feature Matching

The key problem in the local dense branch is that random zooming and cropping aug-
mentations lead to spatially mismatched features. For example, as shown in Fig. 2 (c), if
the augmentation operation does not contain any zooming or cropping, Qi should pre-
cisely match to Ki, since they represent the same 32×32 patch context (P q

i = P k
i , ∀i).

However, zooming and cropping are among the key augmentations in contrastive
schemes [12,6]. To solve this problem, in this study we propose a method to address
this limitation. As demonstrated in Fig. 2 (d), when augmentation operations include
zooming and cropping, Q1 and K1 are spatially mismatched, since the represented
regions are different. Instead, Q1 should match entire K5 and part of K6, K8 and K9 in
the example presented in Fig. 2 (d). Observing this, we use a weighted sum of K5,6,8,9

to match Q1, where the weights are calculated from the extent of the overlapping areas
between Q1 and K5,6,8,9. To achieve this, we define a n × n overlapping matrix M
between two augmentations, as shown in Fig. 2(b). The elements of M are defined as:

Mi,j = A(P q
i ∩ P

k
j ) (6)

where P q
i represents the ith patch in the query augmentation and A(x) is an area func-

tion that calculates the area of x. Mi,j can be easily calculated using the bounding boxes
of P q and P k generated during data augmentation. Mi,j represents the overlapped area
in the original image x between ith patch in the left query augmentation and jth patch
in the right key augmentation. Mi,j can be easily calculated from the position and size
of the patches P q

i and P k
j .

To match the local features Qi to features K, we need to find out the overlapping
area between Qi and all possible K. This overlapping area is the ith row of the over-
lapping matrixM , thus the multiplicationMi,∗ ·mK represents the weighted sum of all
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K overlapped with Qi. Considering all i, it is (in matrix format):

K ′ =M ·mK/||M ·mK ||, mK = [K1,K2, . . . ,Kn]
> (7)

where || · || represents the row-wise L2 norms. For simplicity, K ′ is also viewed as a set
of its rows {K ′i,∗|i = 1, 2, . . . , n}. The same process is repeated for matching Ki to all
possible Q.

Q′ =M> ·mQ/||M> ·mQ||, mQ = [Q1, Q2, . . . , Qn]
> (8)

We then define the weights of each pair matching. Matches are not equally important
since they have different overlaps. For example, as shown in Fig. 2(d), Q1 is covered
by K5,6,8,9. However, Q5 only overlaps with K9 by a small area and Q9 does not have
any overlapping with the K. We thus define the weight of matching as follows:

wq
i =

∑
j

Mi,j/A(P
q
i ); wk

i =
∑
j

(MT )i,j/A(P
k
i ) (9)

where A(P q
i ) is the area of the ith patch in xq in the original image x, and A(P q

i ) is the
area of the ith patch in xk in the original image x, and wq

i , w
k
i ∈ [0, 1]. The final local

loss between Q and K can then be formalized as:

LL = Lpre(Q,K) + Lpre(K,Q) (10)

=
1∑

i(w
q
i + wk

i )

∑
i

(wq
i · Lcon(Qi,K

′
i) + wk

i · Lcon(Ki, Q
′
i)) (11)

where the Lcon represents the contrastive loss function which can be any contrastive
loss applicable to the problem.

2.4 Optimization

The joint loss L is defined as the sum of global and local losses as follows:

L = (1− λ)LG + λLL (12)

where λ ∈ [0, 1] is a weight hyper-parameter. The parameters in the left query branch
θq are optimized end-to-end using the gradients calculated by loss L. The parameters
in the right key branch θk are optimized using exponential moving average (EMA) as
follows:

θk = mθk + (1−m)θq (13)

where m ∈ [0, 1) is a momentum coefficient. We use the MoCo-v2 contrastive learning
loss, InfoNCE [16], for Lcon in our experiments, given by:

Lq,k+,k−

con = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k− exp(q · k−/τ)
(14)
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where q is a query representation, k+ represents the positive (similar) key samples, and
k− represents the negative (dissimilar) key samples. τ is a temperature hyper-parameter.
A query and a key form a positive pair if they are augmented from the same image, and
otherwise form a negative pair. Our method does not have any requirement on the choice
of contrastive loss for Lcon, making our framework generalizable to other contrastive
learning frameworks.

3 Experiments and Discussion

3.1 Datasets
In our experiments, we use 5 datasets. Two of them, NCT-CRC-HE-100K [15] and
TCGA-BRCA-100K [19], are used as pretraining datasets. The other three, GlaS [23],
CRAG [10], and BCSS [1] are used to evaluate downstream tasks.

NCT-CRC-HE-100K. The NCT-CRC-HE-100K dataset [15] has 100,000 patches
of the size 224 × 224 cropped from 86 H&E stained colorectal adenocarcinoma can-
cer and normal tissue slides. All the patches are extracted at 20× magnification. The
patches are annotated into nine classes. However, these patch-level labels are not uti-
lized as we use this dataset for self-supervised pre-training. This dataset is used for
pretraining followed by the downstream segmentation on the GlaS and CRAG dataset.

TCGA-BRCA-100K. The TCGA-BRCA dataset [19] has 1133 slides from patients
diagnosed with either Invasive Ductal (IDC) or Invasive Lobular Breast Carcinoma
(ILC). We create a dataset by randomly sampling 100,000 tissue patches at 20× mag-
nification and denote this dataset as TCGA-BRCA-100K. Since this dataset is used for
pre-training followed by the downstream segmentation on the BCSS [1] dataset, we en-
sure the slides for the pre-training and downstream tasks do not have any patient-level
overlap.

GlaS. The Gland Segmentation in Colon Histology Images (GLaS) dataset [23] has
165 images of size 775×522 cropped from 16 H&E histological sections of stage T3 or
T4 colorectal adenocarcinoma. The digitization of slides is done at 20× magnification.
Each image contains object-instance-level annotations of both the benign and malignant
glands.

CRAG. The Colorectal adenocarcinoma gland (CRAG) dataset [10] has 213 images
of the size mostly around 1512 × 1516 collected from 38 H&E whole slide images
(WSIs). The images are sampled at 20× magnification. The annotations include the
instance-level segmentation masks of the adenocarcinoma and benign glands in colon
cancer.

BCSS. The Breast Cancer Semantic Segmentation (BCSS) dataset [1] has over
20,000 semantic segmentation annotations of tissue regions sampled from 151 H×E
stained breast cancer images at 40× magnification from TCGA-BRCA [19]. The anno-
tations include the segmentation masks of 21 classes, such as Tumor, Stroma, Inflam-
matory, Necrosis, etc.

3.2 Implementation Details
In all the experiments, we use ResNet18 [14] as our backbone network and generate
n = 7×7 = 49 local features forQ andK. We compare pre-training ResNet18 with the
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Table 1. Quantitative results of object detection, instance segmentation, and semantic segmen-
tation. For GlaS and CRAG, model is pre-trained for 200 epochs on the NCT dataset. For
BCSS, model is pre-trained for 200 epochs on randomly sampled patches from TCGA-BRCA.
VICRegLm corresponds to a dense matching extension of VICRegL [3] in MoCo-v2 framework.

Dataset GlaS CRAG BCSS
Metric APdet APseg APdet APseg Jaccard Dice

MoCo-v2 52.3 55.3 50.0 50.3 0.6529 0.7771
w/ Mft (DenseCL [26]) 53.9 56.5 52.3 52.2 0.6547 0.7778

w/ Mft & Mloc (VICRegLm [3]) 51.3 56.0 53.5 51.1 0.6554 0.7783

Ours (Mpl) 55.0 57.5 54.5 54.0 0.6559 0.7787

multiple baseline methods and our precise location-based SSL method for 200 epochs
with a batch size 256. We use the SGD optimizer with a learning rate of 0.03, weight
decay of 0.0001, momentum of 0.9 and apply a cosine annealing learning rate decay
policy. For downstream instance segmentation tasks on the GlaS and CRAG datasets,
we use MaskRCNN [13] with Resnet18 [14] backbone. We train the network on the
CRAG dataset for 15000 iterations and GlaS for 5000 iterations. We use a batch size of
16 and a base learning rate of 0.02. The other hyperparameters are the default ones in
Detectron2 [27]. For downstream semantic segmentation on the BCSS dataset, we train
a ResNet18 based UNet [22] using the AdamW [20] optimizer with a batch size of 32,
a learning rate of 5e−4, and a cosine annealing learning rate decay. We use the PyTorch
library [21], adopting the OpenSelfSup [9] code base. We train our models on NVIDIA
Tesla A100 and Nvidia Quadro RTX 8000 GPUs.

3.3 Results

We evaluate the performance of our method on the three downstream datasets involving
colorectal and breast cancers. After pre-training, the model is used as the backbone for
the downstream segmentation tasks. Since the tasks in the GlaS and CRAG datasets
involve instance segmentation, we use the COCO-style [18] metrics to evaluate the
model: mean average precision for detection and segmentation, denoted by APdet and
APseg , respectively. For the BCSS dataset, we use the Jaccard index, and the Dice score
to evaluate the quality of predictions.
Segmentation performance evaluation. Pre-training: We use vanilla MoCo-v2 as the
base SSL framework. To evaluate the dense contrastive learning baselines, we use the
feature-based matching DenseCL and location-based matching VICRegL in MoCo-v2.
DenseCL corresponds to MoCo-v2 w/ Mft, whereas MoCo-v2 w/ Mft & Mloc corre-
sponds to adoption of VICRegL [3] in the MoCo-v2 framework (denoted as VICRegLm).
Our precise location-based matching Mpl in MoCo-v2 is denoted in the rest of the pa-
per as MoCo-v2 w/ Mpl. In Table 1, we observe that pre-training MoCo-v2 with dense
matching techniques such as Mft or Mloc results in better performance. Our proposed
dense matching method Mpl, unlike Mloc, uses better zooming and cropping augmen-
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Table 2. Experiments on the generalizability of our proposed method on the GlaS dataset: 1)
MoCo-v2 (global contrastive learning), 2) VICRegL (global + local dense contrastive learning),
3) ConCL (global + clustering-based contrastive learning).

CL method MoCo-v2 [7] VICRegL [3] ConCL [28]
Metric APdet APseg APdet APseg APdet APseg

vanilla method 52.3 55.3 48.3 52.3 56.8 58.7
vanilla method w/ Mpl 55.0 57.5 49.0 53.8 57.2 59.1

tations and thus is a more reliable as a complete dense matching strategy. In Table 1,
we empirically verify this claim by showing a consistent improvement across multiple
datasets and downstream tasks. Compared to vanilla MoCo-v2, our method achieves a
relative improvement in average precision of 5.2% and 9% in detection, 4.0% and 7.3%
in instance segmentation on GlaS and CRAG, respectively. Compared to DenseCL, we
see a consistent relative improvement of 2.0% and 4.2% in detection, 1.8% and 3.5%
in instance segmentation; compared to VICRegLm, we see a relative improvement of
7.2% and 1.9% in detection, 2.7% and 5.7% in instance segmentation on GlaS and
CRAG respectively. For semantic segmentation, compared to vanilla MoCo-v2, relative
improvement in Jaccard index is up to 0.45%.
Evaluation of generalizability. We demonstrate the generalizability of our precise
location-based matching by incorporatingMpl into popular SSL frameworks, including
vanilla MoCo-v2 [7], VICRegL [3], and ConCL [28]. All experiments are performed
on the GlaS dataset in this study. In Table 2, we observe that our matching method
consistently boosts the performance of all the SSL frameworks. This shows that our
precise location-based matching can be easily adopted by a diverse set of SSL frame-
works to boost the representation learning abilities for the dense prediction tasks such
as detection and segmentation.
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Fig. 3. Illustration of the effect of loss weight λ on model performance The optimal λ for the
GlaS and the CRAG dataset is 1.0, and the optimal λ for the BCSS dataset is 0.5.
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(DenseCL)

Fig. 4. Qualitative comparison on the GlaS and the CRAG datasets. Our method has fewer false
negative and false positive segmentations, outperforming other methods.

Ablation study on the hyperparameter λ. To study the optimal weight of the global
and the local losses, we perform an ablation study on λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
When λ = 0.0, the global contrastive loss is used alone for the training, whereas for
λ = 1.0, only our proposed local dense loss is used. Figure 3 demonstrates that over-
all our proposed loss boosts the performance of the models on all three datasets. In
particular, for instance segmentation tasks (GlaS and CRAG datasets), where we have
multiple local objects to segment, our formulation alone provides the best performance
and global contrastive schemes may not be so helpful. On the other hand, for semantic
segmentation tasks (BCSS dataset), the best performance is achieved when both global
and local loss components are combined. Indeed, for such tasks, global interactions of
different regions are important to capture different structures.
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Qualitative comparison. To qualitatively compare the performance of our method
against others, we visualize the segmentation masks and detection boxes in Figure 4.
Different detection errors (false positives, false negatives and falsely separating a sin-
gle gland into multiple parts) are indicated by arrows in different colors. Overall, our
method has fewer false positive and false negative errors, outperforming previous meth-
ods and providing more robust segmentations.

4 Conclusion

In this paper, we introduced a precise location-based matching for SSL frameworks
that matches a local patch in a view to multiple corresponding overlapping patches in
the other view. We applied our proposed matching on two pre-training datasets and
evaluated on three downstream tasks. Our method consistently outperforms state-of-
the-art local matching strategies, showing substantial improvement in average preci-
sion in both detection and instance segmentation. Moreover, by using our matching
mechanism, the average precision in detection and segmentation was improved in the
three popular contrastive learning frameworks, demonstrating the method’s generaliz-
ability. Our proposed approach shows the promising potential of local matching in self
supervised learning. In future work, we will perform extensive cross-validation on the
current datasets and further explore better matching mechanisms and their application
to a diverse set of computational pathology tasks.
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